
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Cryptographic Administration for
Secure Group Messaging

David Balbás, IMDEA Software Institute & Universidad Politécnica de Madrid;
Daniel Collins and Serge Vaudenay, EPFL

https://www.usenix.org/conference/usenixsecurity23/presentation/balbas

Cryptographic Administration for Secure Group Messaging

David Balbás
IMDEA Software Institute, Spain

Universidad Politécnica de Madrid, Spain
david.balbas@imdea.org

Daniel Collins
EPFL, Lausanne, Switzerland

daniel.collins@epfl.ch

Serge Vaudenay
EPFL, Lausanne, Switzerland

serge.vaudenay@epfl.ch

Abstract
Many real-world group messaging systems delegate group ad-
ministration to the application level, failing to provide formal
guarantees related to group membership. Taking a crypto-
graphic approach to group administration can prevent both
implementation and protocol design pitfalls that result in a
loss of confidentiality and consistency for group members.

In this work, we introduce a cryptographic framework for
the design of group messaging protocols that offer strong secu-
rity guarantees for group membership. To this end, we extend
the continuous group key agreement (CGKA) paradigm used
in the ongoing IETF MLS group messaging standardisation
process and introduce the administrated CGKA (A-CGKA)
primitive. Our primitive natively enables a subset of group
members, the group admins, to control the addition and re-
moval of parties and to update their own keying material in
a secure manner. Notably, our security model prevents even
corrupted (non-admin) members from forging messages that
modify group membership. Moreover, we present two effi-
cient and modular constructions of group administrators that
are correct and secure with respect to our definitions. Finally,
we propose, implement, and benchmark an efficient extension
of MLS that integrates cryptographic administrators.

1 Introduction

In our current era of unprecedented digital communication,
billions of people use instant messaging services daily. Build-
ing messaging protocols that provide security guarantees to
users is a challenging task for many reasons. One of them
is that protocol participants must be able to exchange mes-
sages asynchronously and should not be required to be online
and available at all times. Besides this, they must always be
ready to send or receive messages spontaneously (i.e. without
additional interaction). Moreover sessions are long-lived, in
contrast to protocols such as TLS, and the secrets are stored
in potentially vulnerable mobile devices, and so providing se-
curity guarantees under state exposure has become standard.

Messaging protocols are designed either for two-party con-
versations, such as the Signal [33] and OTR [20] protocols,
or for group conversations. In the group case ([5–7, 17, 31]),
modern protocols often achieve forward security (FS) and
post-compromise security (PCS) [24] to protect past and fu-
ture communications, respectively, upon state compromise.
The most common approach for designing a group scheme
with these features consists of group members running a pro-
tocol to derive a single, common group key that they can
update on-demand. To capture the fundamental requirements
of a group key agreement primitive for messaging, Alwen et
al. [5] introduce the continuous group key agreement (CGKA)
primitive, which includes support for asynchrony, dynamic
groups and key ratcheting. This approach (and, at its core,
the TreeKEM protocol [17]) has been adopted by the Mes-
saging Layer Security (MLS) [13] work-group of the Internet
Engineering Task Force (IETF). MLS and other CGKA pro-
tocols rely on a centralized delivery service (DS) that orders
and distributes control messages to group members for group
membership and key updates.

One of the major challenges in the design of group mes-
saging protocols is the need to account for group evolution
or dynamics: the list of group members may change at any
point in time, requiring complex key agreement protocols. As
a baseline for ensuring practical security guarantees, formal
security proofs in a realistic adversarial model are essential,
especially in a complex setting like group messaging.

1.1 Group Administration

Group messaging protocols require careful handling of group
membership, particularly to prevent membership changes
from reducing the confidentiality of previously sent messages.
Overall, securing group membership involves three main as-
pects: (1) key updates, ensuring that new members cannot
read past messages and removed members cannot read fu-
ture messages; (2) membership consistency, ensuring that all
members faithfully know the list of members at any time; and
(3) securing control messages (i.e., notifications for member

USENIX Association 32nd USENIX Security Symposium 1253

addition and removal operations) from active adversaries and
from the delivery service itself.

Many state-of-the-art protocols, including passively-secure
CGKAs [5, 31], Sender Keys (WhatsApp, Signal Messen-
ger), [40] and Matrix [29], include cryptographic mechanisms
for securing key updates, but provide weaker and sometimes
even no guarantees for securing membership consistency and
control messages. We identify membership consistency as
both a correctness and a security property that is critical for
confidentiality (otherwise, the sender of a message may not
know the receivers) but is often ignored in the literature. Fail-
ing to secure control messages can also result in catastrophic
attacks. Practical examples include the burgle into a group
attack [35], which exploits the lack of authentication of con-
trol messages to allow an adversary with partial control over
the central server to enter arbitrary group chats in Signal and
WhatsApp. Recent attacks on the Matrix protocol [1] make
use of similar vulnerabilities, enabling the server to take over
the control of a group.

In order to secure group membership, we observe that there
is a strong trend in practice to distinguish between at least two
types of group members: administrators (admins) and stan-
dard users. In groups with administrators, all group changes
are either performed or approved by the admins. Therefore,
we address the problem of secure group management by devel-
oping a cryptographic framework for group administration.

Administration in messaging apps. Generally, an admin
has all the capabilities of a standard user plus a set of admin-
istrative rights. In practice, admins are implemented at the
application level via policies enforced either by the central
server or users. Examples are the popular messaging apps
Signal, Telegram and WhatsApp (as of 2022).

• In WhatsApp, only admins can add and remove users, cre-
ate a group invite link, and govern the admin subgroup. All
groups must have at least one admin; when the last admin
leaves, a user is selected randomly as the new admin.

• In Telegram, the group creator can designate other admins
with diverse sets of capabilities. Besides adding and remov-
ing users, admins can impose partial bans on any user’s
capabilities, such as sending or receiving messages, and
can even restrict the content that users can send [37].

• In Signal Messenger, admins can specify whether all mem-
bers or only admins can add and remove users from a group
(in the latter case non-admins can request to add users) and
create a group invite link.

Despite administration mechanisms being widely deployed,
there is little mention of admins in the literature. Existing
CGKA and group messaging approaches make no formal
distinction between admin and non-admin users, which results
in giving admin capabilities to all users.

Security goals. There are four main security goals that our
cryptographic administrators aim to achieve. In groups where

no distinction is made between admins and standard members,
our solutions can be extended to the whole group by treating
all members as admins; these goals nonetheless still apply:

• Reduce trust on the delivery service, such that it has no
control over group administration and membership.

• Mitigate the impact of insider attacks [9, 30] on protocol
execution. Insider adversaries, or compromised members,
cannot control a group unless they are administrators1.

• Increase the resilience of implementations of messaging
protocols, preventing pitfalls such as the burgle into a group
attack [35] or the recent attacks on Matrix [1].

• Reduce concurrency issues, especially when the delivery
service is not a central server [38], since only a reduced set
of members are able to commit group changes.

Admin capabilities. Let G = {ID1, . . . , IDn} be a group of
users participating in messaging or continuous key exchange
and G∗ ⊆ G be a non-empty subset of group administrators.
Unlike regular group members, the administrators ID ∈ G∗

that we consider can: (1) add and remove members from
the group, (2) approve/reject join and removal requests, (3)
designate other administrators, (4) give up their admin status,
(5) remove the admin status of other users. For performance
and security, regular group members should be able to remove
themselves and make key updates without admin approval.

These correspond to the common administration features
among the solutions above. For Telegram, their “fine-grained”
administration is practical as their central server decrypts all
messages, which is incompatible with our schemes.

1.2 Contributions
In this work, we cast group administration as a formal cryp-
tographic problem. The complexity of secure messaging re-
quires modular constructions and proofs of security, which
are our main goal. Our core contributions are as follows.

1. We introduce the administrated CGKA (A-CGKA) prim-
itive in Section 3 by extending the continuous group key
agreement (CGKA) primitive. We embed A-CGKA with a
game-based correctness notion which emphasises the role
of group dynamics.

2. Extending existing CGKA key indistinguishability security
notions, we introduce a game-based security notion (Sec-
tion 3.3) which further aims to prevent even fully corrupted
non-admin users from modifying group membership.

3. We present two A-CGKA constructions, IAS and DGS,
each built on top of a CGKA protocol. Each approach
provides different security and efficiency properties. We
1Note that denial-of-service attacks from malicious non-admin insiders as

in [7] are not necessarily prevented; we also remark that this family of attacks
does not affect confidentiality. This issue is discussed in later sections.

1254 32nd USENIX Security Symposium USENIX Association

formalise both protocols in detail in Section 4, analyze
their performance in Section 6.1, and prove correctness and
security (Section 5.1).

4. We propose an extension to MLS in Section 4.3 that pro-
vides efficient secure administration that we also implement
and benchmark locally (Section 5.2).

5. We consider additional administration mechanisms in Sec-
tion 6.3 and discuss their possible implementation.

1.3 Overview

From CGKA to A-CGKA. Inspired by newer versions of the
MLS draft standard, CGKA has been increasingly formalised
in the so-called propose and commit paradigm [6, 7, 9]. In
CGKA, each user maintains a state which is input to and
updated by local CGKA algorithms. Users in a given group
can create proposal messages to propose to add or remove
users, or to update their keying material for PCS reasons.
Proposals are then combined by a member to form a commit
message. This is then processed by users which make the
committed changes effective.

We extend CGKA to A-CGKA to support administration
on the primitive level. We support additional proposal types,
namely for adding and removing admins, as well as for admin
key updates. Users only process group changes that have been
attested by an admin. Our correctness notion for both CGKA
and A-CGKA enforces (A)-CGKA semantics and ensures that
users who process the same control messages have consistent
views of group and key evolution.

Security. Our security notion captures two core guarantees.
Firstly, like previous work [5, 31], we consider a key indis-
tinguishability game where the adversary drives CGKA exe-
cution via oracles and may compromise parties. We prevent
the adversary from winning the game trivially in so-called
cleanness predicates, which are protocol-dependent, similar
to previous work [5, 28].

Secondly, differing from standalone CGKA, we require that
the adversary is unable to forge an (admin) commit message
that results in a change in group structure for the processing
party, even if the adversary knows the group key. Security
is ensured insofar as the adversary does not compromise an
administrator then trivially forge a control message, i.e., they
are permitted to compromise many non-admins. Our security
notion allows for FS and PCS guarantees with respect to the
admin keying material.

Constructions. We provide two modular constructions of
A-CGKA from CGKA, as well as an extension of MLS that
supports administration. We describe them in Section 4. In our
first construction, individual admin signatures (IAS), admins
keep track of their own signature key pair. Admin propos-
als and commits which change the group structure or admin
structure or keys are signed using the committing admin’s

signature key. Admins update their signature keys via admin
update proposals or by crafting commit messages.

Our second construction, dynamic group signature (DGS),
relies on a secondary CGKA and authenticates a group of
admins as a whole (possibly all group members). Instead of
maintaining individual signatures, admins execute within this
CGKA and use the common secret to derive a signature key
pair for each epoch. Non-admins keep track of the signature
public key and verify that commits are signed using it.

Finally, we propose an extension of MLS that admits secure
administration. We embed the MLS protocol with A-CGKA
functionality more organically by leveraging its credential
infrastructure. Moreover, we implement and benchmark the
efficiency of our MLS extension (and include a reference to
the source code); we present our results in Section 5.

