
This paper is included in the Proceedings of the 
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the 
32nd USENIX Security Symposium 

is sponsored by USENIX.

Villain: Backdoor Attacks Against 
Vertical Split Learning

Yijie Bai and Yanjiao Chen, Zhejiang University; Hanlei Zhang and Wenyuan Xu, 
Zhejing University; Haiqin Weng and Dou Goodman, Ant Group

https://www.usenix.org/conference/usenixsecurity23/presentation/bai



VILLAIN: Backdoor Attacks Against Vertical Split Learning

Yijie Bai
Zhejiang University
baiyj@zju.edu.cn

Yanjiao Chen
Zhejiang University

chenyanjiao@zju.edu.cn

Hanlei Zhang
Zhejiang University

hanleizhang@zju.edu.cn

Wenyuan Xu
Zhejiang University
wyxu@zju.edu.cn

Haiqin Weng
Ant Group

haiqin.wenghaiqin@antgroup.com

Dou Goodman
Ant Group

bencao.ly@antgroup.com

Abstract
Vertical split learning is a new paradigm of federated learn-
ing for participants with vertically partitioned data. In this
paper, we make the first attempt to explore the possibility of
backdoor attacks by a malicious participant in vertical split
learning. Different from conventional federated learning, ver-
tical split learning poses new challenges for backdoor attacks,
the most looming ones being a lack of access to the training
data labels and the server model. To tackle these challenges,
we propose VILLAIN, a backdoor attack framework that fea-
tures effective label inference and data poisoning strategies.
VILLAIN realizes high inference accuracy of the target label
samples for the attacker. Furthermore, VILLAIN intensifies
the backdoor attack power by designing a stealthy additive
trigger and introducing backdoor augmentation strategies to
impose a larger influence on the server model. Our extensive
evaluations on 6 datasets with comprehensive vertical split
learning models and aggregation methods confirm the effec-
tiveness of VILLAIN. It is also demonstrated that VILLAIN
can resist the popular privacy inference defenses, backdoor
detection or removal defenses, and adaptive defenses.

1 Introduction

The ever-increasing interests in data privacy have boosted the
demand for federated learning, where multiple data owners
collaboratively train a model without disclosing their private
data. According to how data is distributed among various par-
ticipants, federated learning can be classified into two main
categories, i.e., horizontal and vertical federated learning [67].
A complete training data sample consists of the sample in-
dex, the feature vector, and the label. In horizontal federated
learning, datasets of participants share the same feature space
but different sample spaces, i.e., every participant owns full
feature vectors, but the sample indexes of different partici-
pants do not overlap. For instance, two hospitals have similar
healthcare services, so their feature spaces are the same, but
their patient groups are different. In contrast, in vertical feder-
ated learning, datasets of participants share the same sample

Trigger

 
 

Dog

Airplane

Malicious Participant

Benign Participant

Clean Server Model

Backdoored Server Model

 
 

 
 

 
 

Figure 1: Scenario of VILLAIN. A malicious participant aims
to inject a backdoor into the server model by uploading poi-
soned embedding vectors to the server.

space but differ in feature spaces, i.e., every participant owns
a non-overlapping partial feature vector, and their sample
indexes are the same. For example, a national bank and an
insurance company have the same large customer base while
they record different transaction features of these customers.
Google Gboard [3] is a successful application of horizon-
tal federated learning. WeBank (China) drives FedAI [1], an
open-source federated AI ecosystem that implements both
horizontal and vertical federated learning.

Apart from privacy issues, security threats also concern
federated learning, among which backdoor attacks have been
made against horizontal federated learning. A malicious par-
ticipant can construct poisoned weights based on poisoned
local data and upload the poisoned weight to insert the back-
door in the global model maintained by the server. The par-
ticipant can further control the backdoored model to behave
normally on clean samples but yield misclassification results
to a target label on samples with a specially-designed trigger.
While extensive research has been conducted on backdoor
attacks in horizontal federated learning [5] [62], there is a lack
of works on backdoor attacks in vertical federated learning.

In this paper, we make the first attempt to explore the possi-
bility of backdoor attacks in vertical federated learning. More
specifically, we concentrate on vertical split learning [54] [59],

USENIX Association 32nd USENIX Security Symposium    2743



a state-of-the-art vertical federated learning framework, as
shown in Figure 1. Similar to existing works, our goal is to
enable a malicious participant to insert a backdoor in the
server model via poisoned uploads, in order to control the
server model with the trigger. Unfortunately, the workflow of
vertical split learning poses significant challenges to backdoor
attacks.

(1) No access to label. Different from the participant in hori-
zontal federated learning with full control over the labels
of the local dataset, the participant in vertical federated
learning only has partial features but no label information
of the data samples, which is indispensable for targeted
backdoor attacks. Only the server possesses the ground-
truth labels and the attacker has no access to labels. This
also entails clean-label backdoor attacks in vertical split
learning, which are much more difficult than dirty-label
attacks in horizontal federated learning.

(2) No access to server model. A selected participant in a cer-
tain training epoch receives the entire global model from
the server in horizontal federated learning. In contrast,
the participant in vertical split learning only gets gradient
information from the server. This makes it difficult to
optimize a trigger that imposes a great influence on the
server model.

To address these challenges, we propose the design, im-
plementation and evaluation of VILLAIN, a backdoor attack
framework against vertical split learning. VILLAIN consists of
two modules, i.e., label inference and data poisoning, which
allow a malicious participant to launch backdoor attacks even
though the data label and the server model are unknown. The
label inference module aims to deduce whether a sample be-
longs to the target misclassification label or not, which is es-
sential for creating poisoned updates in clean-label attacks. A
novel embedding swapping algorithm is designed for efficient
and accurate label inference with one known sample of the
target label. The data poisoning module fabricates poisoned
updates based on the label inference results. To intensify the
impact of poisoned updates on the server model, we choose
the most important elements in the update vector as the trigger
mask and introduce randomness into the trigger to improve
its robustness.

We conduct comprehensive experiments to evaluate the
performance of VILLAIN on four image datasets (MNIST
[32], CIFAR-10 [31], CINIC-10 [12], ImageNette [23]) and
two financial datasets (Bank Marketing [41], and Give-Me-
Some-Credit [2]), with five vertical split learning models. It
is demonstrated that VILLAIN achieves an average attack
success rate of more than 90% with a poison rate of only 1%.
We further evaluate the resistance of VILLAIN to backdoor
defenses and show that VILLAIN maintains a high attack
success rate under five state-of-the-art defense methods.

The main contributions are summarized as follows:

• We propose a backdoor attack framework, named VIL-
LAIN, for vertical split learning, which realizes effective
attacks in spite of a lack of access to both the label and
the server model in vertical split learning.

• We develop an efficient label inference algorithm that
can work with a labeled sample. We design a data poi-
soning strategy with additive triggers to reinforce the
backdoor and with trigger randomization strategies to
mitigate backdoor overfitting in the server model.

• We conduct extensive experiments to validate the effec-
tiveness, robustness, and efficiency of our attack. It is
also shown that VILLAIN survives existing and adaptive
backdoor defenses.

2 Preliminaries

2.1 Vertical Split Learning
Collaborative machine learning or distributed learning is an
appealing way to build large-scale high-quality machine learn-
ing models by cooperative participants [57]. Federated learn-
ing is an important protocol to realize collaborative machine
learning. According to the data sharing pattern among clients,
federated learning can be categorized into horizontal learning
and vertical learning. In horizontal learning, the participants
have labeled datasets with the same feature space but differ-
ent sample spaces. In vertical learning, the participants have
datasets with different feature spaces but the same sample
space. In this paper, we focus on vertical federated learn-
ing. Vertical federated learning has been used in real-world
applications such as credit evaluation and online advertis-
ing [33] [70]. For credit evaluation, a bank often uses external
non-credit data to better evaluate the credit of an individ-
ual, e.g., transaction data from online shopping platforms or
billing data from a telecommunication company. For online
advertising, an ad company can cooperate with social media
platforms to better recommend ads to individuals based on
their browsing history and their social interactions.

Vertical split learning is a state-of-the-art vertical federated
learning method that splits the global model into different
parts and assigns each part to a participant to train. More
specifically, each participant trains a local embedding model
with the gradient from the server and sends the embedding
vectors to the server for aggregation. The server has the label
to train a final classifier based on the aggregated embedding
vectors via supervised learning. Since backdoor attacks have
been extensively studied in horizontal learning, we focus on
vertical learning in this paper. As shown in Figure 2, we
consider a vertical split learning scenario with a group of
participants {C k}K

k=1. Let X = {xi}N
i=1 denote the complete

dataset, in which each data sample has an M-dimensional
feature vector xi = [xi,1,xi,2, · · · ,xi,M]. Participant C k owns a
partial feature vector of each data sample, i.e., Xk = {x̃k

i }N
i=1,

2744    32nd USENIX Security Symposium USENIX Association



𝒇𝒂 𝒇𝒃

embeddinggradientembedding

𝒇𝒔

label

Participant A

Server

Participant B

Figure 2: An illustration of vertical split learning. Each par-
ticipant trains a local embedding model and sends the embed-
ding vector to the server. The server leverages the aggregated
embedding vectors and the label to train a classifier, and back-
propagates the corresponding gradient information to each
participant to update their embedding models.

and we have
⋃K

k=1 x̃k
i = xi. The ground-truth label of xi is

denoted as yi, owned only by the server.
Vertical split learning is carried out iteratively in the fol-

lowing three steps.

• Step I Participant C k produces an Mk-dimensional em-
bedding vector by the embedding model f k as

ek
i = f k(x̃k

i ), (1)

where ek
i is the k-th embedding of data xi from the k-th

participant. All participants send their embedding vec-
tors to the server.

• Step II The server combines the embedding vectors of
all participants with a certain aggregation function as
the whole embedding ei = A(e1

i ,e2
i , · · · ,eK

i ). The server
leverages ei and the label yi to train the classifier f (ei) =
yi with supervised learning. After training, the server
back-propagates the corresponding gradient information
gk =▽ek

i
L to each client, where L is the loss function

of f .

• Step III C k uses gk to update its embedding model f k

with a learning rate of αk. After updating, all participants
send the new embedding vectors of the next data batch
to the server until convergence.

In the inference phase, the input x is also held separately
by the participants. Each participant sends the embedding ek

to the server, and the server derives the prediction result. The
prediction result may not be returned to the participants.

Vertical split learning was first proposed to enable dif-
ferent hospitals and tele-health screening centers to jointly
train a disease prediction model with complementary medical
records [61] [26]. Note that vertical split learning may be
materialized with different model structures, such as Graph
Neural Network (GNN) [55] and Recurrent Neural Network

(RNN) [71]. Split learning can also be implemented based on
self-supervised learning tasks without labels [68].

2.2 Backdoor Attacks

Backdoor attacks aim to train a backdoored model that be-
haves normally on clean inputs but misclassifies special inputs
(inputs with a trigger) into a target label (targeted attacks) or
any wrong label (untargeted attacks). In this paper, we focus
on targeted attacks. The linchpins of backdoor attacks are the
trigger and the backdoor. The trigger is optimized with de-
sirable properties, in particular, imperceptibility achieved by
limiting the size or the transparency of the trigger. The trigger
will be integrated with clean training samples of to create
poisoned training samples. The backdoor establishes the asso-
ciation between the trigger and the target (misclassification)
label with the help of poisoned training samples.

According to the label of poisoned samples, backdoor at-
tacks can be categorized into dirty-label attacks and clean-
label attacks. In dirty-label attacks, the attacker adds the trig-
ger to the clean data of the other labels and then changes their
labels to the target label [9] [20]. But in clean-label attacks,
the attackers cannot change the true label of poisoned train-
ing samples so they only add triggers to the training data of
the target label [25] [69]. With greater freedom, dirty-label
attacks can better impose the influence of the trigger on the
target misclassification label than clean-label attacks. The
label information is indispensable to both the attacks.

Federated learning is ideal for an attacker to carry out back-
door attacks as a participant since the server is not allowed
to inspect local data and local models of participants. Back-
door attacks have been widely studied in horizontal learning
scenarios, where the attacker uploads poisoned weights to the
server to insert the backdoor in the global model. The attacker
may augment the poisoned updates to enhance the backdoor
injection effect.

Unfortunately, backdoor attacks in horizontal learning are
not feasible for vertical learning due to two main reasons.

