
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

CarpetFuzz: Automatic Program Option Constraint
Extraction from Documentation for Fuzzing

Dawei Wang, Ying Li, and Zhiyu Zhang, SKLOIS, Institute of Information Engineering,
Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese
Academy of Sciences, China; Kai Chen, SKLOIS, Institute of Information Engineering,
Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese

Academy of Sciences, China; Beijing Academy of Artificial Intelligence, China
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-dawei

USENIX’23 Artifact Appendix: CarpetFuzz: Automatic Program Option
Constraint Extraction from Documentation for Fuzzing

Dawei Wang1,2, Ying Li1,2, Zhiyu Zhang1,2, and Kai Chen1,2,3*

1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

3Beijing Academy of Artificial Intelligence, China
{wangdawei,liying1998,zhangzhiyu1999,chenkai}@iie.ac.cn

A Artifact Appendix

A.1 Abstract

CarpetFuzz is an NLP-based fuzzing assistance tool specifi-
cally designed for extracting constraint relationships between
command-line options from documents. Our evaluation of
CarpetFuzz involved a comprehensive analysis comprising an
end-to-end experiment, a comparative experiment, and four
submodule experiments. To facilitate the setup process, we
provide a Dockerfile, which helps mitigate potential issues
with environment configuration. Additionally, we offer a col-
lection of scripts that automate experiment reproduction and
effectively showcase the results obtained.

Given the nature of fuzzing-related work, reproducing the
experiments conducted with CarpetFuzz necessitates a sub-
stantial amount of computational resources. Replicating all
the experiments outlined in the paper requires a total of 33,600
CPU hours (across 5 repetitions). Simplifying the process
would still require a minimum of 15,840 CPU hours. Conse-
quently, we recommend employing a server with at least 32
cores to carry out these experiments, which would approxi-
mately take around 20.6 days. It’s worth noting that having a
higher number of cores would further enhance the efficiency
of the experiments.

A.2 Description & Requirements

Our paper describes a novel technique for identifying and
extracting constraints among program options from the docu-
mentation. Our artifact is a prototype of our technique named
CarpetFuzz, which contains the models, fuzzers, run scripts,
and documentation. We also provide a comprehensive collec-
tion of samples, run scripts, and documentation to replicate
the experiments outlined in our paper with ease.

*Corresponding author.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact is provided as a GitHub repository:
https://github.com/waugustus/CarpetFuzz/commit/
50f09eb94d33abbfe3e18184988a0c3a8f0f5612.

A.2.3 Hardware dependencies

As a fuzzing-related work, reproducing the experiments ne-
cessitates a significant allocation of computational resources,
ranging from 15,840 to 33,600 CPU hours. To ensure com-
pletion within the review process timeframe, we recommend
utilizing a server with a minimum of 32 cores, which would
require approximately 20.6 days. For enhanced fault tolerance
and expediency, we strongly advise opting for a server with a
higher core count. In terms of hard disk capacity, our Docker
image occupies around 20GB of disk space, so a disk capacity
of 50GB is more than sufficient.

For the sole purpose of running CarpetFuzz, we believe that
mainstream computers available on the market are sufficient
to meet the requirements, such as computers with a 1-core
CPU, 8GB RAM, and a 128GB hard drive.

A.2.4 Software dependencies

All software dependencies have been successfully resolved
within our provided Dockerfile which is based on Ubuntu
20.04. Therefore, any system capable of running this image
is suitable for the task.

A.2.5 Benchmarks

Our benchmark includes a total of 50 executable programs,
with 20 sourced from our real-world program dataset and 30
obtained from the POWER dataset. All of these programs

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 113

https://github.com/waugustus/CarpetFuzz/commit/50f09eb94d33abbfe3e18184988a0c3a8f0f5612
https://github.com/waugustus/CarpetFuzz/commit/50f09eb94d33abbfe3e18184988a0c3a8f0f5612

can be readily acquired from the internet. The process of
obtaining and compiling each program has been thoroughly
documented in our Dockerfile, facilitating automated building
using the "docker build" command.

A.3 Set-up
Clone the artifact repository:
$ git clone --recursive https://github.com/

waugustus/CarpetFuzz; cd CarpetFuzz

A.3.1 Installation

For easy installation, we offer a ready-to-use Docker image
for download,
$ sudo docker pull 4ugustus/carpetfuzz

or you can compile the image yourself using the Dockerfile
we provide.