Proofs. We present the security theorems for IAS and DGS
under our A-CGKA definitions in Section 5, where we only
include proof sketches; we provide all proofs for correctness
and security in the full version [11].

1.4 Additional Related Work
Many works in the two-party messaging literature laid the
foundations for modern group messaging protocols, especially
regarding FS and PCS. Initial work includes OTR [20] and
Signal [33] (the latter being formalized in [4, 23]).

The TreeKEM protocol in MLS [17], was inspired by Asyn-
chronous Ratchet Trees [25]. Later, variants arose like Tainted
[31], Insider-Secure [9], Re-randomized [5], and Causal [39]
TreeKEM. MLS is studied in [6, 21].

CGKAs have been recently used to formally build full
group messaging protocols [6]. Besides TreeKEM, CGKA
variants include [3,7,8,38]. Side works deal with multi-group
security [26], efficient key schedules for multiple groups [2],
and concurrency [19]. [34] surveys group key exchange proto-
cols. Group admins were considered in [35], although without
a formal cryptographic approach. An alternative approach to-
wards securing group membership was taken in the Signal
Private Group System [22] which we discuss in Section 6.2.

The full version of this work is available in [11]. An earlier
version containing some preliminary results appears in [10].

2 Notation

A user, participant, or party is an entity that takes part in
a protocol. Users (resp. groups) are identified by a unique,
public identifier ID (resp. gid). Users keep an internal state γ

with all information used for protocol execution. If γ is leaked,
we say ID suffers a state compromise or a corruption.

To assign the output of an algorithm Alg on input x to
variable a, we write a← Alg(x), and a←$ Alg(x) for random-
ized algorithms (to make the randomness r explicit, we write
a← Alg(x;r)). Blank values are denoted by ⊥.

USENIX Association 32nd USENIX Security Symposium 1255

We let λ ∈ N be the security parameter. In our security
games, the predicate ‘require P’ enforces that a logical condi-
tion P is satisfied; otherwise the oracle/algorithm aborts and
returns ⊥. The game predicate ‘reward P’ is such that if P
holds, the adversary wins the game. The keyword ‘public var’
indicates that the adversary has read access to variable var.

To store and retrieve values, we often use dictionaries:
A[k]← a adds the value a to the dictionary A under key k,
overwriting if necessary. b←A[k] retrieves A[k] and assigns it
to variable b. A dictionary A is initialized as A[·]← a; where
all values are set to a. The use of the prefix operator Alg(++x),
is equivalent to writing first x← x+1 and then Alg(x).

3 (Administrated) Continuous Group Key
Agreement

In this section, we introduce the CGKA and A-CGKA primi-
tives, and the corresponding correctness and security notions.

3.1 Continuous Group Key Agreement

The aim of the Continuous Group Key Agreement (CGKA)
primitive [5] is to provide shared secrets (denoted by k) to
dynamic groups of users over time. In CGKA, each group, la-
belled with a group identifier gid, is subject to additions (add),
removals (rem), and user state refreshes/key updates (upd).
The evolution of a CGKA in time is captured by epochs; a
member advances an epoch every time they successfully pro-
cess a commit message, at which point there is a change in
group structure and/or shared secret from their view.

We define CGKA below. Note that the primitive is state-
ful: each user keeps their own state γ and calls each of the
following algorithms locally which may update the state.

Definition 1. A continuous group key agreement (CGKA)
scheme is a tuple of algorithms CGKA= (init,create,prop,
commit,proc,prop-info,props) such that:

• γ←$ init(1λ, ID) takes a security parameter 1λ and an iden-
tity ID and outputs an initial state γ.

• (γ′,T)←$ create(γ,gid,G) takes a state γ, a group identi-
fier gid, and a list of group members G = {ID1, . . . , IDn}
and outputs a new state γ′ and a control (welcome) message
T , where T =⊥ indicates failure.

• (γ′,P) ←$ prop(γ,gid, ID, type) takes a state, a group
identifier, an ID, and a proposal type type ∈ types =
{add, rem,upd}, and outputs a new state γ′ and a proposal
message P, where P =⊥ indicates failure.

• (γ′,T,k)←$ commit(γ,gid, P⃗) takes a state, a group identi-
fier, and a vector of proposals P⃗, and outputs a new state
γ′, a control message T where T =⊥ indicates failure, and
the new group secret k.

• (γ′,acc)← proc(γ,T) takes a state and a control message
T , and outputs a new state γ′ and an acceptance bit acc,
where acc= false indicates failure.

• (gid, type, ID, ID′)← prop-info(γ,P) takes a state and a
proposal P, and outputs the group identifier of the proposal
gid, its type type, the ID of the user affected by the proposal
and the proposal creator ID′.

• P⃗← props(γ,T) takes a state and control message T and
outputs the vector of proposals P⃗ associated with T , where
P⃗ =⊥ indicates failure.

Finally, given ID’s state γ and gid, the (possibly empty) set
of group members in gid from ID’s perspective is stored as
γ[gid].G, and the group secret k for gid is γ[gid].k.

Protocol execution. Once every user has initialized their state
using init, a group is created when a party calls create on a
list of IDs. Users can also authenticate and register keys on a
PKI when appropriate in init, as in [5, 7, 31]. In Section 4.1,
we expand on the use of PKI. The create algorithm outputs
a control message T that must be processed by prospective
group members, including the creator, to join group gid.

In our formalism, any user can propose a member addi-
tion (add), member removal (rem) or key update (upd, only
available for the caller) at any time. This is done via the prop
method, which outputs a proposal message P. Proposals en-
code the information needed to make a change in the group
structure or keying material, but the encoded changes are not
immediately applied to the group. We emphasise that only
the caller of prop can use argument type= upd to propose to
update (i.e., refresh) their keying material, in which case the
input ID is ignored. Following [6], we define prop-info which
outputs proposal attributes to support possibly encrypted pro-
posals (e.g., as in MLSCiphertext [13]).

Proposed changes become effective once a user commits a
(possibly empty) vector of proposals P⃗ = (P1, . . . ,Pm) using
commit, which outputs the new group key k and a control
message T that contains the information needed by all current
and incoming group members to process the changes. Typi-
cally, the commit algorithm also updates the keying material
of the caller. Control messages are processed via proc, which
updates the caller’s state and outputs a success bit acc. Users
can also parse the proposals encoded in a commit message T
as needed using props.

Commit semantics. We assume that proposals input to
commit are processed in some deterministic, publicly-known,
a priori determined order, that we call the policy. It is possible
to define an explicit policy algorithm that defines this order.

Alternative definitions. In previous CGKA definitions
[5, 31], including old versions of MLS, group changes are
made effective directly by processing proposals, without com-
mitting them first, and multiple groups were not considered.
Other minor differences include the speculative execution of

1256 32nd USENIX Security Symposium USENIX Association

operations in [31] and the fact that groups are initially of size
1 in [6, 9].

3.2 Administrated CGKA
An administrated continuous group key agreement (A-CGKA)
is a CGKA where only a group G∗ of ID’s, the so-called group
administrators, can commit (and therefore make effective)
changes to the group structure, such as adding and removing
users. As with the group of users G in both CGKA and A-
CGKA, the group of administrators G∗ is dynamic.

Definition 2. An administrated continuous group key agree-
ment (A-CGKA) scheme is a tuple of algorithms A-CGKA=
(init,create,prop,commit,proc,prop-info,props) such that:

• Algorithms init,proc,prop-info,props are defined as for a
CGKA (Definition 1).

• In prop and prop-info, types is redefined as types= {add,
rem, upd, add-adm, rem-adm, upd-adm}.

• (γ′,T)←$ create(γ,gid,G,G∗) additionally takes a group
of admins G∗.

• (γ′,T,k) ←$ commit(γ,gid, P⃗,com-type) addition-
ally takes a commit type com-type ∈ com-types =
{std,adm,both}.

Given ID’s state γ and gid, γ[gid].G and γ[gid].k are defined
as in Definition 1, and γ[gid].G∗ stores the set of admins in
gid from ID’s perspective.

The execution of an A-CGKA is analogous to CGKA.
Besides the introduction of the group of admins, we intro-
duce three additional proposal types add-adm, rem-adm, and
upd-adm for admin additions, removals and key updates, re-
spectively. The commit type com-type specifies the scope
of a commit operation, that is, whether it affects the general
group (std), the administration of the group (adm), or both
at the same time (both). For the latter, a simple example is
when an admin is both adding a member (group modification)
and refreshing its admin keys (admin modification).

We note that the create algorithm enforces the condition
/0 ⊂ G∗ ⊆ G; our correctness and security notions ensure
this holds throughout execution. Thus, the group adminis-
trators are always a subset of the group members. We take
this approach following previous CGKAs [5, 7, 31] and group
messaging protocols [6, 13] where only group members can
perform commits or make changes in the group.

Real-world administrators. A-CGKA captures the main
admin features in commercial applications such as WhatsApp
and Signal as mentioned in the introduction. We remark that
the fact that non-admins are not allowed to make changes
(except for leaving a group) is a desired consequence of our
formulation of A-CGKA. A more fine-grained solution, at the
expense of additional A-CGKA formalism, is to allow admins

to send a policy change proposal, to e.g. modify the ability of
all members to call commit to add new users. We briefly dis-
cuss formalising administration outside of the CGKA frame-
work in Section 6.

Correctness. Due to their similarity, we define the correctness
of CGKA and A-CGKA together. We relegate the game and
the full description to the full version of this paper [11]. The
main properties captured by our correctness notion are the
following. First, view consistency ensures that all users which
process the same sequence of commit messages have the same
group view (i.e., G, G∗ and key k) in each group gid. Second,
message processing enforces that the group structure (G/G∗)
and k can only be modified due to calls to proc. Third, forking
states ensures that if the group is partitioned into subgroups
that process different sequences of commit messages (thus
leading to different group views), members in each partition
keep consistent views.

Separately, we ensure that a user’s state is not modified
whenever a particular algorithm call fails, meaning that we
require incorrect input not to affect the functionality of the
protocol as observed for two-party messaging in [16].

3.3 Security
Any A-CGKA protocol must satisfy CGKA security (i.e. key
indistinguishability) and, to capture the security of group evo-
lution, prevent unauthorized (standard) users from deciding
on changes to a group. Moreover, an A-CGKA where the
adversary fully controls a standard group member is not key
indistinguishable, but should nevertheless protect group mem-
bership. We define (A)-CGKA security in Definition 3.

Definition 3 (Security of (A)-CGKA). A CGKA CGKA (resp.
A-CGKA A-CGKA) is (t,q,ε)-secure w.r.t. the predicates
Ccgka,(Cadm,Cforge) if, for any adversary A limited to q or-
acle queries and running time t, the advantage of A in the
KIND(A)-CGKA game (Figure 1) given by∣∣∣∣Pr[KINDA

(A)-CGKA,Ccgka,(Cadm,Cforge)
(1λ) = 1]− 1

2

∣∣∣∣
is bounded by ε, where the probability is taken over the choice
of the challenger and adversary’s random coins.