No label information. In horizontal learning, all partici-
pants know the true labels of their local dataset. To conduct
the targeted backdoor attack, the attacker chooses a specific
part of the training data to poison according to the label in-
formation and can also manipulate the label of the data to
conduct dirty-label attacks. Nevertheless, in vertical learning,
no participant but the server knows the true labels of each
training sample, so the targeted backdoor attack gets much
more difficult. The attacker is also compelled to launch clean-
label attacks, much more difficult than dirty-label attacks.

No server model information. In horizontal learning, all
participants and the server work on the same global model
with the same input feature space. The global model will
be distributed to selected participants in each training epoch,
which makes it easier for the attacker to compute an opti-
mal poisoned weight. Nonetheless, in vertical learning, the

USENIX Association 32nd USENIX Security Symposium    2745



participants and the server work on different models due to
different feature spaces. The server only sends the gradient
update information to the participant such that it is difficult
for the attacker to poison the uploaded embedding vector to
inject the backdoor into the unknown server model.

Our proposed backdoor attack framework, VILLAIN, ad-
dresses the above challenges and realizes successful backdoor
attacks in vertical split learning.

2.3 Threat Model

We define the threat model of backdoor attacks in vertical split
learning in terms of the goals, knowledge and capability of
the attacker. Without loss of generality, we assume that there
is one participant in vertical split learning who is the attacker,
denoted as C a. Note that VILLAIN can be easily extended to
the multi-attacker case.

Attacker’s goal. The attacker aims to inject a backdoor
into the model of the server during training. In the inference
phase, if the attacker uploads a benign embedding vector to
the server, the backdoored model of the server will output the
correct label. If the attacker uploads a triggered embedding
vector to the server, the backdoored model of the server will
output the target label. Note that our targeted backdoor attack
is a special case of untargeted backdoor attacks, where the
triggered inputs can induce the server to output any wrong
label. Compared with untargeted backdoor attacks, targeted
backdoor attacks are more challenging.

Attacker’s knowledge. The attacker has a local dataset
Xa = {x̃a

i }N
i=1 with correct sample indexes. The attacker

knows but cannot alter the indexes of samples used in each
epoch (i.e., the training batch). The attacker has no knowledge
of the labels of its dataset. Note that the server does not reveal
the labels of training samples during the training phase but
may return the predicted labels to users during the inference
phase. Therefore, the attacker can check the attacker’s per-
formance during the inference phase. The attacker originally
has access to one target label sample. The attacker acquires
corresponding gradient information ga back-propagated from
the server. Note that the server will coordinate all participants
to send the embedding vectors of the same data batch in each
epoch [10] [67].

Attacker’s capability. The attacker can train a local embed-
ding model f a based on Xa. The output of f a has a dimension
of Ma, which is designated by the server. The attacker can
upload the embedding vectors to the server. The attacker can
execute the attack through multiple epochs. The attacker can
select which epochs to poison and which samples to utilize
for poisoning. The attacker does not have access to the server
model or the local models held by other participants.

3 VILLAIN: Detailed Construction

The ultimate goal of VILLAIN is to insert a backdoor in the
server model in vertical split learning. To fulfil this goal, as
shown in Figure 3, our proposed attack framework consists
of two modules, i.e., label inference and data poisoning. The
label inference module aims to address the challenge of no
label information for the attacker. By pinpointing the data
samples that belong to the target label, the attacker is able to
carry out clean-label backdoor attacks. The data poisoning
module aims to tackle the difficulty of no global model infor-
mation for the attacker. We carefully design the poisoned data
to introduce the backdoor into the global model.

Label inference. For a participant to launch a backdoor at-
tack in vertical split learning, the lack of label information and
the inability to control the labeling process create a dilemma.
On one hand, since the attacker cannot falsify the label of
training samples, the backdoor attack has to be conducted
in a clean-label manner. On the other hand, in clean-label
attacks, the only way to establish the link between the trigger
and the target label is by poisoning the samples of the target
label, which, however, requires the attacker to know the label
of data samples. To resolve this dilemma, we carefully design
a novel label inference approach, which is able to pinpoint
data samples of the target label.

Data poisoning. The lack of server model information, in-
cluding input dimensions and parameters, prevents the at-
tacker from constructing poisoned training samples that im-
pose the most significant influence on the victim model (i.e.,
the server model). Furthermore, the server may employ de-
fense strategies, including backdoor detection and backdoor
removal, to try to thwart backdoor attacks. To tackle these
difficulties, we propose a data poisoning algorithm that is
able to perform backdoor injection in an effective and stealthy
way.

3.1 Label Inference

As we have explained, backdoor attacks in vertical split learn-
ing can only be conducted in a clean-label manner, which
is much less effective than the dirty-label method adopted
in most existing backdoor attacks. In dirty-label attacks, the
adversary can willfully assign the wrong label to a training
sample and can utilize any sample for poisoning. More specif-
ically, the adversary can add the trigger to any benign sample
(of any label) and change its label to the target label such that
the backdoor between the trigger and the target label can be
learned during training. Nonetheless, in clean-label attacks, a
trigger added to a non-target-label sample is nugatory, which
means that the adversary can only establish the link between
the trigger and the target label by poisoning the samples of
the target label. Therefore, it is necessary for the adversary to
know if a sample belongs to the target label or not.

Our label inference algorithm consists of three modules,

2746    32nd USENIX Security Symposium USENIX Association



Label Inference Data Poisoning

Candidate samples

Embedding Swapping

Data of

target label𝒇𝒂

𝒇𝒔

𝒈

ෝ𝒈

𝒍

𝝒 Poisoned

data

Clean data

𝒇𝒃

𝒇𝒂

Target label

sample

Poisoned

Embedding

Normal

Embedding

Retraining

Model 𝒇𝒔

Data of

the other labels

Candidate selection

Trigger

Fabrication

Backdoor 

Augmentation

Learning Rate

Adjustment

Figure 3: Overview of VILLAIN. VILLAIN consists of the label inference module and the data poisoning module. The label
inference module leverages embedding swapping, candidate selection and inference adjustment to pinpoint samples of the target
label. The data poisoning module leverages trigger fabrication, backdoor augmentation and learning rate adjustment to hijack the
server model.

i.e., embedding swapping, candidate selection, and inference
adjustment. In the embedding swapping module, we propose
a novel algorithm that leverages the relationship between
the uploaded embedding and the back-propagated gradient
to infer whether a sample belongs to the target label or not.
In the candidate selection module, we design a selection
rule to narrow down the samples that are most likely to be
from the target label. In the inference adjustment module,
we dynamically adjust the embedding vector used for label
inference to achieve stealthiness.

3.1.1 Embedding Swapping

To make full use of the knowledge available to the attacker,
we design a new label inference algorithm that explores the
relationship between the forwarded embedding vector (by the
attacker) and the back-propagated gradient (from the server).
Our intuition is that a forwarded unaltered embedding vector
from the (well-trained) embedding model of the attacker will
induce a small loss; thus, the back-propagated gradient will
be small. However, if the attacker intentionally alters the for-
warded embedding of a sample to the embedding of another
class, the back-propagated gradient will be relatively large.

Let ea
t = f a(x̃a

t ) denote the embedding vector of a known
(partial) sample x̃a

t of the target label yt , and ea
i = f a(x̃a

i )
denote the embedding vector of a sample x̃a

i whose label is
unknown. During training, if index i is in the current training
batch, the attacker uploads the original embedding vector ea

i
to the server and obtains a back-propagated gradient ga

i . The
next time that index i is in the training batch again, the attacker
instead uploads ea

t to the server and obtains a back-propagated
gradient ĝa

i . The label of x̃a
i is likely to be the target label if

||ĝa
i ||2

||ga
i ||2

≤ θ, (2)

and
||ga

i ||2 ≤ µ, (3)

where || · ||2 represents the L2 norm, θ and µ are two threshold
parameters. The changing ratio and the gradient norm values
can be combined to form the accurate inference label infer-
ence judgment conditions. Condition (2) means that replacing
the embedding vector of x̃a

i with the embedding vector of x̃a
t

will not induce high training loss, which indicates that the
label of x̃a

i is very likely to be yt . Note that we do not consider
the direction of gradients in condition (2) since the direction
of gradients indicates to which direction the model parameters
need to be updated to reduce the training loss. No matter to
which direction the model parameters need to be updated, a
large update indicates a high training loss and a small update
indicates a small training loss. Therefore, it is the magnitude
but not the direction of gradients that yields the label informa-
tion. In addition, we withhold embedding swapping during
the first several epochs of model training to avoid instability.
Condition (3) means the norm of the gradient is small in the
previous training, so the norm training loss of x̃a

i is relatively
small, which indicates the server model is more confident in
predicting x̃a

i as the target label.

3.1.2 Candidate Selection

The prior works [16] conduct privacy inference in vertical split
learning by training an inference model that predicts the label
of a sample based on the output of the attacker’s embedding
model. The inference model is trained in a supervised or semi-
supervised manner with a set of labeled samples. Instead of
performing embedding swapping for all training samples (of
which many do not belong to the target label), it is wiser for
the attacker to select candidate samples that are most likely
to belong to the target label for embedding swapping. This
will improve the algorithm accuracy and avoid as much as
possible to influence the server model continuing learning.

To realize this objective, we build a binary classifier H
adapted from the previous method to predict whether the
label of a certain sample x̃a

i is the target label yt or not. The

USENIX Association 32nd USENIX Security Symposium    2747



input of H is the embedding vector ea
i rather than the raw

data sample x̃a
i since the embedding model f a extracts more

label-differentiative representations of raw data samples. H
is trained in a semi-supervised manner based on the results of
embedding swapping [46]. In each training batch, the attacker
selects the top-n samples with the highest prediction results
given by H for embedding swapping, and the results of their
embedding swapping can be used to fine-tune H . We leverage
the embedding swapping and the H output for label inference
and candidate selection. Our evaluations will demonstrate that
VILLAIN achieves a more accurate label inference.

3.1.3 Inference Adjustment

If the attacker keeps using the static ea
t for embedding swap-

ping for all candidate samples, the server may notice the un-
changing embedding for different samples and be alarmed.
Also the server model will be influenced. Therefore, we pro-
pose to dynamically adjust the embedding for swapping. In
a certain batch, given a set of samples T previously inferred
to belong to the target class yt , we choose a subset of sam-
ples with confidence to form an inference embedding group.
The embedding to swap for a candidate sample is randomly
selected from the group.

3.2 Data Poisoning
After inferring the samples that belong to the target class,
the attacker needs to poison these samples to inject the back-
door into the server model. To realize effective and stealthy
backdoor injection, we develop three strategies, i.e., trigger
fabrication, backdoor augmentation, and learning rate adjust-
ment.

3.2.1 Trigger Fabrication

Conventional backdoor attacks usually adopt a replacement
trigger, i.e., within the trigger mask area, a fixed trigger pat-
tern replaces the original sample. Nonetheless, a replacement
trigger with a fixed pattern is easy to be detected by the server.
Therefore, we propose to use an additive trigger E to poison
the embedding vector a sample as

êa = f a(x̃a)⊕E , (4)

where ⊕ denotes element-wise addition. Note that we directly
add the trigger to the embedding vector instead of the raw data
sample since the attacker only has to upload the embedding
vector to the server.

The trigger E is formed as

E = M ⊗ (β ·∆), (5)

where M is the trigger mask that has value 1 at the trigger
area and value 0 at other areas, ⊗ is the element-wise multi-
plication, β is a parameter that controls the trigger magnitude,

and ∆ = [+δ,+δ,−δ,−δ, · · · ,+δ,+δ,−δ,−δ] (a pattern of
two positive values followed by two negative values). We de-
sign the trigger based on the strips based backdoor (SIG) [6]
to improve the backdoor effectiveness. δ is the average stan-
dard deviation of elements in the backdoor dimension of all
samples. Let m denote the number of 1s in the trigger mask
M . We choose the m elements in the embedding vector with
the highest standard deviation as the trigger area mainly due
to two reasons. It is harder for the server to detect the added
trigger on elements with a larger standard deviation.

3.2.2 Backdoor Augmentation

The backdoor injection in vertical split learning is more dif-
ficult than the normal backdoor because the attacker can not
control the embedding updates from other benign participants.
To augment the backdoor injection, we introduce randomness
to poisoned data during training. Therefore, we develop two
randomization strategies for backdoor augmentation.

Dropout. Backdoor attacks, as a special kind of feature
learning, are also possible to suffer from overfitting [19] [53].
Inspired by the dropout method commonly used to mitigate
the overfitting problem [58], we randomly set a small number
of 1s to 0s in the trigger mask for data poisoning.

