
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

NVLeak: Off-Chip Side-Channel Attacks
via Non-Volatile Memory Systems

Zixuan Wang, UC San Diego; Mohammadkazem Taram, Purdue University and
UC San Diego; Daniel Moghimi, UT Austin and UC San Diego; Steven Swanson,

Dean Tullsen, and Jishen Zhao, UC San Diego
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-zixuan

NVLeak: Off-Chip Side-Channel Attacks via Non-Volatile Memory Systems

Zixuan Wang? Mohammadkazem Taram]? Daniel Moghimi†?

Steven Swanson? Dean Tullsen? Jishen Zhao?

?UC San Diego]Purdue University †UT Austin

A Artifact Appendix

A.1 Abstract

This artifact describes NVLeak, a collection of
microarchitecture-level reverse-engineering tools and
covert/side channel attack proof-of-concept, which exploit
the microarchitecture design of Intel Optane DIMM. NVLeak
also comes with a set of scripts to set up system environments,
run experiments, collect results, and generate plots.

A.2 Description & Requirements

NVLeak artifacts are available online as a GitHub repo which
contains reverse engineering, covert/side channel code, data
parsing scripts, and documentation to use these tools. To
reproduce the major claims in the main paper, we recommend
using a server machine with Intel Optane DIMM, similar to
Server A or Server B described in the main paper.

A.2.1 Security, privacy, and ethical concerns

This artifact does not exploit any security breaches on evalua-
tors’ machines. The reverse-engineering and covert/side chan-
nel code is run on the server machine with Optane DIMMs,
and it is not destructive to evaluators’ environments. The only
code running on evaluators’ machines is data parsing and plot
generation scripts, which can run in the Docker images from
NVLeak.

A.2.2 How to access

NVLeak code is hosted on GitHub1.

A.2.3 Hardware dependencies

NVLeak exploits the microarchitecture designs of Intel Op-
tane DIMMs and thus requires these DIMMs to reproduce the
results presented in the main paper. An example server ma-
chine environment with Optane DIMM is shown in Table 1.

1https://github.com/TheNetAdmin/NVLeak/tree/
588567e6ec30f2df9f260e60385031c94e94c75e

Table 1: NVRAM-equipped server system configuration.
Hardware Configuration

CPU
Intel Xeon Gold 6230

20 Cores per socket, 2 sockets
HyperThreading off

L1 Cache 32 KiB 8-way I-Cache, 32 KiB 8-way D-Cache, private
L2 Cache 1 MiB, 16-way, private
L3 Cache 27.5 MiB, 11-way, shared

DRAM 6 channels per socket
DDR4, 16 GiB, 2666MHz

NVRAM
Intel Optane DIMM, 6 channels per socket

128 GiB, 2666 MHz
Firmware: 01.02.00.5355

A.2.4 Software dependencies

NVLeak has a kernel module that compiles with Linux 5.4
or older versions (tested with 5.1 and 4.15). A newer kernel
may have breaking changes to the filesystem APIs used by
NVLeak and thus may fail the compilation. NVLeak requires
ndctl (v67+) and ipmctl (v02.00.00.3885) to configure the
Intel Optane DIMMs, which can be compiled and installed
from their source code on GitHub. Additional NVLeak re-
quires e2fsprogs (v1.46.4 or newer) to configure the Ext4
filesystem, and sqlite3 (v3.31.1), PMDK library, wolfSSL
(v4.2.0) for side channel attacks. NVLeak GitHub repo has
more detailed documentation on installing and using these
tools.

A.2.5 Benchmarks

NVLeak requires NPPES NPI dataset for SQLite side chan-
nels and provides a script to download this dataset.

A.3 Set-up

NVLeak provides a set of scripts to set up the server machine
for experiments. Due to the space limit, we provide minimal
instructions in this artifact appendix and describe the complete
setup process in the NVLeak GitHub repo.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 407

https://github.com/TheNetAdmin/NVLeak/tree/588567e6ec30f2df9f260e60385031c94e94c75e
https://github.com/TheNetAdmin/NVLeak/tree/588567e6ec30f2df9f260e60385031c94e94c75e

$ sudo -i su
cd NVLeak/nvleak
bash scripts/machine/machine.sh setup
reboot
bash scripts/machine/optane.sh reset
bash scripts/machine/optane.sh setup \

appdirect ni
bash scripts/machine/optane.sh ndctl

Figure 1: Set up the Linux boot arguments and Optane DIMM
operation modes.

$ ndctl list -u
[

{
"dev":"namespace1.0",
"mode":"fsdax",
"map":"dev",
"size":"124.03 GiB (133.18 GB)",
"uuid":"***",
"sector_size":512,
"align":2097152,
"blockdev":"pmem1"

},
{

"dev":"namespace0.0",
"mode":"fsdax",
"map":"mem",
"size":"32.00 GiB (34.36 GB)",
"sector_size":512,
"blockdev":"pmem0"

}
]

Figure 2: Optane DIMMs are successfully configured into the
non-interleaved mode (the pmem1 device is around 128 GiB, a
single DIMM’s size), and the kernel boot arugment memmap
successfully creates an emulated PMEM device pmem0 using
DRAM.