Overview At its core, Figure 1 is a key indistinguishability
game that captures the security of the common group secret,
extending the game in [5]. It considers a partially active adver-
sary A who can make forgery attempts and schedule messages
but cannot totally control message delivery. Namely, the ad-
versary can inject a control message to a specific party ID,
but this message is not stored in the array T that keeps track
of all honestly generated messages after proc is called. The
main consequence of this is that injected proposals cannot be
included into commits; nevertheless, the adversary can make
commits on arbitrary proposals created via OProp.

USENIX Association 32nd USENIX Security Symposium 1257

KINDA
(A)-CGKA,Ccgka,Cadm,Cforge

(1λ)

1 : b←$ {0,1}; K[·],ST[·]←⊥
2 : public T[·],G[·],ADM[·]←⊥
3 : prop-ctr,com-ctr,exp-ctr← 0

4 : ep[·],exp[·]← (−1,−1); C[·]←−1

5 : chall[·], forged← false

6 : ST[ID]←$ init(1λ, ID) ∀ ID

7 : b′←$ AO(1λ)

8 : require Ccgka∨ forged

9 : return 1b=b′

OProp(ID, ID′,type)

1 : (γ,P)←$ prop(ST[ID], ID′,type)

2 : T[ep[ID],’prop’,++prop-ctr]← P

3 : ST[ID]← γ

OCommit(ID,(i1, . . . , ik),com-type)

1 : P⃗← (T[ep[ID],’prop’, i])i=(i1 ,...,ik)

2 : (γ,T,k)←$ commit(ST[ID], P⃗,com-type)

3 : if T =⊥ return // failure

4 : T[ep[ID],’com’,++com-ctr]← (T,com-type)

5 : T[ep[ID],’vec’,com-ctr]← props(ST[ID],T)

6 : (ts, ta)← ep[ID]

7 : if com-type= adm ts← ts−1

8 : K[ts +1]← k; ST[ID]← γ

OCreate(ID,G,G∗)

1 : (γ,T)←$ create(ST[ID],G,G∗)

2 : if T =⊥ return // failure

3 : T[(−1,−1),’com’,++com-ctr]← (T,both)

4 : ST[ID]← γ

ODeliver(ID,(ts,ta),c)

1 : require ep[ID] ∈ {(ts, ta),(−1,−1)}
2 : (T,com-type)← T[(ts, ta),’com’,c]

3 : if C[(ts, ta)] ∈ {c,−1}, C[(ts, ta)]← c

4 : else return // bad commit for epoch

5 : (γ,acc)← proc(ST[ID],T)

6 : if ¬acc return // failure

7 : if ID ̸∈ γ.G // ID removed

8 : ep[ID]← (−1,−1)

9 : else // ID in group, update dictionaries

10 : ep[ID]← (ts, ta)

11 : if com-type ∈ {std,both}
12 : K[ts +1]← γ.k

13 : G[ts +1]← γ.G

14 : ep[ID]← ep[ID]+ (1,0)

15 : if com-type ∈ {adm,both}
16 : ADM[ta +1]← γ.G∗

17 : ep[ID]← ep[ID]+ (0,1)

18 : ST[ID]← γ

OReveal(ts)

1 : require (K[ts] ̸=⊥)∧¬chall[ts]
2 : chall[ts]← true

3 : return K[ts]

OExpose(ID)

1 : exp[ID,++exp-ctr]← ep[ID]

2 : return ST[ID]

OChallenge(ts)

1 : require (K[ts] ̸=⊥)∧¬chall[ts]
2 : chall[ts]← true

3 : if b = 0 return K[ts]

4 : if b = 1 return r←$ {0,1}λ

OInject(ID,m, ta)

1 : require Cadm ∧ (ep[ID] = (·, ta))
2 : require (ta ̸=−1)∧ (m, ·) ̸∈ T

3 : (γ,⊥)← proc(ST[ID],m)

4 : if Cforgery

5 : forged← true // successful forgery

6 : return b // adversary wins

7 : else return ⊥

Figure 1: Key indistinguishability (KIND) security game for (single-group) (A)-CGKA, parametrized by the Ccgka, Cadm and Cforge predicates.
Highlighted code is executed only when considering an A-CGKA.

Informally, A wins if it plays a clean game where either
it wins due to making key-indistinguishability challenges or
manages to forge a message which, after being processed by a
member, changes its view of G,G∗ except for some reduction
in G from users who elect to leave the group themselves.

Epochs. Messages output by successful create, commit, and
prop calls are stored in T and uniquely labelled by the chal-
lenger using counters prop-ctr,com-ctr. We model group evo-
lution using epochs, represented as a pair of integers (ts, ta).
The standard epoch ts represents the time period between two
key evolutions; a different key should be derived in each ts.
The administrative epoch ta represents the time between two
changes in the group administration.

Epochs advance every time a commit is processed; ts ad-
vances if the commit type com-type ∈ {std,both} and ta ad-
vances if com-type ∈ {adm,both}. Group members can be
in different epochs. If a participant ID is not in the group, then
ep[ID] = (−1,−1) holds.

Challenges. At any point in the game, the adversary can chal-
lenge with respect to a standard epoch ts by calling OChallenge.
In a challenge, the adversary is given the group key K[ts] if
the challenger’s bit is b = 0, and a random string r←$ {0,1}λ

if b = 1. The adversary must try to determine the value of b
by outputting a guess b′ of b. A given execution is considered
valid when either the standard cleanness predicate Ccgka (pre-
sented below) is true or the adversary makes a forgery and
the admin cleanness predicate is true.

Exposure mechanisms. In order to capture group key ratch-
eting (for FS and PCS), the adversary can expose a user ID
and reveal the group secret k. An exposure leaks the entire
current state of ID stored in ST[ID]. We keep track of expo-
sures in exp[·]. On the other hand, a reveal leaks the group key
to the adversary on a specified epoch ts – in this case, chall[ts]
is set to true to prevent the adversary from challenging on ts.

Injections. For A-CGKA, the adversary can also win the
game by successfully injecting a forged commit. An injection
can be attempted by calling O Inject(ID,m, ta), given that ID is
in admin epoch ta, where ID is the target group member and
m is the forged message. Note we require ta ̸=−1 since the
adversary could otherwise trivially invite a new user into a
new group that it controls. Forgeries can only be attempted
if the administrative predicate Cadm is not violated. The ad-
versary wins the game if the forgery is accepted by any group
member ID ∈ G and if the forgery predicate Cforge that we

1258 32nd USENIX Security Symposium USENIX Association

introduce below is true.

Cleanness predicates. The security game in Figure 1 is
parametrized by three cleanness predicates, Ccgka, Cadm and
Cforge. The first predicate Ccgka follows approaches like [5,
12] to parametrise the security of the common (A)-CGKA
key. Namely, this predicate excludes trivial attacks on the
protocol and captures its exact security (with respect to key
indistinguishability), which in our case comprises forward
security and post-compromise security after updates.

The predicate Cadm models administration security. This
predicate should be more permissive in some aspects than
Ccgka, as injections should be permitted even if the adversary
knows the state of a (standard) group member.

Finally, we characterize forgeries performed using the
O Inject oracle with respect to a predicate Cforge. The predicate
we describe captures the fact that if admins have not been
corrupted, then non-admins can only make group changes for
parties that remove themselves from a group. We formalize
some suitable predicates in Appendix A.

Limitations. Our security definition does not allow arbitrary
message injections to participants. Thus, attacks on robustness
are not captured by our security model. So long as non-admins
are allowed to make commits, our A-CGKA schemes will
only provide as much security as the underlying core CGKA:
using MLS’s TreeKEM, for example, a malicious non-admin
can deny service by sending a malformed commit message
that can be processed only by some of the users. This can be
fixed at the expense of using NIZKs within TreeKEM [7, 27].
In any case, we note that confidentiality is not compromised
under this family of attacks, as new users cannot be added.

If only admins are allowed to commit, then our schemes
(to be introduced) are safe against this attack vector for non-
strongly robust variants of TreeKEM, such as the one used in
MLS [13] (up to version 16 at the time of writing). Standard
users can still attain FS and in particular PCS when their
update proposals are committed.

Furthermore, we do not model initial authentication (we
implicitly assume an incorruptible PKI; see Section 6.2) and
randomness manipulation. We also note that multi-group secu-
rity can be captured rather easily. The main difference besides
notation complexity is that exposing the state of a party im-
plies a security loss in all groups that the party is a member
of simultaneously.

4 Constructions

A first attempt at A-CGKA would simply require group mem-
bers to keep a list of administrators over time. Whenever an
admin wants to make a commit, it can check whether the
admin-changing proposals were made by administrators, then
commit them, and other users will verify admin conditions
upon processing. This approach is functional but insecure in
our model due to a lack of admin authentication. Namely, an

adversary can easily forge a commit message and imperson-
ate an admin. Many notions of CGKA security [5, 31] do not
necessarily imply such a level of authentication.

One partial fix is to require admins to sign using a key de-
rived from a long-term identity key. Then, security cannot be
recovered if the admin is compromised once, resulting in the
adversary winning the A-CGKA game too. Our constructions
provide FS and PCS to admin authentication mechanisms in
order to circumvent this problem.

4.1 Individual Admin Signatures
In our first construction, individual admin signatures (IAS),
we build a generic and modular administration mechanism
on top of an arbitrary CGKA protocol (denoted by CGKA).
Each group administrator ID ∈ G∗ maintains their own sig-
nature key pair (ssk,spk). Each key pair is independent from
the keys used in CGKA, which is mostly used as a black-box.
Group members keep track of the list of admins G∗ which
is possibly updated upon processing a control message. Pro-
posed changes to the group and to the administration are
signed using an admin’s keying material. The IAS construc-
tion is presented in Figure 2; helper functions are deferred to
Appendix B.

States. We represent the state of a participant by γ, which
is in part a dictionary of states, indexed by group identifiers
i.e. γ[gid]. Users further maintain a common state via γ.s0
encoding the underlying CGKA state, security parameter 1λ in
γ.1λ and the user’s ID in γ.ME. For each group gid, users keep
a separate state that encodes the list of group administrators
γ[gid].adminList and two administration-related signature key
pairs. The state also keeps the group members as γ[gid].G =
γ[gid].s0.G, the admins as γ[gid].G∗ = γ[gid].adminList[·].ID,
and the CGKA key as γ[gid].k= γ[gid].s0.k.

All implemented A-CGKA algorithms, including init, are
stateful as if executed by the same party and, as written, do not
explicitly return the updated local state. Instead, they modify
the state during runtime. In the event of algorithm failure, the
state is not modified and appropriate failure values are output.
We often omit the group identifier to simplify presentation.

Randomness. In our constructions, we make randomness
used by protocol algorithms explicit, including sampled ran-
domness r0 ∈ {0,1}λ as input. Namely, for the input random-
ness r0 used in any randomised method, we apply a PRF
(r1, . . . ,rk)← Hk(r0,γ) that combines the entropy of r0 and
the state γ. We do this to reduce the impact of randomness
leakage and manipulation attacks [12], and does not interfere
with the protocol otherwise.

PKI. IAS assumes a basic, incorruptible PKI functionality
where all parties are authenticated with the PKI. The PKI
provides a fresh signature public key spk for which only the
party ID can retrieve the corresponding secret key ssk. This
functionality is used in two different places: 1) When the

USENIX Association 32nd USENIX Security Symposium 1259

group of administrators expands; namely, when a party ID′

crafts a group gid or makes an admin add proposal; and 2)
When a non-admin user wishes to remove themselves from
gid (a ‘self-remove’).