Shifting. We randomly multiply the trigger mask by γ that
is uniformly distributed in the range [γ,γ] to slightly shift the
trigger magnitude. Shifting introduces randomness into the
trigger, improving the trigger robustness and generalizability
[30] [50]. The trigger shifting may also help evade trigger
detection in backdoor defenses [14] [37].

Note that we do not apply the randomization strategies to
the trigger during the inference phase.

3.2.3 Learning Rate Adjustment

In vertical split learning, the attack power of the malicious
participant is likely to be diluted by other benign participants.
To cope with this problem, we propose to increase the learn-
ing rate of the embedding model owned by the attacker to
enhance the influence of the attack model to the final classifi-
cation result during the normal training phase before inference
and backdoor attack. Note that the malicious participant only
adjusts its own learning rate but not the learning rate of the
server model. Learning rate adjustment is valid in our attack
since the participant has full control over the local training
process. Although the server may assign learning rates to par-
ticipants in vertical split learning, it is difficult for the server
to check whether a participant follows the designated learning
rate during the local training or not. The learning rate is ad-
justed to the smaller value in the attack phase. Learning rate
adjustment has been adopted by existing works for poisoning
attacks in federated learning [5] [16]. If there are more than
one attackers, they may collude to improve the overall attack
performance. For example, the attackers can cooperatively

2748    32nd USENIX Security Symposium USENIX Association



Table 1: Attack performance of VILLAIN compared with baselines.

DS† Metric
ExPLoit
repl. tgr.

ExPLoit
add. tgr.

pasv. Fu
repl. tgr.

pasv. Fu
add. tgr.

act. Fu
repl. tgr.

act. Fu
add. tgr.

ES
repl. tgr. VILLAIN ‡

MN
ASR 16.51 ± 5.14% 18.43 ± 4.50% 98.02 ± 2.21% 100.00 ± 0.00% 97.66 ± 3.57% 99.94 ± 0.13% 96.53 ± 5.11% 100.00 ± 0.00%
CDA 96.10 ± 0.22% 95.73 ± 0.16% 95.99 ± 0.19% 96.14 ± 0.08% 96.01 ± 0.12% 96.18 ± 0.07% 95.47 ± 0.33% 96.11 ± 0.22%
LIA 12.48 ± 0.73% 12.48 ± 0.73% 89.39 ± 6.99% 89.39 ± 6.99% 93.70 ± 4.48% 93.70 ± 4.48% 94.03 ± 2.56% 94.03 ± 2.56%

CF
ASR 8.26 ± 2.02% 16.93 ± 3.76% 13.61 ± 0.86% 78.99 ± 6.23% 14.45 ± 1.44% 84.96 ± 8.28% 23.66 ± 6.48% 98.68 ± 0.59%
CDA 76.66 ± 0.38% 75.94 ± 0.36% 76.75 ± 0.27% 76.96 ± 0.35% 76.90 ± 0.14% 77.09 ± 0.38% 76.49 ± 0.40% 76.87 ± 0.25%
LIA 18.96 ± 2.19% 18.96 ± 2.19% 68.12 ± 6.09% 68.12 ± 6.09% 76.35 ± 5.26% 76.35 ± 5.26% 96.08 ± 4.28% 96.08 ± 4.28%

IN
ASR 13.94 ± 4.8% 12.55 ± 1.79% 26.73 ± 2.73% 76.03 ± 9.59% 27.71 ± 2.44% 79.48 ± 6.09% 32.39 ± 12.26% 92.79 ± 1.58%
CDA 71.21 ± 0.39% 70.82 ± 0.93% 70.55 ± 0.18% 70.08 ± 0.22% 70.91 ± 0.50% 70.19 ± 0.74% 71.64 ± 0.89% 71.54 ± 0.98%
LIA 14.53 ± 1.70% 14.53 ± 1.70% 80.28 ± 8.94% 80.28 ± 8.94% 86.54 ± 6.68% 86.54 ± 6.68% 90.41 ± 2.18% 90.41 ± 2.18%

CN
ASR 5.13 ± 3.95% 8.98 ± 4.39% 26.63 ± 5.30% 86.56 ± 6.45% 33.95 ± 10.22% 85.01 ± 15.82% 64.56 ± 6.36% 99.55 ± 0.62%
CDA 61.90 ± 0.28% 61.64 ± 0.48% 62.65 ± 0.17% 62.86 ± 0.08% 62.68 ± 0.31% 62.72 ± 0.47% 62.67 ± 0.08% 62.78 ± 0.11%
LIA 12.55 ± 1.91% 12.55 ± 1.91% 66.83 ± 8.01% 66.83 ± 8.01 % 72.09 ± 7.26% 72.09 ± 7.26% 93.19 ± 3.95% 93.19 ± 3.95%

BM
ASR 9.15 ± 3.90% 14.38 ± 1.93% 40.19 ± 4.31% 90.28 ± 10.19% 39.46 ± 2.53% 86.79 ± 10.56% 59.43 ± 12.10% 97.84 ± 2.57%
CDA 91.36 ± 0.77% 90.37 ± 0.51% 92.11 ± 0.94% 91.22 ± 2.71% 92.79 ± 0.25% 88.83 ± 2.55% 91.80 ± 1.46% 90.00 ± 2.34%
LIA 46.18 ± 2.39% 46.18 ± 2.39% 92.11 ± 4.49% 92.11 ± 4.49% 88.78 ± 4.64% 88.78 ± 4.64% 94.05 ± 4.82% 94.05 ± 4.82%

GM
ASR 12.01 ± 3.54% 17.87 ± 5.83% 67.69 ± 1.04% 100.00 ± 0.00% 67.43 ± 1.22% 100.00 ± 0.00% 92.27 ± 15.41% 100.00 ± 0.00%
CDA 78.02 ± 0.77% 77.81 ± 0.42% 78.55 ± 0.24% 78.41 ± 0.06% 78.53 ± 0.20% 78.32 ± 0.24% 78.68 ± 0.09% 78.37 ± 0.14%
LIA 55.78 ± 2.33% 55.78 ± 2.33% 77.66 ± 0.72% 77.66 ± 0.72% 77.52 ± 0.60% 77.52 ± 0.60% 95.18 ± 5.69% 95.18 ± 5.69%

† MN: MNIST, CF: CIFAR-10, IN: ImageNette, CN: CINIC-10.
‡ ASR: attack success rate. CDA: clean data accuracy. LIA: label inference accuracy. ExPLoit: label inference adapted from [28]. pasv. Fu: the passive label inference method

in Fu [16]. act. Fu: the active label inference method in Fu [16]. repl. tgr.: replacement trigger without backdoor augmentation. add. tgr.: additive trigger with backdoor
augmentation. ES: embedding swapping.

conduct label inference based on the joint gradient informa-
tion. More advanced collusion strategies for backdoor attacks
in vertical split learning will be our future directions.

4 Evaluations

4.1 Experiment Setup
Dataset. We evaluate VILLAIN on six datasets with different
neural network architectures. Specifically, we choose four im-
age datasets (unstructured datasets), i.e., MNIST [32], CIFAR-
10 [31], CINIC-10 [12], ImageNette [23], and two tabular
datasets (structured datasets), i.e., Bank Marketing (BM) [41],
Give-Me-Some-Credit (GM) [2].

Vertical split learning settings. Our default experiment
setting consists of two participants, each owning half of the
feature vector. For MNIST, the embedding model of each
participant is a 4-layer fully-connected neural network, and
the server model is a 3-layer fully-connected neural network.
The accuracy on the test data is 96.11%. For CIFAR-10, the
embedding model of each participant is a VGG16 network,
and the server model is a 3-layer fully-connected neural net-
work. The accuracy on the test data is 76.87%. For CINIC-10,
the embedding model of each participant is a VGG16 net-
work, and the server model is a 3-layer fully-connected neural
network. The accuracy on the test data is 62.78%. For Ima-
geNette, the embedding model of each participant is a VGG16
network, and the server model is a 3-layer fully-connected
neural network. The accuracy on the test data is 71.54%. For
BM and GM, the embedding model of each participant is a
4-layer fully-connected neural network, and the server model
is a 3-layer fully-connected neural network. The accuracy on

Table 2: Potential side-effects. ori. acc.: the clean data ac-
curacy without the attack. CDA.L: clean data accuracy with
only the label inference module. CDA.B: clean data accuracy
with the entire attack.

Dataset ori. acc. CDA.L CDA.B

MNIST 94.82 ± 0.19% 94.74 ± 0.28% 95.08 ± 0.24%

CIFAR-10 79.26 ± 0.17% 78.10 ± 0.15% 77.74 ± 0.57%

ImageNette 66.92 ± 4.35% 69.46 ± 2.60% 70.54 ± 2.93%

CINIC-10 63.07 ± 0.25% 59.35 ± 2.92% 62.78 ± 1.74%

BM 89.78 ± 0.28% 90.98 ± 1.04% 91.80 ± 1.36%

GM 77.22 ± 0.04% 77.69 ± 0.03% 78.36 ± 0.18%

the test data is 90.00% on BM and 78.37% on GM.
Attack settings. We validate our attack in the two-

participant scenario as default. Different from horizontal fed-
erated learning that is usually used in the crowdsourcing sce-
nario with thousands of participants [3] [67], vertical split
learning is usually used by a few big companies with com-
plementary features of large datasets with the same sample
IDs [8]. We follow the experiment settings in existing works
on vertical federated learning with two participants as de-
fault [16] [54]. The default embedding aggregation method
in the server model is embedding concatenation. We also test
different embedding aggregation methods in Section 4.2. The
default poisoning rate is 1% on each dataset. For MNIST,
CIFAR-10, ImageNette, CINIC-10, BM and GM, the number
of each training batch is 128, 128, 50, 64, 100, 1,000, respec-
tively, and the number selected for embedding swapping is
n = 14,14,10,8,6,40, respectively. The threshold µ in label

USENIX Association 32nd USENIX Security Symposium    2749



Table 3: Attack on different aggregation methods.
DS M† ori. acc. LIA ASR CDA

MN

C 95.82 ± 0.29% 94.03 ± 2.56% 100.00 ± 0.00% 96.11 ± 0.22%
A 96.69 ± 0.35% 99.00 ± 0.19% 100.00 ± 0.00% 95.97 ± 0.27%

M1 95.97 ± 0.38% 89.48 ± 2.99% 100.00 ± 0.00% 95.13 ± 0.30%
M2 95.61 ± 0.69% 94.05 ± 3.65% 100.00 ± 0.00% 94.56 ± 0.48%
M3 96.11 ± 0.16% 99.51 ± 0.17% 95.22 ± 1.13% 95.59 ± 0.37%

CF-10

C 78.29 ± 0.42% 96.08 ± 4.28% 98.68 ± 0.59% 76.87 ± 0.25%
A 78.79 ± 0.22% 99.85 ± 0.22% 94.55 ± 0.28% 79.90 ± 0.58%

M1 77.83 ± 0.27% 99.86 ± 0.32% 94.85 ± 0.51% 79.17 ± 0.18%
M2 76.44 ± 0.37% 99.98 ± 0.02% 91.33 ± 0.48% 78.09 ± 0.70%
M3 76.94 ± 0.05% 99.29 ± 0.44% 82.98 ± 3.81% 78.54 ± 0.10%

IN

C 71.59 ± 0.84% 90.41 ± 2.18% 92.79 ± 1.58% 71.54 ± 0.98%
A 71.93 ± 1.06% 88.56 ± 2.63% 100.00 ± 0.00% 68.84 ± 0.74%

M1 59.99 ± 1.94% 82.30 ± 4.48% 99.29 ± 0.12% 56.64 ± 3.57%
M2 66.95 ± 1.44% 84.30 ± 2.31% 100.00 ± 0.00% 64.56 ± 0.79%
M3 65.59 ± 1.57% 86.69 ± 3.74% 100.00 ± 0.00% 63.49 ± 1.30%

CN

C 62.10 ± 0.08% 93.19 ± 3.95% 99.55 ± 0.62% 62.78 ± 0.11%
A 63.36 ± 1.37% 94.97 ± 4.22% 95.84 ± 3.82% 62.81 ± 1.59%

M1 63.19 ± 0.27% 88.61 ± 2.90% 96.81 ± 2.27% 61.76 ± 0.23%
M2 60.16 ± 1.51% 85.18 ± 3.07% 94.43 ± 6.10% 62.83 ± 0.59%
M3 63.29 ± 0.37% 88.47 ± 3.58% 96.81 ± 2.53% 64.11 ± 0.20%