$ sudo docker build -t
4ugustus/carpetfuzz:latest .
Then you can create the container based on the image,

$ sudo docker run -it --name "carpetfuzz"
4ugustus/carpetfuzz:latest bash

A.3.2 Basic Test

We take the program “tiffcp” as an example (in the con-
tatiner),

1. Use CarpetFuzz to analyze the relationships from the
manpage file:

$ cd /root/programs/libtiff

$ python3 ${CarpetFuzz}/scripts/find_
relationship.py --file $PWD/build_
carpetfuzz/share/man/man1/tiffcp.1

2. Use pict to generate 6-wise combinations:

$ python3 ${CarpetFuzz}/scripts/generate_
combination.py --relation ${CarpetFuzz}/
output/relation/relation_tiffcp.json

3. Rank each combination with its dry-run coverage:

$ python3 ${CarpetFuzz}/scripts/rank_
combination.py --combination ${CarpetFuzz}/
output/combination/combination_tiffcp.txt
--dict ${CarpetFuzz}/tests/dict/dict.json
--bindir $PWD/build_carpetfuzz/bin
--seeddir input

4. Fuzz with the ranked stubs:

$ ${CarpetFuzz}/fuzzer/afl-fuzz -i
input/ -o output/ -K ${CarpetFuzz}/
output/stubs/ranked_stubs_tiffcp.txt --
$PWD/build_carpetfuzz/bin/tiffcp @@

A.4 Evaluation workflow
In our paper, we evaluated CarpetFuzz through a total of six
experiments, including an end-to-end experiment, a compar-
ative experiment, and four submodule experiments, which
collectively required 33,600 CPU hours. Please note that due
to the authors of POWER declining our request to use their
tool during the review process, the comparative experiment
was deemed unnecessary (RQ5), resulting in a reduction of
7,200 CPU hours. Furthermore, all experiments in the pa-
per were repeated five times. However, for simplification pur-
poses, we consider three repetitions to be acceptable, resulting
in a reduction of 10,560 CPU hours. As a result, the minimum
required time for the experiments is 15,840 CPU hours.

If you desire to replicate the experiments in the paper com-
prehensively (excluding running POWER), you can execute
"$./run_fuzzing.sh" without any options in A.4.1. This
will trigger CarpetFuzz to perform fuzzing on the entire bench-
mark and repeat the process five times, thus amounting to a
total runtime of 30,000 CPU hours.

A.4.1 Preprocessing

1. Build docker image for experiments [1 human-minute +
6 compute-hours + 20GB disk]:

$ git clone https://github.com/waugustus/
CarpetFuzz-experiments

$ sudo docker build -t
carpetfuzz-experiment:latest .

$ sudo docker run -d --name
"carpetfuzz-experiment"
carpetfuzz-experiment:latest tail -f
/dev/null

$ sudo docker exec -it
carpetfuzz-experiment bash

2. Start all fuzzing instances [1 human-minute + 15,840
CPU-hours + 10GB disk]:

$ screen -dmS fuzzing bash -c
"./run_fuzzing.sh -r 3 2>&1 |tee
fuzzing.log"

3. Analyze the documents from the compiled programs
and generate the results of relationship identification and
extraction [1 human-minute + 10 computer-minutes +
1GB disk]:

$ screen -dmS analyze python3
analyze_manpages.py 2>&1 | tee analyze.log

A.4.2 Major Claims

(C1): Compared to aflfast, mopt, afl++, CarpetFuzz can help
afl find more uncovered edges. This is proven by the

114 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://github.com/waugustus/CarpetFuzz
https://github.com/waugustus/CarpetFuzz
https://github.com/waugustus/CarpetFuzz-experiments
https://github.com/waugustus/CarpetFuzz-experiments

experiment (E1) described in Section 5.1 whose results
are illustrated in Table 1.

(C2): For explicitly declared relationships, CarpetFuzz
achieves an accuracy of 92.90% on the validation set and
98.80% on the documentation of the 20 programs. For
implicitly declared relationships, CarpetFuzz achieves
an precision of 95.87% and a recall of 90.09%. This is
proven by the experiments (E2) described in Section 5.2.