For these purposes, we define a getSpk algorithm, which
on input (ID, ID′,gid) for subject ID and caller ID′ outputs
spk relevant to the context the call is made in. We also assume
a method getSsk(spk, ID,gid) that returns the ssk associated
to spk when called by ID given they uploaded it. During pro-
tocol execution, parties upload signature key pairs (ssk,spk)
to the PKI via an abstract registerKeys(ID) method both in
initialisation and during the two aforementioned scenarios.2

Formally, the adversary can only call getSpk.

Group creation. Once the users have initialized their states,
the create algorithm creates the group gid from the list of
members G, the admin list from G∗, and outputs a (signed)
control message T for the new members in G. The adminList
variable includes pairs of the form (ID,spkID) for parties ID∈
G∗. The public signature keys are obtained via getSpk and
each admin’s private key can be retrieved from the PKI via
getSsk while they are processing T , the control message that
adds them to the group. The group creator directly stores such
key pair as (γ.ssk′,γ.spk′).

Proposals. Any group member can use prop to create a pro-
posal of a non-admin type; the algorithm calls CGKA.prop in
this case. Administrative proposals are restricted to admins
and crafted by makeAdminProp, which includes an admin-
istrative signature in the proposal. The signature is included
to prevent an (insider) adversary from forging the sender of
the proposal in an attempt to impersonate an admin. Pro-
posal creation does not have any effect on the state other
than the storage of temporary keys for proposals with type
type= upd-adm. In the case of an add-adm proposal to pro-
mote ID to admin status, the proposer γ.ME retrieves a public
signature key spk of ID from the PKI using getSpk. In the
case of an rem proposal where ID=ME (i.e. a self-remove),
the caller samples a new signature key pair, registers the public
key spk with the PKI and signs their proposal. The prop-info
method simply retrieves the main information of a proposal.

Commits. The commit algorithm, which can only be called
by group administrators except when only key updates and
self-removes are proposed, performs the following actions:
(1) Clean the input vector of proposals P⃗, ensuring they are
well-formed via propCleaner/enforcePolicy. For security rea-
sons, we adopt the main features of the MLS policy (removing
duplicates and prioritizing removals) in our construction [13],
but variations can be used. In addition, we verify the legiti-
macy of admin proposals and that self-remove proposals are
correctly signed via verifyPropSigs. For the former task, pred-
icate VALIDP verifies the proposal data. Finally, we ensure
users removed from G are also removed from the adminList.

2This abstraction is made to reduce notational complexity.

(2) Carry out the administrative and the standard commits and
produce an administrative commit message CA (which is the
clean admin proposal vector), a standard CGKA commit C0,
and an updated adminList. (3) Generate a new (temporary)
administrative signature key pair (γ.ssk′,γ.spk′). (4) Produce
the final control message T which includes the new spk′. The
message T is again split into two components: A first compo-
nent TW (for welcome) includes all the required information
for incoming A-CGKA members, including the new list of
admins. A second component TC (for commit) contains the
updating information for group members. Both components
are signed together using the committer’s current γ.ssk.

The props method, given a commit, retrieves a correspond-
ing list of proposals from CGKA.props and the admin commit
list CA.

Processing control messages. The proc method takes a con-
trol message T as input and updates the state accordingly. The
algorithm returns acc = true if the processing succeeds, in
which case the state is updated. Otherwise, the state remains
the same. During an execution of proc, some checks must
pass before the state is updated. For newly added users, p-Wel
verifies the message signature on the adminList and attempts
to process the message via the underlying CGKA.For group
members, p-Com verifies the administrator signature and the
signatures in the admin proposals. The state is updated if all
verification succeeds; a removed user blanks their state, and
temporary keys are updated if necessary. The case in which
the T is not signed is handled by proc directly by verifying
that no changes to the group structure are made except possi-
bly for signed (and verified) self-removals (only key updates).

Commit and propose policies. Our construction allows
standard users to perform a commit if there are no changes
in the group structure or in the administration. This is an
optional design choice that does not affect security in our
model (and could be reflected in a correctness predicate).
Similarly, we choose to enforce that standard users cannot
propose administrative changes (even if these could be later
ignored by admins).

Security mechanisms. The security of the group admin-
istration is provided by the admin signatures; an adversary
should not be able to commit changes to the group unless
it compromises the state of one of the group administrators.
The update mechanism provides optimal post-compromise
security. On the other hand, administrative actions are unde-
niable and traceable both by group members and the message
delivery service.

On optimal forward security. Note that, as defined, our
construction does not satisfy forward security with respect
to injection queries even if the underlying CGKA provides
optimal forward security. Concretely, suppose that ID makes
their last update in epoch 3, and then their state is exposed
in epoch 5. Then ID can trivially forge commit messages for

1260 32nd USENIX Security Symposium USENIX Association

init(1λ, ID;r0)

1 : γ.s0← CGKA.init(1λ, ID;r0)

2 : γ.ME← ID; γ.1λ← 1λ

3 : γ[·].adminList[·]←⊥ // stores (ID,spk) pairs

4 : γ[·].ssk,γ[·].spk←⊥ // active admin key pair

5 : γ[·].ssk′,γ[·].spk′←⊥ // temporary key pair

6 : registerKeys(ID) // Upload keys to PKI

prop(gid, ID,type;r0)

1 : P←⊥; (r1,r2,r3,r4)← H4(r0,γ)

2 : if type= ∗-adm
// Note if type= upd-adm, keys are updated

3 : require γ.ME ∈ γ.adminList

4 : P←makeAdminProp(gid,type, ID;r1,r2)

5 : else (γ.s0,P)←
CGKA.prop(γ.s0,gid, ID,type;r1)

6 : if (type= rem)∧ (ID=ME)∧ (ID ̸∈ γ.s0.G∗)

7 : (ssk,spk)← SigGen(γ.1λ;r3)

8 : P← (P,Sig(ssk′,P;r4))

9 : return P

create(gid,G,G∗;r0)

1 : require (γ.ME ∈ G∗)∧ (G∗ ⊆ G)

2 : (r1,r2)← H2(r0,γ)

3 : (γ.s0,W0)← CGKA.create(γ.s0,gid,G;r1)

4 : if W0 =⊥ return ⊥
5 : adminList[·]←⊥ // this is not γ.adminList

6 : for ID ∈ G∗ :

7 : adminList[ID]← (ID,getSpk(ID,γ.ME))

8 : γ.spk′← adminList[ME]

9 : γ.ssk′← getSsk(γ.spk′,ME)

10 : TW ← (‘wel’,γ.ME,W0,adminList)

11 : return (gid,⊥,TW ,Sig(γ.ssk′,(gid,⊥,TW);r2))

commit(gid, P⃗,com-type;r0)

1 : require γ.ME ∈ γ.s0.G

2 : require com-type ∈ {adm,std,both}
3 : (r1, . . . ,r4)← H4(r0,γ)

4 : (P⃗0, P⃗A,Σ,admReq)← propCleaner(gid, P⃗)

5 : require verifyPropSigs(P⃗0,Σ, P⃗A)

6 : if admReq∨ (com-type ∈ {adm,both})
7 : require γ.ME ∈ γ.adminList

8 : if com-type ∈ {adm,both}

9 : CA← P⃗A

10 : if com-type ∈ {std,both}
11 : (C0,W0,adminList,k)←

c-Std(gid, P⃗0, P⃗A;r1)

12 : require C0 ̸=⊥
13 : // generate new key pair and sign new spk

14 : (γ.ssk′,γ.spk′)← SigGen(γ.1λ;r2)

15 : TC ← (‘comm’,γ.ME,C0,CA,⊥,γ.spk′)
16 : if W0 ̸=⊥ // share updated admin list

17 : TW ← (‘wel’,γ.ME,W0,adminList)

18 : else TW ←⊥
19 : σT ← Sig(γ.ssk,(gid,TC,TW);r4)

20 : else // only self-removes - no admin sig

21 : (C0,⊥,⊥,k)← c-Std(gid, P⃗0,⊥;r3)

22 : TC ← (‘comm’,γ.ME,C0,⊥,Σ,⊥)
23 : TW ←⊥; σT ←⊥
24 : return ((gid,TC,TW ,σT),k)

props(T)

1 : (TC,TW ,σT)← T

2 : P⃗0← props(TC.C0)

3 : P⃗A← TC.CA

4 : return P⃗0||P⃗A

proc(T)

1 : (gid,TC,TW ,σT)← T

2 : if (γ.ME ̸∈ γ[gid].s0.G)∧ (TW ̸=⊥)
3 : (msg-type, · · ·)← TW

4 : require msg-type= ‘wel’

5 : return p-Wel(gid,TW ,σT) // helper

6 : if ¬(γ.ME ̸∈ γ[gid].s0.G)∨ (TC =⊥)
7 : return false

8 : (msg-type, ·,C0, ·,Σ, ·)← TC

9 : require msg-type= ‘comm’

10 : for σ : (P, ID,σ) ∈ Σ :

11 : if ¬Ver(getSpk(ID,ME),σ,P) ∨
12 : (ID ∈ γ[gid].adminList)

13 : return false

14 : if σC =⊥ // no sign: check only self-removes

15 : (γ′,acc)← CGKA.proc(γ[gid].s0,C0)

16 : R←{ID : (·, ID) ∈ Σ}
17 : if ¬acc∨ γ

′[gid].s0.G∪R ̸= γ[gid].s0.G

18 : return false

19 : γ[gid].s0← γ
′; return true

20 : spk← γ[gid].adminList[ID].spk

21 : if ¬[(ID ∈ γ[gid].adminList) ∧
Ver(spk,(gid,TC,TW),σT)]

22 : return false // verification failed

23 : return p-Comm(gid,TC) // admin com.

prop-info(P)

1 : if P is of the form (P,σ) // self-removes

2 : (P,σ)← P

3 : if P is a CGKA proposal

4 : (P.gid,P.type,P.ID,P.ID′)←
CGKA.prop-info(γ.s0,P)

5 : else if P is an admin proposal

6 : (P.gid,P.type,P.ID,P.ID′,⊥,⊥)← P

7 : return (P.gid,P.type,P.ID,P.ID′)

Figure 2: Individual admin signatures (IAS) construction of an A-CGKA, built from a CGKA, a signature scheme S = (SigGen,Sig,Ver), and
n-PRFs Hn : R×ST→ Rn for n≤ 4, randomness space R and state space ST. The state values representing the group, the admins, and the
group key are assigned as: γ[gid].G = γ[gid].s0.G, γ[gid].G∗ = γ[gid].adminList[ID].ID, and γ[gid].k= γ[gid].s0.k. We assume that γ refers to
γ[gid] whenever gid is a function parameter.

parties that are in epochs 3 and 4 since their keying material
has not been updated. A similar forward security issue is
present in the MLS standard affecting confidentiality [5].

