
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

BunnyHop: Exploiting the Instruction Prefetcher
Zhiyuan Zhang, Mingtian Tao, and Sioli O’Connell, The University of Adelaide;

Chitchanok Chuengsatiansup, The University of Melbourne; Daniel Genkin,
Georgia Tech; Yuval Yarom, The University of Adelaide

https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-bunnyhop

USENIX’23 Artifact Appendix: BunnyHop: Exploiting the Instruction
Prefetcher

Zhiyuan Zhang†, Mingtian Tao†, Sioli O’Connell†,
Chitchanok Chuengsatiansup‡, Daniel Genkin§, Yuval Yarom†

† The University of Adelaide, ‡ The University of Melbourne, § Georgia Tech.

A Artifact Appendix

A.1 Abstract

We provide the artifact to demonstrate the power of Bunny-
Hop in reverse-engineering the Instruction Prefetcher and
Branch Target Buffer on Intel processors. The artifact further
contains code to demonstrate BunnyHop-Reload, BunnyHop-
Evict and BunnyHop-Probe in breaking KASLR and cache
colored AES as well as monitoring a BTB entry cross hyper-
threads.

A.2 Description & Requirements

A.2.1 Security, Privacy, and Ethical Concerns

The evaluation of the BunnyHop-Evict involves installing a
customized Linux kernel and a kernel module that does an
AES encryption. To install the kernel, you may experience
various warnings or errors. Please be careful when installing
the kernel, and the users are on their own risk.

The provided code is only for the purpose of artifact evalua-
tion. The authors are not responsible for any problems caused
by using the provided code for other purposes.

A.2.2 How to Access

The artifact is available in GitHub repository:
https://github.com/0xADE1A1DE/BunnyHop/tree/
87abca5ef855593e4dc8e40e4b162d9f01026391.

The source code for cache colored kernel is available at
https://doi.org/10.5281/zenodo.7704477.

A.2.3 Hardware Dependencies

To run the artifact, you need a machine with Intel processors
(6th, 8th, 9th, 10th Gen), running Ubuntu OS natively (not on
virtual machine). You need to enable hyper-threading.

To test the BunnyHop-Evict, a machine with Intel processor
(6th ∼ 10th Gen) having four physical cores is necessary.
Because the cache coloring we implement uses the last-level

cache hash function for four core machines, we tested the
BunnyHop-Evict on i7-6700 and i5-8265U.

A.2.4 Software Dependencies

You will need to install AssemblyLine and Mastik (Please
refer to the README) to allocate code at any locations and
use some side-channel technique APIs.

You will need essential packages to compile the customized
Linux kernel. Please refer to https://phoenixnap.com/
kb/build-linux-kernel for the full list of required pack-
ages.

A.2.5 Benchmarks

None

A.3 Set-up

A.3.1 Installation

Users need to install AssemblyLine and Mastik before
running any programs. You can find them under repos-
itory https://github.com/0xADE1A1DE/AssemblyLine
and https://github.com/0xADE1A1DE/Mastik respec-
tively.

Both AssemblyLine and Mastik are long term supported
tools. In this artifact we use AssemblyLine available
at https://github.com/0xADE1A1DE/AssemblyLine/
tree/9fb095da7b5be01a121be9262e476f7a5cf71697
and Mastik available at https://
github.com/0xADE1A1DE/Mastik/tree/
8c4e550e9347e8b2f287f16f83015cd9d60414bb.

A.3.2 Basic Test

To test if two aforementioned tools are properly installed, you
can run the experiment E1.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 469

https://github.com/0xADE1A1DE/BunnyHop/tree/87abca5ef855593e4dc8e40e4b162d9f01026391
https://github.com/0xADE1A1DE/BunnyHop/tree/87abca5ef855593e4dc8e40e4b162d9f01026391
https://doi.org/10.5281/zenodo.7704477
https://phoenixnap.com/kb/build-linux-kernel
https://phoenixnap.com/kb/build-linux-kernel
https://github.com/0xADE1A1DE/AssemblyLine
https://github.com/0xADE1A1DE/Mastik
https://github.com/0xADE1A1DE/AssemblyLine/tree/9fb095da7b5be01a121be9262e476f7a5cf71697
https://github.com/0xADE1A1DE/AssemblyLine/tree/9fb095da7b5be01a121be9262e476f7a5cf71697
https://github.com/0xADE1A1DE/Mastik/tree/8c4e550e9347e8b2f287f16f83015cd9d60414bb
https://github.com/0xADE1A1DE/Mastik/tree/8c4e550e9347e8b2f287f16f83015cd9d60414bb
https://github.com/0xADE1A1DE/Mastik/tree/8c4e550e9347e8b2f287f16f83015cd9d60414bb

A.4 Evaluation Workflow

A.4.1 Major Claims

(C1): The instruction prefetcher prefetches multiple memory
lines. (E1) proves this.

(C2): The instruction prefetcher follows trained branch. (E2)
proves this.

(C3): The instruction prefetcher is shared between hyper-
threads. (E3) proves this.

(C4): The branch target buffer stores branches as long and
short branches and different target bits are stored. (E4)
proves this.

