
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

TRusT: A Compilation Framework for In-process
Isolation to Protect Safe Rust against Untrusted Code
Inyoung Bang and Martin Kayondo, Seoul National University; Hyungon Moon,

UNIST (Ulsan National Institute of Science and Technology); Yunheung Paek,
Seoul National University

https://www.usenix.org/conference/usenixsecurity23/presentation/bang

TRUST: A Compilation Framework for In-process Isolation

to Protect Safe Rust against Untrusted Code

Inyoung Bang1,2 Martin Kayondo1,2 Hyungon Moon3,∗

Yunheung Paek1,2,∗

1ECE, Seoul National University, 2ISRC, Seoul National University
3UNIST

{iybang, kymartin}@sor.snu.ac.kr,

ypaek@snu.ac.kr, hyungon@unist.ac.kr

Abstract

Rust was invented to help developers build highly safe sys-

tems. It comes with a variety of programming constructs that

put emphasis on safety and control of memory layout. Rust

enforces strict discipline about a type system and ownership

model to enable compile-time checks of all spatial and tem-

poral safety errors. Despite this advantage in security, the

restrictions imposed by Rust’s type system make it difficult or

inefficient to express certain designs or computations. To ease

or simplify their programming, developers thus often include

untrusted code from unsafe Rust or external libraries written

in other languages. Sadly, the programming practices embrac-

ing such untrusted code for flexibility or efficiency subvert

the strong safety guarantees by safe Rust. This paper presents

TRUST, a compilation framework which against untrusted

code present in the program, provides trustworthy protection

of safe Rust via in-process isolation. Its main strategy is allo-

cating objects in an isolated memory region that is accessible

to safe Rust but restricted from being written by the untrusted.

To enforce this, TRUST employs software fault isolation and

x86 protection keys. It can be applied directly to any Rust

code without requiring manual changes. Our experiments re-

veal that TRUST is effective and efficient, incurring runtime

overhead of only 7.55% and memory overhead of 13.30% on

average when running 11 widely used crates in Rust.

1 Introduction

C/C++ have been dominant languages for several decades,

but they are unsafe due to the permissive semantics that

allows many undefined behaviors often manifested as a

myriad of security-critical pervasive bugs, such as buffer

overflows, use-after-free, and other memory exploitable er-

rors [17, 35, 41, 52, 54]. The language Rust [32, 45] was in-

vented to tackle this security problem inherent in C/C++ by

introducing new syntax and semantics such as pointer own-

ership, lifetime, and borrowing. The language features and

*Corresponding authors

constructs of Rust are elaborated to facilitate static analysis

for safety guarantee, thereby requiring little or no runtime san-

ity checking. However, despite Rust’s strong static security

guarantees, its strict semantics and rules for the guarantees po-

tentially limit expressiveness [25] as well as performance [50].

Thus for practicality, Rust relaxes its strict safety rules by al-

lowing programmers to include untrusted code, which can be

exempt from strict sanity checks at compile time. One source

of the untrusted code is code sections in Rust, named unsafe

blocks, which typically contain a handful of the operations

crucial for low-level coding or critical for performance, such

as raw pointer manipulation and unprotected type casting.

Those operations wrapped within a Rust unsafe block are

written in a second language beside Rust, called unsafe Rust,

which does not necessarily obey all safety rules of the true

Rust (preferably, safe Rust) language. As the other source

of untrusted code, external libraries written in unknown lan-

guages are used by programmers to save their development

costs. The programming practices encompassing such un-

trusted code with safe Rust indeed bring diverse benefits in

terms of expressive power and efficiency, but will undermine

the strong safety guarantees by safe Rust evidently because

running untrusted code in the same address space as safe

Rust code would put the entire program into danger of being

exposed to exploits from unsafe blocks or external libraries.

In this paper, we aim to shed light on this potential security

risk of Rust programming with untrusted code sources, and

to propose our compilation framework, called TRUST, which

is designed to mitigate the risk via in-process isolation where

the Rust code is transformed by TRUST to quarantine unsafe

blocks and external library functions from safe Rust code

sections which we will say hereafter as safe blocks. We opted

for an in-process scheme because it is generally deemed more

efficient than the inter-process counterpart for isolation [28]

that requires costly OS intervention for virtualization sup-

port. In fact, there are several in-process schemes [15, 31]

previously developed to address this risk with such efficiency,

but they have several limitations, such as lacking Rust-aware

program analysis, requiring expensive context switches, or

USENIX Association 32nd USENIX Security Symposium 6947

relying on developer annotations.

By quarantining unsafe blocks and external libraries from

safe blocks, TRUST prevents exploits in such untrusted code

from corrupting critical data of safe Rust without proper per-

missions. To implement our in-process isolation for Rust ap-

plications, TRUST first divides the memory into two regions,

safe and unsafe, which contain safe objects and unsafe ones,

respectively. Then, TRUST differentiates access permissions

of Rust code blocks to these regions. It permits safe blocks

to access both the regions. In contrast, it denies by default

any access of unsafe blocks and external libraries to the safe

region, although some untrusted code blocks may be given

limited permission to read the safe region depending on its

security policy. It is noteworthy here that TRUST can perform

access control on every individual object in a Rust program

by determining which objects are allocated to either of the

regions. That is to say, as for safe stack/heap objects whose

confidentiality and integrity are of top priority, TRUST allo-

cates them into the safe region so that any access of untrusted

code to them can be restricted, with the exception of some

untrusted blocks receiving read permission to safe objects for

special cases. All other objects will be classified as unsafe

ones and placed into the unsafe region.

For automatic instrumentation of the Rust code for in-

process isolation, we have made modifications to the Rust

framework, including the frontend for IR generation and the

backend for binary generation. When the Rust code is in-

strumented for in-process isolation, TRUST applies different

techniques to cope with an unsafe block and an external li-

brary because the former can be presented to TRUST as source

code, while the latter is assumed available only in binary form.

Given the source code for an unsafe block, TRUST applies

software fault isolation. Firstly, to handle unsafe heap objects

in the code, TRUST identifies their allocation sites and re-

places the sites with invocations to our customized allocator,

which allocates memory objects in the unsafe region with a

predefined address range. Next, as for unsafe stack objects,

TRUST transforms the code to allocate them separately in a

special stack which is positioned in the unsafe region. Finally,

all memory operations in an unsafe block are instrumented

with masking to deny out-of-region access. In contrast, to

deal with external libraries in binary form, TRUST applies

an isolation technique based on Intel Memory Protection Key

(MPK) since we have to conservatively presume that all those

library functions are unsafe and use unsafe objects only. As

a result, TRUST assigns separate keys to memory pages in

the safe and unsafe regions, and switches access permissions

every time execution flows to and from external libraries.

We have implemented TRUST
1 by extending the Rust com-

piler and its runtime libraries. To evaluate the efficiency, we

used fifteen widely-used crates, including core components

of Rust’s standard libraries. Experimental results show that

1Once published, TRUST will be open-sourced to benefit future studies.

TRUST slows down the test libraries by 12.65% on average.

We further evaluate TRUST by comparing it with two existing

techniques, namely, XRust and Sandcrust. The experimen-

tal results show that TRUST is about three times faster than

XRust and more than twice faster than Sandcrust.

2 Backgrounds

Ownership in Rust. Rust’s ownership policy enables the

compiler to obviate memory-safety bugs statically. In a Rust

program, a memory object must be owned exclusively by one

variable at a time during execution. When the program needs

to copy or move a pointer to a memory object, the ownership

must either be transferred to the new variable permanently or

be borrowed temporarily. The ownership policy is stringent

with zero tolerance, being imposed on data representation,

abstraction, and algorithm design. For example, Rust has tree-

shaped linked data structures and completely disallows the

implementation of mutable data structures like doubly-linked

lists. As a workaround to this strict policy, Rust incorporates

unsafe Rust, a dialect that allows some relaxed performance

and expressiveness rules. Unlike the ones written in safe

Rust, programs written in unsafe Rust may manipulate raw

pointers, invoke external library functions, or use mutable

global variables. In fact, a Rust program is typically composed

partly of unsafe Rust code in many forms. A code block can be

wrapped with the keyword unsafe, or an entire function can

be written in unsafe Rust when the function is annotated with

the same keyword. Although an unsafe block conventionally

refers to the former in Rust, we abuse the term to refer to any

code written in unsafe Rust for brevity.

Smart Pointers. Smart pointers are a widely used concept in

which a pointer is represented as a composite data type con-

taining the memory address and metadata. Most commonly,

the metadata is either the range of addresses that the pointer is

expected to target or the pointer’s capability. Many standard

libraries in Rust use these smart pointers to ensure memory

safety that cannot be checked statically at compile time [13].

For this reason, operations on smart pointer metadata are con-

sidered unsafe and thus can only be done in unsafe blocks.

Memory Protection Keys. Intel MPK [22], also referred to

as Protection Keys for Userspace (PKU), is a per-thread hard-

ware mechanism provided by Intel to help maintain memory

page permissions in groups [37]. With MPK, each page is

assigned a 4-bit value, called pkey, indicating the group to

which the page belongs. A processor with MPK has a spe-

cial register called pkru that determines the permission that

the current process has for each page group. The permission

can be investigated and updated by using special instructions,

rdpkru and wrpkru [22]. The quick switch in permission

using an in-process register motivated many earlier studies

to use it for in-process isolation [24, 26, 44, 47] as TRUST

does to quarantine external libraries. In particular, TRUST

creates separate memory regions for each component, uses

6948 32nd USENIX Security Symposium USENIX Association

1 static mut offset_in: i64 = 10;

2 fn main(){

3 ...

4 let array = [1,2,3,4,5];

5 let secret_code = 12345;

6 unsafe {

7 let ptr = array.as_ptr().offset(offset_in);

8 std::ptr::write(ptr, 10) }

9 let vector = vec![1,2,3,4,5];

10 unsafe {

11 let ptr = vector.as_ptr().offset(offset_in);

12 std::ptr::write(ptr, 10) }

13 ... }

Figure 1: Potential memory vulnerabilities caused by unsafety

1 fn next(&mut self) -> Option<(A::item, B::item)>{

2 if self.index < self.len {

3 ...

4 } else if A::may_have_side_effect() &&

5 self.index < self.a.size() {

6 let i = self.index;

7 self.index += 1;

8 unsafe { self.a.__iterator_get_unchecked(i); }

9 None

10 } else { ... }}

11 fn size_hint(&self) -> (usize, Option<usize>) {

12 let len = self.len - self.index;

13 (len, Some(len)) }

Figure 2: A buffer overflow vulnerability from unsafe Rust [7]

MPK keys and PKRU to grant and revoke access rights, and

adopt the existing mechanisms needed to protect this MPK-

based protection against the targeted attacks. For example,

TRUST uses static analysis and carefully designed entry/exit

gates as presented in ERIM [47] and Hodor [24]. Additionally,

TRUST monitors and hooks system calls to further prevent the

external libraries from escaping the quarantine as suggested

in another work, PKU Pitfalls [20].

3 Motivation

This section gives examples of the vulnerabilities in untrusted

code undermining the memory safety of safe Rust, introduces

how in-process isolation mechanisms help, and discusses the

limitations of existing mechanisms.