Optimal security can be easily achieved by replacing regu-
lar signatures with forward-secure signatures [15]. Forward-
secure signatures allow signers to non-interactively update
their secret keys and provide forward security given state expo-
sure. In IAS, it suffices to use forward-secure signatures such
that whenever an epoch passes and an admin has not sampled
a new signature key, they invoke the signature scheme’s secret
key update function, where new signature keys are otherwise

derived as in the construction. We note that forward-secure
signatures involve an overhead that may be undesirable in
some cases, and also they are not used in current protocols
(signatures are already used in MLS’ CGKA, for instance). In
Theorem 1, we characterize the exact security of IAS using
standard primitives via our sub-optimal predicate. In this way,
the security of both alternatives is fully characterised.

USENIX Association 32nd USENIX Security Symposium 1261

4.2 Dynamic Group Signature

In our second construction, dynamic group signature (DGS),
the group administrators agree on a common signature key
pair that they use for signing administrative messages on an
underlying CGKA. To agree on a secret and generate a com-
mon key pair, they run a separate CGKA. As opposed to IAS,
group administrators may now be opaque to group members
if the concrete CGKA which is used allows it. Notably, group
members do not need to keep track of an administrator list;
admins implicitly track this via their CGKA.

Protocol. The DGS protocol is formally specified in the
full version of this paper [11]; we summarise it below. In
the algorithm, we refer to the primary (or standard) CGKA
as CGKA, and to the administrative CGKA as CGKA∗. The
first CGKA allows group members to agree on a common
secret and group composition as in IAS, whereas the second
exists only for administrative purposes (i.e., admins deriving
a common signature key). Note that CGKA∗ is not necessarily
implemented in the same way as the primary CGKA. This
feature can be exploited by a protocol designer to provide dif-
ferent performance/security e.g. if stronger security is desired
for CGKA∗. Note DGS can be extended to support self-signed
removals exactly as in IAS.

States. Each party stores γ.s0, corresponding to the primary
CGKA, as well as γ.sA, corresponding to CGKA∗, which are
used for each group they consider. For a group gid, we assume
that gid is used by the main CGKA and gid∗ by the admin
CGKA, and we assume that gid1 and gid∗2 are distinct for all
gid1,gid2. Besides these fields, the state includes the admin-
istrative public key γ[gid].spk known by all group members
(and can be a public group parameter, known for instance by
a central server) to enable verification. The state variables
are now γ[gid].G = γ.s0[gid].G, γ[gid].G∗ = γ.sA[gid∗].G, and
γ[gid].k= γ.s0[gid].k.

PKI. As in IAS, we assume a similarly incorruptible PKI
functionality. Here, we assume that admins register their
(admin) signature public keys whenever they are sampled
(only upon group creation) or updated which can be ob-
tained by users using the call getSpk(gid) (which is only
required by DGS for incoming group members). As opposed
to IAS, authentication could be implemented while ensuring
k-anonymity such that a member authenticates his group mem-
bership but not his identity. The set of group administrators
can be opaque to the central server and to the rest of the group
(whenever the underlying CGKAs preserve the anonymity of
group members with respect to external parties).

Group creation. The create algorithm creates a group for
the two separate CGKAs by calling the corresponding two
create methods. These calls output new states s0 and sA,
which overwrite the stored states, as well as control messages
W0 and WA, which are collated into a create control message

T = TCR. We assume that an initial group signature public key
is sampled and uploaded to the PKI.

Proposals. The prop algorithm generates a proposal message
P by using CGKA.prop when the input type is standard and
CGKA∗.prop when it is administrative (∗-adm). As in IAS, a
validity check is made using the VALIDP predicate. Adminis-
trative proposals are signed with γ.spk; this protects against
insider adversaries that re-send old proposals or try to create
new ones. The prop-info and props algorithms is fully based
on the respective CGKA’s prop-info algorithms.

Commits. For a given gid, administrative changes are com-
mitted via CGKA∗.commit (which outputs a CA) and standard
group changes via CGKA.commit (outputting C0 as usual).
Note that in CA, we update the CGKA∗ secret kadm, that is
used to update the admin key pair (ssk′,spk′).

The new admin key spk′ is included in the final A-CGKA
commit message, so that group members can process it. In
order to prove the authenticity of the commit (and of spk′),
the committer signs the whole commit message including
CA,C0 and spk′ with the old admin key γ.ssk. In addition,
the committer must verify all proposal signatures in advance.
Commits in both CGKAs are independent: CGKA can be
updated while CGKA∗ is not, and vice-versa.

Processing control messages. Newly added users verify
the admin signature, process the welcome message using
CGKA.proc and store the new public admin key (spk′, pro-
vided in T) in γ.spk.

Group members verify the administrator signature (if the
commit requires administrative rights) using γ.spk. Then, de-
pending on the commit type at least one of CGKA and CGKA∗

are updated via the corresponding CGKA proc algorithm.
Given CGKA∗ or both CGKAs are updated, the updated ad-
min key is set as γ.spk← spk′. In case T contains a create
message TCR, both CGKAs process the respective welcome
messages contained in TCR separately.

Incoming users. The administrative spk can be a public
value that a server can store. Hence, an incoming member
can verify the authenticity of an administrative signature by
verifying spk with the server, or using a different channel
other than the welcome message itself. Another possibility
is out-of-band authentication, such as via safety numbers, a
feature provided by some messaging services.

Limitations. A drawback of DGS is that enforcing differ-
ent “levels of administration”, for which IAS can be easily
extended, is not straightforward. Nevertheless, one can still
implement minor policies such as muting users at an appli-
cation level (as done in practice). We also note that admins
may not have a reliable view of the set of admins if CGKA∗ is
susceptible to insider attacks that violate robustness, which is
beyond the scope of our model that considers trusted admins.
If these attacks are relevant, one can deploy heavier protocols
such as P-Act-Rob in [7]. A third limitation is that admins

1262 32nd USENIX Security Symposium USENIX Association

cannot give up their admin status immediately: they must
send a self rem-adm proposal, erase their admin state, and
wait for another admin to commit. In MLS, parties aware of
any removals commit them before application messages are
sent, ensuring speedy processing.

Security mechanisms. We note the conceptual simplicity
of achieving PCS and FS in the group administration keys
(in the adversarial model for CGKA∗) given the existence of
secure CGKA schemes in the literature, since both properties
are ensured by CGKA∗ itself. Update mechanisms are largely
simplified due to a single admin key being used. Delegation
and revocation of admin keys are also straightforward.

4.3 Integrating A-CGKA into MLS
The current MLS specification authenticates users via cre-
dentials, which are essentially public signature keys for each
party that are certified by a PKI. These keys authenticate mes-
sages originating from that party. Therefore, one can extend
the CGKA used in MLS to an A-CGKA in more efficiently
than via a compiled A-CGKA construction. In practice, it is
feasible to support secure administration in MLS via an MLS
extension, a feature that enables additional proposal types and
new actions in the protocol [13]. Constructing such an exten-
sion is almost straightforward; the three main challenges that
we find are (1) update credentials to provide admins with FS
and PCS, (2) add new proposal types and modify the commit
and proc algorithms accordingly, and (3) maintain guarantees
for incoming users by registering keys in a PKI.

Protocol details. The main modifications are to (1) the ad-
mins’ credentials, which are regularly updated via upd-adm
proposals and admin commits; and (2) in the introduction
of the three additional proposal types from A-CGKA. For
brevity, we omit several parts of the protocol, such as san-
ity checks (like require predicates), functionality that we do
not need to modify and details on a higher level than CGKA
(like the use of a MAC). Also for simplicity, we extend the
CGKA state γ to include the state variables used in IAS. Fol-
lowing [6], we split the processing algorithms in two – one
for commit messages, and one for welcome messages. We
provide a more detailed protocol description in Figure 7 in
the appendices.

Overall, the overhead with respect to (bare-bones) MLS is
minimal; we essentially only add the new types of propos-
als and refresh admin credentials for admin updates. Most
of the protocol logic relates to updating signatures and the
adminList. Note that proposals are always signed in MLS so
signing within makeAdminProp can be foregone. We also
support self-removal proposals committed by standard users.

Correctness and security. We leave it open to formally
propose and prove correctness and security for an appropri-
ate MLS extension; we sketch here how it could be done.
The modelling of messaging and MLS in particular in [6] is

more complex than ours. In particular, they consider CGKA
as a sub-primitive that is used to build secure group mes-
saging (SGM) alongside several other primitives. Thus, one
could re-define SGM to account for new proposal types and
administration as we have done for A-CGKA, including ad-
min correctness guarantees and security upon injections from
non-admins. Since admin proposals are tightly-coupled with
protocol flow, proposing a model ‘on top’ of theirs to provide
admin security seems infeasible, although modular guarantees
would be ideal. Proving correctness and security then boils
down to similar case analysis and reductions to ours.

5 Results

5.1 Security
Theorem 1. Let CGKA be a correct and (tcgka,q,εcgka)-
secure CGKA with respect to cleanness predicate Ccgka, ac-
cording to Definition 3. Let S = (SigGen,Sig,Ver) be a
(tS ,q,εS) SUF-CMA secure signature scheme. Let H4 be a
(tF ,1,εF)-secure PRF. Then, the IAS protocol (Figures 2 and
6) is correct and (t,q,q · εF + εcgka+q2 · εS)-secure (Defini-
tion 3) with respect to predicates Ccgka,Cadm,Cforge, where
tcgka ≈ tS ≈ tF ≈ t, Cadm is defined in Figure 5 and Cforge is
defined in Appendix A.

Proof sketch. We first bound an adversary A’s advantage in
distinguishing between the KINDA

A-CGKA,Ccgka,Cadm
game and

a game G1 which replaces calls to hash functions Hi by uni-
formly sampling the output (modelling each Hi in IAS as a
PRF). Then, we divide A’s behaviour in G1 into two events
based on whether they successfully query the O Inject oracle
(event E1) or not (event E2). Given E1, we reduce security via
a number of SUF-CMA adversaries. Otherwise, we reduce
directly using a KINDA

CGKA,Ccgka
adversary.

Theorem 2. Let CGKA be a correct and (tcgka,q,εcgka)-
secure CGKA with respect to Ccgka, according to Definition 3.
Let CGKA∗ be a correct and (tcgka∗,q,εcgka∗) secure CGKA
with respect to Ccgka∗. Let S be a (tS ,q,εS) SUF-CMA secure
signature scheme. Let H4 be a (tF ,1,εF)-secure PRF. Let Hro

be a random oracle queried at most qro times. Then, the DGS
protocol (formalised in the full version of this paper [11])
is correct and (t,q,εcgka+ q · (εF + εS + qro · εcgka∗+ 2−λ))-
secure (Definition 3) in the random oracle model with respect
to predicates Ccgka,Cadm,Cforgery, where tcgka ≈ tcgka∗ ≈ tS ≈
tF ≈ t, Cadm is a function of Ccgka∗ and Cforge

∗ is defined in
Appendix A.

Proof sketch. Cadm roughly ensures that the set of safe ora-
cle queries for DGS adversary A given inject queries of the
form qi = O Inject(ID,m, ta) are those that are safe for CGKA∗

adversary A ′ under essentially the same queries, replacing
O Inject(·, ·, ta) queries with queries of the form OChallenge(ta).
To prove security, we use a similar game-hopping argument

USENIX Association 32nd USENIX Security Symposium 1263

as in IAS. Given E2, we reduce to CGKA security. Given
E1, we simulate depending on whether A makes a query to
random oracle Hro with a correct CGKA∗ key k after injecting.
Here, if A is successful, we reduce to CGKA∗ security using
k; otherwise, we reduce to EUF-CMA security.

