
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Lalaine: Measuring and Characterizing
Non-Compliance of Apple Privacy Labels

Yue Xiao, Zhengyi Li, and Yue Qin, Indiana University Bloomington;
Xiaolong Bai, Orion Security Lab, Alibaba Group; Jiale Guan, Xiaojing Liao,

and Luyi Xing, Indiana University Bloomington
https://www.usenix.org/conference/usenixsecurity23/presentation/xiao-yue

USENIX’23 Artifact Appendix: Measuring and Characterizing
Non-Compliance of Apple Privacy Labels

Yue Xiao1, Zhengyi Li1, Yue Qin1, Xiaolong Bai2, Jiale Guan1, Xiaojing Liao1, Luyi Xing1

1Indiana University Bloomington, 2Orion Security Lab, Alibaba Group

A Artifact Appendix

A.1 Abstract
[Mandatory] The downloader is utilized to download the
app along with its corresponding privacy label. The static
analyzer is used to screen apps that make calls to iOS system
APIs. The dynamic analysis pipeline is employed to verify
whether an app’s code behavior complies with its privacy
label. To use the tool, you need to provide the binary code of
the app in .ipa format, as well as its privacy label from the
Apple store (if it is not present in our 366,697 app privacy
label dataset). The tool will then identify and output any
inconsistencies it detects. The dynamic analysis pipeline is
composed of three stages:

• End-to-end execution, which includes fully automated
app UI execution, dynamic instrumentation, and network
monitoring.

• Inferring data and purpose from the call trace and net-
work traffic information.

• Conducting a compliance check to identify any inconsis-
tencies

A.2 Description & Requirements
[Mandatory] To utilize the tool, the system requirements in-
clude Mac OS and a rooted iOS device. We have tested the
tool on Mac OS version 12.6.2, which is the minimum ver-
sion we recommend. Additionally, the iOS device must be
running version 12.2 or higher, although lower versions may
also be compatible with the tool. We have only listed the min-
imum versions we have tested, but other versions may still be
compatible.

A.2.1 Security, privacy, and ethical concerns

[Mandatory] Rooting an iOS device can create security, pri-
vacy, and ethical issues. It grants administrative access to the
device’s operating system, enabling customization and control
over the device’s functionality but bypassing built-in security

features, which may expose the device to security threats.
Rooting can also compromise privacy, granting unauthorized
access to personal information and data, particularly when
installing third-party software from untrusted sources. Addi-
tionally, rooting violates Apple’s terms of service, which may
lead to legal consequences and could undermine the efforts
of developers and manufacturers to create secure devices.

A.2.2 How to access

[Mandatory] You can access the source code in
github: https://github.com/xiaoyue10131748/
Lalaine/tree/LalaineStable

A.2.3 Hardware dependencies

[Mandatory] The tool requires a rooted iOS device to run,
which may present a hardware dependency issue.

A.2.4 Software dependencies

[Mandatory] We use Macaca, an open-source automation
testing framework that supports different types of applications
and provides automation drivers, environment support, pe-
ripheral tools, and integration solutions to handle challenges
such as test automation and client-side performance. We also
set up NoSmoke, a cross-platform UI crawler that scans view
trees, performs OCR operations, and creates and runs UI test
cases.

• install macaca https://macacajs.github.io/
guide/environment-setup.html#macaca-cli

• install nosmoke https://macacajs.github.io/
NoSmoke/guide/

We utilize Frida, a dynamic code instrumentation toolkit.
We inject snippets of JavaScript into native apps on iOS. We
built our hooking framework on top of the Frida API.

• install Frida’s CLI tools on MacOS: https://frida.
re/docs/installation/

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 49

https://github.com/xiaoyue10131748/Lalaine/tree/LalaineStable
https://github.com/xiaoyue10131748/Lalaine/tree/LalaineStable
https://macacajs.github.io/guide/environment-setup.html#macaca-cli
https://macacajs.github.io/guide/environment-setup.html#macaca-cli
https://macacajs.github.io/NoSmoke/guide/
https://macacajs.github.io/NoSmoke/guide/
https://frida.re/docs/installation/
https://frida.re/docs/installation/

• configure Frida on your rooted iOS device: https://
frida.re/docs/ios/

We utilized Fiddler, which is a web debugging proxy tool
that monitors, analyzes and modifies the traffic on iOS device.

• install Fiddler in your MacOS: https://docs.
telerik.com/fiddler/configure-fiddler/
tasks/configureformac

• configure your rooted iOS device: https://docs.
telerik.com/fiddler/configure-fiddler/
tasks/configureforios

A.2.5 Benchmarks

[Mandatory] The privacy label of apps we crawled from app
store are needed to put it under data folder. Please download
it from https://drive.google.com/file/d/
1k3FulkLvOhgLV_hU-hkxnuvnP4FF3tXz/view?
usp=share_link. If the app you want to test is not on
the list, you can mannully add it to this file to allow further
complaince check.

A.3 Set-up
[Mandatory] This section should include all the installation
and configuration steps required to prepare the environment
to be used for the evaluation of your artifact.