3.1 Vulnerabilities in Untrusted Code

As long as the safe Rust code and untrusted code run in the

same process, Rust programs are always vulnerable to mem-

ory safety bugs [4, 7, 16] no matter how careful the compile-

time analysis is. As one class of the untrusted code, unsafe

blocks written in unsafe Rust are out of the scope of the anal-

ysis that is designed solely for safe Rust. Even more useless

is this analysis when dealing with the other class of untrusted

code, external libraries, which can be written in any language,

including unsafe ones like C/C++. Such incompetence of

compile-time analysis in guaranteeing memory safety of un-

trusted code may open doors for bugs of untrusted code to

1 fn overflowed_zip(arr: &[i32]) ->

2 impl Iterator<Item=(i32,&())>{

3 static UNIT_EMPTY_ARR: [(): 0] = [];

4 let mapped = arr.into_iter().map(|i| * i);

5 let mut zipped = mapped.zip(UNIT_EMPTY_ARR.iter());

6 zipped.next();

7 zipped }

8 fn main(){

9 let arr = [1,2,3];

10 let zip = overflowed_zip(&arr).zip(overflowed_zip(&arr));

11 dbg!(zip.size_hint());

12 for(index, num) in //results in stack/heap overflow

13 zip.map(|((num, _), _) | num).enumerate() {

14 println!("{}: {}", index, num);

15 } }

Figure 3: The vulnerability in Figure 2 being exploited [7]

1 pub fn printw(s: &str) -> i32{

2 unsafe {ll::printw(s.to_c_str().as_ptr()) }

3 }

Figure 4: Format String Vulnerability CVE-2019-15546 [4]

corrupt critical memory objects in safe blocks. Moreover,

Figure 1 shows a Rust program where a pointer is defined

in a safe block and used in an unsafe block. The example

allocates two stack objects at lines 4 and 9, and takes raw

pointers targeting the objects at lines 7 and 11, respectively.

The raw pointers are incremented at the same lines and then

used for modifying the stack objects at lines 8 and 12. The

problem in this example is that the program uses a global vari-

able, offset_in, which could be modified externally any-

where else. This use of a global variable in offset computation

renders the program vulnerable. At lines 8 and 14, an at-

tacker manipulating offset_in can control which address

is written to, even reaching the safe objects. Figure 2 shows

another example extracted from the zip crate referenced in

CVE-2021-28879 [7], where the self.index may be set to

a value greater than self.len (line 7), resulting in an integer

overflow in the size_hint function (line 13). Corrupting

the return value of size_hintmisleads __iterator_get_-

unchecked(i) called at line 8 to erroneously return an iter-

ator to a memory location outside the object a. An attacker

could exploit this to create a buffer overflow when a consumed

Zip iterator is used again as in Figure 3.

Figure 4 is an example showing an external library call

that may undermine the memory safety of safe objects on

the execution stack. The resulting vulnerability is similar to a

format string bug in C/C++. It reads as much information from

the stack as there are undefined string conversion parameters

(e.g., printw("%s%s%s")). Such a bug could pave a away

for attackers’ exploiting external library code to read as much

information as they want from the stack and print it to the

standard output.

3.2 Mitigation by In-Process Isolation

A Rust program is composed of two distinct pieces of code:

untrusted code with potential exploits just discussed in the

USENIX Association 32nd USENIX Security Symposium 6949

Table 1: Comparison of In-Process Isolation Policies

Protection from

Full Unsafe Rust External Libs

Autumation Stack Heap Stack Heap

XRust [31] ✗ ✗ ✓ ✗ ✗

Sandcrust [28] ✗ ✗ ✗ ✓ ✓

Fidelius Charm [15] ✗ ✗ ✗ ✓ ✓

TRUST ✓ ✓ ✓ ✓ ✓

examples above and safe blocks to be protected from such ex-

ploits. In-process isolation that isolates safe blocks and their

associated data from the rest parts of the code, i.e., quarantin-

ing the untrusted code, is a natural fit to solve this protection

problem within a program. TRUST automatically identifies

the objects that need to be protected from the untrusted code

and applies in-process isolation mechanisms [27] to make

sure that the untrusted code has no access to them.

XRust [31] and Fidelius Charm [15] take a similar ap-

proach as TRUST at run time. XRust enables developers to

quarantine unsafe blocks using SFI. All memory access in-

structions marked unsafe by the programmer are instrumented

with bounds checking to enforce the designed policy. Unsafe

blocks can access only the unsafe objects allocated by XRust’s

additional memory management interfaces. They later show

that additional memory management interfaces can be in-

serted automatically by interprocedural data-flow analysis.

They also introduce an alternative to SFI, guard page-based

protection, which trades security for performance. Fidelius

Charm specializes in in-process isolation for quarantining

untrusted external libraries from a Rust program. The kernel

is extended to provide a system call interface for switching

privilege levels. The protected Rust program uses this inter-

face to switch the privilege level when entering or leaving

an external code block. Upon each request, the kernel exten-

sion changes the access permission to certain memory pages

containing safe objects by updating the page table attributes.

Thus, developers are responsible for using the interface to

augment their programs to protect sensitive data objects.

3.3 Limitations of Existing Mechanisms

Even in a combined form, these tools are inadequate to confine

the attacks on untrusted code strictly, not to mention that none

of the existing mechanisms quarantine both external libraries

and unsafe blocks as shown in Table 1. First, most mecha-

nisms require manual program changes. Fidelius Charm and

Sandcrust do not demonstrate any automated transformation

and leave it as a task for developers. XRust used existing data-

flow analysis to transform the programs automatically, but the

automatic transformation does not consider wrappers for heap

allocators and smart pointers that Rust uses. Second, existing

mechanisms require expensive context switches when enter-

ing and leaving the quarantined untrusted code context. XRust

does not explicitly address the unsafety introduced by external

libraries, and Fidelius Charm changes the attributes of page

table entries for every context switch. This context switch is

expected to exhibit long latency because the attributes of many

page table entries must be updated, and the corresponding

entries must be flushed. Third, Fidelius Charm, the existing

in-process isolation mechanism for external libraries, does

not ensure the integrity of the stack pointer. There are many

existing in-process isolation mechanisms [19,39,47] in which

the default context has the lower privilege, and a process tem-

porarily enters a context with higher privilege. Unlike these,

Fidelius Charm and TRUST create a context with lower privi-

lege and give full control of the register content temporarily.

This leaves the register containing the stack pointer unpro-

tected, and an attacker may forge a counterfeit stack and make

the stack pointer target it to affect the behavior of safe blocks.

Finally, the sandboxing must also consider the stack objects

because an attacker corrupting stack objects could mislead

the safe Rust to violate memory safety.

Manual Analysis and Transformation. Existing mecha-

nisms require manual program changes. Developers are sup-

posed to identify the objects that untrusted code uses and

handle them with the newly proposed memory management

functions. XRust [31] is an exception in that it demonstrates

how existing data-flow analysis can be used to instrument

memory operations involving unsafe objects, but the appli-

cation of Xrust primarily requires manual code changes, as

we found in the open implementation of XRust [12]. For ex-

ample, to harden an earlier example shown in Figure 1, the

developer is supposed to notice that vector is used in an

unsafe block and change the code to allocate memory from

the unsafe region. Without this, XRust will not recognize the

unsafety and place the vector in the safe region.

Inefficiency in Sandboxing External Libraries. Existing

mechanisms have high context switch overhead when entering

or leaving an external library. Sandcrust [28] uses a separate

process running with different virtual address spaces to serve

external libraries for the main process. The Rust-written code

can use inter-process communication (IPC) to invoke an ex-

ternal library function instead of its original form, a simple

function invocation. This remote procedure call obliviously

increases the overhead because the arguments and return val-

ues must be passed over IPC. Moreover, the developer is

responsible for translating the program manually, i.e., for

delivering whatever data object an external library needs or

updates to and from the external library. Fidelius Charm [15]

does not require IPC, but the program still needs to ask the

OS kernel for a context switch. Unfortunately, this call to the

kernel is still expensive because it updates the page tables

to change the permission that the process has for its mem-

ory pages. The page table updates change the attributes of

Rust program’s pages, thereby invalidating the corresponding

translation lookaside buffer (TLB) entries and increasing the

TLB miss rate.

6950 32nd USENIX Security Symposium USENIX Association

4 Threat Model and Assumptions

We make no assumptions about the untrusted code, which

includes unsafe blocks and external libraries. The trusted

computing base (TCB) of TRUST includes three components

at run time, which are the safe blocks we assume to be trusted

, the Rust runtime, and TRUST runtime. Untrusted code may

have memory corruption vulnerabilities or a random series

of vulnerabilities that an attacker can chain to make arbitrary

memory access. Such an attacker can also compose a gad-

get chain to execute an arbitrary code within the context of

untrusted code. We consider remote attackers aware of these

vulnerabilities in untrusted code with which the victim pro-

gram runs. The attackers aim to corrupt the safe objects and

make safe blocks misbehave by exploiting the vulnerabili-

ties. Attackers aware of vulnerabilities in external libraries

used by a Rust program may exploit them to access otherwise

privileged memory meant for safe Rust use only. Developers

are assumed to know these assumptions and the benefits of

using TRust, to ensure that security-critical memory objects

should be used only in safe blocks. If the above assumptions

hold, TRUST guarantees that external code cannot read from

or write to safe objects used only by trusted code.

5 Design and Implementation

TRUST considers any memory object unsafe if it is used in

untrusted code consisting of unsafe blocks of Rust, and for-

eign function interface(FFI) through which external library

codes written in other languages such as C/C++ are facilitated

in conjunction with Rust. The objects that TRUST can prove

statically to be untouched by untrusted code are classified

as safe. TRUST isolates unsafe objects in a separate region

such that exploitation in untrusted code does not affect out-

side the region. Only safe blocks are allowed to access both

memory regions, whereas external code can not read from

or write to safe objects, and unsafe blocks can not write to

safe objects. To quarantine untrusted code, TRUST analyzes

and transforms a Rust program at compile-time and runs the

resulting program with its runtime library.

Analysis and Transformation. TRUST first collects the

Rust-specific attributes during compilation from the Rust

source code to LLVM IR for the later stages. The attributes

include the unsafety information that indicates if an LLVM

IR instruction belongs to an unsafe block or not and function

API information indicating whether a given function belongs

to a foreign function interface(FFI). The compiled LLVM IR

code is then passed to the points-to and value-flow analyses

stage. This stage identifies pointers used in unsafe memory

operations and performs necessary actions to isolate them.

It marks instructions accessing unsafe stack objects for later

relocation and reroutes heap pointer allocation calls to an

unsafe allocator. The output from this stage is then passed

to the LLVM compiler, which runs several passes to finalize

TRUST’s static operations. The final stage first relocates all

unsafe stack pointers to the unsafe object stack and finally

inserts entry and exit gates around external library calls.

Runtime. To serve the transformed program and properly

quarantine the untrusted code, TRUST hooks several system

services and maintains per-thread metadata. The heap allo-

cator calls from untrusted code are rerouted to the additional,

unsafe heap allocator that serves the requests with the chunks

in the unsafe region. TRUST further hooks the memory man-

agement system calls from the external libraries to prevent

them from altering page table attributes. It also augments

pthread to initialize or destroy stacks for additional threads.

Challenges. While designing TRUST, we encountered three

noteworthy challenges. Firstly, the memory safety of safe

Rust is not entirely provable at compile-time. For the memory

accesses that the compiler cannot reason about, such as those

to heap objects, Rust uses smart pointers to ensure spatial

and temporal safety dynamically at runtime. For this reason,

manipulation of either the pointers or smart pointer metadata

in unsafe blocks may result in memory-safety bugs in safe

blocks [5, 6]. When identifying the objects or pointer uses

that are potentially unsafe, TRUST must take metadata of

them into consideration. Secondly, unlike the unsafe blocks,

external libraries cannot be isolated with SFI. Such external

libraries are assumed to be delivered in the form of executable

binaries such as shared objects or static libraries. TRUST can-

not analyze and transform them at compile-time regardless of

the language that an external library is written in. Some stud-

ies have shown that SFI can be applied to binary programs,

but they incur relatively high overhead [51]. For this reason,

TRUST instead relies on Intel MPK mechanism to isolate the

external libraries and restrict their memory access. Finally,

Rust’s allocation of heap memory through the Alloc crate

and handling of heap pointers through smart pointers and

container crates such as Box, Vec, String possess a chal-

lenge to points-to and value-flow analysis. Instead of direct

invocation of the heap allocator for memory, Rust relies on

these crates to invoke the allocator and create smart pointers.