BM

C 90.98 ± 0.52 % 94.05 ± 4.82% 97.84 ± 2.57% 90.57 ± 2.14%
A 90.35 ± 0.36% 99.58 ± 0.37% 92.50 ± 5.83% 90.83 ± 0.28%

M1 92.68 ± 0.78% 99.89 ± 0.10% 70.68 ± 8.54% 92.70 ± 0.81%
M2 92.31 ± 0.35% 99.80 ± 0.12% 92.45 ± 3.61% 90.15 ± 0.96%
M3 91.94 ± 0.56% 99.90 ± 0.11% 84.32 ± 5.31% 90.31 ± 0.53%

GM

C 78.91 ± 0.28% 95.18 ± 5.69% 100.00 ± 0.00% 78.37 ± 0.14%
A 75.04 ± 0.30% 84.64 ± 6.17% 96.10 ± 1.70% 77.96 ± 0.25%

M1 76.80 ± 0.36% 93.13 ± 4.51% 98.37 ± 0.52% 77.04 ± 0.58%
M2 77.39 ± 0.28% 95.70 ± 6.98% 96.17 ± 1.24% 77.20 ± 0.32%
M3 77.54 ± 0.55% 95.27 ± 6.13% 97.99 ± 1.49% 76.69 ± 0.45%

† We evaluate five different vertical split learning aggregation methods. C: CON, embedding
concatenation. A: ADD, element-wise addition. M1: MEAN, element-wise average. M2:
MAX, element-wise maximum. M3: MIN, element-wise minimum.

inference model is set based on the average value of the gradi-
ent L2 norm value. The default value of β is 0.4. We set γ to
0.6 and γ to 1.2. We perform attack on all the labels to test the
overall effectiveness. The dropout ratio we use in the exper-
iment is 0.75. We use Attack success rate (ASR) and Clean
data rate (CDA) to evaluate the performance of backdoor
attacks [17]. We also use Label inference accuracy (LIA) to
evaluate the performance of the label inference module. LIA
measures the percentage of correctly-inferred samples in all
the samples we classified as the target label, since we only
use the target label data for the backdoor attack.

Baselines. As far as we know, there are no backdoor attacks
against vertical split learning. Therefore, we compare the at-
tack performance of VILLAIN with a baseline that adopts
a traditional replacement trigger [1, -1, 1, -1, 1]. We com-
pare the label inference module of VILLAIN with the passive
and the active label inference methods in Fu [16]. We also
compare our work with ExPLoit [28]. ExPLoit considers a
two-party split learning scenario where the participant owns
all features and the server owns all labels. The participant
learns an embedding model based on all features, while the
server learns a classification model based on embeddings. To
conduct a label inference attack, ExPLoit enables the mali-
cious participant to optimize a surrogate model with similar
functionalities of the server’s classification model. We adapt
ExPLoit to our threat model where the malicious participant

Table 4: Data-domain triggers. TS: Trigger Size.
DS TS ASR CDA ori. acc. DS TS ASR CDA ori. acc.

MN

2 92.04% 96.72% 94.66%

CF

2 95.36% 78.82% 76.78%
3 99.92% 96.65% 94.71% 3 99.70% 78.95% 76.58%
4 99.97% 96.79% 94.40% 4 98.53% 79.31% 75.65%
5 99.94% 96.80% 94.57% 5 99.27% 79.43% 76.75%
6 99.99% 96.63% 94.99% 6 99.55% 79.27% 77.76%

IM

14 41.69% 74.19% 73.06%

CN

2 46.60% 63.43% 61.00%
21 51.11% 74.51% 70.45% 3 98.59% 63.84% 62.26%
28 77.58% 74.87% 70.05% 4 96.85% 64.12% 62.74%
35 90.11% 75.25% 72.53% 5 99.17% 64.01% 62.11%
42 98.66% 74.37% 71.47% 6 96.92% 63.87% 62.16%

BM

1 98.69% 92.40% 90.18%

GM

1 100.00% 78.52% 77.82%
2 97.79% 92.76% 88.25% 2 100.00% 78.76% 77.82%
3 99.74% 93.28% 90.33% 3 100.00% 78.76% 77.73%
4 99.35% 92.89% 86.23% 4 100.00% 78.54% 77.65%
5 99.80% 93.12% 90.72% 5 100.00% 78.73% 77.80%

only owns partial features.
The experiments are carried out on our workstations

equipped with Intel(R) Xeon(R) Gold 6226R CPU @
2.90GHz, and NVIDIA GTX 3090 GPU cards running
Ubuntu 18.04 system.

4.2 Overall Performance

We run each experiment five times for the overall performance
and record the mean and standard deviation. As shown in Ta-
ble 1, VILLAIN outperforms the baseline backdoor attack with
significant improvement. The clean data accuracy of VILLAIN
is less than 1% lower than the benign model. As shown in
Table 1, our label inference algorithm achieves the highest
precision on each dataset. Our proposed label inference strat-
egy outperforms baselines [16] by as high as 20%. The attack
performance of ExPLoit [28] is not ideal under our threat
model. The possible reason is that ExPLoit requires all fea-
tures to reconstruct a substitute server model. Under our threat
model with only partial features, the server model cannot be
restored with high reliability, thus the label inference attack
of ExPLoit is less effective. The main task accuracy of the
vertical split learning is lower than that of centralized models
since model split negatively affects the overall learning abil-
ity. We evaluate the runtime efficiency of the label inference.
The ExPLoit takes much more time since the optimization is
time-consuming. VILLAIN without candidate selection has
a much lower time efficiency and takes the shortest time for
label inference than baselines. For backdoor attack, it takes 4,
5, 4, 2, 6, 9 epochs to establish the stable backdoor into the
server model for MNIST, CIFAR-10, ImageNette, CINIC-10,
BM, and GM respectively. Our label inference results are im-
pressive mainly because we have made use of the gradient
information, which has been ignored in existing papers. The
gradients indicate the training loss on the training sample,
which enables us to design embedding swapping for label
inference. Moreover, our proposed candidate selection further
improves inference efficiency by sifting the most promising
candidate for label inference.

2750    32nd USENIX Security Symposium USENIX Association



Table 5: Multi-participant scenario. # pa.: number of partici-
pants. ori. acc.: original model accuracy.

DS # pa. ori. acc. LIA ASR CDA

MN

2 95.82 ± 0.29% 94.03 ± 2.56% 100.00 ± 0.00% 96.11 ± 0.22%
4 92.87 ± 0.24% 94.71 ± 4.71% 100.00 ± 0.00% 93.72 ± 0.49%
8 93.18 ± 0.17% 90.07 ± 3.15% 94.86 ± 1.04% 92.87 ± 0.36%

16 90.49 ± 0.29% 81.59 ± 5.82% 87.16 ± 7.76% 89.65 ± 0.15%

CF

2 78.29 ± 0.42% 96.08 ± 4.28% 98.68 ± 0.59% 76.87 ± 0.25%
4 70.61 ± 0.33% 91.17 ± 4.90% 98.57 ± 0.69% 69.39 ± 0.89%
8 67.38 ± 0.48% 72.31 ± 6.75% 65.59 ± 4.68% 68.76 ± 0.15%

16 65.56 ± 0.45% 65.39 ± 9.45% 23.57 ± 6.03% 66.69 ± 0.25%

IN

2 71.59 ± 0.84% 90.41 ± 2.18% 92.79 ± 1.58% 71.54 ± 0.98%
4 67.58 ± 0.29% 84.20 ± 3.85% 80.64 ± 2.76% 68.68 ± 0.70%
8 66.73 ± 0.31% 82.28 ± 6.08% 62.19 ± 6.01% 64.17 ± 0.96%

16 58.15 ± 0.57% 73.68 ± 5.15% 36.89 ± 10.81% 60.82 ± 0.44%

CN

2 62.10 ± 0.08% 93.19 ± 3.95% 99.55 ± 0.62% 62.78 ± 0.11%
4 59.19 ± 0.28% 90.62 ± 3.89% 84.98 ± 3.17% 61.87 ± 1.33%
8 58.44 ± 0.26% 70.69 ± 2.09% 59.12 ± 8.79% 58.83 ± 0.67%

16 53.90 ± 1.06% 62.96 ± 9.51% 37.32 ± 7.48% 54.43 ± 0.79%

BM

2 90.98 ± 0.52 % 94.05 ± 4.82% 97.84 ± 2.57% 90.57 ± 2.14%
3 90.71 ± 0.61% 92.26 ± 4.52% 92.26 ± 3.64% 91.46 ± 0.29%
4 90.74 ± 0.51% 87.29 ± 6.48% 91.26 ± 4.09% 91.45 ± 0.92%
6 91.18 ± 0.13% 82.93 ± 8.54% 76.91 ± 6.55% 92.59 ± 0.44%

GM

2 78.91 ± 0.28% 95.18 ± 5.69% 100.00 ± 0.00% 78.37 ± 0.14%
3 79.22 ± 0.84% 93.17 ± 8.50% 92.14 ± 2.58% 77.64 ± 0.17%
4 76.04 ± 0.18% 96.58 ± 6.59% 89.55 ± 6.87% 78.42 ± 0.61%
6 77.24 ± 0.30% 78.57 ± 9.62% 66.17 ± 5.58% 78.27 ± 0.28%

AM

2 97.05 ± 0.57% 96.93 ± 3.09% 98.14 ± 1.07% 97.46 ± 0.72%
4 81.27 ± 0.63% 93.27 ± 5.24% 95.14 ± 2.82% 80.73 ± 0.90%
8 71.29 ± 0.23% 87.58 ± 11.42% 88.53 ± 5.04% 73.36 ± 0.55%

16 68.09 ± 0.42% 82.57 ± 5.71% 69.17 ± 4.65% 67.68 ± 0.28%

Potential side-effects. The embedding swapping of label
inference module and the data poisoning module may both
have side-effects on learning the central model. We evaluate
the clean data accuracy without any attack, with only label
inference, and with both label inference and data poisoning.
As shown in Table 2, the label inference only slightly down-
grades the main task accuracy. This is because the candidate
selection process greatly reduces the number of samples for
embedding swapping. The low poisoning rate ensures that the
backdoor does not degrade clean data accuracy.

Different embedding aggregation methods. We evaluate
VILLAIN on different vertical split learning aggregation meth-
ods on the server model that adopt addition, average pooling,
max pooling, and min pooling for embedding aggregation.
The default embedding aggregation is embedding concatena-
tion. The server splices the embedding from different clients
into one embedding. The element-wise addition vertical split
learning method adds the embedding from different partic-
ipants together to form the input for the server model. The
element-wise average pooling vertical split learning mode
conducts average pooling on each element of the embedding
vector from the participants. The max/min pooling vertical
split learning methods choose the maximum/minimum value
of each element of the embedding vector from the participants.
As shown in Table 3, VILLAIN performs well on different
vertical split learning methods.