5.2 Benchmarking

We implemented the protocol in Section 4.3 to obtain a realis-
tic estimate of the overhead of securely administrating a real-
world messaging protocol. We modified an open-source im-
plementation of MLS in Go3 and compared the running times
of MLS (which also performs e.g. parent hashing and non-
admin proposal signing), with the running times of adminis-
trated MLS in different scenarios. In particular, we analyze the
commit and proc algorithms in Figure 7, where the latter in-
cludes proc-CM and also processing proposals when relevant
(done separately in the implementation). We ran our bench-
marks on a laptop with a 4-core 11th Gen Intel i5-1135G7
processor and 16 GB of RAM using Go’s testing pack-
age4. Core cryptographic operations were implemented as
HPKE [14] with ciphersuite DHKEM(P-256, HKDF-SHA256),
HKDF-SHA256, AES-128-GCM from Go standard libraries. We
measured the time taken for a single group member to perform
the relevant operation. For each data point, we took the aver-
age over 100 iterations that randomized the group members
and admins performing group operations, as performance can
be affected by their position in MLS’s TreeKEM.

Our results are displayed in Figure 3, where we show the
running time of commit in different realistic scenarios. We
run experiments where relevant, i.e., when there are no admin
operations, using the original implementation as a baseline,
as well as using our modified implementation, to demonstrate
that the additional admin logic we introduce does not notice-
ably affect performance. In the appendix (Figure 8) we also
show results for proc. In both cases, we vary the group size
and the number of updates as described in the figures.

Communication overhead. In both the baseline and our
implementations, proposals used 364 to 366 bytes, and ad-
min proposals used 364 to 368 bytes (all proposals being
signed). Commit message sizes in both implementations vary
proportionally with the size of the group and the number
of proposals. In the baseline MLS implementation, a typical
commit for |G| = 8 and |G| = 128 with t = 2 and t = 32
update proposals uses 1.49 KB and 17.11 KB respectively.
In our implementation, corresponding commits use 1.56 KB
and 17.17 KB respectively. If t/2 admin updates are added
(1 and 16, respectively), commits require 1.60 KB and 17.65
KB. In general, commits in our implementation, even with
admin proposals, incur only a small amount of overhead (tens

3Our code is available at github.com/cryptographicadmins/impl.
The baseline code is available at github.com/cisco/go-mls.

4https://pkg.go.dev/testing

of bytes) over the baseline implementation when fixing the
number of proposals.

6 Discussion

6.1 Efficiency

The results in Section 5.2 show that the additional cost (for
users) of running a securely-administrated MLS is minimal.
Figure 3 shows that the commit algorithm involves less than
a 20% overhead when up to |G|/8 members carry out admin
updates simultaneously. In Figure 8 we also show that the
processing time of admin and standard updates is very similar.

Separately, we analyze the overhead of IAS and DGS for
group members, assuming modular implementations of IAS
and DGS not integrated with an existing CGKA as before. In
IAS, admins generate a signature key pair and sign every time
they commit or do a proposal, and verify a small amount t of
signatures (typically t ≤ |G∗|) in admin proposals before a
commit. The overhead of DGS depends heavily on the cost of
CGKA∗ (an optimistic estimation can be O(logm) [5, 7, 31]
but can be O(m) in the worst case). CGKA operations only
affect administrators. Note that a DGS admin-only commit
is not sent to standard members (only the signed new admin
key has to). Hence, DGS is very efficient for standard users.

The ratio of additional messages sent, which is application-
specific, is hard to estimate. Admin-only commits and admin
modifications are expected to be less frequent than standard
operations. The number of update proposals (although very
cheap) is expected to be at most linear in |G|. We conclude
that IAS presents a generally affordable overhead for all users,
while DGS introduces basically no cost for standard users and
is more costly for administrators if |G∗| is relatively large.
Moreover, forward-secure signatures (for optimally-secure
IAS) can be instantiated with essentially constant amortized
overhead in space and time relative to a regular signature
scheme, while supporting unbounded secret key updates [32].
When standard users are allowed to commit updates, the tree
blanking issue with MLS TreeKEM is not worsened by ad-
ministrators, hence efficiency should not decrease either.

6.2 On Modelling in Related Work

CGKAs and MLS. The CGKA abstraction has deviated
from MLS and has become an object of study of its own
[3, 8, 18], but in general still inherits important limitations
from MLS. Among them, CGKAs rely on the availability of a
well-behaved PKI, require total control message ordering, and
fail to capture messaging solutions that deviate from group
key agreement such as Signal or WhatsApp.

In MLS, there exists a strong architectural separation be-
tween the Delivery Service (DS, usually a central server) and
a so-called Authentication Service (AS) whose design is left

1264 32nd USENIX Security Symposium USENIX Association

github.com/cryptographicadmins/impl
github.com/cisco/go-mls
https://pkg.go.dev/testing

8 16 32 64 128
Group size

0

5

10

15

20

25

30

35
Ti

m
e

(m
s)

commit only
commit only (baseline)
com + upd
com + upd (baseline)
com + adm-upd
com + both upds

0 4(2) 8(4) 12(6) 16(8) 20(10) 24(12) 28(14)
Number of updates (admin updates)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ti
m

e
(m

s)

com + upd
com + upd (baseline)
com + adm-upd
com + both upds

Figure 3: Benchmark of the commit algorithm in the following scenarios: (1) standard commits (com-type= std, omitted right), (2) standard
commits with t update proposals, (3) standard and admin commits (com-type= both) with t/2 admin-update proposals but no standard-update
proposals, and (4) standard and admin commits with t update and t/2 admin-update proposals. Original MLS is displayed as baseline. Left:
running time with respect to group size |G| on constant member/admin |G|/|G∗|= 4 ratio and constant number of updates t = |G∗| (t/2 admin
updates). Right: running time with respect to the number of updating users t (and t/2 admin updates), for fixed |G|= 64.

to the infrastructure designers [13]. Following this separa-
tion, the Delivery Service is often modelled adversarially in
CGKAs whereas the AS is abstracted as a PKI [5, 7, 31] as in
this work. A compromised AS allows for the corruption of
user credentials, resulting in user impersonation.

PKI. Both IAS and DGS rely on a PKI that we assume in-
corruptible. In IAS, parties use the PKI to verify the identity
of administrators and self-removing users. In DGS, incoming
users use it to retrieve the current group-wide admin signature
public key. As the PKI is only used to establish an initial root
of trust among parties, i.e., forward and post-compromise se-
curity are ensured without additional PKI calls, our modelling
is consistent with the separation between delivery and authen-
tication discussed above. Note that group administration aims
to remove the trust in the DS (the server) but is still vulnerable
to a corrupt AS. Previous CGKA work follows similar PKI ab-
stractions [5, 31], or ignores the AS [26]. That is, in all group
messaging works we are aware of, the PKI always behaves
consistently and correctly for all users. One partial exception
is [9], where malicious keys can be registered, although secu-
rity degrades strongly for such users. By abstracting away the
AS, our schemes are compatible with diverse authentication
solutions such as out-of-band verification.

Signal Private Groups. In [22], a central server tracks mem-
bership of a group whilst hiding the set of group members
from non-members (modulo metadata leaked to a network
adversary). The main goal of this solution is to achieve user
privacy. We believe that this approach could be extended to
support secure administration; an advantage is that users no
longer have to track group membership individually as in (A)-
CGKA, which prevents consistency issues when users do not
apply the same sequence of group updates locally. However,
the system has not been analysed in composition with an un-

derlying group messaging protocol (pairwise Signal) where
concurrency issues can arise. Moreover, administration secu-
rity has not been formally analysed and in their constructions
the server applies administration updates.

6.3 Additional Admin Mechanisms
To conclude, we consider possible extensions of A-CGKA
and corresponding construction ideas for future work.

Admins beyond CGKA. CGKA is not a suitable formalism
for some group messaging protocols used in practice like pair-
wise Signal and Sender Keys (used in WhatsApp [40]). In
these protocols, each user is associated with their own key or
keying material rather than a common group secret. Neverthe-
less, an IAS-like protocol can be easily adapted to this setting.
For Sender Keys, admins could replace their keying material
at a low cost (a signature on their new signing key) for PCS
authentication guarantees. We leave it as useful future work
to formalise group administration beyond CGKA.

Telegram, although not end-to-end encrypted, offers fine-
grained administration features like message filtering and
delays. Some of these could be conceivably implemented
cryptographically, e.g. leveraging admins and/or NIZKs.

Private admins. In some applications, it may be desirable to
hide the set of admins from other users within a group. DGS
could achieve some notion of administrative privacy if the
underlying admin CGKA provides privacy guarantees. IAS
could be modified to achieve anonymity guarantees using ring
signatures, although involving an overhead.

In MLS’ TreeKEM protocol, proposals are constant-sized,
but commits are variable, which leaks information about the
commit even if encrypted. Thus, padding is required at a
minimum for privacy.

USENIX Association 32nd USENIX Security Symposium 1265

External admins. Our A-CGKA constructions assume that
all admins are group members. Some applications may be bet-
ter suited for external administration. For example, an online
platform may wish to control the set of conversation partici-
pants to ensure they are subscribers but nevertheless ensure
they are provided confidentiality. External admins who then
attempt to add users that group members do not trust can be
detected on the protocol level.

Threshold admins. To improve robustness, admins could
use threshold cryptography such that e.g. several admins need
to sign a commit message for it to be considered valid [36].

Acknowledgments

We would like to thank all anonymous reviewers and our
shepherd who helped improve our paper.

David Balbás is supported by the PICOCRYPT
project that has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme
(Grant agreement No. 101001283), partially supported by
PRODIGY Project (TED2021-132464B-I00) funded by
MCIN/AEI/10.13039/501100011033/ and the European
Union NextGenerationEU / PRTR, and partially funded by
Ministerio de Universidades (FPU21/00600). David Balbás
carried out part of this work while at EPFL, Switzerland.

References

[1] Martin R Albrecht, Sofía Celi, Benjamin Dowling, and Daniel
Jones. Practically-exploitable cryptographic vulnerabilities
in matrix. https://nebuchadnezzar-megolm.github.io/
static/paper.pdf.

[2] Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel
Cueto Noval, Karen Klein, Guillermo Pascual-Perez, Krzysztof
Pietrzak, and Michael Walter. Grafting key trees: Efficient key
management for overlapping groups. In Kobbi Nissim and
Brent Waters, editors, Theory of Cryptography, pages 222–253,
Cham, 2021. Springer International Publishing.

[3] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen
Klein, Guillermo Pascual-Perez, Krzyzstof Pietrzak, and
Michael Walter. Cocoa: Concurrent continuous group key
agreement. In Orr Dunkelman and Stefan Dziembowski, ed-
itors, Advances in Cryptology – EUROCRYPT 2022, pages
815–844, Cham, 2022. Springer International Publishing.

[4] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The Double
Ratchet: Security Notions, Proofs, and Modularization for the
Signal Protocol. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, pages 129–158,
Cham, 2019. Springer International Publishing.