The Alloc crate exposes functions such as __rust_alloc,

__rust_realloc, __rust_alloc_zeroed, wrapping the

corresponding heap allocator interfaces. With this design, all

heap pointers (safe and unsafe) appear to be aliasing only a

handful sources and a single sink. TRUST handles this issue

by utilizing the value-flow analysis to construct a call stack

for the allocation of unsafe pointers. Then it creates a clone

of the call stack, rerouted to the unsafe allocator.

5.1 Points-to Analysis

TRUST analyzes a Rust program at Mid-level IR (MIR) and

LLVM IR level to find the allocation sites for the unsafe ob-

jects. TRUST considers an allocation site as safe and classifies

an allocation site as unsafe if it finds a flow from the site to a

memory access instruction in an unsafe block or to an external

USENIX Association 32nd USENIX Security Symposium 6951

library. An allocation site remains safe only if TRUST can

soundly conclude that the pointer obtained from the allocation

site never flows to external libraries and used for writing in

unsafe blocks, as we describe in the rest of this section.

MIR-level Analysis. TRUST associates each LLVM IR in-

struction with the block that the instruction belongs to for later

analysis while the Rust compiler translates the program from

MIR to LLVM IR. Rust compiler first translates the source

code to MIR, and performs the Rust-specific static analysis at

the level. For example, rules related to ownership are mostly

checked at that level. For this reason, each MIR instruction

is tagged with the block that it belongs to, either safe or un-

safe. However, this tag is not retained when the program is

translated to LLVM IR because the Rust compiler does not

need to determine which block is an LLVM IR instruction

generated from. On the contrary, TRUST needs to distinguish

the LLVM IR instructions generated from unsafe blocks for

its analysis. To this end, TRUST extends the Rust compiler to

attach unsafety metadata to LLVM-IR instructions generated.

Points-to Analysis. TRUST performs points-to analysis to

classify the memory allocation sites (i.e., alloca, calls to

malloc or similar) into safe and unsafe. We consider alloca

instruction as a source of pointers as well to take the stack

objects into consideration. A context-sensitive value-flow

analysis, SVF/SUPA [42,43], backs our points-to analysis for

improved precision. TRUST iteratively performs bottom-up

value-flow and points-to analysis to obtain precise yet sound

points-to relations and classify the allocation sites using the

result. This bottom-up analysis is a graph traversal problem,

where nodes are pointers, and edges are the instructions using

them. In this sense, a program under points-to analysis can be

viewed as a Value-Flow-Graph (VFG), as defined by SVF/-

SUP [42, 43]. An allocation site is classified as unsafe if it

produces a pointer that flows to at least one instruction in an

unsafe block. Otherwise, an allocation site is classified safe

which means that it is within a safe block, and the pointer it

produces is not manipulated or used in an unsafe block. Even

if a memory object is shared between the safe and unsafe

blocks, the object will be allocated from the unsafe region

because the pointer’s allocation site becomes unsafe. This pol-

icy makes the decision of TRUST to allocate an object from a

safe region to be sound, i.e., memory objects that untrusted

code may access are always allocated from the unsafe region.

A drawback of this approach is that a memory object that only

safe code accesses could be classified as unsafe if TRUST

fails to distinguish the object from a different, unsafe one due

to the limited preciseness of points-to-analysis.

Modifying SVF. SVF does not handle some LLVM

IR instructions, such as InsertValueInst and

ExtractValueInst, on which Rust heavily relies to

pack and unpack smart pointers. SVF considers any pointers

entering InsertValueInst as entering a black hole

because the instruction yields a simply packed struct,

1 fm read_vec(idx: usize, vec: &mut Vec<i32>){

2 unsafe{ vec.set_len(idx+1); }

3 vec[idx] = 256;

4 println!("The container has been hacked: {}",vec[idx]);

5 }

Figure 5: Unsafe Blocks Allow Programmers to Manually

Modify Smart Pointer Metadata [6]

which is not a pointer. Similarly, any pointer yielded from

ExtractValueInst appears to originate from a black hole.

We modified SVF to handle these cases as GetElementPtr-

related instructions followed by loads or stores. Additionally,

SVF does not handle IntToPtr and PtrToInt instructions,

which are used for pointer arithmetics. We address this

by modifying SVF to create virtual links from PtrToInt

instructions to an IntToPtr instructions using virtual pointer

casts which SVF treats as pointer copies because these

instructions are usually in close vicinity.

Working budget. Although context-sensitive analysis is pre-

cise, for large programs, it becomes notoriously expensive.

Therefore, SVF defines a working budget as the maximum

number of contexts and edge back traversals for a given node.

Additionally, instead of analyzing all pointers, we only con-

sider pointers used in unsafe blocks as candidates. For every

candidate pointer, we iteratively traverse the VFG backward

until following all possible paths until either the contexts bud-

get is exhausted or we arrive at possible allocation sites. In the

event that the budget is exhausted, rather than terminating the

traversal for the pointer under consideration, we relax the pre-

ciseness and fall back to flow-sensitive analysis constrained

by the edges budget. Users may provide a trade-off between

preciseness and time by providing the context and flow budget

parameters to TRUST to use for analysis. We further discuss

the impact of this design on the completeness and soundness

of the analysis in §6.2.

Handling Smart Pointers. We found that, even if the points-

to analysis does not report any modification of the pointer

in an unsafe block, the use of the pointer could become un-

safe due to the design of Rust runtime. Some pointers in

Rust are represented using smart pointer types that include

attributes for several purposes, including dynamic bounds

checking at run time. Manipulating such attributes could lead

to out-of-bound memory access within a safe block because

the dynamic bounds checking using the corrupted attributes

fails to find the problem, as an example (Figure 5) suggests.

Our analysis overcomes this by considering an aggregate al-

location site as unsafe if any field of the allocated object is

potentially manipulated in an unsafe block and marks the

corresponding allocation site to be unsafe.

Allowlisting Crates. While analysing unsafe point-

ers, TRUST considers some unsafe blocks from certain,

allowlisted crates (e.g., libstd, liballoc, libcore) as

safe. In other words, the use of a pointer in an unsafe block

from any of these crates alone does not render it a candidate

6952 32nd USENIX Security Symposium USENIX Association

R

A

R

R

A

Z

R

A

R

R

A

Z

Allocator Unsafe AllocatorSafe Allocator

Rust Alloc Crate

U

A

U

R

Custom Crates

Using Alloc Crate

A

Z
__rust_alloc_zeroed

R

R
__rust_realloc

Unsafe Object

Safe Object

__unsafe_alloc

__unsafe_realloc Unsafe Allocation Path

Safe Allocation Path
R

A
__rust_alloc

U

A

U

R

Figure 6: Automatic Function Cloning and Heap Allocation

Context Stack Replacement.

for points-to analysis or relocation. We find this an essen-

tial yet reasonable design choice for two reasons. First, the

core of Rust is mostly synced to the kernel, requiring system

calls and low-level operations that must be wrapped in unsafe

blocks. If we consider all these untrusted, a Rust program

will have virtually no safe objects, and this makes TRUST

unfruitful. Second, a recent study has shown that such critical

crates can be formally verified [25]. The unsafe blocks in core

runtime could not be written using safe Rust, but statically

verifying their correctness and thus trustworthiness as safe is

still possible, using available mechanisms such as ‘ [25]. This

backs our decision to include them in the allowlist. Note that

TRUST is still needed despite this static verification because

not every untrusted code can benefit from the targeted static

verification.

5.2 Function Cloning to Improve Precision

As explained earlier, among the challenges faced by TRUST

is the small number of heap allocation sites at the LLVM IR

level. All heap pointers appear to originate from a handful of

allocation sites in the wrapper function in LLVM IR, and this

leads existing value-flow analysis §5.1 to conclude that all

pointers share the few sources and sinks discovered. TRUST

addresses this problem by automatically cloning the functions

that handle both safe objects and unsafe ones depending on

the context, to improve the precision of points-to analysis.

This is done by the following three steps.

Step 1. Assigning Call Site-IDs to VGF Nodes. Based on

SUPA [43], TRUST’s VFG creates two sets of virtual nodes,

namely, in-nodes and out-nodes for every call site. In-nodes

connect actual pointer arguments taken by the call to the

callee’s formal parameters, while out-nodes include copies of

any pointers either returned through an actual return statement

or stored in any of the taken arguments. Both in-nodes and

out-nodes are assigned the same call site-ID (cs-ID), which in

turn is associated with the caller and callee functions. If the

1 ;;original store in unsafe block

2 {

3 store i32 10, i32* %ptr, align 4, !UNSAFE_BLOCK

4 }

5

6 ;;transformed bitcasted store

7 {

8 %temp = ptrtoint i32* %ptr to i32, !UNSAFE-BLOCK

9 %masked_ptr = and i32 %temp, %UNSAFE_MASK, !UNSAFE-BLOCK

10 %bitcasted = bitcast i32 %masked_ptr to i32*, !UNSAFE-BLOCK

11 store i32 10, i32* %bitcasted, align 4, !UNSAFE_BLOCK

12 }

Figure 7: Instrumenting Store Operations in Unsafe Blocks at

LLVM IR Level

callee takes no pointer arguments, all call sites it is associated

with will have empty in-nodes. The same is true for returned

pointers and out-nodes.

Step 2. Finding Clone Candidates. TRUST finds the func-

tion to clone by backward-traversing the VFG obtained during

points-to analysis, until it arrives at a call site to a heap allo-

cation (i.e., malloc). It pushes the cs-IDs of in-nodes and

out-nodes that it encounters during the traversal to a stack

called call site stack. It then solves a balanced-parentheses

problem [43] on the call site stack, where pairs of in- and

out-nodes with matching cs-IDs are removed as they don’t

contribute towards the actual allocation path, leaving cs-IDs of

unbalanced in-nodes and out-nodes. Finally, it also removes

the in-node cs-IDs, as these represent caller functions, yet

TRUST’s goal is to replace the callee with a cloned function

that leads to the unsafe allocator. The remaining set of con-

secutive out-node cs-IDs trails to the heap allocation site. All

callee functions associated with these remaining cs-IDs are

cloned, with the cloned versions having __unsafe prefixed

names and an additional argument.

Step 3. Transforming the Call Sites. After cloning the func-

tions, TRUST reconstructs the allocation path by recursively

transforming appropriate call sites. TRUST replaces a call

site if its cs-ID remains in the call site stack, with a call to

the clone of callee function. The additional argument is the

bit vector where each bit indicates whether the correspond-

ing call site must route to the unsafe allocator. For indirect

calls whose callee is a member of a virtual table, instead of

the additional argument, a bit flag, propagated through the

unsafe_flag entry in the thread-specific data structure, is

used. Figure 6 shows how this cloning helps improve the pre-

cision of the analysis. Initially, all pointers—safe and unsafe,

allocated from the safe allocator (paths indicated by green

dotted lines). After the cloning by TRUST, unsafe pointers

are distinctively allocated from the unsafe allocator (paths

indicated by the brown dotted lines).

5.3 Instrumenting Memory Accesses for SFI

TRUST instruments the store instructions in unsafe blocks

to prevent them from directly corrupting the safe objects. In

particular, TRUST inserts instructions that mask the address

USENIX Association 32nd USENIX Security Symposium 6953

1 define void @"write_to_pointer_offset"(

2 {i8*, i64} %sptr, i8 %idx, i8 %data)

3 {

4 %temp = getelementptr inbounds { i8*, i64 },

5 { i8*, i64 }* %sptr, i32 0, i32 0

6 %ptr = load i8*, i8** %temp, align 8

7 %offset = getelementptr inbounds i8, i8* %ptr,

8 i8 %index

9 store i8 %data, i8* %offset, align 4;;maybe hazardous!

