
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Mitigating Security Risks in Linux with KLAUS:
A Method for Evaluating Patch Correctness

Yuhang Wu and Zhenpeng Lin, Northwestern University;
Yueqi Chen, University of Colorado Boulder; Dang K Le, Northwestern University;

Dongliang Mu, Huazhong University of Science and Technology;
Xinyu Xing, Northwestern University

https://www.usenix.org/conference/usenixsecurity23/presentation/wu-yuhang

USENIX’23 Artifact Appendix: <Mitigating Security Risks in Linux with
KLAUS

– A Method for Evaluating Patch Correctness –>

Yuhang Wu
yuhang.wu@northwestern.edu

Northwestern University

Zhenpeng Lin
zplin@u.northwestern.edu
Northwestern University

Yueqi Chen
yueqi.chen@colorado.edu

University of Colorado Boulder

Dang K Le
dang.le@northwestern.edu
Northwestern University

Dongliang Mu
dzm91@hust.edu.cn

Huazhong University of Science and Technology

Xinyu Xing
xinyu.xing@northwestern.edu

Northwestern University

A Artifact Appendix

A.1 Abstract

This artifact is applying for an Artifacts Available badge,
an Artifacts Functional badge, and an Results Reproduced
badge.

The artifact primarily consists of two parts: the source code
of KLAUS, and the Docker runtime environment for KLAUS.
These components encompass the specific implementation of
the designs in our paper, and also offer a very user-friendly
and convenient mode of operation. KLAUS is a framework
for verifying the correctness of Linux kernel patches, mainly
composed of a static analysis part (identifying AWRPs as pro-
posed in our paper) and a dynamic fuzz testing part (Fuzzing).

Firstly, our open-source source code includes the source
code for static analysis, the source code for automatic in-
strumentation, and the source code for the fuzzer. These
source codes have good extensibility and will be beneficial for
other researchers to conduct more in-depth research improve-
ments or extensions. Subsequently, we encapsulate the entire
KLAUS framework in a Docker image, for the convenience
of all researchers and users. In this Appendix, we will provide
the necessary explanations and some screenshots to facilitate
the evaluation of our academic achievements.

A.2 Description & Requirements

Hardware, for evaluation purposes, it is recommended to use
a multi-core CPU environment that supports Kernel-based
Virtual Machine technology. Additionally, due to the fuzzing
process, it is recommended to have a minimum of 4 CPU

cores, at least 32GB of memory, and a minimum of 100GB
of hard disk space.

Software, the experiment requires a system with X86/64
architecture that supports running a Docker environment. It
is necessary to have a network environment that supports the
installation of dependencies and accessing information and
code from the syzkaller community and Google’s hosted Git
website.

A.2.1 Security, privacy, and ethical concerns

All experiments (static analysis/fuzzing) are conducted within
Docker containers, but it is necessary to map a shared folder
from the local machine to the Docker container to serve as
data storage. This might result in the generation of malicious
files in the shared folder; however, as long as they are not
executed on the local machine, they will not cause any harm.
Each instance of the Fuzzer runs inside QEMU within the
Docker container and will not pose any threat to the local
machine’s system.

A.2.2 How to access

All the artifacts are available in https://github.com/wup
co/KLAUS, the directory

• 1-Docker-env are the runtime evaluations.

• 2-Syzpatch are the major portion of the code used in our
research.

A.2.3 Hardware dependencies

• CPU: 4 CPU cores with virtualization technology.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 253

https://github.com/wupco/KLAUS
https://github.com/wupco/KLAUS

• Memory: 32GB or larger.

• Disk space: 100GB or larger.

A.2.4 Software dependencies

• Softwares: Docker.

A.2.5 Benchmarks

None.

A.3 Set-up
Please adhere to the instructions provided in the
README.md file of our GitHub repository.

A.3.1 Installation

None.

A.3.2 Basic Test

Figure 1: The files in the docker container.