Data-domain triggers. In VILLAIN, the trigger can be
added in the data domain or the embedding domain. We test

Table 6: Impact of server models. dep.: model depth.

dep. MNIST CIFAR-10
LIA ASR LIA ASR

3 94.03 ± 2.56% 100.00 ± 0.00% 96.08 ± 4.28% 98.68 ± 0.59%
4 95.89 ± 2.95% 100.00 ± 0.00% 96.63 ± 3.55% 96.97 ± 0.45%
5 94.92 ± 2.63% 99.53 ± 0.24% 97.55 ± 3.97% 96.83 ± 0.24%
6 92.85 ± 4.10% 100.00 ± 0.00% 97.06 ± 1.73% 98.03 ± 0.58%
7 95.73 ± 2.66% 100.00 ± 0.00% 98.53 ± 2.66% 97.86 ± 0.13%

dep. CINIC-10 BM
LIA ASR LIA ASR

3 93.19 ± 3.05% 99.55 ± 0.62% 94.05 ± 4.82% 97.84 ± 2.57%
4 94.10 ± 2.56% 97.27 ± 1.43% 95.03 ± 5.93% 96.91 ± 0.92%
5 93.68 ± 1.41% 98.03 ± 0.20% 98.23 ± 0.96% 98.35 ± 0.47%
6 96.14 ± 3.02% 95.82 ± 3.94% 94.76 ± 2.59% 92.47 ± 1.69%
7 95.16 ± 3.97% 96.29 ± 3.46% 95.91 ± 2.49% 95.10 ± 0.82%

dep. ImageNette GM
LIA ASR LIA ASR

3 90.41 ± 2.18% 92.79 ± 1.58% 95.18 ± 5.69% 100.00 ± 0.00%
4 92.14 ± 3.06% 93.01 ± 1.65% 98.62 ± 0.63% 100.00 ± 0.00%
5 95.52 ± 3.45% 96.68 ± 0.94% 96.28 ± 3.10% 99.35 ± 0.20%
6 87.05 ± 7.49% 90.93 ± 3.69% 93.60 ± 4.60% 100.00 ± 0.00%
7 94.11 ± 2.46% 92.04 ± 0.75% 94.04 ± 3.63% 98.80 ± 0.94%

Table 7: Impact of participant models.
Model MNIST BM GM

LIA ASR LIA ASR LIA ASR

FCNN-4 94.03 ± 2.56% 100.00 ± 0.00% 94.05 ± 4.82% 97.84 ± 2.57% 95.18 ± 5.69% 100.00 ± 0.00%
FCNN-5 95.23 ± 3.09% 99.51 ± 0.31% 96.47 ± 2.85% 98.75 ± 0.48% 94.33 ± 4.60% 100.00 ± 0.00%
FCNN-6 97.33 ± 2.40% 96.50 ± 2.67% 95.48 ± 3.54% 96.34 ± 1.93% 95.05 ± 3.63% 100.00 ± 0.00%
FCNN-7 94.49 ± 1.87% 98.87 ± 0.30% 98.80 ± 0.84% 97.02 ± 1.66% 97.12 ± 2.40% 100.00 ± 0.00%
FCNN-8 96.91 ± 2.84% 99.17 ± 0.65% 96.03 ± 3.44% 98.17 ± 0.64% 93.15 ± 3.56% 98.81 ± 0.53%

Model CIFAR-10 ImageNette CINIC-10
LIA ASR LIA ASR LIA ASR

CNN 94.14 ± 3.10% 95.30 ± 0.69% 92.77 ± 3.29% 93.16 ± 0.84% 94.86 ± 2.82% 98.83 ± 0.57%
VGG-16 96.08 ± 4.28% 98.68 ± 0.59% 90.41 ± 2.18% 92.79 ± 1.58% 93.19 ± 3.95% 99.55 ± 0.62%
VGG-19 95.23 ± 2.68% 97.20 ± 0.82% 95.41 ± 2.43% 95.25 ± 1.65% 95.25 ± 1.49% 98.32 ± 1.35%

ResNet-50 97.91 ± 2.44% 95.02 ± 1.24% 92.11 ± 3.58% 94.65 ± 2.26% 96.53 ± 1.71% 97.25 ± 1.08%
DenseNet 97.72 ± 3.34% 98.24 ± 0.97% 97.68 ± 5.65% 92.89 ± 2.15% 95.89 ± 3.38% 98.73 ± 0.86%

the performance of VILLAIN with data-domain triggers. As
shown in Table 4, the ASR is higher than 98% for MNIST,
CIFAR-10, CINIC-10, BM, and GM at a trigger size of 3,
which proves that the data-domain trigger is effective. The
results also show that the CDA is hardly influenced by the
trigger in the data domain.

Multi-participant scenario. VILLAIN can be extended
to vertical split learning with more than 2 participants. We
conduct experiments on MNIST, CIFAR-10, ImageNette, and
CINIC-10 with 2, 4, 8, and 16 participants. We conduct ex-
periments on BM and GM with 2, 3, 4, and 6 participants
since their feature dimensions are small. Since public tab-
ular datasets usually have limited numbers of samples and
feature dimensions, we construct a simulated tabular dataset,
AM, consisting of 60,000 samples with a feature dimension of
1,024. The samples belong to 10 classes, each with a relatively
balanced number of samples. We generate the value of the i-th
feature of a sample that belongs to class j as vi, j = vi, j +σ,
where vi, j is the average value of the corresponding feature ac-
cording to real financial datasets BM and GM. σ is a random
adaptation factor generated by an auto-encoder [22] [49]. The
data is equally divided among all participants and we choose
the middle participant as the attacker. As shown in Table
5, the attack success rate remains high when the number of

USENIX Association 32nd USENIX Security Symposium    2751



1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

ASR              CDA before poison CDA after poison

0.5% 1.0% 2.0% 3.0% 5.0%
Poisoning Rate

0

20

40

60

80

100
AS

R/
CD

A(
%

)

(a) MNIST

0.5% 1.0% 2.0% 3.0% 5.0%
Poisoning Rate

0

20

40

60

80

100

AS
R/

CD
A(

%
)

(b) CIFAR-10

0.5% 1.0% 2.0% 3.0% 5.0%
Poisoning Rate

0

20

40

60

80

100

AS
R/

CD
A(

%
)

(c) CINIC-10

0.5% 1.0% 2.0% 3.0% 5.0%
Poisoning Rate

0

20

40

60

80

100

AS
R/

CD
A(

%
)

(d) ImageNette

0.5% 1.0% 2.0% 3.0% 5.0%
Poisoning Rate

0

20

40

60

80

100

AS
R/

CD
A(

%
)

(e) BM

0.5% 1.0% 2.0% 3.0% 5.0%
Poisoning Rate

0

20

40

60

80

100

AS
R/

CD
A(

%
)

(f) GM

Figure 4: Impact of poisoning rate.

participants is no more than 8. The attack success rate drops
noticeably when the number of participants is 16, which is
reasonable since the attacker only controls 1/16 of the em-
bedding vector uploaded to the server. When the number of
participants increases, the clean data accuracy drops due to
data splitting. For the tabular dataset, the attack is still strong
for the 6-client scenario. The ASR of BM drops because of
the limited control of the overall embedding. We conduct the
attack with 2, 4, 8, and 16 participants on AM. As shown in
Table 5, when there are as many as 16 participants, the LIA
is above 80%, and the ASR is above 70%, which proves the
effectiveness of VILLAIN under multiple participants.

We also conduct ablation studies to examine the contribu-
tion of the candidate selection, the trigger fabrication and the
backdoor augmentation modules to the attack performance.
We show the results in the Appendix A.1.

4.3 Impact of Hyperparameters

Impact of poisoning rate. The poisoning rate is defined as the
number of poisoned embeddings to all embeddings submitted
by the malicious participant to the server. Achieving a high
attack success rate with a low poisoning rate is desirable since
the clean data accuracy will be less affected and the attack is
more stealthy. As shown in Figure 4, a higher poisoning rate
brings a higher attack success rate because the model is more
likely to learn the backdoor pattern from the poisoned data.
The backdoor attack still works even with a low poisoning
rate of only 0.5%.

Impact of trigger magnitude. We vary the magnitude
of the trigger β from 0.2 to 1. As shown in Figure 10 in
the appendix, a larger trigger magnitude improves the attack
success rate, especially for more complex datasets like CIFAR-
10 and ImageNette. The trigger magnitude hardly changes the
prediction accuracy on clean samples.

Impact of server & participant models. For real-world

attack scenarios, the attacker has no knowledge of the server
model. We change the number of layers of the server model
to evaluate the attack performance. We set the target label
to 0 for each dataset. As shown in Table 6, we highlight the
best and the worst results in each dataset. The results show
that VILLAIN is robust to different server structures overall.
We also conduct experiments on participants with different
models. For small datasets like MNIST, BM, and GM, we use
fully connected neural network as the participant model and
change the model layer from 4 to 5, 6, 7, 8. For CIFAR-10,
ImageNette, and CINIC-10, we use CNN, VGG-16, VGG-19,
ResNet-50 [21], DenseNet [24] as the participant model. The
target label is 0 for each dataset. As shown in Table 7, the
label inference and backdoor attack are hardly influenced by
the participant model structures.

Impact of trigger size. Since the output dimension of the
embedding model of the attacker is 64 in our experiments, we
vary the trigger length to 4, 8, 16, 32, and 64 to evaluate the
attack performance. As shown in Figure 8 in the appendix,
VILLAIN maintains a high attack success rate with a trigger
length of no less than 16 on all datasets. The experiment
results also show that the clean data accuracy is hardly in-
fluenced by the trigger size. The backdoor randomization is
effective when the trigger sizes are large.

Impact of learning rate. We set the learning rate of the
attacker model to be 0.01, 0.03, 0.05, 0.08, 0.1, 0.15, and 0.2
during the normal training phase. As demonstrated in Figure 9,
the learning rate shows impact on the ASR. We also conduct
evaluation of cases when the learning rate provided by the
server is already large and the attacker attempts to further
increase the learning rate. As shown in Figure 16, further
increasing a large learning rate may neither improve nor harm
the attack performance.

Impact of number of candidates. We vary the number
of candidates selected for label inference in each batch. As
shown in Figure 11 in the appendix, for MNIST, CIFAR-10,

2752    32nd USENIX Security Symposium USENIX Association



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

(a) MNIST

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(b) CIFAR-10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(c) CINIC-10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(d) ImageNette

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

(e) BM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(f) GM

Figure 5: Backdoor attack against defense with pruning.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

Baseline 0.005 0.01 0.015 0.02
ANP ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

(a) MNIST

Baseline 0.005 0.01 0.015 0.02
ANP ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(b) CIFAR-10

Baseline 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

ANP ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(c) CINIC-10

Baseline 0.005 0.01 0.015 0.02
ANP ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(d) ImageNette

Baseline 0.005 0.01 0.015 0.02
ANP ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(e) BM

Baseline 0.005 0.01 0.015 0.02
ANP ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(f) GM

Figure 6: Backdoor attack against defense with ANP.

CINIC-10, BM, and GM, the number of selected candidate
samples per batch has little influence on the attack perfor-
mance, as ASR is nearly 100% on these datasets. For Ima-
geNette, the attack success rate goes up when we increase
the number of samples for label inference per batch thanks
to more inferred data of the target label. With the accurate la-
bel inference method, a larger number of candidates for label
inference helps find more samples of the target label.

4.4 Resistance to Defense

The server may employ countermeasures to defend against
VILLAIN.

4.4.1 Defenses Against Label Inference Attack

Since the only information we use for label inference is the
back-propagated gradient from the server, we consider possi-
ble defenses that process the gradients to prevent information
leakage without degrading the learning task. We utilize three
possible defense methods against label inference, i.e., DP-
SGD, gradient compression, and Privacy-preserving Deep
Learning. For DP-SGD, the server disrupts the gradients fol-
lowing differential privacy [52] [64] for different privacy lev-
els. A lower ε indicates that the privacy leakage is smaller
with a larger magnitude of added noises, vice versa. For gra-
dient compression [56], the server sends a subset of gradients
with the largest absolute values to participants. The compres-
sion ratio represents the fraction of preserved elements to
the dimension of gradients. We also test the label inference
against Privacy-preserving Deep Learning (PPDL) [56], in
which the server first adds random noises to the gradients
and then only keeps a fraction of gradients. We consider the
fraction of preserved gradients as the defense parameter.

Results. As shown in Table 9 in the appendix, under DP-
SGD, our label inference attack is still effective when ε is
larger than 1. If ε is smaller than 1, meaning stricter privacy
protection with larger noises, the label inference accuracy
drops, but the clean data accuracy also falls due to disturbed
gradients. Under gradient compression, our label inference
attack performs well since the gradients with large absolute
values still preserve most label information. Under PPDL, the
defense degrades both clean data accuracy and label inference
accuracy.

4.4.2 Defenses Against Backdoor Attacks

We test VILLAIN under different defenses following the sys-
temic categorization on backdoor defenses in [36].

Model reconstruction. Model reconstruction based de-
fenses aim at purifying the backdoored model. Model Prun-
ing [39] and Adversarial Neuron Pruning (ANP) [63] intend
to remove the backdoor via pruning. As shown in Figures
5, 12, and 13, VILLAIN maintains a high attack success rate
when the model is pruned with a medium ratio. The defense
aims at achieving a point where the ASR is low and the CDA
is nearly not affected. Although the attack success rate drops
with a high pruning ratio, the model’s functionality is also
damaged by the pruning operation. The pruning is proven
to be insufficient. The impact of ANP is shown in Figure 6,
14, and 15. For MNIST, CINIC-10 and GM, the backdoor
attack is hardly influenced while the model functionality on
clean data is damaged. For CIFAR-10, ImageNette and BM,
the backdoor attack success rate drops along with the model
accuracy. Both trends prove the defense can not keep high
CDA while reducing the ASR.