A.3.1 Installation

NVLeak provides scripts to set up the system, including Linux
boot commands and Optane DIMM operation modes, as listed
in Figure 1.

Each NVLeak experiment requires a different set of tools
and Optane DIMM configurations. In general, each setup in-
volves three steps: (1) Install required tools, e.g., sqlite3;
(2) Configure Optane DIMMs and mount them as Linux de-
vices; (3) Compile the source code in NVLeak. Please refer
to NVLeak GitHub’s documentation for more details.

A.3.2 Basic Test

To check if the setup takes effect, run ndctl and check
if a non-interleaved PMEM device and an emulated PMEM
device are created, as shown in Figure 2.

A.4 Evaluation workflow

Table 2: Major claims and corresponding results.
Figure Type Claims

2

Reverse
Engineering

L1/L2 NVCache sizes, their block sizes, and
WPQ size

4 L1/L2 NVCache set structures
5 Wear-leveling policy
6 Wear-leveling’s trigger condition
7 Robustness of wear-leveling data migration

17 Detailed pointer chasing results on Server A
18 Reverse engineering results on Server B

9b-c Covert
Channel

Cross virtual machine covert channel perfor-
mance and signal

10 Filesystem inode-based covert channel

12
Side

Channel

Access patterns of SQLite executing different
SQL code

13 Access patterns of SQLite executing ranged
queries

14 Access patterns of PMDK key-value store
15 Detected function calls from wolfSSL library

16 Mitigation Effectiveness and performance of the PMDK-
based mitigation

A.4.1 Major Claims

As shown in Table 2, we have made the following four major
claims in our main paper:
(C1): NVLeak is able to reverse engineer the Optane

DIMM’s microarchitecture designs, including WPQ size,
NVCache set structures, and wear-leveling mechanisms.

(C2): NVLeak can establish covert channels based on the
recovered off-chip microarchitecture to break virtualiza-
tion and file system isolation.

(C3): NVLeak can establish side channels to leak sensitive
information from applications that use NVRAM as stor-
age or memory.

(C4): NVLeak can mitigate the recovered vulnerability by
patching the PMDK library’s memory allocator.

A.4.2 Experiments

The major NVLeak experiments can be categorized into four
types, as listed below. NVLeak GitHub repo provides com-
plete documentation to set up hardware/software environ-
ments and reproduce results. The GitHub repo also contains
scripts to collect and parse data, generate plots, and compile
a LaTeX PDF with all plots organized as in the main paper.
(E1): Reverse Engineering [1 human-hour + 6 compute-

hours + 18 GiB disk]:
Steps: Configure the Optane DIMM into non-
interleaved mode, then compile and insert the NVLeak
kernel module, and finally run the scripts to execute all
experiments. NVLeak also provides Slack integration

408 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

to send experiment progress to the Slack channel
configured by the user.
Results: Reproduce Figure 2-7 and Figure 17-18.
Docs: See docs/reproduce/ReverseEngineering.md in
the NVLeak GitHub repo for more details.

(E2): Covert Channel [1 human-hour + 16 compute-hours
+ 32 GiB disk]:
Steps: Configure the Optane DIMM into non-
interleaved mode, and create two separate Linux PMEM
devices for the sender and receiver. Then compile the
user space proof-of-concept, including QEMU and
KVM-unit-tests. And finally, execute NVLeak’s scripts
to run experiments.
Results: Reproduce Figure 9-10.
Docs: See docs/reproduce/CovertChannel.md in the
NVLeak GitHub repo for more details.

(E3): Side Channel [2 human-hours + 1 compute-hours +
1 GiB disk]:
Steps: Create two separate Linux PMEM devices for
the attacker and victim. Then download the NPPES
dataset and initialize the SQLite database. And finally,
run NVLeak scripts to start experiments.
Results: Reproduce Figure 12-15.
Docs: See docs/reproduce/SideChannel.md in the
NVLeak GitHub repo for more details.

(E4): Mitigation [2 human-hour + 1 compute-hours + 1 GiB
disk]:
Steps: Download and compile the PMDK library, then
execute NVLeak scripts to evaluate the effectiveness and
performance of the mitigations described in the main
paper.
Results: Reproduce Figure 16.
Docs: See docs/reproduce/SideChannel.md in the
NVLeak GitHub repo for more details.

A.5 Notes on Reusability

NVLeak is able to exploit Optane DIMM’s microarchitecture,
and the user can establish attacks based on these hardware
designs. But NVLeak is not limited to Optane DIMM as
NVLeak is not bound to any Optane-specific hardware or
software. One example is that NVLeak can run on DRAM, as
shown in our main paper, Figure 10b.

We envision that NVLeak can be used to exploit future
memory devices’ microarchitecture designs, such as new
memory products based on the Compute Express Link (CXL)
technology. In fact, we have repurposed NVLeak to reveal
PCIe performance characteristics (not shown in this paper)
by attaching an FPGA to PCIe and using MMIO to map the
FPGA memory for NVLeak to access. We hope NVLeak
can facilitate future memory security research for not just
NVRAM but even broader memory technologies.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 409

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