10 ret void

11 }

12

13 ;;changing metadata of a smart pointer

14 {

15 call void @change_smart_ptr_metadata(

16 %smart_ptr), !UNSAFE_BLOCK

17 }

18

19 ;;CASE 1: Use in same function as metadata change

20 {

21 %temp = getelementptr inbounds { i8*, i64 },

22 { i8*, i64 }* %sptr, i32 0, i32 0

23 %ptr = load i8*, i8** %temp, align 8

24 %offset = getelementptr inbounds i8, i8* %ptr,

25 i8 %index

26 store i8 10, i8* %offset, align 4;;hazardous!

27 }

28

29 ;;CASE 2: Use in callee function

30 {

31 call void @write_to_pointer_offset(

32 %smart_ptr, i8 %index, i8 10)

33 }

(a) Original Uninstrumented Code Snippet

1 ;;changes to handle CASE 2

2 define void @"write_to_pointer_offset"(

3 {i8*, i64} %sptr, i8 %idx, i8 %data) {

4 %temp = getelementptr inbounds { i8*, i64 },

5 { i8*, i64 }* %sptr, i32 0, i32 0

6 %ptr = load i8*, i8** %temp, align 8

7 %test = call i1 @is_in_unsafe_region(i8* %ptr)

8 %check = icmp eq, %test, true

9 br i1 %check, label %unsafe_handle, label %safe_handle

10 unsafe_handle:

11 %offset = getelementptr inbounds i8, i8* %ptr, i8 %index

12 %bitcasted1 = bitcast i32* %offset to i32

13 %masked_ptr = and i32 %bitcasted1, %UNSAFE_MASK

14 %bitcasted2 = bitcast i32 %masked_ptr to i32*

15 store i8 %data, i8* %bitcasted2, align 4;;safe

16 br label %end

17 safe_handle:

18 %offset = getelementptr inbounds i8, i8* %ptr, i8 %index

19 store i8 %data, i8* %offset, align 4

20 br label %end

21 end:

22 ret void

23 }

24 ;;changes to handle CASE 1

25 ;;CASE 1: transformed

26 {

27 %temp = getelementptr inbounds { i8*, i64 },

28 { i8*, i64 }* %sptr, i32 0, i32 0

29 %ptr = load i8*, i8** %temp, align 8

30 %offset = getelementptr inbounds i8, i8* %ptr,

31 i8 %index

32 %bitcasted1 = bitcast i32* %offset to i32

33 %masked_ptr = and i32 %bitcasted1, %UNSAFE_MASK

34 %bitcasted2 = bitcast i32 %masked_ptr to i32*

35 store i8 10, i8* %bitcasted2, align 4;;safe

36 }

(b) TRUST Instrumented Version

Figure 8: Instrumenting Pointer Offsets From Vulnerable Smart Pointer Metadata

before these store instructions to enforce that the instructions

are writing only to the unsafe region as shown in Figure 7. The

static bound that the inserted instructions use is determined

when the program starts. In addition, TRUST instruments

some store instructions in the safe block as well to address the

confused deputy problem. As discussed earlier, some smart

pointers are allocated on the unsafe region because they are

legally modified in unsafe blocks. This exposes their meta-

data to arbitrary corruption by an exploit, and this corruption

may confuse the safe block that uses the metadata for bounds

checking. TRUST automatically identifies such vulnerable

pointer flow within the safe block and inserts the bounds

check to ensure that the pointer targets within the unsafe re-

gion. To find the vulnerable pointer flows, TRUST uses the

value-flow graphs. TRUST first finds the paths in the value-

flow graph from an unsafe pointer to a store instruction in the

safe blocks. Along such a path, TRUST inserts a bounds check

that ensures that the unsafe pointer targets the unsafe region as

shown in Figure 8. Lastly, the commonly used memory mod-

ification functions such as memset, memcpy, and memmove

are specially handled instead of being instrumented within.

At the call sites, TRUST inserts a bounds check to ensure

the whole range of memory to be written is contained in the

unsafe region if the destination pointer is unsafe.

5.4 Unsafe Object Stack

TRUST transforms the program to have three stacks. The first

is the default stack that contains safe stack objects only on a

program protected with TRUST. The other two are the stacks

to accommodate unsafe stack objects. We call one of them for

the external libraries as the unsafe execution stack and further

describe in §5.5. Inspired by SafeStack [18], we transform the

program to store unsafe objects on another stack called unsafe

object stack. SafeStack mitigates stack-based buffer overflow

attacks by moving potentially vulnerable buffers to a separate

region, where their exploitation cannot recur and cannot result

in more dangerous attacks such as control flow hijacking. We

store the pointers to these stacks in a thread-specific metadata

object whose address, in turn, is maintained in a designated

register, r15. The compiler is augmented to set the register

aside and not to use it for register allocation, and the TRUST

runtime initializes r15 with the addresses of the unsafe stacks.

Accordingly, all unsafe memory access instructions to a stack

object are transformed to use r15 instead of rsp with the cor-

rect offset. Alternatively, TRUST can use %gs or %fs instead

of r15 to avoid performance degradation due to the potential

register spills. Intel’s FSGSBASE instructions enable programs

to directly access the fs/gs segment registers, and TRUST

can use one of these instead of r15 if the one is not used for

other purposes.

6954 32nd USENIX Security Symposium USENIX Association

5.5 Instrumenting External Library Calls

TRUST inserts the entry gate and exit gate before and after

an external library invocation to quarantine external libraries

using Intel MPK. The external function, the callee, is origi-

nally responsible for saving the stack pointer on its stack and

restoring it, in which the attacker can create a fake stack from

scratch and set the stack pointer when returning to the Rust

code. These gates update the pkru register to temporarily

restrict memory access privileges while the external library

runs, switch the stack pointer, so the external library uses the

unsafe stack, and save the stack pointer in a protected memory

for retrieval after returning from the external library. They

also write the appropriate data entries of the thread-specific

data structure for TRUST runtime (see §5.6).

Entry Gate. In the entry gate, the program saves the safe

stack pointer (rsp) in the thread-specific data structure re-

siding in the special region (always readable). It updates the

domain entry in the data structure to 1 to indicate that the

program runs in the context of external libraries, and then

the pkru register to revoke read-write permission to the safe

memory region (with pkey 0), and write permission to the

always-readable special region (with pkey 2). Finally, rsp is

set to point the unsafe execution stack for external libraries.

Exit Gate. On return from the external library, the program

makes a simple call that matches the contents of the r15 with

those saved earlier by the entry gate. In case of a mismatch,

TRUST considers it a violation and resets the r15 register to

the correct value. This check is important because attackers

may misdirect TRUST to execute the safe block on an unsafe

stack, as explained above. Next, it updates the access permis-

sion of the safe region and special page (on which the r15

register contents were saved during entry) to read-writable.

At this point, write permissions to the safe region have been

restored, so TRUST updates the domain entry value of the

thread-specific data to 0. Finally, it loads the saved safe stack

pointer from an offset to the r15, and updates the RSP.

Comparison to SFI. A potential alternative to our design

choice, the use of MPK, is SFI. Prior studies [21, 55] have re-

ported that it is possible to apply SFI even to binary programs,

and it is theoretically possible to use SFI for our purpose

as well. The rationale behind our choice of using MPK is

the frequency of domain changes while running external li-

braries and the number of memory access instructions. The

performance overhead of SFI is primarily related to the total

number of memory instructions because each memory instruc-

tion must be instrumented with bound checks. In contrast,

the overhead of MPK is related to the number of transitions.

When quarantining the external libraries, we expect to have a

relatively small number of transitions, while each library call

may have many memory instructions.

5.6 TRUST Runtime

TRUST runtime is composed of per-thread metadata store

for TRUST in the safe region, an additional heap allocator

that handles unsafe object allocations, hooks to memory man-

agement system calls to prohibit the external libraries from

altering page attributes, and hooks to pthread that initializes

the TRUST runtime for new threads. After the unsafe region

is established, these components work as follows. First, the

unsafe heap allocator and system call hooks ensure that any

objects or pages that untrusted code allocates lie in the unsafe

region. Failing to do this does not undermine security because

the untrusted code is prohibited from accessing the safe region

separately, resulting in false positives. Second, the pthread

hooks prepare the additional stacks that TRUST needs for new

threads and destroy them when the thread terminates. Third,

per-thread metadata is used by the instrumented code and the

runtime to store TRUST-specific data that must be protected

from the untrusted code. Fourth, the system call hooks prevent

untrusted code from altering the page attributes, which the

MPK-based isolation of TRUST relies on.

Establishing the Unsafe Region. TRUST establishes the

unsafe region when the program starts by obtaining a large

enough number of virtual pages from the OS, and the total

size of such pages is 4GB in our implementation. The pages

are mapped using the flag MAP_FIXED and configured to have

the pkey for the unsafe region. As we describe later, any

demand on memory chunks or pages on the unsafe region

will be served using these mappings. The approach that maps

the unsafe region at the startup automatically ensures that

the remainder, the safe block, will always obtain chunks or

pages from the safe region because the OS does not map

already mapped pages unless requested explicitly. It is worth

noting that the size of the reserved address range can be

increased if the program is expected to use more than 4GB

for unsafe objects, and doing so will not incur performance

or memory overhead. Requesting the OS kernel to reserve

more memory will only set more virtual pages aside, and only

the virtual pages that are actually allocated will be mapped to

the physical pages. It would be even better if the OS kernel

supports a different means that TRUST can use to reserve

a particular virtual address range without creating a fixed

mapping, but the Linux kernel that our prototype runs on does

not have such a functionality, to the best of our knowledge.

TRUST Metadata. TRUST maintains one metadata store for

each thread to keep TRUST-specific data and represent the

privilege level (e.g., safe, unsafe, or external) for the other

components of TRUST runtime. The metadata has a one-bit

flag representing its privilege level, called external. The

external bit is to be set when the program enters an external

library and to be unset on exit. The metadata also includes the

field for safe stack pointer, which TRUST uses to verify the

stack pointer integrity on its exit gate as described in §5.5.

The Unsafe Heap Allocator. TRUST uses an additional,

USENIX Association 32nd USENIX Security Symposium 6955

modified heap allocator to manage a heap on the unsafe re-

gion, using mimalloc 1.7.0 [30]. Heap allocation requests

from untrusted code are redirected to here by the function

cloning (§5.2), and this allocator serves the requests with

the chunks from the unsafe region. The modified allocator

manages its heap on the unsafe region by obtaining the new

pages for the heap from the established unsafe region. The

requests for large chunks, which are typically served directly

with mmap, are also served using the unsafe region pages. The

program uses this unsafe heap in two ways. The unsafe blocks

that TRUST compiles from the source code are transformed to

invoke the unsafe heap allocator explicitly, whenever needed.

The external libraries, on the contrary, cannot be transformed

because they are delivered as executable binaries. Therefore,

TRUST also inserts a hook to the safe heap allocator to se-

lectively route a heap allocator call to the unsafe allocator.

TRUST uses the external field in its metadata, which we

described earlier in this section, to determine which heap

allocator to call. The field is maintained by the entry and

exit gates as described in §5.5, and this hook uses this bit to

determine the current context. Note that while this bit is pro-

tected from exploits against untrusted code by being placed

within the safe region, malicious corruption of the bit does not

undermine the security guarantee of TRUST. The expected

outcome of such corruption is to allocate a safe object to the

untrusted code, resulting in a false positive. For heap memory

reallocation and freeing, the runtime library checks whether

the pointer in question lies in the safe or unsafe region and

reroutes the calls accordingly.