[5] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tse-
lekounis. Security Analysis and Improvements for the IETF
MLS Standard for Group Messaging. In Daniele Miccian-
cio and Thomas Ristenpart, editors, Advances in Cryptology –

CRYPTO 2020, pages 248–277, Cham, 2020. Springer Interna-
tional Publishing.

[6] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tse-
lekounis. Modular Design of Secure Group Messaging Proto-
cols and the Security of MLS. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’21, page 1463–1483, New York, NY, USA, 2021.
Association for Computing Machinery.

[7] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk.
Continuous group key agreement with active security. In Rafael
Pass and Krzysztof Pietrzak, editors, Theory of Cryptography,
pages 261–290, Cham, 2020. Springer International Publish-
ing.

[8] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mu-
larczyk. Server-aided continuous group key agreement. In
Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’22, page 69–82,
New York, NY, USA, 2022. Association for Computing Ma-
chinery.

[9] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the Insider
Security of MLS. In Yevgeniy Dodis and Thomas Shrimpton,
editors, Advances in Cryptology – CRYPTO 2022, pages 34–68,
Cham, 2022. Springer Nature Switzerland.

[10] David Balbás. On Secure Administrators for Group Messag-
ing Protocols, 2021. MSc Thesis, KTH Royal Institute of
Technology.

[11] David Balbás, Daniel Collins, and Serge Vaudenay. Crypto-
graphic administration for secure group messaging. Cryptol-
ogy ePrint Archive, Paper 2022/1411, 2022. https://eprint.
iacr.org/2022/1411.

[12] Fatih Balli, Paul Rösler, and Serge Vaudenay. Determining
the Core Primitive for Optimally Secure Ratcheting. In Shiho
Moriai and Huaxiong Wang, editors, Advances in Cryptology
– ASIACRYPT 2020, pages 621–650, Cham, 2020. Springer
International Publishing.

[13] R Barnes, B Beurdouche, J Millican, E Omara, K Gohn-
Gordon, and R Robert. The Messaging Layer Secu-
rity (MLS) Protocol. https://messaginglayersecurity.
rocks/mls-protocol/.

[14] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and
Christopher A. Wood. Hybrid Public Key Encryption. Internet-
Draft draft-irtf-cfrg-hpke-08, Internet Engineering Task Force.
Work in Progress.

[15] Mihir Bellare and Sara K. Miner. A Forward-Secure Digital
Signature Scheme. In Michael Wiener, editor, Advances in
Cryptology — CRYPTO’ 99, pages 431–448, Berlin, Heidel-
berg, 1999. Springer Berlin Heidelberg.

[16] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya
Nyayapati, and Igors Stepanovs. Ratcheted Encryption and Key
Exchange: The Security of Messaging. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology – CRYPTO
2017, pages 619–650, Cham, 2017. Springer International Pub-
lishing.

[17] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla.
TreeKEM: Asynchronous Decentralized Key Management for

1266 32nd USENIX Security Symposium USENIX Association

https://nebuchadnezzar-megolm.github.io/static/paper.pdf
https://nebuchadnezzar-megolm.github.io/static/paper.pdf
https://eprint.iacr.org/2022/1411
https://eprint.iacr.org/2022/1411
https://messaginglayersecurity.rocks/mls-protocol/
https://messaginglayersecurity.rocks/mls-protocol/

Large Dynamic Groups A protocol proposal for Messaging
Layer Security (MLS). 5 2018. https://hal.inria.fr/
hal-02425247.

[18] Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison
Grogan, Mohammad Hajiabadi, and Paul Rösler. On the worst-
case inefficiency of cgka. In Eike Kiltz and Vinod Vaikun-
tanathan, editors, Theory of Cryptography, pages 213–243,
Cham, 2022. Springer Nature Switzerland.

[19] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On
the Price of Concurrency in Group Ratcheting Protocols. In
Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryp-
tography, pages 198–228, Cham, 2020. Springer International
Publishing.

[20] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record
communication, or, why not to use pgp. ACM Press, 2004.

[21] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Se-
curity analysis of the MLS key derivation. In 43rd IEEE
Symposium on Security and Privacy (SP), 2022.

[22] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The signal
private group system and anonymous credentials supporting
efficient verifiable encryption. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications
Security, pages 1445–1459, 2020.

[23] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke
Garratt, and Douglas Stebila. A Formal Security Analysis of
the Signal Messaging Protocol. Journal of Cryptology, 33,
2020.

[24] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On post-
compromise security. In 2016 IEEE 29th Computer Security
Foundations Symposium (CSF), pages 164–178, 2016.

[25] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican,
and Kevin Milner. On ends-to-ends encryption: Asynchronous
group messaging with strong security guarantees. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1802–1819, 2018.

[26] Cas Cremers, Britta Hale, and Konrad Kohbrok. The Com-
plexities of Healing in Secure Group Messaging: Why {Cross-
Group} Effects Matter. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1847–1864, 2021.

[27] Julien Devigne, Céline Duguey, and Pierre-Alain Fouque.
MLS: how Zero-Knowledge can secure Updates. In ESORICS
2021, 2021.

[28] F. Betül Durak and Serge Vaudenay. Bidirectional asyn-
chronous ratcheted key agreement with linear complexity. In
Nuttapong Attrapadung and Takeshi Yagi, editors, Advances
in Information and Computer Security, pages 343–362, Cham,
2019. Springer International Publishing.

[29] The Matrix.org Foundation. Matrix specification v1.4, 2022.
https://spec.matrix.org/latest/.

[30] Jonathan Katz and Ji Sun Shin. Modeling insider attacks on
group key-exchange protocols. In Proceedings of the 12th
ACM conference on Computer and communications security,
pages 180–189, 2005.

[31] Karen Klein, Guillermo Pascual-Perez, Michael Walter,
Chethan Kamath, Margarita Capretto, Miguel Cueto, Ilia
Markov, Michelle Yeo, Joël Alwen, and Krzysztof Pietrzak.
Keep the dirt: Tainted treekem, adaptively and actively secure
continuous group key agreement. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 268–284. IEEE, 2021.

[32] Tal Malkin, Daniele Micciancio, and Sara Miner. Efficient
generic forward-secure signatures with an unbounded number
of time periods. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages 400–417.
Springer, 2002.

[33] Trevor Perrin and Moxie Marlinspike. The double
ratchet algorithm, 2016. https://signal.org/docs/
specifications/doubleratchet/.

[34] Bertram Poettering, Paul Rösler, Jörg Schwenk, and Douglas
Stebila. Sok: Game-based security models for group key ex-
change. In Cryptographers’ Track at the RSA Conference,
pages 148–176. Springer, 2021.

[35] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is
Less: On the End-to-End Security of Group Chats in Signal,
WhatsApp, and Threema. In 2018 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 415–429, 2018.

[36] Victor Shoup. Practical threshold signatures. In International
Conference on the Theory and Applications of Cryptographic
Techniques, pages 207–220. Springer, 2000.

[37] Telegram. Group Chats on Telegram. https://telegram.
org/tour/groups.

[38] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and
Alastair R. Beresford. Key agreement for decentralized secure
group messaging with strong security guarantees. CCS ’21,
page 2024–2045, New York, NY, USA, 2021. Association for
Computing Machinery.

[39] Matthew A Weidner. Group messaging for secure asyn-
chronous collaboration, 2019. MSc Thesis, University of Cam-
bridge.

[40] WhatsApp. WhatsApp Encryption Overview Technical white
paper, v.3, October 2020. https://www.whatsapp.com/
security/WhatsApp-Security-Whitepaper.pdf.

USENIX Association 32nd USENIX Security Symposium 1267

https://hal.inria.fr/hal-02425247
https://hal.inria.fr/hal-02425247
https://spec.matrix.org/latest/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://telegram.org/tour/groups
https://telegram.org/tour/groups
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

A Cleanness Predicates

CGKA predicate. A more fine-grained characterization of
this predicate is to write it as Ccgka = Ccgka-opt ∧Ccgka-add,
where Ccgka-opt is an optimal, generic cleanness predicate that
excludes only unavoidable trivial attacks, and Ccgka-add is an
additional cleanness predicate that depends on the scheme
and excludes other attacks. We define Ccgka-opt in a similar
way to the safe predicate in [5]. Namely, we exclude the
following cases: (i) the group secret in challenge epoch t∗s
was already challenged or revealed, and (ii) a group member
ID whose state was exposed in epoch texp ≤ t∗s did not update
their keys (i.e., processed their own commit, or processed a
commit in which they were involved in an add, remove, or
update proposal) or was not removed before the challenge
epoch t∗s . The optimal cleanness predicate is given in Figure 4
for an adversary that makes queries q1, . . . ,qn in the game.

Ccgka-opt : ∀ (i, ID,ctr ∈ (0,exp-ctr]) : qi = OChallenge(t∗i),(
ID ̸∈ G[t∗i]

)
∨(

∃(ti,c) : (tExp(ID,ctr).ts < ti ≤ t∗i)∧
hasUpdstd (ID,T[(ti, ·),’com’,c],T[(ti, ·),’vec’,c])∧
(C[(ti, ·)] = c)

)
∨
(
t∗i < tExp(ID,ctr).ts

)
.

Figure 4: Optimal CGKA predicate where the adversary makes
oracle queries q1, . . . ,qn.

The predicate is the logical disjunction of three clauses:
for every exposure, adversarial challenge, and party ID, we
require that either 1) ID was not a group member at the chal-
lenge time, 2) the challenged epoch precedes the exposure
(forward security), or 3) ID updated between the exposure
and the (subsequent) challenge (post-compromise security).
To avoid cluttering the predicate, our game already enforces
that only one challenge or reveal can be performed per epoch
(which is optimal for our game).

The function tExp is such that tExp(ID,ctr) = exp[ID,ctr]
if ∃k : qk = OExpose(ID), and −1 (for CGKA) or
(−1,−1) (for A-CGKA) otherwise. Given P⃗, the func-
tion hasUpdstd(ID,(T,com-type), P⃗) (sans com-type for
CGKA) outputs true if either: (i) ID has processed a commit
of his own, where com-type ∈ {std,both}, or (ii) ID is a user
affected by an add, update, or removal proposal in P⃗.

Admin predicate. Cadm-opt is symmetric to Ccgka-opt and ex-
cludes the following family of attacks: the adversary attempts
a forgery on a member ID′ at an administrative epoch t∗a while
having exposed the state of ID ∈ G∗ at epoch texp ≤ t∗a , such
that ID has not updated at some point between them. The
predicate is optimal, as any attack that it excludes must occur
while an administrator is directly under state exposure. In the
game itself, we also require that ID′ is in the challenge epoch
specified by the adversary, i.e., ep[ID′] = (·, t∗a). This predi-
cate is unrelated to the common group secret and standard

epochs ts, and only relates to administration dynamics.

Cadm-opt : ∀ (i, ID, ID′,ctr ∈ (0,exp-ctr]) : qi = O Inject(ID′, ·, t∗i),(
ID ̸∈ ADM[t∗i]

)
∨(

∃(ti,c) : (tExp(ID,ctr).ta < ti ≤ t∗i)∧
hasUpdadm (ID,T[(·, ti),’com’,c],T[(·, ti),’vec’,c])∧
(C[(·, ti)] = c)

)
∨
(
t∗i < tExp(ID,ctr).ta

)
.

Figure 5: Optimal administrative predicate where the adversary
makes oracle queries q1, . . . ,qn.