Sample preprocessing. Sample preprocessing based de-
fenses process the samples before feeding the samples into the

USENIX Association 32nd USENIX Security Symposium    2753



model, which aims to destroy the trigger pattern. We apply the
state-of-the-art sample preprocessing defense, i.e., Backdoor
Defense via Transformations [37], which uses transformation
T (·) to preprocess the input. We apply two transformations,
namely embedding noise, and left-right flipping. For embed-
ding noise, we add random noise in 5 different levels to the
embedding vectors. As shown in Figure 7, the ASR with-
stands the embedding noise while the model accuracy on
clean data drops even faster. For the left-right flipping, we
swap the left and the right part of the embedding from the
attacker. As shown in Table 10 in the appendix, the flipping
mostly influences the model accuracy on the clean data.

Trigger synthesis. These defenses aim to synthesize the
backdoor used in the backdoor attack. We use the generaliz-
able detection method based on the intuition that the back-
door trigger can be recovered by computing the perturbation
needed for a clean sample to be misclassified into the target la-
bel. We apply the method to the server model, and the results
show that VILLAIN is always below the threshold.

Poison suppression. These defense methods aim at depress-
ing the effectiveness of poisoned samples during the training
process to prevent backdoor injection. Anti-Backdoor Learn-
ing (ABL) [35] detects poisoned samples first and then sup-
presses these samples to mitigate the backdoor attack. As
shown in Table 11 in the appendix, the detection accuracy is
rather low because the detection is based on the assumption
that poisoned samples have a lower loss value but VILLAIN
in fact makes poisoned samples more learnable.

4.4.3 Adaptive Defenses

We also validate VILLAIN’s feasibility under two possible
adaptive defenses that attempt to thwart the label inference
and the data poisoning modules respectively.

Embedding detection. The server may adapt its defense
against the label inference module of VILLAIN by detecting
embedding swapping. Since we swap the embedding of train-
ing samples with the embedding of a known sample of the
target label, different training samples may have the identi-
cal embedding result, which may be detected by the server
as the sign of label inference attacks. VILLAIN can bypass
this adaptive defense by introducing randomness into the em-
bedding swapping process. We consider two methods, i.e.,
adding random noises or randomly smoothing some elements
of the embedding vector. We compute the distance between
two embeddings of any two different benign samples and
find that the minimal distance is less than the lowest bar 0.01.
The server may use the minimum distance as the detection
threshold, i.e., an embedding with a smaller distance to oth-
ers will be flagged as abnormal. As shown in Table 12 in
the appendix, the introduced randomness does not affect the
attack performance of VILLAIN, but helps evade the adaptive
defense of identical embedding detection.

Embedding smoothing. The server may adapt its defense

Table 8: The performance of VILLAIN under adaptive defense
of embedding smoothing.

MNIST CIFAR-10 ImageNette
Ratio CDA ASR Ratio CDA ASR Ratio CDA ASR

1.0 96.24% 100.00% 1.0 76.08% 98.43% 1.0 71.80% 92.94%
0.8 95.62% 100.00% 0.8 75.17% 97.62% 0.8 70.85% 89.54%
0.6 93.72% 95.31% 0.6 73.73% 97.46% 0.6 65.91% 90.39%
0.4 74.95% 92.86% 0.4 71.38% 96.80% 0.4 65.31% 87.60%
0.2 37.89% 91.92% 0.2 68.22% 95.93% 0.2 62.12% 85.99%

CINIC-10 BM GM
Ratio CDA ASR Ratio CDA ASR Ratio CDA ASR

1.0 62.17% 99.66% 1.0 91.85% 97.69% 1.0 77.84% 100.00%
0.8 61.99% 97.32% 0.8 83.95% 95.56% 0.8 77.06% 100.00%
0.6 59.88% 96.86% 0.6 82.47% 96.52% 0.6 75.06% 100.00%
0.4 55.03% 95.99% 0.4 81.21% 96.51% 0.4 62.03% 100.00%
0.2 47.83% 95.27% 0.2 80.23% 96.42% 0.2 46.96% 100.00%

against the data poisoning module of VILLAIN by trying to
neutralize the unknown trigger with the convolutional op-
eration. We assume that the server uses a 1 convolutional
kernel to process the embedding vector. All the elements in
the convolutional kernel add up to 1. We use the pooling ratio
to denote the value of the central element in the convolu-
tional kernel. The other two elements are equal. For exam-
ple, if the pooling ratio is 0.2, the convolutional kernel will
be [0.4,0.2,0.4]. A large pooling ratio indicates a stronger
smoothing level. As shown in Table 8, the attack success rate
is relatively stable under embedding smoothing, but the clean
data accuracy will be greatly reduced.

5 Discussions

We discuss possible extensions and defenses of VILLAIN.
Split learning of other structures. Split learning framework

may be materialized with different structures for different
tasks, e.g., graph neural networks (GNN) [11] [55], to which
VILLAIN may not apply due to different forms of interactions
between the participant and the server. The input to a GNN
model includes both the node attributes and the link topology,
which entails a special vertical data partition among partici-
pants in split learning. Backdoor attacks against GNN-based
split learning is a possible future direction.

Secure vertical split learning. Homomorphic Encryption
(HE) [43], Secure Multi-Party Computation (MPC) [29] and
Trusted Execution Environment (TEE) [13] have been intro-
duced to vertical split learning to provide guaranteed security
at high computational cost or hardware requirement. Back-
door attacks under secure vertical split learning framework is
also a future direction.

Possible defenses. Existing defenses have all been pro-
posed regarding backdoor attacks in centralized learning or
horizontal federated learning, thus failing to detect VILLAIN,
as demonstrated by our experiments. Preventing backdoor
attacks in vertical federated learning poses new challenges
since the updates from different participants are based on dif-
ferent features, thus outlier detection cannot be used to figure

2754    32nd USENIX Security Symposium USENIX Association



Trigger-16 ASRTrigger-16 CDATrigger-32 ASRTrigger-32 CDATrigger-64 ASRTrigger-64 CDA
0.0

0.2

0.4

0.6

0.8

1.0

Trigger-64 CDA Trigger-32 CDA Trigger-16 CDA Trigger-64 ASR Trigger-32 ASR Trigger-16 ASR

1 2 3 4 5
Noise Level

20

40

60

80

100
AS

R/
CD

A(
%

)

(a) MNIST

1 2 3 4 5
Noise Level

20

40

60

80

100

AS
R/

CD
A(

%
)

(b) CIFAR-10

1 2 3 4 5
Noise Level

20

40

60

80

100

AS
R/

CD
A(

%
)

(c) CINIC-10

1 2 3 4 5
Noise Level

20

40

60

80

100

AS
R/

CD
A(

%
)

(d) ImageNette

1 2 3 4 5
Noise Level

20

40

60

80

100

AS
R/

CD
A(

%
)

(e) BM

1 2 3 4 5
Noise Level

20

40

60

80

100

AS
R/

CD
A(

%
)

(f) GM

Figure 7: Backdoor attack against defense with transformation with embedding noise.

out malicious participants. There are two possible ways to
improve the security of vertical split learning. On the one
hand, the server can mask gradients with more advanced tech-
niques to mitigate label inference. On the other hand, since
the malicious attacker may not conduct data poisoning in all
epochs, the server may perform outlier detection based on
historical updates of a participant.

6 Related Work

Vertical split learning. Vertical split learning, as a new ma-
chine learning paradigm for VFL, splits the model into seg-
ments, and the segments are distributed to the VFL partic-
ipators to be trained separately. The neural network model
in vertical split learning is called the Split Neural Network,
or SplitNN [54]. Each data holder converts its original data
into an intermediate embedding with the model segment [27].
The vertical split learning model can adopt different aggre-
gation methods, including average, element-wise maximum,
element-wise sum, element-wise multiplication, and concate-
nation [8]. Splitfed Learning (SFL) [59] applied previous
privacy protection and model training methods to vertical
split learning scenarios to improve data privacy and training
efficiency. Secure computation methods like secure 2-party
computation and Homomorphic Encryption can also be used
in split learning [48] [66].

Backdoor attacks. Backdoor attack aims to inject the back-
door into victim machine learning models [36]. Attackers usu-
ally utilize data poisoning as the backdoor injection method.
BadNets [20] introduces the first backdoor attack to deep
neural networks by a visible backdoor trigger. To make the
attack stealthy, invisible backdoor attacks [14] [45] and se-
mantic backdoor attacks [4] [38] were proposed. All these
methods above are dirty-label backdoor attacks because their
poisoned samples are mislabelled by the attacker. In contrast,
clean-label backdoor attacks aim to poison the target model
without controlling the labeling process of poisoned data [60].
Attackers may use adversarial perturbation or image scaling
to inject invisible clean-label poisoned data samples [69] [51].
Federated learning is especially vulnerable to data poison-
ing based backdoor attacks [18]. The attacker can embed the
backdoor into the tail of the input distribution [62]. Since
federated learning involves multiple participants, the attacker
can also make use of a composite global trigger, which is

divided among different participants and injected individu-
ally [65]. New loss functions [7] and model construction
methods [15] were developed to backdoor the global model
effectively. However, the above backdoor attacks all aim at
horizontal federated learning.

Privacy and security in federated learning. There are var-
ious security threats in federated learning [42]. Researchers
show that membership inference attacks can be used to trace
training data records in federated learning in both black-box
and white-box scenarios [44]. Attackers can infer the training
data membership in a passive and an active manner in feder-
ated learning [40]. By optimizing the loss between the recov-
ered gradients and the real gradients, the attacker can recover
the training samples and the labels with the gradients [72]. For
split learning, label inference attacks [34] have been proposed
for the participant to infer the label based on the information
transmitted between participants and the server. The label
inference can also be formalized as a supervised learning
problem with a loss function of gradient-matching [28]. The
adversary server in [47] manages to recover the training data
in the participant model by hijacking its learning process.
Fu [16] provides passive and active label inference attacks by
semi-supervised learning and gradient analysis.

7 Conclusion

In this paper, we make the first attempt to explore the secu-
rity risks of backdoor attacks against vertical split learning.
Our proposed attack framework, VILLAIN, overcomes the
challenges of no label and no server model information in
vertical split learning. More specifically, we have developed a
novel label inference algorithm to locate samples of the target
label. In addition, we have designed effective data poisoning
strategies to strengthen the link between the trigger and the
backdoor in the server model. Extensive experiments have
validated the effectiveness and robustness of VILLAIN.

8 Acknowledgments

We sincerely thank our shepherd and all the anonymous re-
viewers for their valuable comments. This work was spon-
sored by CCF-AFSG Research Fund. Yanjiao Chen is the
corresponding author.

USENIX Association 32nd USENIX Security Symposium    2755



References

[1] FedAI. https://www.fedai.org/.

[2] Give me some credit dataset. https://www.kaggle.
com/c/GiveMeSomeCredit.

[3] Google Gboard. https://apps.apple.com/us/app/
gboard-the-google-keyboard/id1091700242.

[4] Eugene Bagdasaryan and Vitaly Shmatikov. Blind back-
doors in deep learning models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1505–1521,
2021.

[5] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-
orah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. In International Conference on Arti-
ficial Intelligence and Statistics. PMLR, 2020.

[6] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A
new backdoor attack in cnns by training set corruption
without label poisoning. In 2019 IEEE International
Conference on Image Processing (ICIP), pages 101–105.
IEEE, 2019.

[7] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mit-
tal, and Seraphin Calo. Analyzing federated learning
through an adversarial lens. In International Conference
on Machine Learning, pages 634–643. PMLR, 2019.

[8] Iker Ceballos, Vivek Sharma, Eduardo Mugica, Ab-
hishek Singh, Alberto Roman, Praneeth Vepakomma,
and Ramesh Raskar. SplitNN-driven vertical partition-
ing. arXiv preprint arXiv:2008.04137, 2020.

[9] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learn-
ing systems using data poisoning. arXiv preprint
arXiv:1712.05526, 2017.

[10] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian
Chen, Dimitrios Papadopoulos, and Qiang Yang. Secure-
boost: a lossless federated learning framework. IEEE
Intelligent Systems, 36(6):87–98, 2021.

[11] Tsz-Him Cheung, Weihang Dai, and Shuhan Li. Fedsgc:
Federated simple graph convolution for node classifi-
cation. In International Workshop on Federated and
Transfer Learning for Data Sparsity and Confidentiality
in Conjuncation with IJCAI, 2021.

[12] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and
Amos J Storkey. Cinic-10 is not imagenet or cifar-10.
arXiv preprint arXiv:1810.03505, 2018.

[13] Ghada Dessouky, Tommaso Frassetto, and Ahmad-
Reza Sadeghi. {HybCache}: Hybrid {Side-Channel-
Resilient} caches for trusted execution environments. In

29th USENIX Security Symposium (USENIX Security
20), pages 451–468, 2020.