(C3): The precision and recall of conflict were 95.83%
and 89.40%, and those of dependency were 100% and
81.82%. The precision and recall of all relationships
were 96.10% and 88.85%. This is proven by the experi-
ments (E3) described in Section 5.3.

(C4): With our prioritization technique, CarpetFuzz found
more edges on each program that other fuzzers could
not discover. This is proven by the experiments (E4)
described in Section 5.4 whose results are illustrated in
Table 2.

(C5): CarpetFuzz can discover real-world vulnerabilities.
This is proven by the experiments (E4) described in
Section 5.6 whose results are illustrated in Table 4.

A.4.3 Experiments

(E1): [5 human-minutes + 1 compute-hour]: This experi-
ment will measure the edge coverage for all Fuzzing
instances and present the results in the format shown in
Table 1.
How to: First, run get_stubs.py in experiments/
RQ1/scripts to collect all testcases. Second, run
afl-showmap.py to obtain the coverage data. Third,
run analyze_results.py to present the results.
Preparation: The preprocessing step in A.4.1 is re-
quired to have fuzzing results.
Execution: Execute the following commands:
$ cd experiments/RQ1/scripts
$ python3 get_stubs.py
$ python3 afl-showmap.py
$ python3 analyze_results.py
Results: The ouput should match Table 1 of the paper.

(E2): [5 human-minutes + 5 compute-minutes]: This exper-
iment will measure the relationship identification per-
formance of CarpetFuzz on the validation set and the
documentation of the 20 programs.
How to: Run analyze_results.py in experiments/
RQ2/scripts to obtain the results.
Preparation: The preprocessing step in A.4.1 is re-
quired to obtain prediction results.
Execution: Execute the following commands:
$ cd experiments/RQ2/scripts
$ python3 analyze_results.py
Results: The ouput should match Section 5.2 of the
paper.

(E3): [5 human-minutes + 5 compute-minutes]: This exper-

iment will measure the relationship extraction perfor-
mance of CarpetFuzz.
How to: Run analyze_results.py in experiments/
RQ3/scripts to obtain the results.
Preparation: The preprocessing step in A.4.1 is re-
quired to obtain extraction results.
Execution: Execute the following commands:
$ cd experiments/RQ3/scripts
$ python3 analyze_results.py
Results: The ouput should match Section 5.3 of the
paper.

(E4): [5 human-minutes + 1 compute-hour]: This experi-
ment will measure the edge coverage for CarpetFuzz-
random instances and present the results in the format
shown in Table 2.
How to: First, run get_stubs.py in experiments/
RQ4/scripts to collect all testcases. Second, run
afl-showmap.py to obtain the coverage data. Third,
run analyze_results.py to present the results.
Preparation: The preprocessing step in A.4.1 is re-
quired to have fuzzing results.
Execution: Execute the following commands:
$ cd experiments/RQ4/scripts
$ python3 get_stubs.py
$ python3 afl-showmap.py
$ python3 analyze_results.py
Results: The ouput should match Table 2 of the paper.

(E5): [5 human-minutes + 1 compute-hour]: This experi-
ment will tally the number of crashes encountered by
CarpetFuzz instances.
How to: Run analyze_results.py in experiments/
RQ6/scripts to tally the number of crashes.
Preparation: The preprocessing step in A.4.1 is re-
quired to have fuzzing results.
Execution: Execute the following commands:
$ cd experiments/RQ6/scripts
$ python3 analyze_results.py
Results: CarpetFuzz should find multiple crashes in the
20 programs.

A.5 Notes on Reusability

A.5.1 How to find the manpage file of a new program?

In our experience, manpage files are typically located in
the share directory within the compilation directory, such
as /your_build_dir/share/man/man1.

A.5.2 How to fuzz the target not recorded in dict.json?

Unfortunately, as mentioned in the paper, CarpetFuzz does
not currently support the automatic selection of appropriate
option values from the document. To fuzz a new program,
you’ll need to read the manpage and manually add the synop-

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 115

sis and option-value pairs in the JSON, which may not be too
time-consuming.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

116 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Preprocessing
	Major Claims
	Experiments

	Notes on Reusability
	How to find the manpage file of a new program?
	How to fuzz the target not recorded in dict.json?

	Version