Hooking System Calls. The runtime hooks memory man-

agement system calls (e.g., mmap, mprotect, or mremap)

to prohibit the external library from manipulating page at-

tributes arbitrarily. In particular, TRUST ensures that the start

and end addresses of the memory that is mapped by the in-

vocation lie within the aforementioned virtual address range

corresponding to the unsafe region. The runtime also redirects

calls to mmap, mremap from the safe block attempting to map

memory from the specified unsafe region address space. Sim-

ilar requests from external code are redirected to the unsafe

allocator as malloc or realloc for mmap and mremap, re-

spectively. The mprotect hook rejects any attempts from the

external library to prohibit it from altering the page attributes,

including the pkey. In addition, the external library is stati-

cally checked for the presence of instructions updating pkru

using the algorithm proposed in ERIM [47].

Hooking pthread. The runtime library hooks the thread

creation libraries to allocate the unsafe stacks and the thread-

specific data structure. For new threads created by safe blocks,

the hooked pthread function allocates the thread-specific

data in the appropriate region. It then allocates the unsafe

stacks in the unsafe region and writes their pointers in the re-

spective entries of the thread-specific data structure. Finally, it

updates the r15 register with the pointer to the thread-specific

data structure and lets the execution proceed. If an external

library creates a thread, the runtime library ensures that the

default execution stack for that particular thread is allocated

in the unsafe region. The lifetime of a thread created by an

external library is considered unsafe. Thus TRUST allocates

its data structure on a page in the unsafe region and revokes

write access permissions on it after writing the domain entry

of the data structure. While executing external code, the run-

time library reads the pointer to the thread-specific data by

calling pthread_get_specific instead of reading the r15

register. TRUST does this because it has no control over the

r15 register in the external untrusted domain.

Hooking More System Calls The TRUST runtime must

hook more system calls to defend against attacks that a recent

study [20] enumerated. For example, sigreturn is a sys-

tem call that can be used to bypass conventional PKU-based

in-process isolation techniques by corrupting the content of

pkru register on the stack. TRUST can prevent this by storing

pkru before the system call so that any attempt to tamper

with the register is invalidated. Similarly, TRUST can natu-

rally adopt the hooks that the earlier study found essential to

further harden safe Rust from more attacks exploiting vulner-

able external libraries. Besides the above, the runtime must

hook more system calls to thwart the isolation bypasses, as

presented in the earlier study [20]. Jenny [38] has already

shown how we can comprehensively filter the system calls

using seccomp and ptrace, so we can combine TRUST run-

time and Jenny for completeness. The additional overhead

coming from the use of Jenny is expected to be less than 5%,

according to Jenny’s reported overhead.

6 Evaluation

This section shows the performance impact of TRUST,

presents the result of our security analysis, and discuss the

precision and soundness of the static analysis.

6.1 Performance

Experimental Setup. We implement the analysis and trans-

formation for TRUST on Rust 1.49 and LLVM 11.0.1. We

run the benchmarks on a system with an Intel i9-10900K

CPU, 128GB main memory, and Ubuntu 18.04.6 LTS as the

operating system. We use eleven Rust crates that XRust used

for comparative study with it, in execution time, memory us-

age, and effectiveness. For a fair comparison, we use the SFI

version of XRust instead of the guard-page version because

the guard-page version assumes contiguous access and is vul-

nerable to the jump accesses. We also compare the execution

time of TRUST against Sandcrust using Snappy [14] as the

benchmark because Sandcrust is evaluated with it. Lastly, we

use two large Rust crates to demonstrate that TRUST can an-

alyze and protect real-world software written in Rust. Note

that we could not apply XRust to these because it is required

to identify the unsafe objects manually to use XRust. For a

similar reason, we could not compare TRUST with Fidelius

6956 32nd USENIX Security Symposium USENIX Association

B
as

e6
4

B
yt

es

B
yt

eo
rd

er
Js

on

Im
ag

e

R
eg

ex Vec

Stri
ng

Lin
ke

d-
lis

t

Vec
-d

eq
ue
B
tre

e

G
eo

M
ea

n

0.0x

1.0x

2.0x

3.0x

N
o
rm

al
iz

ed
E

x
ec

u
ti

o
n

T
im

e

TRust(Jemalloc) TRust(Mimalloc) XRust

Figure 9: Normalized execution time of TRUST and XRust

tested with the 11 widely used crates.

Size (Bytes)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

0

1

10

100

256 1K 4K 16K 64K 256K 1G 4G 16G

TRust Compress TRust Uncompress Sandcrust Compress
Sandcrust Uncompress

Figure 10: Normalized execution time of Snappy with TRUST

and Sandcrust. The y-axis is log scale.

Charm [15] that requires developer annotation. For compari-

son study, we primarily use figures and present the absolute

numbers in Appendix A.

Execution Time. As Figure 9 shows, the overhead of TRUST

is about 7.55% on average (geometric mean) while XRust in-

duces 26.39%, albeit the fact that TRUST also protects safe ob-

jects on the stack and quarantines the external library. TRUST

exhibits lower performance overhead despite its stronger pro-

tection thanks to its optimized implementation of SFI where

it uses the address masking instead of tests and conditional

branches used by XRust. Figure 10 shows the result of running

snappy with TRUST and along with the overhead of Sand-

crust. The overhead of TRUST is 8.79% for compress and

35.12% for uncompress on average, and this is much lower

than those of Sandcrust, 107% for compress and 2596% for

uncompress, even though Sandcrust quarantines the external

libraries only.

Memory Overhead. We measure the maximum resident

set size during the execution of a benchmark to evaluate the

memory overhead. We use the executions without protec-

tion using the default allocator (glibc) as the baseline, and

present the relative memory usage of the unprotected exe-

cutions with mimalloc, TRust with jemalloc, TRust with

mimalloc, and XRust. TRust with jemalloc and mimalloc

uses glibc as its safe allocator and the latter as the unsafe

allocator. As Figure 11 shows, TRUST uses 35% more mem-

ory on average when it uses jemalloc as its unsafe allocator,

B
as

e6
4

B
yt

es

B
yt

eo
rd

er
Js

on

Im
ag

e

R
eg

ex Vec

Stri
ng

Lin
ke

d-
lis

t

Vec
-d

eq
ue
B
tre

e

G
eo

M
ea

n

0.0x

1.0x

2.0x

3.0x

N
o
rm

al
iz

ed
M

em
o
ry

U
sa

g
e

Baseline(Mimalloc)

TRust(Jemalloc)

TRust(Mimalloc)

Xrust

Figure 11: Normalized memory usage of TRUST and XRust

tested with the 11 widely used crates.

to
ki

o-
sp

aw
n

to
ki

o-
rw

lo
ck

to
ki

o-
se

m
ap

ho
re

to
ki

o-
m

ps
c

to
ki

o-
si
gn

al

to
ki

o-
fs

hy
pe

r-
bo

dy

hy
pe

r-
co

nn
ec

t

hy
pe

r-
pi

pe
lin

e

hy
pe

r-
se

rv
er

hy
pe

r-
en

d_
to

_e
nd

0.0x

1.0x

2.0x

3.0x

N
o
rm

al
iz

ed
E

x
ec

u
ti

o
n

T
im

e

Figure 12: Performance Overhead of TRUST on Tokio/Hyper.

Table 2: Result of Using TRUST to mitigate the known vul-

nerabilities.

CVE ID Origin Affected Memory TRUST XRust

2021-29939 Unsafe Rust Stack ✓ ✗

2019-15546 External Lib. Stack ✓ ✗

2021-28879 Unsafe Rust Stack, Heap ✓ Not Tested

2021-28028 Unsafe Rust Heap ✓ Not Tested

2021-45707 Unsafe Rust Heap ✓ Not Tested

2018-1000657 Unsafe Rust Heap ✓ ✓

2018-1000810 Unsafe Rust Heap ✓ ✓

and the overhead goes down to 13% with mimalloc, while

XRust induces 7% memory overhead.

Large Programs. To show that TRUST can harden large pro-

grams, we use it to quarantine the untrusted code in Tokio [1]

and Hyper [10]. Tokio is an event-driven, non-blocking I/O

platform for writing asynchronous Rust network applications,

and Hyper is an HTTP library used as a building block for

many applications. Figure 12 shows TRUST’s runtime perfor-

mance overhead on Tokio and Hyper benchmarks. We notice

that TRUST instruments a high number of instructions in these

benchmarks due to the large code base, but most notably, as

these benchmarks use heavy parallelism (10-1000x threads),

TRUST spends a significant time creating and destroying un-

safe stacks during each thread spawn. In fact, because of

this, benchmarks such as tokio-mpsc and tokio-spawn

required reducing the default unsafe stack size to run to com-

pletion. We also find that Tokio and Hyper depend on many

external libraries, requiring frequent MPK access and execu-

tion stack switching during transition to and from FFI calls.

USENIX Association 32nd USENIX Security Symposium 6957

B
as

e6
4

B
yt

es

B
yt

eo
rd

er
Js

on

Im
ag

e

R
eg

ex Vec

Stri
ng

Lin
ke

d-
lis

t

Vec
-d

eq
ue
B
tre

e

0

50

100

R
at

io
(%

)
TRust Xrust

Figure 13: Ratio of the Number of Safe Heap Allocations.

6.2 Effectiveness

We evaluate the effectiveness of TRUST using synthesized

exploits that are inspired by real-world vulnerabilities. We

also analyze how TRUST will mitigate the other known vul-

nerabilities. Table 2 summarizes the result of our evaluation

using real-world vulnerabilities.

Synthesized Vulnerabilities in Unsafe Blocks. We repro-

duced two real-world vulnerabilities, CVE-2021-29939 and

CVE-2021-28879, in a small program to evaluate the ef-

fectiveness of TRUST. These two vulnerabilities are found

from StackVec and Zip, respectively, and share the same root

cause. Both StackVec and Zip use the Iterator which in

turn requires the implementation of size_hint as in Fig-

ure 2. As already seen from the Zip crate, an integer over-

flow in size_hint returns an unsound value, which is later

used to return an iterator without bounds checking, when

used by the get_unchecked function from the Iterator

trait. StackVec::extend [8] suffers from the same problem.

Looping with an iterator obtained this way allows writing

beyond the stack capacity as shown in [11]. Similarly, as

shown in Figure 2 and Figure 3, reusing the consumed zip

iterators introduces the stack or heap buffer overflow vulnera-

bilities which may affect safe Rust. In both of these vulnera-

bilities, the Iterator is accessed in an unsafe block where

get_unchecked is executed. We reproduced these bugs in

small programs and applied TRUST to them. For Figure 3,

depending on where arr resides, it is possible to attack either

the stack or heap. We make slight modifications to the code

shown in Figure 3 and attempt to overwrite the stack, and

then repeat the attack with arr of a heap-based container.

The attack succeeds when the program runs without TRUST.

However, TRUST stops the attack because arr is allocated in

the unsafe region, but any attempted overflows into the safe

region are prohibited by TRUST and cause the program to

halt. We perform a similar attack on StackVec using older

versions with no bug fix, and again TRUST manages to protect

the safe stack. Finally, we applied TRUST to more programs

with CVEs [5, 6, 9] and those [2, 3] examined by XRust. Our

evaluation finds that TRUST manages to detect vulnerabili-

ties introduced and thwart any attempts to leverage them to

contaminate safe Rust.

B
as

e6
4

B
yt

es

B
yt

eo
rd

er
Js

on

Im
ag

e

R
eg

ex Vec

Stri
ng

Lin
ke

d-
lis

t

Vec
-d

eq
ue
B
tre

e

0

50

100

R
at

io
(%

)

Figure 14: Ratio of the Number of Safe Stack Allocations.