After successfully building the Docker, execute it using
the command docker run -v $(pwd)/data:/data --rm -it

↪→ --privileged klaus. Upon executing this command, one
should be inside the Docker container where commands can
be executed freely. At this point, in the root directory of the
container, there should be the directories essential for the
experiment, namely data, klaus_fuzzer, llvm-project-10.0.1,
patch_analyzer, image, and gcc-bin. Within the subdirectory
fuzz_cfgs_dir of the data directory, one can execute the
build_env.py file, which requires two arguments: commitid,
representing the commit id of the buggy patch, and syzid, rep-
resenting the bug report id of the bug that the patch addresses.
For instance, to test the correctness of the patch located
at https://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=730c5fd42c1e,
the required commitid is 730c5fd42c1e, and the bug
report https://syzkaller.appspot.com/bug?id=
53b6555b27af2cae74e2fbdac6cadc73f9cb18aa id syzid

is 53b6555b27af2cae74e2fbdac6cadc73f9cb18aa that this patch
fixes. This information can be observed in the Figure 1.

A.4 Evaluation workflow
KLAUS is utilized for verifying the correctness of Linux ker-
nel patches. To achieve this objective, we employ a combina-
tion of static analysis and dynamic fuzzing techniques, which
are the two critical components of KLAUS. It is important to
note that our use of fuzzing technology is solely to validate
that the AWRPs identified through static analysis are effec-
tive in assessing the correctness of Linux kernel patches; it is
merely one implementation approach. Our primary contribu-
tion lies in the discovery and identification of AWRPs through
static analysis. By successfully executing KLAUS, we antici-
pate generating information about the identified AWRPs, and
also utilizing this information to automatically instrument the
code pre-fuzzing. Ultimately, this will enable the successful
launch of the fuzzer to evaluate the patch.

A.4.1 Major Claims

(C1): KLAUS will identify the AWRPs corresponding to
each case in the ground truth dataset with respect to the
patch.

(C2): The Fuzzer component of KLAUS can operate nor-
mally, and there is a high probability that it can trigger
bugs resulting from errors in the patch.

A.4.2 Experiments

First, please follow the guide in our GitHub repository
to properly set up the Docker environment. Subsequently,
launch Docker, enter the Docker container, and execute the
build_env.py file with the specified parameters. It is im-
perative to note that detailed information regarding our
ground truth data is located in Evaluation_Results.xlsx.
Upon the completion of static analysis and instrumen-
tation, navigate to /data/fuzz_cfgs_dir/[commitid] and exe-
cute fuzz_start.sh to initiate the fuzzer. Information on
AWRPs can be found in prop.txt and cond.txt within the
/data/kernels/[commitid] directory, while the working direc-
tory of the fuzzer is located at /data/fuzz_workdir. Addition-
ally, configuration information for running the fuzzer can be
found in /data/fuzz_cfgs_dir/[commitid]/config. If it is neces-
sary to empty and reset the environment under the data folder,
cleardata.sh can be executed on the local machine. It is im-
portant to note that occasionally, when there is an error in
applying clang.patch or classmap.patch, it can be ignored by
pressing Enter directly.
(E1): Test whether the ground truth cases can be analyzed

correctly.
Execution: execute build_env.py file with the specified
parameters.
Results: [commitid] has inst will be reported in stdout.
Information on AWRPs can be found in prop.txt and
cond.txt within the /data/kernels/[commitid] directory.

(E2): Test whether the fuzzer can be run normally.

254 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=730c5fd42c1e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=730c5fd42c1e
https://syzkaller.appspot.com/bug?id=53b6555b27af2cae74e2fbdac6cadc73f9cb18aa
https://syzkaller.appspot.com/bug?id=53b6555b27af2cae74e2fbdac6cadc73f9cb18aa

Execution: execute fuzz_start.sh file in
/data/fuzz_cfgs_dir/[commitid].
Results: The fuzzer will operate normally, and concur-
rently, the status of the fuzzer will be outputted to the
stdout.

Figure 2: The expected result of the static analysis part.

Figure 3: The fuzzer has been successfully executed.

For the results of the static analysis part, as shown in Fig-
ure 2, it successfully identified the AWRPs in the patch and
instrumented the kernel code. Subsequently, when the fuzzer
is executed, information and status during fuzzing will be
displayed, as in Figure 3.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 255

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