A.3.1 Installation

[Mandatory] Please download the source code https:
//github.com/xiaoyue10131748/Lalaine.git
and follow the README to setup environment.

A.3.2 Basic Test

[Mandatory] Check that Macaca, Frida and Fiddler
are successfully installed. First, run the command
nosmoke -u <device id> , to see if nosmoke can

launch an app and automatically execute UI events. Second,
run the command frida-ps -U , to see if the frida can list
all the apps installed on the iPhone. Third, launch Fiddler and
open any app on the iPhone to see if the traffic generated by
the app can be captured.

A.4 Evaluation workflow
[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] This section should include
all the operational steps and experiments which must be per-
formed to evaluate if your your artifact is functional and to
validate your paper’s key results and claims. For that pur-
pose, we ask you to use the two following subsections and
cross-reference the items therein as explained next.

A.4.1 Major Claims

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] Enumerate here the major
claims (Cx) made in your paper. Follows an example:

(C1): The tool is able to download the binary of app and its
privacy label.

(C2): The tool is able to screen apps that call sensitive iOS
system APIs.

(C3): The tool is able to gather call trace and network traffic
by dynamically executing an app in rooted device.

(C4): The tool is able to analyze call trace and network traffic
to extract (data, purpose) from code behavior.

(C5): The tool is able to perform complaince check.

A.4.2 Experiments

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available]
(E1): [download app binary and crawl privacy label] [1

human-minutes + 3-4 compute-minutes + 10GB disk]:
In this step, the tool will crawl privacy label from apple
store and download its binary ipa file.
How to: Collect the info of app you want to test. And
execute the following down-loader command.
Preparation: Put the information of the app that you
want to download in app_info.json
Execution: (1) python privacy_label_crawler.py

-input_file ./app_info.json -result_dir

./label/ -driver_path ./chromedriver (2)
python app_binary_downloader.py -input_file

./app_info.json -result_dir ./ipa/

Results: The app binary will be in the folder /ipa/ and
the privay label will be in the folder /label/

(E2): [screen apps binary ipa file] [0.5 human-minutes +
0.5 compute-minutes + 10GB disk]: In this step, the tool
will screen apps that make calls to iOS system APIs.
How to: Execute the following static analyzer (SAF)
command.
Preparation: Put the binary of app (.ipa) you want to
static scan under the folder /app
Execution: (1) python find_in_decrypted_ipas.py

-f ./API_List.txt -i ./app/

Results: The results will be in the file
find_in_decrypted_ret.txt

(E3): [call trace and traffic gathering] [1 human-minutes +
3-4 compute-minutes + 10GB disk]: In this step, the tool
will gather call trace and network traffic by dynamically
executing an app in the rooted device.
How to: This step will take 3-4 mins. It takes three steps:
(1) launch the iPhone, network monitor, and Macaca
server for the reviewers. (2) the reviewers run the com-
mand python batch_ui_frida_test.py 0 . -i

50 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://frida.re/docs/ios/
https://frida.re/docs/ios/
https://docs.telerik.com/fiddler/configure-fiddler/tasks/configureformac
https://docs.telerik.com/fiddler/configure-fiddler/tasks/configureformac
https://docs.telerik.com/fiddler/configure-fiddler/tasks/configureformac
https://docs.telerik.com/fiddler/configure-fiddler/tasks/configureforios
https://docs.telerik.com/fiddler/configure-fiddler/tasks/configureforios
https://docs.telerik.com/fiddler/configure-fiddler/tasks/configureforios
https://drive.google.com/file/d/1k3FulkLvOhgLV_hU-hkxnuvnP4FF3tXz/view?usp=share_link.
https://drive.google.com/file/d/1k3FulkLvOhgLV_hU-hkxnuvnP4FF3tXz/view?usp=share_link.
https://drive.google.com/file/d/1k3FulkLvOhgLV_hU-hkxnuvnP4FF3tXz/view?usp=share_link.
https://github.com/xiaoyue10131748/Lalaine.git
https://github.com/xiaoyue10131748/Lalaine.git

<device id> (3) close the iPhone and macaca server,
dump the traffic from the network monitor
Preparation: Make sure the iPhone, network monitor
and Macaca server are launched.
Execution: python batch_ui_frida_test.py 0 . -i

<device id>

Results: The results about are under result/0/
folder.

(E4): [(data, purpose) inference] [0 human-hour + 0.5
compute-minutes]: Analyze call trace and network traffic
to extract (data, purpose) from code behavior.
How to: Execute the following command.
Execution: python analyze_log.py 0 .
Results: Analyzing result can be found in
./result/0/prediction_output/

(E5): [Compliance check] [0 human-hour + 0.5 compute-
minutes]: Perform compliance check to find any incon-
sistencies between (data,purpose) extracted from call
trace and network traffic and privacy label in its privacy
label.
How to: Execute the following command.
Execution: python compliance_check.py 0 .
Results: Analyzing result can be found in
./result/0/inconsistency_output/

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 51

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