1 #[inline]

2 fn extend_from_slice(dst: &mut Vec<u8>, src: &[u8]) {

3 let dst_len = dst.len(); let src_len = src.len();

4 dst.reserve(src_len);

5 unsafe {

6 // We would have failed if `reserve` overflowed

7 dst.set_len(dst_len + src_len);XX

8 ptr::copy_nonoverlapping(XX

9 src.as_ptr(),

10 dst.as_mut_ptr().offset(dst_len as isize),

11 src_len);XX

12 } }

13 fn write(&mut self, slice:&[u8]) -> io::Result<()> {

14 extend_from_slice(&mut self.code, slice); Ok(())

15 }

Figure 15: Unsafe Code in the Json Library. XRust fails to

observe the effects of this Code on the argument pointers.

Analysis on Vulnerable External Libraries. TRUST can

also mitigate CVE-2019-15546. This vulnerability is found

in Window::printw and Window::mvprintw. These func-

tions pass a raw pointer to external functions without any

sanitization, exposing users to format string bugs. TRUST

identifies the objects whose pointer could be exposed and

allocates them in the unsafe region, and the functions are

considered untrusted for being external libraries. As a result,

an attacker exploiting this vulnerability cannot alter any safe

object because the operating system will trap such an attempt

due to the protection key violation.

6.3 Discussion

Precision. To evaluate the precision of TRUST’s analysis, we

count the number of unsafe objects that TRUST finds and com-

pare the results with the number of unsafe objects that XRust

finds with the help of the developer. Figure 13 and Figure 14

shows the ratio of unsafe heap and stack object allocations

when we use TRUST and XRust. Note that we do not count

the number of unsafe stack object allocations for XRust be-

cause it does not protect stack objects. Out of 11 benchmarks,

TRUST leaves the non-trivial amount of safe objects for 9

benchmarks despite its conservative policy that classifies any

objects that the untrusted code might use as unsafe. Specifi-

cally, TRUST finds fewer unsafe objects than XRust on one

(Bytes) and more on five (Json, Image, Regex, Vec, and Btree).

In the case of Bytes, we found that the developer annotation

for XRust on Bytes makes the unsafe allocator as the global

allocator for this specific benchmark. This also demonstrates

the potential imperfectness of human annotation in that any

6958 32nd USENIX Security Symposium USENIX Association

Table 3: Number of memory access by safe Rust

Benchmark
Read

Ratio
Write

Ratio
From Unsafe To Unsafe

base64 8.9G 22% 2.3G 59%

bytes 0.5G 43% 0.4G 32%

byteorder 0 00% 0 00%

json 3.8G 74% 1.4G 52%

image 5.7G 41% 1.3G 22%

regex 1.3G 4% 29.0M 81%

vec 5.8G 68% 0.7G 37%

string 0 0% 0 0%

linked-list 0 0% 0 0%

vec-deque 0 0% 0 0%

btree 81.0M 8% 0.4M 1%

Table 4: Number of memory access by untrusted code
Benchmark Total Reads From Safe Total Writes To Safe

base64 38.2G 37.0G(96%) 38.5G 0(0%)

bytes 0.2G 0(00%) 0.1G 0(0%)

byteorder 0.0G 0(00%) 0.0G 0(0%)

json 1.2G 0.7G(66%) 0.5G 0(0%)

image 0.3G 0(00%) 1.3M 0(0%)

regex 0.0G 0(00%) 12.0G 0(0%)

vec 0.0G 0(00%) 48.0G 0(0%)

string 0.0G 0(00%) 0.0G 0(0%)

linked-list 0.0G 0(00%) 0.0G 0(0%)

vec-deque 0.0G 0(00%) 0.0G 0(0%)

btree 0.7K 0(00%) 1.9K 0(0%)

Table 5: OOBudget queries from points-to analysis while

using TRUST for large programs.

Benchmark Total

Large Budget Small Budget

Queries
Compile

OOB
False Compile

OOB
Time (s) Positive Time (s)

hyper-body 27 537 8 0/0 4 9

hyper-connect 187 20 1 0/0 2 1

hyper-end_to_end 8599 >1h - 0/19 85 730

hyper-pipeline 4399 20 0 0/1 18 124

hyper-server 5432 274 2 0/3.2M 35 155

tokio-rwlock 463 82 3 0/11.1M 5 109

tokio-semaphore 303 293 10 0/12.0M 10 73

tokio-mpsc 1387 446 151 1.9M/54.1M 11 212

tokio-signal 467 113 35 0/6.7M 3 68

tokio-fs 547 2 0 0/8 2 92

unsafe objects that XRust misses could be accessed by the un-

trusted code, enabling it to access the safe heap. We manually

investigated the objects that TRust classifies as unsafe while

XRust classifies as safe. Figure 15 shows a snippet of code

from the Json benchmark. The write function, used by all

benches in Json, in turn calls extend_from_slice, which

modifies self.code’s pointer metadata on line 7 in an unsafe

block, making self.code an unsafe object. However, XRust

misses this and classifies self.code as safe. Moreover, al-

though XRust considers read operations as unsafe, they also

fail to classify slice arguments to write as unsafe as these

end up being used in the unsafe block at lines 8-11. This also

explains the difference in the number of unsafe objects that

TRUST and XRust finds.

Soundness. We evaluate the soundness of TRUST when ap-

plied to the 11 crates and two large programs by investigating

if its points-to analysis has Out Of Budget (OOBudget) queries.

As Table 4 suggests, TRUST does not have any OOBudget

queries when it is applied to the 11 benchmarks that we use

for the comparison with XRust, indicating that the analysis of

TRUST against these benchmarks is sound. However, TRUST

experiences OOBudget queries when classifying allocation

sites in large programs, Hyper [10] and Tokio [1], as Table 5

shows. The number of OOBudget queries reduces if we in-

crease the budget parameter with the cost of increased compile

time, but TRUST still have some OOBudget queries in a few

benchmarks. As mentioned earlier, however, this does not ren-

der the protected program insecure in that all allocation sites

are classified as safe by default. The OOBudget queries may

lead to false positives because it leads TRUST to allocate a

safe object when it must allocate an unsafe one. To investigate

if the OOBudget queries lead to false positives at run time,

we counted the number of writes to safe objects from unsafe

blocks. As Table 5 shows, we find that only one out of 10

benchmarks derived from Hyper and Tokio exhibits false pos-

itives. Note that this does not guarantee that the programs will

not face false positives when they run in practice. A potential

remedy to this limitation is to perform memory safety checks

to the OOBudget-related memory accesses, which are only a

few.

TCB Size. We compare the size of TRUST’s TCB with those

of the others. As mentioned in §4, the TCB of TRUST at run

time is composed of the core Rust runtime, the safe block,

and TRUST’s runtime that manages its metadata intervenes in

system calls and mediates external library calls. Like TRUST,

XRust also trusts the Rust runtime and the safe block, as well

as its runtime library. For this reason, we quantitatively com-

pare the TCB size of TRUST and XRust using the source

lines of code (SLOC) of their runtime libraries. Surprisingly,

XRust runtime is composed of 8 lines of additional code

that is invoked at runtime only for bounds checking. Unlike

this, TRust runtime is composed of 500 lines of code, most

of which are for hooking system calls and handling thread

setup and destruction to quarantine the external libraries. The

allocator that XRust is using for both safe and unsafe alloca-

tion consists of 6.9k lines of code. On the other hand, two

interchangeable allocators of TRUST, which are mimalloc

and jemalloc, are comprised of 7k and 24.5k lines of code,

respectively.

Impact of Data Flow from Unsafe to Safe. TRUST leaves

data-flows from unsafe objects to safe objects because safe

blocks can read from unsafe objects and write to safe objects.

This may leave an attacker exploiting vulnerabilities in un-

safe blocks to find and exploit some logic bugs that can be

exploited only by corrupting some unsafe objects, potentially

enabling to use of safe blocks as a confused deputy. For in-

stance, a function in a safe block may use user input in an

unsafe region to update a security-critical configuration that

lives in a safe region. The developer may trust the user input

that has passed a series of sanity checks, but an attacker ex-

ploiting the unsafe block’s vulnerability corrupts the input

after the sanity check to corrupt the security-critical config-

uration in the safe region using the function as a confused

USENIX Association 32nd USENIX Security Symposium 6959

deputy.

7 Related Work

Our work is related to the prior work on mitigating memory

safety vulnerabilities, the in-process isolation mechanisms,

and the mechanisms that aim to quarantine some untrusted

code from safe Rust.

Mitigating Memory Safety Bugs. Researchers have strived

to fight against memory safety bugs. Programs written in

C/C++ are prone to such bugs due to the design of the lan-

guages and the complexity of modern software. A large body

of existing mechanisms aims to mitigate the exploits of such

bugs [17, 23, 29, 34, 36, 40, 54]. Compared with these, TRUST

makes a unique contribution by combining and tailoring in-

process isolation mechanisms to protect Rust’s safe blocks.

In-process Isolation. In-process isolation is a commonly

used building block to harden a program against software at-

tacks. Among these, the SFI-based and MPK-based are most

closely related to TRUST because it combines those to im-

plement in-process isolation for a Rust program. Wahbe et

al. [49] invented the design of logically separated fault do-

mains within a single address space and instrumentation with

bounds checks to prevent untrusted components’ access to

other components’ memory. However, bound checks impose

overhead on the execution of all untrusted memory accesses,

even with more efficient masking-based SFI [53]. Koning

et al. [27] compared the characteristics of in-process isola-

tion techniques, including hardware based approaches, and

reported that MPK is suitable for isolating or quarantining a

large piece of the program due to its low permission switch

latency. The advantage of MPK in permission change latency

comes from the lack of supervisor calls, with the risk of leav-

ing the permission change instruction unprotected. ERIM [47]

addresses this problem by binary scanning and carefully de-

signed call gates. It ensures that the untrusted code does not

have the permission changing instruction (wrpkru) by bi-

nary scanning and that the instructions in trusted code are

not misused by the call gates. Hodor [24] is another work

on PKU-based sandboxing. While ERIM uses static binary

rewriting to negate unsafe wrpkru instructions, Hodor relies

on hardware watchpoints that the modified kernel provides.

Despite these two studies’ advances, a recent study [26] re-

ported that they can still be bypassed by an attacker using

the OS kernel as a confused deputy. Cerberus [48] attempts

to complement ERIM and Hodor against attack vectors pro-

posed by this study [20] except for the attack abusing signals.

Jenny [38], a recent security implication for PKU-based sand-

box, supports secure call gates and system call filtering along

with secure signal handling to prevent the abuse of signals.

Compared with these, the contribution of TRUST is in

demonstrating its efficient implementation of SFI and MPK,

using analysis tailored for unsafe Rust and the external li-

braries, and identification and defense against the counterfeit

stack attack.

Memory Safety of Rust Programs. Crust [46] translates

Rust programs into C to verify the memory safety of unsafe

code using bounded model checking. Sandcrust [28] is simi-

lar to TRUST in that both aim to protect Rust code and data

from potentially harmful C libraries. With the help of the Rust

macro system and existing sandboxing techniques, function

calls annotated by the programmer are translated into RPCs.

Like TRUST, XRust [31] and Fidelius Charm [15] aim to iso-

late the safe part of Rust from untrusted code. The latter uses

mprotect system calls to isolate programmer-specified data

from unsafe foreign libraries. Unlike Fidelius Charm, which

requires invasive modification of source code, the former uti-

lizes a separate heap allocator to isolate the safe code of Rust

from unsafe heap objects without user annotation. CLA [33]

further motivates TRUST to show that interfacing standalone

safe Rust and C/C++ hardened against control flow hijack-

ing can reintroduce the vulnerability. PKRU-Safe [26] uses

MPK to isolate Rust from untrusted code as TRUST does.

