
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Bypassing Tunnels: Leaking VPN Client Traffic
by Abusing Routing Tables

Nian Xue, New York University; Yashaswi Malla, Zihang Xia, and Christina Pöpper,
New York University Abu Dhabi; Mathy Vanhoef, imec-DistriNet, KU Leuven

https://www.usenix.org/conference/usenixsecurity23/presentation/xue

USENIX’23 Artifact Appendix: Bypassing Tunnels: Leaking VPN Client Traffic by
Abusing Routing Tables

Nian Xue
New York University

Yashaswi Malla, Zihang Xia, Christina Pöpper
New York University Abu Dhabi

Mathy Vanhoef
imec-DistriNet, KU Leuven

A Artifact Appendix

A.1 Abstract
In this artifact, we present the instructions for conducting
two novel attacks (i.e., called LocalNet Attacks and ServerIP
Attacks) that are described in our paper, causing VPN clients
to leak traffic outside the protected VPN tunnel. In our pa-
per, we claim that the traffic to the local network and to the
VPN server itself can be manipulated by abusing routing ta-
bles such that it will be sent in plaintext outside the VPN
tunnel. Through extensive experimentation with various VPN
clients, we have identified that these attacks pose a general
vulnerability across multiple OSs.

A.2 Description & Requirements
Our attacks manipulate the client’s routing table such that
traffic will be sent outside the VPN tunnel, i.e., without en-
cryption. Normally, when the VPN is not enabled, a client’s
routing table might look like the following:

[tester@zbook ~]$ ip route
default via 192.168.1.1 dev wlp0s20f3
192.168.1.0/24 dev wlp0s20f3 scope link

The IP address of the client in this example is
192.168.1.101. The two output lines mean:

• The first line says that by default all outgoing IP packets
are forwarded via 192.168.1.1. Here 192.168.1.1 is the
router. The rule also specifies “dev wlp0s20f3”, mean-
ing that the packets are sent over the wlp0s20f3 Wi-Fi
network card. All combined, all outgoing IP packets are,
by default, sent to the router using the Wi-Fi network
card.

• The second line is an exception [2] to the above rule:
all IP packets to 192.168.1.0/24, so to IP addresses be-
tween 192.168.1.0 and 192.168.1.255, are sent over “dev
wlp0s20f3”, specifically over the Wi-Fi network card.
Moreover, “scope link” means these IP addresses are
directly reachable: the packets can directly be sent to
their destination instead of first being forwarded to the
router.

When a VPN is enabled, a client’s routing table might look
like this:

[tester@zbook ~]$ ip route
default via 10.8.0.1 dev tun0
76.26.140.111 via 192.168.1.1 dev wlp0s20f3
192.168.1.0/24 dev wlp0s20f3 scope link

Here, the IP address of the VPN server is 76.26.140.111.
The first rule says that by default, all outgoing IP packets
are sent over “dev tun0”. Here tun0 is a virtual network card
representing the encrypted VPN tunnel. In other words, by
default, all packets are sent through the VPN tunnel. There
are two exceptions:

1. The second rule says that packets with as destination
the VPN server must be sent to the router using the
Wi-Fi network card. This exception avoids a rooting loop
where already-encrypted VPN packets would otherwise
get encrypted again.

2. The third rule is the same as when the VPN wasn’t en-
abled: all packets to the local network (notice the “scope
link”) are directly transmitted over the Wi-Fi network
card to the destination (so not through the VPN tunnel).
This assures that local devices in the network, such as
printers and file servers, remain accessible when using
the VPN.

A.2.1 Security, privacy, and ethical concerns

During the experiment, two types of traffic (see two claims)
may be sent outside the VPN tunnel. It is best not to enter
sensitive information while doing the experiments.

A.2.2 How to access

We have compiled a GitHub repository that provides a readme
and additional necessary files.

A.2.3 Hardware dependencies

Table 1 displays the list of required soft- and hardware equip-
ment. In terms of hardware, to conduct the experiment, a
malicious AP (Access Point) is necessary to create an AP
on any channel. Often the built-in Wi-Fi network card of
a laptop can be used. Alternatively, an an external wireless
USB adapter can be used, such as the Panda Wireless PAU06
300Mbps Wireless N USB (see Figure 1). The test platform
we used is shown in Figure 1.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 339

https://github.com/vanhoefm/vpnleaks

(a) A Panda PAU06 300Mbps
Wireless USB Adapter.

(b) A laptop with an external wire-
less USB Adapter.

Figure 1: Our example test platform running Ubuntu.

Table 1: Hardware and Software requirements to conduct the
experiment.

Class Item name

hardware Laptops or cellphones, e.g., iPhones or Androids
hardware Wireless network card (built-in or USB dongle)
software Wireshark
software create_ap script
software VPN clients

A.2.4 Software dependencies

The create_ap script to start and configure the AP is re-
quired [3]. Wireshark can be used to check leaks outside the
VPN tunnel by inspecting traffic. Sections A.4.2 and A.4.3
provide detailed instructions on which commands to run.

The targeted commercial VPN clients are available on Ap-
ple App Store and Google Play Store, or on the vendor’s
website, and can be directly downloaded from these stores.
The paid VPN apps require a subscription.

A.2.5 Benchmarks

None.

A.3 Set-up
This section includes all the installation and configuration
steps required to prepare the environment to be used for the
evaluation of the attacks.