[14] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira:
Learnable, imperceptible and robust backdoor attacks.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 11966–11976, 2021.

[15] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil
Gong. Local model poisoning attacks to {Byzantine-
Robust} federated learning. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1605–1622,
2020.

[16] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen,
Jingzheng Wu, Shanqing Guo, Jun Zhou, Alex X Liu,
and Ting Wang. Label inference attacks against vertical
federated learning. In USENIX Security Symposium,
2022.

[17] Xueluan Gong, Yanjiao Chen, Jianshuo Dong, and Qian
Wang. ATTEQ-NN: attention-based QoE-aware evasive
backdoor attacks. In Network and Distributed System
Security Symposium. The Internet Society, 2022.

[18] Xueluan Gong, Yanjiao Chen, Qian Wang, and Weihan
Kong. Backdoor attacks and defenses in federated learn-
ing: State-of-the-art, taxonomy, and future directions.
IEEE Wireless Communications, 2022.

[19] Kathrin Grosse, Taesung Lee, Youngja Park, Michael
Backes, and Ian Molloy. A new measure for overfitting
and its implications for backdooring of deep learning.
2020.

[20] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Sid-
dharth Garg. Badnets: evaluating backdooring attacks
on deep neural networks. IEEE Access, 7:47230–47244,
2019.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[22] Xianxu Hou, Linlin Shen, Ke Sun, and Guoping Qiu.
Deep feature consistent variational autoencoder. In 2017
IEEE winter conference on applications of computer
vision (WACV), pages 1133–1141. IEEE, 2017.

[23] Jeremy Howard and Sylvain Gugger. Fastai: a layered
API for deep learning. Information, 11(2):108, 2020.

[24] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708, 2017.

2756    32nd USENIX Security Symposium USENIX Association

https://www.fedai.org/
https://www.kaggle.com/c/GiveMeSomeCredit
https://www.kaggle.com/c/GiveMeSomeCredit
https://apps.apple.com/us/app/gboard-the-google-keyboard/id1091700242
https://apps.apple.com/us/app/gboard-the-google-keyboard/id1091700242


[25] W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Tay-
lor, and Tom Goldstein. Metapoison: practical general-
purpose clean-label data poisoning. In Advances in
Neural Information Processing Systems. PMLR, 2020.

[26] Praveen Joshi, Chandra Thapa, Seyit Camtepe, Mo-
hammed Hasanuzzaman, Ted Scully, and Haithem Afli.
Performance and information leakage in splitfed learn-
ing and multi-head split learning in healthcare data and
beyond. Methods and Protocols, 5(4):60, 2022.

[27] Praveen Joshi, Chandra Thapa, Seyit Camtepe, Mo-
hammed Hasanuzzamana, Ted Scully, and Haithem Afli.
Splitfed learning without client-side synchronization:
Analyzing client-side split network portion size to over-
all performance. arXiv preprint arXiv:2109.09246,
2021.

[28] Sanjay Kariyappa and Moinuddin K Qureshi. Exploit:
Extracting private labels in split learning. In First IEEE
Conference on Secure and Trustworthy Machine Learn-
ing, 2021.

[29] Brian Knott, Shobha Venkataraman, Awni Hannun,
Shubho Sengupta, Mark Ibrahim, and Laurens van der
Maaten. Crypten: Secure multi-party computation meets
machine learning. Advances in Neural Information Pro-
cessing Systems, 34:4961–4973, 2021.

[30] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and
Heiko Hoffmann. Universal litmus patterns: Reveal-
ing backdoor attacks in cnns. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 301–310, 2020.

[31] Alex Krizhevsky. Learning multiple layers of features
from tiny images. 2009.

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[33] Chul Min Lee, Joaquın Delgado Fernández, Sergio Po-
tenciano Menci, Alexander Rieger, and Gilbert Fridgen.
Federated learning for credit risk assessment.

[34] Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi
Zhang, Junyuan Xie, Virginia Smith, and Chong Wang.
Label leakage and protection in two-party split learning.
arXiv preprint arXiv:2102.08504, 2021.

[35] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu,
Bo Li, and Xingjun Ma. Anti-backdoor learning: Train-
ing clean models on poisoned data. Advances in Neu-
ral Information Processing Systems, 34:14900–14912,
2021.

[36] Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and
Shu-Tao Xia. Backdoor learning: a survey. arXiv
preprint arXiv:2007.08745, 2020.

[37] Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and
Shu-Tao Xia. Backdoor attack in the physical world.
arXiv preprint arXiv:2104.02361, 2021.

[38] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang.
Composite backdoor attack for deep neural network by
mixing existing benign features. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 113–131, 2020.

[39] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-pruning: defending against backdooring attacks on
deep neural networks. In International Symposium on
Research in Attacks, Intrusions, and Defenses. Springer,
2018.

[40] Luca Melis, Congzheng Song, Emiliano De Cristofaro,
and Vitaly Shmatikov. Exploiting unintended feature
leakage in collaborative learning. In IEEE Symposium
on Security and Privacy, 2019.

[41] Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-
driven approach to predict the success of bank telemar-
keting. Decision Support Systems, 62:22–31, 2014.

[42] Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh,
Yan Huang, Ali Dehghantanha, and Gautam Srivastava.
A survey on security and privacy of federated learn-
ing. Future Generation Computer Systems, 115:619–
640, 2021.

[43] Michael Naehrig, Kristin Lauter, and Vinod Vaikun-
tanathan. Can homomorphic encryption be practical?
In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop, pages 113–124, 2011.

[44] Milad Nasr, Reza Shokri, and Amir Houmansadr. Com-
prehensive privacy analysis of deep learning: passive
and active white-box inference attacks against central-
ized and federated learning. In IEEE Symposium on
Security and Privacy, 2019.

[45] Tuan Anh Nguyen and Anh Tuan Tran. Wanet-
imperceptible warping-based backdoor attack. In In-
ternational Conference on Learning Representations,
2020.

[46] Yassine Ouali, Céline Hudelot, and Myriam Tami. An
overview of deep semi-supervised learning. arXiv
preprint arXiv:2006.05278, 2020.

[47] Dario Pasquini, Giuseppe Ateniese, and Massimo
Bernaschi. Unleashing the tiger: inference attacks on
split learning. In ACM SIGSAC Conference on Com-
puter and Communications Security, 2021.

USENIX Association 32nd USENIX Security Symposium    2757



[48] George-Liviu Pereteanu, Amir Alansary, and Jonathan
Passerat-Palmbach. Split HE: fast secure inference
combining split learning and homomorphic encryption.
arXiv preprint arXiv:2202.13351, 2022.

[49] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chun-
yuan Li, Andrew Stevens, and Lawrence Carin. Varia-
tional autoencoder for deep learning of images, labels
and captions. Advances in neural information process-
ing systems, 29, 2016.

[50] Tianrui Qin, Xianghuan He, Xitong Gao, Yiren Zhao,
Kejiang Ye, and Cheng-Zhong Xu. Flareon: Stealthy
any2any backdoor injection via poisoned augmentation.
arXiv preprint arXiv:2212.09979, 2022.

[51] Erwin Quiring and Konrad Rieck. Backdooring and
poisoning neural networks with image-scaling attacks.
In 2020 IEEE Security and Privacy Workshops (SPW),
pages 41–47. IEEE, 2020.

[52] Md Atiqur Rahman, Tanzila Rahman, Robert Laganière,
Noman Mohammed, and Yang Wang. Membership infer-
ence attack against differentially private deep learning
model. Trans. Data Priv., 11(1):61–79, 2018.

[53] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting
in adversarially robust deep learning. In International
Conference on Machine Learning, pages 8093–8104.
PMLR, 2020.

[54] Daniele Romanini, Adam James Hall, Pavlos Pa-
padopoulos, Tom Titcombe, Abbas Ismail, Tudor Ce-
bere, Robert Sandmann, Robin Roehm, and Michael A
Hoeh. PyVertical: a vertical federated learning
framework for multi-headed splitNN. arXiv preprint
arXiv:2104.00489, 2021.

[55] Chuanqiang Shan, Huiyun Jiao, and Jie Fu. To-
wards representation identical privacy-preserving graph
neural network via split learning. arXiv preprint
arXiv:2107.05917, 2021.

[56] Reza Shokri and Vitaly Shmatikov. Privacy-preserving
deep learning. In Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security,
pages 1310–1321, 2015.

[57] Rachael Hwee Ling Sim, Yehong Zhang, Mun Choon
Chan, and Bryan Kian Hsiang Low. Collaborative ma-
chine learning with incentive-aware model rewards. In
International conference on machine learning, pages
8927–8936. PMLR, 2020.

[58] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–
1958, 2014.

[59] Chandra Thapa, Pathum Chamikara Mahawaga
Arachchige, Seyit Camtepe, and Lichao Sun. Splitfed:
When federated learning meets split learning. In
Proceedings of the AAAI Conference on Artificial
Intelligence, 2022.

[60] Alexander Turner, Dimitris Tsipras, and Aleksander
Madry. Label-consistent backdoor attacks. arXiv
preprint arXiv:1912.02771, 2019.

[61] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish,
and Ramesh Raskar. Split learning for health: distributed
deep learning without sharing raw patient data. arXiv
preprint arXiv:1812.00564, 2018.

[62] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput,
Harit Vishwakarma, Saurabh Agarwal, Jy-yong Sohn,
Kangwook Lee, and Dimitris Papailiopoulos. Attack of
the tails: Yes, you really can backdoor federated learning.
Advances in Neural Information Processing Systems,
33:16070–16084, 2020.

[63] Dongxian Wu and Yisen Wang. Adversarial neuron
pruning purifies backdoored deep models. Advances
in Neural Information Processing Systems, 34:16913–
16925, 2021.

[64] Ruihan Wu, Jin Peng Zhou, Kilian Q Weinberger, and
Chuan Guo. Does label differential privacy prevent label
inference attacks? arXiv preprint arXiv:2202.12968,
2022.

[65] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba:
Distributed backdoor attacks against federated learning.
In International Conference on Learning Representa-
tions, 2019.

[66] Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali An-
war, James Joshi, and Heiko Ludwig. Fedv: Privacy-
preserving federated learning over vertically partitioned
data. In Proceedings of the 14th ACM Workshop on Ar-
tificial Intelligence and Security, pages 181–192, 2021.

[67] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin
Tong. Federated machine learning: Concept and ap-
plications. ACM Transactions on Intelligent Systems
and Technology (TIST), 10(2):1–19, 2019.

[68] Shaojie Yang, Hao Chen, Jianping Huang, Yong Yan,
Jiewei Chen, and Ao Xiong. Split learning based on
self-supervised learning. In International Conference
on Computer Engineering and Networks, pages 95–104.
Springer, 2022.

[69] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey,
Jingjing Chen, and Yu-Gang Jiang. Clean-label back-
door attacks on video recognition models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14443–14452, 2020.

2758    32nd USENIX Security Symposium USENIX Association



[70] Fanglan Zheng, Kun Li, Jiang Tian, Xiaojia Xiang, et al.
A vertical federated learning method for interpretable
scorecard and its application in credit scoring. arXiv
preprint arXiv:2009.06218, 2020.

[71] Wenxuan Zhou, Zhihao Qu, Yanchao Zhao, Bin Tang,
and Baoliu Ye. An efficient split learning framework for
recurrent neural network in mobile edge environment. In
Proceedings of the Conference on Research in Adaptive
and Convergent Systems, pages 131–138, 2022.

[72] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage
from gradients. In Advances in Neural Information
Processing Systems. PMLR, 2019.

A Appendix

A.1 Ablation Study
We show the ablation study results in this part for page limit.

Trigger fabrication & backdoor augmentation. For
small triggers, the randomization augmentation should be
limited because of the backdoor injection difficulty. As shown
in Figure 8, the backdoor randomization improves the attack
success rate when the trigger size is large.

Candidate model. We evaluate the number of inferred tar-
get label samples, label inference accuracy, and attack success
rate with and without the candidate selection model H in
Figure 11.

A.2 Backdoor Defense Results
Due to page limit, we show a part of the backdoor defense re-
sults in this section. The backdoor attack performance against
transformation with embedding flipping and ABL is shown
in Table 10 and Table 11. The backdoor attack performance
against ANP and pruning is shown in Figures 14 15 12 13.