PKRU-safe associates each allocation site with a unique ID

and performs profiling with the developer-provided inputs to

classify the allocation sites into safe and unsafe ones. Unfortu-

nately, this approach suffers from two drawbacks that TRUST

overcomes with function cloning (see §5.2) and static points-

to analysis (see §5.1). In Rust, a handful of smart pointer

APIs produces almost all pointers, causing context-insensitive

analysis to associate all such pointers with the same allocation

site that has the same ID. TRUST overcomes this problem by

using sound and context-sensitive static analysis to find safe

allocation sites and clone functions to associate each clone

with a distinct ID.

8 Conclusion

To our knowledge, TRUST is the first attempt to automati-

cally quarantine from safe Rust blocks all major sources of

the untrusted code, including unsafe blocks and external li-

braries, that undermine Rust’s strong security guarantees. It

is the first compiler framework that addresses the challenges

of automatically identifying and protecting safe objects in a

given Rust program. Thanks to this automation, unlike exist-

ing mechanisms, TRUST protects safe objects both on stack

and heap without human intervention from unsafe blocks and

external libraries written in unknown languages. In addition,

TRUST comes with an elaborated instrumentation strategy

and runtime libraries that help us to attain lower performance

overhead (7.55%) than state-of-the-art (36.39%). It also de-

feats the counterfeit stack attack via our carefully designed

gates to the external libraries. In short, TRUST is an automatic

mechanism that can quarantine inclusively any untrusted code

linked and integrated into safe Rust.

6960 32nd USENIX Security Symposium USENIX Association

Acknowledgment

This research was supported by the National Research

Foundation of Korea(NRF) grant funded by the Korea

government, Ministry of Science and ICT(MSIT) (NRF-

2020R1A2B5B03095204 and NRF-2022R1F1A1076100),

the BK21 FOUR program of the Education and Research

Program for Future ICT Pioneers, Seoul National University

in 2022, and Inter-University Semiconductor Research Cen-

ter (ISRC). Also, the research was supported by the MSIT,

Korea, under the ITRC(Information Technology Research

Center) support program(IITP-2022-2020-0-01602) super-

vised by the IITP(Institute for Information & Communica-

tions Technology Planning & Evaluation). Finally, this work

was supported by the IITP grant funded by the Korea gov-

ernment(MSIT) (No.2021-0-00724, RISC-V based Secure

CPU Architecture Design for Embedded System Malware

Detection and Response, and No.2021-0-01817, Develop-

ment of Next-Generation Computing Techniques for Hyper-

Composable Datacenters,), and Samsung Electronics Co.,

Ltd.

References

[1] Build reliable network applications without compromis-

ing speed. https://tokio.rs. Accessed: 2022-01-

18.

[2] Cve-2018-1000657 detail. https://nvd.nist.gov/

vuln/detail/CVE-2018-1000657. Accessed: 2022-

01-18.

[3] Cve-2018-1000810 detail. https://nvd.nist.gov/

vuln/detail/CVE-2018-1000810. Accessed: 2022-

01-18.

[4] Cve-2019-15546 detail. https://nvd.nist.gov/

vuln/detail/CVE-2019-15546. Accessed: 2022-01-

18.

[5] Cve-2021-28028 detail. https://nvd.nist.gov/

vuln/detail/CVE-2021-28028. Accessed: 2022-01-

18.

[6] Cve-2021-28030 detail. https://nvd.nist.gov/

vuln/detail/CVE-2021-28030. Accessed: 2022-01-

18.

[7] Cve-2021-28879 detail. https://nvd.nist.gov/

vuln/detail/CVE-2021-28879. Accessed: 2022-01-

18.

[8] Cve-2021-29939 detail. https://nvd.nist.gov/

vuln/detail/CVE-2021-29939. Accessed: 2022-01-

18.

[9] Cve-2021-45707 detail. https://nvd.nist.gov/

vuln/detail/CVE-2021-45707. Accessed: 2022-01-

18.

[10] hyper: Fast and safe http for the rust language. https:

//hyper.rs. Accessed: 2022-01-18.

[11] Memory safety issue in stackvec::extend. https://

github.com/Alexhuszagh/rust-stackvector/

issues/2. Accessed: 2022-01-18.

[12] parasol-aser/xrust. https://github.com/

parasol-aser/XRust. Accessed: 2022-01-18.

[13] Smart pointers. https://doc.rust-lang.org/

book/ch15-00-smart-pointers.html. Accessed:

2022-01-19.

[14] Snappy, a fast compressor/decompressor. =https://

github.com/google/snappy.

[15] Hussain M. J. Almohri and David Evans. Fidelius

charm: Isolating unsafe rust code. In Proceedings of

the Eighth ACM Conference on Data and Application

Security and Privacy, CODASPY ’18, page 248–255,

New York, NY, USA, 2018. Association for Computing

Machinery.

[16] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon

Lim, and Taesoo Kim. Rudra: Finding Memory Safety

Bugs in Rust at the Ecosystem Scale. In Proceedings of

the 28th ACM Symposium on Operating Systems Princi-

ples (SOSP), Virtual, October 2021.

[17] Emery D. Berger and Benjamin G. Zorn. Diehard: Prob-

abilistic memory safety for unsafe languages. In Pro-

ceedings of the 27th ACM SIGPLAN Conference on

Programming Language Design and Implementation,

PLDI ’06, page 158–168, New York, NY, USA, 2006.

Association for Computing Machinery.

[18] Gang Chen, Hai Jin, Deqing Zou, Bing Bing Zhou,

Zhenkai Liang, Weide Zheng, and Xuanhua Shi. Safes-

tack: Automatically patching stack-based buffer over-

flow vulnerabilities. IEEE Transactions on Dependable

and Secure Computing, 10:368–379, November 2013.

[19] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang

Sun, and Long Lu. Shreds: Fine-grained execution units

with private memory. In 2016 IEEE Symposium on

Security and Privacy (SP), pages 56–71, 2016.

[20] R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and

Max Schuchard. Pku pitfalls: Attacks on pku-based

memory isolation systems. In USENIX Security Sympo-

sium, 2020.

USENIX Association 32nd USENIX Security Symposium 6961

[21] Liang Deng, Qingkai Zeng, and Yao Liu. Isboxing: An

instruction substitution based data sandboxing for x86

untrusted libraries. In IFIP International Information

Security Conference, 2015.

[22] Mark A. Finlayson. Intel® 64 and IA-32 architectures

software developer’s manual, 2020.

[23] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer,

Cristiano Giuffrida, Herbert Bos, and Erik van der

Kouwe. Typesan: Practical type confusion detection.

In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’16,

page 517–528, New York, NY, USA, 2016. Association

for Computing Machinery.

[24] Mohammad Hedayati, Spyridoula Gravani, Ethan John-

son, John Criswell, Michael L. Scott, Kai Shen, and

Mike Marty. Hodor: Intra-Process isolation for High-

Throughput data plane libraries. In 2019 USENIX An-

nual Technical Conference (USENIX ATC 19), pages

489–504, Renton, WA, July 2019. USENIX Associa-

tion.

[25] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers,

and Derek Dreyer. Rustbelt: Securing the foundations

of the rust programming language. Proc. ACM Program.

Lang., 2(POPL), December 2017.

[26] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per

Larsen, Adrian Dabrowski, David Gens, Yeoul Na, Stijn

Volckaert, and Michael Franz. Pkru-safe: Automatically

locking down the heap between safe and unsafe lan-

guages. In Proceedings of the Seventeenth European

Conference on Computer Systems, EuroSys ’22, page

132–148, New York, NY, USA, 2022. Association for

Computing Machinery.

[27] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,

and Elias Athanasopoulos. No Need to Hide: Protecting

Safe Regions on Commodity Hardware. In EuroSys,

April 2017.

[28] Benjamin Lamowski, Carsten Weinhold, Adam Lack-

orzynski, and Hermann Härtig. Sandcrust: Automatic

sandboxing of unsafe components in rust. In Proceed-

ings of the 9th Workshop on Programming Languages

and Operating Systems, PLOS’17, page 51–57, New

York, NY, USA, 2017. Association for Computing Ma-

chinery.

[29] Byoungyoung Lee, Chengyu Song, Yeongjin Jang,

Tielei Wang, Taesoo Kim, Long Lu, and Wenke Lee.

Preventing use-after-free with dangling pointers nullifi-

cation. In NDSS, 2015.

[30] Daan Leijen, Benjamin G. Zorn, and Leonardo Men-

donça de Moura. Mimalloc: Free list sharding in action.

In APLAS, 2019.

[31] Peiming Liu, Gang Zhao, and Jeff Huang. Securing

unsafe rust programs with xrust. In Proceedings of the

ACM/IEEE 42nd International Conference on Software

Engineering, ICSE ’20, page 234–245, New York, NY,

USA, 2020. Association for Computing Machinery.

[32] Nicholas D. Matsakis and Felix S. Klock. The rust

language. In Proceedings of the 2014 ACM SIGAda

Annual Conference on High Integrity Language Tech-

nology, HILT ’14, page 103–104, New York, NY, USA,

2014. Association for Computing Machinery.

[33] Samuel Mergendahl, Nathan Burow, and Hamed

Okhravi. Cross-language attacks. In NDSS, 01 2022.

[34] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long

Lu. Ptauth: Temporal memory safety via robust points-

to authentication. 01 2020.

[35] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,

and Steve Zdancewic. Cets: compiler enforced tem-

poral safety for c. In Proceedings of the 2010 inter-

national symposium on Memory management, pages

31–40, 2010.

[36] Gene Novark and Emery D. Berger. Dieharder: Securing

the heap. In Proceedings of the 5th USENIX Conference

on Offensive Technologies, WOOT’11, page 12, USA,

2011. USENIX Association.

[37] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon,

and Taesoo Kim. libmpk: Software abstraction for intel

memory protection keys (intel MPK). In 2019 USENIX

Annual Technical Conference (USENIX ATC 19), pages

241–254, Renton, WA, July 2019. USENIX Association.

[38] David Schrammel, Samuel Weiser, Richard Sadek, and

Stefan Mangard. Jenny: Securing syscalls for PKU-

based memory isolation systems. In 31st USENIX Secu-

rity Symposium (USENIX Security 22), pages 936–952,

Boston, MA, August 2022. USENIX Association.

[39] David Schrammel, Samuel Weiser, Stefan Steinegger,

Martin Schwarzl, Michael Schwarz, Stefan Mangard,

and Daniel Gruss. Donky: Domain keys – efficient In-

Process isolation for RISC-V and x86. In 29th USENIX

Security Symposium (USENIX Security 20), pages 1677–

1694. USENIX Association, August 2020.

[40] Konstantin Serebryany, Derek Bruening, Alexander

Potapenko, and Dmitry Vyukov. Addresssanitizer: A

fast address sanity checker. In Proceedings of the 2012

USENIX Conference on Annual Technical Conference,

USENIX ATC’12, page 28, USA, 2012. USENIX Asso-

ciation.

6962 32nd USENIX Security Symposium USENIX Association

[41] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang

Lin, and Tongping Liu. Freeguard: A faster secure heap

allocator. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security,

pages 2389–2403, 2017.

[42] Yulei Sui and Jingling Xue. Svf: Interprocedural static

value-flow analysis in llvm. In Proceedings of the 25th

International Conference on Compiler Construction, CC

2016, page 265–266, New York, NY, USA, 2016. Asso-

ciation for Computing Machinery.

[43] Yulei Sui and Jingling Xue. Demand-driven pointer

analysis with strong updates via value-flow refinement.

CoRR, abs/1701.05650, 2017.

[44] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Bi-

noy Ravindran. Intra-unikernel isolation with intel mem-

ory protection keys. In Proceedings of the 16th ACM

SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, VEE ’20, page 143–156, New

York, NY, USA, 2020. Association for Computing Ma-

chinery.