A.3.1 Installation

We used the create_ap tool to create a Wi-Fi network for the
tests. The generic installation instructions are available here:
create_ap. On certain Linux distributions, it can be installed
using the package manager. On Ubuntu, it requires to install
the following dependencies:

sudo apt install hostapd wireshark

A standard AP can be created using the command:

sudo create_ap wlan1 wlan0 testnetwork abcdefgh

Figure 2: An example of creating an AP.

Figure 2 shows an example of how to create a Wi-Fi net-
work called testnetwork with password abcdefgh. The argu-
ments wlan1 and wlan0 depend on the machine used for the
test:

• The argument wlan0 refers to the built-in network card
and may be different depending on the machine. Find
out this name by executing ip addr and picking the
interface that is assigned an IP address.

• The argument wlan1 refers to the Wi-Fi dongle/wireless
USB adapter plugged in. Find out its name on the ma-
chine by executing ip addr before and after plugging in
the Wi-Fi dongle and seeing which interface was added.

One should now be able to connect to the created Wi-Fi
network. To inspect the traffic of any client connect to the AP
start Wireshark and listen for packets on the ‘ap0’ interface
(or on the interface of the Wi-Fi dongle in case it does not
support virtual interfaces).

Errors and warnings:

• If the error “ERROR: Failed to initialize lock” occurs,
then execute: sudo rm /tmp/create_ap.all.lock

• The warning “Your adapter does not fully support AP
virtual interface” means the Wi-Fi dongle cannot simul-
taneously act as a client and AP. If creating the Wi-Fi
network fails, then try a different USB dongle.

A.3.2 Basic Test

Install the VPN app and connect to the Wi-Fi hotspot. Open
Wireshark on the platform to monitor packets. Then enable
the VPN and perform the following tests.

A.4 Evaluation Workflow
This section includes all the operational steps and experiments
which must be performed to evaluate our attacks.

A.4.1 Major Claims

(C1 – LocalNet): Traffic to local IP addresses is not sent
through the VPN tunnel.

(C2 – ServerIP): Traffic sent to the IP address of the VPN
server is not (again) sent through the VPN tunnel.

340 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://github.com/oblique/create_ap#installation

A.4.2 Testing LocalNet Attacks

A quick method to test for this vulnerability is to make
the router hand out non-RFC1918 IP addresses for the lo-
cal network, e.g., using 207.241.237.0/24 for the local net-
work. Then enable the VPN and try to visit visit http:
//207.241.237.3/. In Wireshark, this should result in ARP
requests for the IP address 207.241.237.3, indicating that the
tested VPN is vulnerable to the LocalNet traffic leak attack.

Alternatively, start the create_ap script to hand out public
IP addresses. For example, if we want to intercept traffic to
web.archive.org, which has IP address 207.241.237.3 at
the time of writing, the hotspot has to hand out IP addresses
from a subnet that contains this IP address. This can be done
by starting create_ap as follows:

sudo create_ap wlan1 wlan0 testnetwork abcdefgh
-g 207.241.237.3

Now connect with the created AP and enable the VPN
client. Open Wireshark. Then try to visit http://207.241.
237.3 in a browser. If TCP SYN packets can be seen to
207.241.237.3, this means that the VPN app is vulnerable: by
using the Wireshark filter tcp.flags.syn == 1, it is easy to
filter for plaintext TCP SYN packets. One successful example
is shown in Figure 3.

Figure 3: An example of LocalNet Attacks. The target IP
address is 207.241.237.3.

A.4.3 Testing ServerIP Attacks

Start the create_ap script and then connect with the device
being tested:

sudo create_ap wlan1 wlan0 testnetwork abcdefgh

Now start capturing frames on the test platform. After starting
to capture frames, connect to the VPN server, and then iden-
tify the IP address of the VPN server based on the transmitted
traffic in Wireshark. Then visit “http://$VPN_SERVERIP”.
If there are no plaintext TCP SYNs in Wireshark, then the
VPN client is not vulnerable (we can use the Wireshark filter

tcp.flags.syn == 1 to filter for plaintext TCP SYN pack-
ets). If the VPN protocol is using TCP or UDP then you can
also try to visit “http://$VPN_SERVERIP:$PORT” where
we add the port that is also used by the VPN server. One
successful attack is shown in Fig. 4.

Figure 4: An example of ServerIP Attacks. The IP address of
the VPN server is 45.9.250.124.

In case there are plaintext TCP SYN packets, the next
step is to test whether the VPN client used plaintext DNS
to find the VPN server’s IP address. To determine this, we
can use the Wireshark filter ‘dns.a == $VPN_SERVERIP’. If
there are any results, then the VPN client is highly likely
vulnerable.

A.5 Stable URL
We provide a stable URL where the community can find the
final copy of our artifact in order to achieve replicability of
the experiments [1].

References

[1] https://github.com/vanhoefm/vpnleaks, 2023.

[2] Martin A. Brown. Guide to IP Layer Network Admin-
istration with Linux. http://linux-ip.net/html/
routing-selection.html, 2013. Accessed June 12,
2023.

[3] Yiannis M. create_ap. https://github.com/
oblique/create_ap, 2013. Accessed September 12,
2022.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 341

http://207.241.237.3/
http://207.241.237.3/
web.archive.org
http://207.241.237.3
http://207.241.237.3
https://github.com/vanhoefm/vpnleaks
http://linux-ip.net/html/routing-selection.html
http://linux-ip.net/html/routing-selection.html
https://github.com/oblique/create_ap
https://github.com/oblique/create_ap

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation Workflow
	Major Claims
	Testing LocalNet Attacks
	Testing ServerIP Attacks

	Stable URL