The optimal admin predicate Cadm-opt is captured in Fig-
ure 5. In the expression, the function hasUpdadm is defined as
in hasUpdstd, except it is defined with respect to com-type ∈
{adm,both} (rather than com-type ∈ {std,both}).

Forgery predicate. Cforge is defined as fol-
lows with respect to variables in O Inject and the
game. Suppose m is input to O Inject. Consider
ST[ID].G,ST[ID].G∗, and let P⃗ = props(ST[ID],m).
Consider P⃗′ = {P ∈ P⃗ : P′ ∈ T[ep[ID],’prop’, ·] ∧
prop-info(ST[ID],P) = prop-info(ST[ID],P′)}.5 Let
H = {ID : (gid, rem, ID, ID) = prop-info(ST[ID],P)∧ (P ∈
P⃗′)} and H∗ = {ID : (gid, rem-adm, ID, ID) =
prop-info(ST[ID],P) ∧ (P ∈ P⃗′)}. Then Cforge is true if
and only if (ST[ID].G\H,ST[ID].G∗ \H∗) ̸= (γ.G,γ.G∗). If
there are no self-removes, i.e. H = H∗ = /0, this simplifies
to (ST[ID].G,ST[ID].G∗) ̸= (γ.G,γ.G∗); let Cforge

∗ be this
simplified predicate.

B Additional Figures

We include Figures 6, 7 and 8 which contain the auxiliary
functions for IAS, the implementation of the MLS extension
in Section 4.3, and the benchmark for the proc algorithm as
done for commit in Section 5.2.

5The effect of the checks for prop-info is that a dishonest proposal P′

that has the same semantics as an honest proposal P will not be considered a
‘forgery’ by Cforge.

1268 32nd USENIX Security Symposium USENIX Association

VALIDP

// Predicate checks validity of admin proposal

// as defined in Section 4.1

makeAdminProp(gid,type, ID;r1,r2)

1 : P0←⊥
2 : if type= add-adm

3 : spkpki← getSpk(ID,γ.ME)

4 : P0← (gid,type, ID,γ.ME,spkpki)

5 : else if type= rem-adm

6 : P0← (gid,type, ID,γ.ME,⊥)
7 : else if type= upd-adm

8 : if (γ.ssk′,γ.spk′) ̸= (⊥,⊥)
9 : return ⊥ // only one update per epoch

10 : (γ.ssk′,γ.spk′)← SigGen(γ.1λ;r1)

11 : P0← (gid,type,γ.ME,γ.ME,γ.spk′)

12 : else return ⊥
13 : return (P0,Sig(γ.ssk,P0;r2))

c-Std(gid, P⃗0, P⃗A;r1)

1 : (γ.s0,C0,W0,k)←

CGKA.commit(γ.s0,gid, P⃗0;r1)

2 : if W0 ̸=⊥ // list for new users only

3 : adminList′← updAL(γ.adminList, P⃗A)

4 : return (C0,W0,adminList′,k)

5 : else return (C0,⊥,⊥,k)

verifyPropSigs(P⃗0,Σ, P⃗A)

1 : for (P, ID,σ) ∈ Σ

2 : spk← getSpk(ID,γ.ME)

3 : if ¬Ver(spk,P,σ) ∨

P ̸∈ P⃗0 ∨adminList[ID] ̸=⊥
4 : return false

5 : for (P,σP) ∈ P⃗A :

6 : (⊥,⊥,⊥, ID′)← prop-info(P)

7 : spkP← adminList[ID′].spk

8 : if ¬(Ver(spkP,P,σP)∧VALIDP)

9 : return false

10 : return true

propCleaner(gid, P⃗)

1 : admReq← false; P⃗0, P⃗A,Σ← []

2 : for P ∈ P⃗ :

3 : (gid,P.type,P.ID,P.ID′)← prop-info(P)

4 : if (P.type= ∗-adm)∧VALIDP

5 : P⃗A← [P⃗A,P]

6 : admReq← true

7 : else // P⃗0 is handled by CGKA

8 : if P.type ∈ {add, rem}
9 : admReq← true

10 : if P.type= rem ∧
(P.ID= P.ID′)∧ (P.ID ̸∈ γ[gid].G∗)

11 : admReq← false

12 : (P′,σ)← P;

13 : P⃗0← [P⃗0,P′]; Σ← [Σ,(P,P.ID,σ)]

14 : else

15 : P⃗0← [P⃗0,P]

16 : // admin rem from G =⇒ rem from G∗

17 : if (P.type= rem)∧ (P.ID ∈ γ[gid].G∗)

18 : P′←makeAdminProp(gid, rem, ID;⊥)

19 : P⃗A← [P⃗A,P′]

20 : (P⃗0, P⃗A)← enforcePolicy(P⃗0, P⃗A)

21 : return (P⃗0, P⃗A,Σ,admReq)

updAL(adminList, P⃗A)

1 : for P ∈ P⃗A

2 : (gid,type, ID,⊥,spk,⊥)← P

3 : if type ∈ {add-adm,upd-adm}
4 : if (type= add-adm)∧ (ID= γ.ME)

5 : γ.spk← spk

6 : γ.ssk← getSsk(spk, ID)

7 : adminList[ID]← (ID,spk)

8 : if type= rem-adm

9 : adminList[ID]←⊥
10 : if (ID= γ.ME)

11 : (γ.ssk,γ.spk)← (⊥,⊥)
12 : return adminList

p-Comm(gid,TC)

1 : (⊥, ID,C0,CA,Σ,spk)← TC

// check signatures in proposals

2 : if CA ̸=⊥
// CA = P⃗A

3 : if ¬verifyPropSigs(CA) return false

4 : // apply commit

5 : if C0 ̸=⊥
6 : (γ′,acc)← CGKA.proc(γ.s0,C0)

7 : if acc= false return false

8 : if γ.ME ̸∈ γ
′.G // user removed

9 : γ[gid]←⊥ // reinitialize state (only gid)

10 : else γ[gid].s0← γ
′

// set temporary updated keys

11 : if (ID= γ.ME)∨ (∃P ∈CA : P.ID= γ.ME)

12 : (γ.ssk,γ.spk)← (γ.ssk′,γ.spk′)

13 : γ.ssk′,γ.spk′←⊥
14 : γ.adminList← updAL(γ.adminList,CA)

// committer’s key

15 : γ.adminList[ID].spk← spk

16 : return true

enforcePolicy(P⃗0, P⃗A)

// This method enforces policy consistency

1 : return (P⃗0, P⃗A)

p-Wel(gid,TW ,σ)

1 : (⊥, ID,W0,adminList)← TW

2 : (γ[gid].s0,acc)← CGKA.proc(γ.s0,W0)

3 : acc← acc ∧
Ver(getSpk(γ.ME, ID),(gid,⊥,TW),σ)

4 : if acc γ[gid].adminList← adminList

5 : if acc∧ (adminList[ME] ̸=⊥)
6 : γ.spk← adminList[ME].spk

7 : γ.ssk← getSsk(spk,ME)

8 : return acc

Figure 6: Helper functions for the IAS construction in Figure 2.

USENIX Association 32nd USENIX Security Symposium 1269

prop(ID,type;r0)

1 : if type= ∗-adm
2 : require γ.ME ∈ γ.adminList

3 : (P,⊥)← IAS.makeAdminProp(type, ID;r0)

// getSpk is replaced in makeAdminProp

4 : if type ∈ {add, rem,upd}
5 : (γ,P)← CGKA.prop(γ, ID,type;r0)

// Added users’ keys retrieved from contact list/PKI

// Proposals in MLS are each signed

6 : σ← Sig(γ.ssk,P)

7 : return (P,σ)

getSpk(ID)

// Get spk from ID’s credential

1 : return Cred[ID].spk

updSpk(γ, ID,spk′)

// Register spk′ with the PKI

1 : γ← registerPKI(γ, ID,spk′)

// Update ID’s credential

2 : γ.Cred[ID].spk← spk′

commit((P⃗0, P⃗A),com-type;r0)

1 : (r1,r2,r3)← H3(r0,γ)

2 : if com-type ∈ {adm,both}
3 : require γ.ME ∈ γ.adminList

4 : require IAS.verifyPropSigs(P⃗A)

5 : CA← P⃗A

6 : adminList′← IAS.updAL(adminList, P⃗A)

7 : (γ.ssk′,γ.spk′)← SigGen(γ.1λ;r1)

8 : γ← updSpk(γ, ID,spk′)

9 : if com-type ∈ {std,both}

10 : (γ,C0,W0,⊥)← CGKA.commit(P⃗0;r2)

11 : if W0 ̸=⊥ // share updated adminList

12 : Prepare wel. msgs as in [6] for W⃗

13 : for W ∈ W⃗ :

14 : W ←W ||adminList′

15 : σ←$ Sig(γ.ssk,W) // rand.

16 : T ← (‘com’,γ.ME,C0,CA,γ.spk
′)

17 : σ← Sig(γ.ssk,T ;r3)

18 : return ((T,σ),W⃗)

proc-WM(W)

// ID is the committer of W

1 : require ID ∈W.adminList

2 : Run Proc-WM(W) in [6]

3 : γ.adminList←W.adminList

4 : Check adminList[ID].spk with PKI

proc-CM(T,σ)

1 : (‘com’, ID,C0,CA,spk
′)← T

2 : if ID ̸∈ adminList

3 : require Ver(getSpk(ID),T,σ)

4 : Run Proc-CM(T) in [6]

5 : require no membership changes to γ.G

except self-removals

if ID ∈ adminList

6 : require Ver(adminList[ID].spk,T,σ)

7 : if spk′ ̸=⊥
// spk was registered

8 : require spk′ = getSpk(ID)

9 : Update keys and adminList as in IAS

10 : IAS.p-Comm(T)

11 : Check new adminList keys with PKI

Figure 7: Main algorithms of an MLS extension that supports group administrators, effectively converting the CGKA in MLS into a A-CGKA.
Highlighted lines correspond to our main modifications in the original SGM construction in [6]. Cred[·] denotes an array that stores the
credentials of all ID’s. We also use the abstract function registerPKI for standard PKI functionality for registering signature keys. Several
technical details are omitted or simplified.

8 16 32 64 128
Group size

0

5

10

15

20

Ti
m

e
(m

s)

commit only
commit only (baseline)
com + upd
com + upd (baseline)
com + adm-upd
com + both upds

0 4(2) 8(4) 12(6) 16(8) 20(10) 24(12) 28(14)
Number of updates (admin updates)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(m

s)

com + upd
com + upd (baseline)
com + adm-upd
com + both upds

Figure 8: Benchmark of the proc algorithm when processing a commit message. The different scenarios are those of Figure 3.

1270 32nd USENIX Security Symposium USENIX Association

	Introduction
	Group Administration
	Contributions
	Overview
	Additional Related Work

	Notation
	(Administrated) Continuous Group Key Agreement
	Continuous Group Key Agreement
	Administrated CGKA
	Security

	Constructions
	Individual Admin Signatures
	Dynamic Group Signature
	Integrating A-CGKA into MLS

	Results
	Security
	Benchmarking

	Discussion
	Efficiency
	On Modelling in Related Work
	Additional Admin Mechanisms

	Cleanness Predicates
	Additional Figures