[45] The Rust team. The Rust programming language, 2017.

[46] John Toman, Stuart Pernsteiner, and Emina Torlak.

Crust: A bounded verifier for rust (n). In 2015 30th

IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE), pages 75–80, 2015.

[47] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.

Duarte, Michael Sammler, Peter Druschel, and Deepak

Garg. ERIM: Secure, efficient in-process isolation with

protection keys (MPK). In 28th USENIX Security Sym-

posium (USENIX Security 19), pages 1221–1238, Santa

Clara, CA, August 2019. USENIX Association.

[48] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck,

and Stijn Volckaert. You shall not (by)pass! practical,

secure, and fast pku-based sandboxing. In Proceedings

of the Seventeenth European Conference on Computer

Systems, EuroSys ’22, page 266–282, New York, NY,

USA, 2022. Association for Computing Machinery.

[49] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and

Susan L. Graham. Efficient software-based fault iso-

lation. In Proceedings of the Fourteenth ACM Sympo-

sium on Operating Systems Principles, SOSP ’93, page

203–216, New York, NY, USA, 1993. Association for

Computing Machinery.

[50] Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yim-

ing Jing, Ran Duan, Long Li, Yulong Zhang, Tao Wei,

and Zhiqiang Lin. Towards memory safe enclave pro-

gramming with rust-sgx. In Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS ’19, page 2333–2350, New York,

NY, USA, 2019. Association for Computing Machinery.

[51] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen,

and Zhiqiang Lin. Securing untrusted code via compiler-

agnostic binary rewriting. In Proceedings of the 28th An-

nual Computer Security Applications Conference, AC-

SAC ’12, page 299–308, New York, NY, USA, 2012.

Association for Computing Machinery.

[52] Jonathan Woodruff, Robert NM Watson, David Chisnall,

Simon W Moore, Jonathan Anderson, Brooks Davis,

Ben Laurie, Peter G Neumann, Robert Norton, and

Michael Roe. The cheri capability model: Revisiting

risc in an age of risk. In 2014 ACM/IEEE 41st Inter-

national Symposium on Computer Architecture (ISCA),

pages 457–468. IEEE, 2014.

[53] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley

Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,

Neha Narula, and Nicholas Fullagar. Native client: A

sandbox for portable, untrusted x86 native code. In 2009

30th IEEE Symposium on Security and Privacy, pages

79–93, 2009.

[54] Tong Zhang, Dongyoon Lee, and Changhee Jung. Bogo:

Buy spatial memory safety, get temporal memory safety

(almost) free. pages 631–644, 04 2019.

[55] Lu Zhao, Guodong Li, Bjorn De Sutter, and John Regehr.

Armor: Fully verified software fault isolation. In 2011

Proceedings of the Ninth ACM International Confer-

ence on Embedded Software (EMSOFT), pages 289–298,

2011.

A Absolute Numbers for the Experimental

Result

Table 6: Normalized execution time of TRUST tested with

large benchmarks (Figure 12).

Benchmark Baseline(/iter) TRUST (/iter)

hyper-body 1.16µs 1.2µs(1.11×)

hyper-connect 26.85µs 31.24µs(1.16×)

hyper-end_to_end 11.45ms 11.58ms(1.01×)

hyper-pipeline 18.73µs 30.42µs(1.62×)

hyper-server 11.04ms 16.15ms(1.46×)

tokio-rwlock 2.37µs 2.49µs(1.05×)

tokio-semaphore 2.33µs 3.47µs(1.49×)

tokio-mpsc 0.40ms 1.12ms(2.54×)

tokio-signal 8.88µs 13.71µs(1.54×)

tokio-fs 2.37ms 2.37ms(1.00×)

USENIX Association 32nd USENIX Security Symposium 6963

Table 7: Performance overhead of 11 widely used crates (Figure 9).

Benchmark Baseline TRUST-jemalloc TRUST-mimalloc XRust

Base64 91.3ms/iter 90.7ms/iter(0.99×) 84.0ms/iter(0.92×) 0.1s/iter(1.59×)

Bytes 71.2µs/iter 93.4µs/iter(1.31×) 91.1µs/iter(1.28×) 80.0µs/iter(1.12×)

Byteorder 2.2ms/iter 2.0ms/iter(0.92×) 2.0ms/iter(0.92×) 2.2ms/iter(1.00×)

Json 1.4ms/iter 1.4ms/iter(1.00×) 1.3ms/iter(0.92×) 1.5ms/iter(1.04×)

Image 24.1ms/iter 24.1ms/iter(1.00×) 25.0ms/iter(1.04×) 24.6ms/iter(1.02×)

Regex 0.2s/iter 0.2s/iter(1.02×) 0.2s/iter(1.04×) 0.2s/iter(1.01×)

Vec 28.3µs/iter 28.4µs/iter(1.00×) 28.0µs/iter(0.99×) 58.1µs/iter(2.05×)

String 34µs/iter 36µs/iter(1.06×) 35.7µs/iter(1.04×) 70.7µs/iter(2.06×)

Linked-list 1.0µs/iter 1.9µs/iter(1.94×) 1.8µs/iter(1.84×) 1.2µs/iter(1.21×)

Vec-deque 1.9µs/iter 2.0µs/iter(1.02×) 2.0µs/iter(1.03×) 2.2µs/iter(1.16×)

Btree 0.4ms/iter 0.4ms/iter(1.02×) 0.4ms/iter(1.04×) 0.5ms/iter(1.11×)

GeoMean 0.4ms/iter 0.5ms/iter(1.09×) 0.5ms/iter(1.07×) 0.5ms/iter(1.26×)

Table 8: Performance overhead of snappy (Figure 10).

Size (Bytes)
Compress Uncompress

Baseline TRUST Baseline Sandcrust Baseline TRUST Baseline Sandcrust

256 0.1ms 0.2ms(1.58×) 0.6ms 5.5ms(9.17×) 0.1ms 0.2ms(2.16×) 0.2ms 10ms(50.00×)

1K 0.3ms 0.3ms(0.86×) 1.5ms 7.0ms(4.67×) 0.1ms 0.2ms(2.01×) 0.5ms 25.0ms(50.00×)

4K 0.4ms 0.5ms(1.14×) 6.0ms 10.5ms(1.75×) 0.1ms 0.2ms(1.84×) 2.0ms 90.0ms(45.00×)

16K 0.4ms 0.5ms(1.09×) 20.0ms 30.0ms(1.50×) 0.1ms 0.3ms(1.91×) 7.0ms 0.3s(42.86×)

64K 2.3ms 2.6ms(1.13×) 90.0ms 0.2s(1.67×) 1.4ms 1.5ms(1.04×) 40.0ms 0.7s(17.50×)

256K 11.1ms 11.8ms(1.06×) 0.3s 0.4s(1.33×) 8.0ms 8.2ms(1.03×) 0.2s 2.5s(16.67×)

1G 44.0ms 43.9ms(1.00×) 1.5s 2.0s(1.33×) 31.9ms 31.6ms(0.99×) 0.7s 10.0s(14.29×)

4G 0.2s 0.2s(1.03×) 6.0s 9.0s(1.50×) 0.1s 0.1s(1.03×) 3.0s 40.0s(13.33×)

16G 2.2s 2.2s(1.03×) 25.0s 35.0s(1.40×) 1.3s 1.2s(0.90×) 10.0s 0.2ks(20.00×)

GeoMean 5.4ms 5.8ms(1.09×) 95.4ms 0.2s(2.07×) 2.8ms 3.7ms(1.35×) 38.3ms 1.0s(25.96×)

Table 9: Memory impact of heap allocator (Figure 11).

Benchmark Baseline Baseline(mimalloc) TRUST(jemalloc) TRUST(mimalloc) XRust

Base64 82.4MB 0.1GB(1.48×) 83.7MB(1.02×) 83.9MB(1.02×) 82.5MB(1.00×)

Bytes 3.2MB 3.6MB(1.10×) 4.5MB(1.40×) 3.5MB(1.07×) 3.4MB(1.04×)

Byteorder 4.7MB 5.2MB(1.10×) 6.0MB(1.29×) 5.3MB(1.12×) 4.7MB(1.00×)

Json 0.7GB 0.7GB(1.00×) 2.0GB(2.95×) 1.1GB(1.67×) 0.7GB(1.00×)

Image 5.2MB 6.3MB(1.22×) 6.3MB(1.21×) 7.0MB(1.33×) 5.1MB(0.99×)

Regex 0.2GB 0.2GB(1.03×) 0.2GB(1.01×) 0.2GB(1.01×) 0.2GB(1.00×)

Vec 3.2MB 3.5MB(1.09×) 4.6MB(1.43×) 3.5MB(1.10×) 3.3MB(1.04×)

String 3.2MB 3.6MB(1.11×) 4.7MB(1.46×) 3.6MB(1.12×) 3.3MB(1.02×)

Linked-list 1.4GB 1.6GB(1.15×) 1.4GB(1.04×) 1.3GB(0.95×) 2.5GB(1.83×)

Vec-deque 3.1MB 3.4MB(1.11×) 4.5MB(1.45×) 3.4MB(1.10×) 3.2MB(1.04×)

Btree 4.9MB 5.2MB(1.06×) 6.2MB(1.26×) 5.4MB(1.11×) 5.1MB(1.04×)

GeoMean 19.5MB 22.0MB(1.13×) 26.3MB(1.35×) 22.1MB(1.13×) 20.1MB(1.07×)

Table 10: Ratio of safe stack/heap allocation (Figure 13 and Figure 14).

Benchmark
TRUST Stack TRUST Heap XRust Heap

Ratio Safe/Total Ratio Safe/Total Ratio Safe/Total

Base64 0.00 (18.7K/10.5M) 0.45 (3.4M/ 8.5M) 0.44 (17.6M/31.1M)

Bytes 0.67 (0.9G/ 1.4G) 0.67 (2.5M/ 3.7M) 0.40 (32.6M/48.6M)

Byteorder 1.00 (7.1K/ 7.1K) 1.00 (3.2M/ 3.2M) 1.00 (14.0K/14.0K)

Json 0.98 (0.2G/ 0.2G) 0.00 (1.6K/18.6M) 0.95 (18.5M/19.4M)

Image 0.54 (15.6M/29.1M) 0.60 (0.4M/ 0.6M) 0.92 (19.1M/20.7M)

Regex 0.51 (2.4M/ 4.7M) 1.00 (5.2G/ 5.2G) 1.00 (4.3M/ 4.3M)

Vec 0.88 (0.1M/ 0.1M) 0.36 (35.7M/98.1M) 0.81 (0.3G/ 0.4G)

String 1.00 (5.0K/ 5.0K) 1.00 (0.1G/ 0.1G) 1.00 (0.2G/ 0.2G)

Linked-list 1.00 (1.3K/ 1.3K) 1.00 (0.2G/ 0.2G) 1.00 (0.3G/ 0.3G)

Vec-deque 1.00 (1.4K/ 1.4K) 1.00 (12.5M/12.5M) 1.00 (13.2M/13.2M)

Btree 1.00 (0.4G/ 0.4G) 0.37 (7.9K/21.4K) 1.00 (25.9K/25.9K)

6964 32nd USENIX Security Symposium USENIX Association

	Introduction
	Backgrounds
	Motivation
	Vulnerabilities in Untrusted Code
	Mitigation by In-Process Isolation
	Limitations of Existing Mechanisms

	Threat Model and Assumptions
	Design and Implementation
	Points-to Analysis
	Function Cloning to Improve Precision
	Instrumenting Memory Accesses for SFI
	Unsafe Object Stack
	Instrumenting External Library Calls
	TRust Runtime

	Evaluation
	Performance
	Effectiveness
	Discussion

	Related Work
	Conclusion
	Absolute Numbers for the Experimental Result