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

AT AT+FT AT+FT+AS ALL

8 16 32 40 52 64
Trigger Size

0

20

40

60

80

100

AS
R(

%
)

(a) MNIST

8 16 32 40 52 64
Trigger Size

40
50
60
70
80
90

100

AS
R(

%
)

(b) CIFAR-10

8 16 32 40 52 64
Trigger Size

40
50
60
70
80
90

100

AS
R(

%
)

(c) CINIC-10

8 16 32 40 52 64
Trigger Size

40
50
60
70
80
90

100

AS
R(

%
)

(d) ImageNette

8 16 32 40 52 64
Trigger Size

40
50
60
70
80
90

100

AS
R(

%
)

(e) BM

8 16 32 40 52 64
Trigger Size

40
50
60
70
80
90

100

AS
R(

%
)

(f) GM

Figure 8: Ablation study of trigger fabrication and backdoor
augmentation on the ASR of different datasets. AT: Additional
Trigger. FT: fabricated trigger. AS: Additional Shifting.

Table 9: Label inference attack under defenses of DP-SGD,
gradient compression, and PPDL. comp. r.: compression ratio.

DP-SGD

MNIST CIFAR-10 ImageNette
ε LIA CDA ε LIA CDA ε LIA CDA

10 98.19% 95.57% 10 96.43% 75.83% 10 89.43% 66.19%
5 94.83% 96.57% 5 91.16% 64.09% 5 85.24% 61.90%
1 87.70% 84.30% 1 68.41% 53.79% 1 66.27% 46.73%

0.5 76.06% 68.06% 0.5 20.94% 26.47% 0.5 18.49% 21.07%
0.1 12.91% 17.63% 0.1 10.58% 8.04% 0.1 13.19% 9.60%

Gradient Compression

MNIST CIFAR-10 ImageNette
comp. r. LIA CDA comp. r. LIA CDA comp. r. LIA CDA

1 100.00% 97.76% 1 95.29% 77.05% 1 92.55% 67.86%
0.8 97.69% 91.26% 0.8 91.61% 73.26% 0.8 89.71% 67.72%
0.5 92.64% 87.74% 0.5 86.72% 66.41% 0.5 77.83% 53.69%
0.3 86.82% 73.20% 0.3 80.51% 52.03% 0.3 62.29% 41.58%
0.15 20.73% 24.68% 0.15 17.12% 15.08% 0.15 10.59% 16.39%

PPDL

MNIST CIFAR-10 ImageNette
θ LIA CDA θ LIA CDA θ LIA CDA

1 100.00% 94.51% 1 96.61% 76.92% 1 92.76% 69.91%
0.8 92.57% 92.62% 0.8 90.91% 69.05% 0.8 87.64% 70.51%
0.5 72.39% 63.14% 0.5 64.68% 53.92% 0.5 52.95% 60.59%
0.3 23.28% 12.61% 0.3 14.95% 17.61% 0.3 13.71% 13.40%
0.15 13.78% 10.26% 0.15 14.48% 11.94% 0.15 8.64% 10.04%

Table 10: Backdoor attack success rate against transformation
with embedding flipping.

Trigger-64 Trigger-32 Trigger-16
ASR CDA ASR CDA ASR CDA

MNIST 91.26% 72.16% 72.73% 84.77% 83.06% 79.56%
CIFAR-10 87.44% 51.27% 98.09% 58.36% 81.56% 51.57%
ImageNette 90.14% 51.47% 76.94% 52.20% 59.44% 56.51%
CINIC-10 99.74% 46.13% 97.64% 49.09% 98.98% 52.55%

BM 64.40% 92.73% 85.07% 82.30% 64.70% 90.38%
GM 100.00% 75.65% 100.00% 62.13% 100.00% 60.26%

Table 11: Backdoor attack performance against ABL.
Trigger-64 Trigger-32 Trigger-16

DA ASR CDA DA ASR CDA DA ASR CDA

MNIST 1.49% 100.00% 95.96% 1.46% 100.00% 96.16% 2.35% 100.00% 96.33%
CIFAR-10 4.25% 99.72% 76.67% 4.37% 98.71% 76.39% 4.44% 92.46% 76.82%
ImageNette 2.01% 92.28% 70.29% 0.53% 85.95% 70.57% 0.21% 63.88% 69.55%
CINIC-10 4.21% 99.94% 63.19% 4.84% 99.91% 63.06% 3.95% 99.20% 63.09%

BM 5.44% 100.00% 92.01% 5.61% 100.00% 92.77% 5.84% 100.00% 92.51%
GM 7.22% 100.00% 78.74% 6.64% 100.00% 78.26% 5.84% 100.00% 78.04%

Table 12: The performance of VILLAIN under adaptive de-
fense of embedding detection.

Random disruption

MNIST CIFAR-10 ImageNette
noise lv. LIA ASR noise lv. LIA ASR noise lv. LIA ASR

0.1 93.83% 97.58% 0.1 91.86% 91.77% 0.1 86.46% 92.07%
0.07 97.17% 96.86% 0.07 90.51% 94.80% 0.07 85.94% 89.15%
0.05 95.86% 97.58% 0.05 89.58% 96.13% 0.05 90.12% 92.74%
0.03 93.04% 95.46% 0.03 90.83% 91.63% 0.03 86.41% 95.68%
0.01 95.40% 93.25% 0.01 95.79% 97.60% 0.01 95.10% 94.38%

Random smoothing

MNIST CIFAR-10 ImageNette
# dim. LIA ASR # dim. LIA ASR # dim. LIA ASR

1 97.10% 92.18% 1 93.50% 94.73% 1 90.88% 92.53%
3 92.44% 94.88% 3 89.87% 92.34% 3 91.70% 94.96%
5 91.92% 92.66% 5 93.18% 89.71% 5 86.06% 90.70%
8 95.41% 94.55% 8 94.52% 97.08% 8 93.68% 90.03%

10 93.64% 95.18% 10 92.14% 96.21% 10 92.69% 91.49%

0.96 0.98 1.00 1.02 1.04

0.96

0.98

1.00

1.02

1.04

LIA            ASR            CDA before poison CDA after poison 

0.01 0.03 0.05 0.08 0.10 0.15 0.20
Learning Rate

0

20

40

60

80

100

LI
A/

AS
R/

CD
A(

%
)

(a) MNIST

0.01 0.03 0.05 0.08 0.10 0.15 0.20
Learning Rate

0

20

40

60

80

100

LI
A/

AS
R/

CD
A(

%
)

(b) CIFAR-10

0.01 0.03 0.05 0.08 0.10 0.15 0.20
Learning Rate

0

20

40

60

80

100

LI
A/

AS
R/

CD
A(

%
)

(c) CINIC-10

0.01 0.03 0.05 0.08 0.10 0.15 0.20
Learning Rate

0

20

40

60

80

100

LI
A/

AS
R/

CD
A(

%
)

(d) ImageNette

0.01 0.03 0.05 0.08 0.10 0.15 0.20
Learning Rate

0

20

40

60

80

100

LI
A/

AS
R/

CD
A(

%
)

(e) BM

0.01 0.03 0.05 0.08 0.10 0.15 0.20
Learning Rate

0

20

40

60

80

100

LI
A/

AS
R/

CD
A(

%
)

(f) GM

Figure 9: Impact of learning rate.

USENIX Association 32nd USENIX Security Symposium    2759



1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

ASR              CDA before poison CDA after poison

0.2 0.4 0.6 0.8 1.0
Trigger Amplitude

0

20

40

60

80

100

AS
R/

CD
A(

%
)

(a) MNIST

0.2 0.4 0.6 0.8 1.0
Trigger Amplitude

0

20

40

60

80

100

AS
R/

CD
A(

%
)

(b) CIFAR-10

0.2 0.4 0.6 0.8 1.0
Trigger Amplitude

0

20

40

60

80

100

AS
R/

CD
A(

%
)

(c) CINIC-10

0.2 0.4 0.6 0.8 1.0
Trigger Amplitude

0

20

40

60

80

100

AS
R/

CD
A(

%
)

(d) ImageNette

0.2 0.4 0.6 0.8 1.0
Trigger Amplitude

0

20

40

60

80

100

AS
R/

CD
A(

%
)

(e) BM

0.2 0.4 0.6 0.8 1.0
Trigger Amplitude

0

20

40

60

80

100

AS
R/

CD
A(

%
)

(f) GM

Figure 10: Impact of trigger magnitude.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Target label number LIA                 ASR                 Without candidate model

5 7 10 14 18 20
Inference Number

0

25

50

75

100

Ef
fic

ie
nc

y/
LI

A/
AS

R

(a) MNIST

5 7 10 14 18 20
Inference Number

0

25

50

75

100

Ef
fic

ie
nc

y/
LI

A/
AS

R

(b) CIFAR-10

3 5 7 10 12 14
Inference Number

0

25

50

75

100

Ef
fic

ie
nc

y/
LI

A/
AS

R

(c) CINIC-10

3 5 7 10 12 14
Inference Number

0

25

50

75

100

Ef
fic

ie
nc

y/
LI

A/
AS

R

(d) ImageNette

2 3 6 8 10 12
Inference Number

0

25

50

75

100

Ef
fic

ie
nc

y/
LI

A/
AS

R

(e) BM

12 20 28 40 48 56
Inference Number

0

25

50

75

100

Ef
fic

ie
nc

y/
LI

A/
AS

R

(f) GM

Figure 11: Ablation study of the candidate selection model
used in label inference. We compare the number of inferred
target label samples, inference precision, and attack success
rate with and without the candidate model.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(a) MNIST
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pruning ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(b) CIFAR-10
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pruning ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(c) CINIC-10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(d) ImageNette
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pruning ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(e) BM
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pruning ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(f) GM

Figure 12: Backdoor attack of trigger size 32 against pruning.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(a) MNIST
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pruning ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(b) CIFAR-10
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pruning ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(c) CINIC-10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(d) ImageNette
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pruning ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(e) BM
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pruning ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(f) GM

Figure 13: Backdoor attack of trigger size 16 against pruning
.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

Baseline 0.005 0.01 0.015 0.02
ANP ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(a) MNIST
Baseline 0.005 0.01 0.015 0.02

ANP ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(b) CIFAR-10
Baseline 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

ANP ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(c) CINIC-10

Baseline 0.005 0.01 0.015 0.02
ANP ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(d) ImageNette
Baseline 0.005 0.01 0.015 0.02

ANP ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(e) BM
Baseline 0.005 0.01 0.015 0.02

ANP ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(f) GM

Figure 14: Backdoor attack of Trigger Size 32 against ANP.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

Baseline 0.005 0.01 0.015 0.02
ANP ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(a) MNIST
Baseline 0.005 0.01 0.015 0.02

ANP ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(b) CIFAR-10
Baseline 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

ANP ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(c) CINIC-10

Baseline 0.005 0.01 0.015 0.02
ANP ratio

0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(d) ImageNette
Baseline 0.005 0.01 0.015 0.02

ANP ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(e) BM
Baseline 0.005 0.01 0.015 0.02

ANP ratio
0%

20%

40%

60%

80%

100%

AS
R/

CD
A

ASR CDA

(f) GM

Figure 15: Backdoor attack of Trigger Size 16 against ANP.

0.96 0.98 1.00 1.02 1.04

0.96

0.98

1.00

1.02

1.04

LIA            ASR            CDA before poison CDA after poison 

0.02 0.04 0.06 0.08 0.10 0.15 0.20
Learning Rate

0

20

40

60

80

100

LI
A/

AS
R/

CD
A(

%
)

(a) CINIC-10

0.02 0.04 0.06 0.08 0.10 0.15 0.20
Learning Rate

0

20

40

60

80

100

LI
A/

AS
R/

CD
A(

%
)

(b) BM

0.02 0.04 0.06 0.08 0.10 0.15 0.20
Learning Rate

0

20

40

60

80

100

LI
A/

AS
R/

CD
A(

%
)

(c) GM

Figure 16: Impact of the doubled learning rate.

2760    32nd USENIX Security Symposium USENIX Association


	Introduction
	Preliminaries
	Vertical Split Learning
	Backdoor Attacks
	Threat Model

	Villain: Detailed Construction
	Label Inference
	Embedding Swapping
	Candidate Selection
	Inference Adjustment

	Data Poisoning
	Trigger Fabrication
	Backdoor Augmentation
	Learning Rate Adjustment


	Evaluations
	Experiment Setup
	Overall Performance
	Impact of Hyperparameters
	Resistance to Defense
	Defenses Against Label Inference Attack
	Defenses Against Backdoor Attacks
	Adaptive Defenses


	Discussions
	Related Work
	Conclusion
	Acknowledgments
	Appendix
	Ablation Study
	Backdoor Defense Results