(C5): The BunnyHop-Reload technique can be used to break
KASLR. (E5) proves this.

(C6): The BunnyHop-Evict technique can be used to bypass
cache coloring and table preloading. (E6) proves this.

(C7): The BunnyHop-Probe technique can be used to monitor
a branch status in BTB cross-threads. (E7) proves this.

A.4.2 Experiments

(E1): [1/12 human-minutes, 1/720 CPU-hour] Test prefetch-
ing depth. For more information, please refer to
README under BunnyHop/IP_RE/test_depth
Preparation: Have AssemblyLine and Mastik in-
stalled.
Execution: Execute the experiment.bash to automati-
cally run the test. The script tests for 20 memory blocks
following the invoked function.
Results: Table 1 summarizes the result collected from
different platforms. On 6th ∼ 10th Gen processors, you
should observe that the prefetch depth is 14.

(E2): [1/12 human-minutes, 1/720 CPU-hour] Test the ef-
fect of trained branches on the instruction prefetcher.
For more information, please refer to README under
BunnyHop/IP_RE/test_branch
Preparation: Have AssemblyLine and Mastik in-
stalled.
Execution: Execute the experiment.bash to automati-
cally run the test. The script tests for 60 memory blocks
following the invoked function.
Results: You should observe that an instruction
prefetcher follows the trained branches to prefetch mem-
ory blocks. Sample result is available under the folder.

(E3): [1/12 human-minutes, 1/720 CPU-hour] Test the be-
havior of the instruction prefetcher on hyper-threads. For
more information, please refer to README under Bun-
nyHop/IP_RE/test_ip_operation
Preparation: Have AssemblyLine and Mastik installed.
Set the processor governor to performance. You will
need to isolate two sibling cores at the boot time. (See
README)
Execution: Execute test_idle.bash to run the test when
the hyperthread is idle. Execute test_busy.bash to run the

test when the hyperthread is busy with fetching infinite
NOPS. You will need to change pinned cores (to two
sibling cores) according to your machine configuration.
Results: You should be able to plot Figure 2 on ma-
chines with 6th ∼ 10th Intel processors.

(E4): [1/12 human-minutes, 1/720 CPU-hour] Test the tar-
get bits stored for long branch and short branch. For
more information, please refer to README under Bun-
nyHop/BTB_RE/test_targetbits
Preparation: Have AssemblyLine and Mastik installed.
The core runs the test is isolated at the boot time.
Execution: You will need to compile the program with
the command gcc main.c -lassemblyline -o bh. Then
you execute the program with the command taskset -c
1 ./bh > result.txt. In the end, you plot the graph with
the command python3 plot.py. The graph is saved as
result.py.
Results: You should observe that the instruction
prefetcher follows the trained branches to prefetch mem-
ory blocks. The sample result is available under the
folder.

(E5): [1/3 human-minutes, 1/180 CPU-hour] Break KASLR
with the BunnyHop-Reload. For more information,
please refer to README under BunnyHop/bunnyhop_fr.
Preparation: You need to find the default physical ad-
dress of the target branch and branch targets. Please
follow the instructions on the README.
Execution: You need to compile the program with
make. The code we provide guesses 256 BTB tag values.
To run the code, execute bash test.bash.
Results: You will see the obtained BTB tag bits and a
computed physical address after the randomization.

(E6): [5 human-minutes, 1/12 CPU-hour] Break AES and
bypassing cache coloring and table preloading with the
BunnyHop-Evict. For more information, please refer to
README under BunnyHop/bunnyhop_evict.
Preparation: You need to compile and install a kernel
that supports cache coloring. You also need to install an
AES kernel module. Please follow the instructions on
README.
Execution: You need to first obtain the address of an
AES encryption and update the value (base) in test.bash
under the folder bunnyhop_evict/self-eviction/spy. To
compile and execute the code, run the command bash
test.bash
Results: The randomly generated plaintext and timing
result are saved in file result_0xff.txt. To plot Figure
5, you should run the command python3 relation.py.
It reads fewer samples and plots a Pearson correlation
graph. In a scenario that the measurement is noisy, you
could run python3 process.py to find 16 peaks.

(E7): [30 human-minutes, 1/2 CPU-hour] Test the accuracy
of the BunnyHop-Probe cross hyperthreads. For more
information, please refer to README under Bunny-

470 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

Hop/bunnyhop_pp/hyperthread.
Preparation: You need to isolate two sibling cores at
the boot time. You need to update the experiment.bash
to pin the victim and spy on two sibling threads.
Execution: The experiment is similar to that of the
Flush+Reload, and it requires the attacker to find a proper
waiting cycles. The waiting cycles are determined by
processors and CPU frequencies. More instructions on
how to find proper waiting cycles are available at the
README file.
Results: The result is written to overall_result.txt which
indicates the bits that are correctly guessed. You can
get an overall success rate with the command python3
final_analyse.py

A.5 Notes on Reusability
We provide the template code to generate aliased branches
or NOPs in BunnyHop/src. They can be easily adapted for
different purposes. We will later integrate the BunnyHop into
Mastik.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 471

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation Workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

