
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Duoram: A Bandwidth-Efficient Distributed ORAM
for 2- and 3-Party Computation

Adithya Vadapalli, University of Waterloo; Ryan Henry, University of Calgary;
Ian Goldberg, University of Waterloo

https://www.usenix.org/conference/usenixsecurity23/presentation/vadapalli

USENIX’23 Artifact Appendix:
Duoram: A Bandwidth-Efficient Distributed ORAM

for 2- and 3-Party Computation

Adithya Vadapalli
avadapal@uwaterloo.ca
University of Waterloo

Ryan Henry
ryan.henry@ucalgary.ca

University of Calgary

Ian Goldberg
iang@uwaterloo.ca

University of Waterloo

A Artifact Appendix

A.1 Abstract

This artifact contains DUORAM’s source code and the nec-
essary scripts to run the experiments and reproduce the ma-
jor claims of our paper, DUORAM: A Bandwidth-Efficient
Distributed ORAM for 2- and 3-Party Computation. Our ma-
jor claims are reflected in Figures 7, 8, 9, and 10 in Section
6.2 of our paper. Along with the source code of DUORAM
and the DUORAM replication scripts, the artifact also pro-
vides the scripts to replicate the experiments for Doerner
and shelat’s FLORAM and Jarackei and Wei’s 3-party Cir-
cuit ORAM, the two implementations the paper compares
DUORAM to. The experiments are run in Docker containers
under different simulated network conditions. We simulate
these conditions by using tc qdisc add dev eth0 root
netem delay Xms rate Ymbit, to set the latency to Xms,
and restrict the bandwidth capacity to YMbit/s. In our experi-
ments, standard network conditions refer to a latency of 30 ms
and a bandwidth capacity of 100 Mbit/second. Similarly, colo-
cated network conditions refer to 30 µs of Internet latency and
100 Gbit/s of bandwidth capacity.

A.2 Description & Requirements

A.2.1 How to access

The artifact can be accessed at https://git-crysp.
uwaterloo.ca/avadapal/duoram/src/usenixsec23_
artifact.

To download the artifact:
• git clone
https://git-crysp.uwaterloo.ca/avadapal/duoram

• cd duoram
• git checkout usenixsec23_artifact

A.2.2 Hardware dependencies

The hardware dependencies to run our artifact are as follows:

• A system with an x86 processor that supports AVX2 in-
structions. This instruction set was released in 2013, so
most recent processors should be fine. We have tested
it on both Intel and AMD processors. On Linux, grep
avx2 /proc/cpuinfo to see if your CPU can be used
(if the output shows you CPU flags, then it can be; if the
output is empty, it cannot).

• At least 16 GB of available RAM. To run the optional
“large” tests, you will require at least 660 GB of available
RAM (an atypical machine, to be sure, which is why the
large tests are optional and not essential to our major
claims).

A.2.3 Software dependencies

The Software dependencies to run our artifact are a ba-
sic Linux installation, with git and docker installed. We
have tested it on Ubuntu 20.04 and Ubuntu 22.04, with apt
install git docker.io.

A.3 Setup
Detailed setup instructions are outlined in the README.md file
in the artifact. We briefly summarize it here.

A.3.1 Installation

The following will download and build the dockers for the
DUORAM, FLORAM, and Circuit ORAM systems (approxi-
mate compute time: 15 minutes).
cd repro && ./build-all-dockers

A.3.2 Basic test

A simple “kick the tires” test can be run using
./repro-all-dockers test from the repro directory (ap-
proximate compute time: 1 minute). The expected output
looks as follows:
2PDuoramOnln readwrite 16 1us 100gbit 2
0.86099545 s
2PDuoramOnln readwrite 16 1us 100gbit 2

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 229

https://git-crysp.uwaterloo.ca/avadapal/duoram/src/usenixsec23_artifact
https://git-crysp.uwaterloo.ca/avadapal/duoram/src/usenixsec23_artifact
https://git-crysp.uwaterloo.ca/avadapal/duoram/src/usenixsec23_artifact

22.046875 KiB
2PDuoramTotl readwrite 16 1us 100gbit 2
1.48480395 s
2PDuoramTotl readwrite 16 1us 100gbit 2
177.7138671875 KiB
3PDuoramOnln readwrite 16 1us 100gbit 2
0.012897 s
3PDuoramOnln readwrite 16 1us 100gbit 2
0.104166666666667 KiB
3PDuoramTotl readwrite 16 1us 100gbit 2
0.225875 s
3PDuoramTotl readwrite 16 1us 100gbit 2
12.7916666666667 KiB

Floram read 16 1us 100gbit 2 0.879635 s
Floram read 16 1us 100gbit 2 3837.724609375 KiB

CircuitORAMOnln read 16 1us 100gbit 2 0.313 s
CircuitORAMOnln read 16 1us 100gbit 2 710.625
KiB
CircuitORAMTotl read 16 1us 100gbit 2 0.753 s
CircuitORAMTotl read 16 1us 100gbit 2 4957 KiB

What you see here are the four systems (2-party DUORAM,
3-party DUORAM, 2-party FLORAM, 3-party Circuit ORAM),
with all except FLORAM showing both the online phase and
the total of the preprocessing and the online phase. (FLORAM
does not have a separate preprocessing phase.) Each of those
seven system/phase combinations shows the time taken for
the test run, as well as the average bandwidth used per party.

The output fields are:
• system and phase
• mode (reads, writes, or interleaved reads and writes)
• log2 of the number of 64-bit words in the ORAM
• one-way latency between the parties (specifying "1us"

really means not to add artificial latency, so you end up
with the natural latency between dockers, which turns
out to be 30 µs)

• bandwidth between the parties
• number of operations (number of reads or number of

writes; interleaved reads and writes do this many reads
interleaved with the same number of writes)

• the time in seconds or the bandwidth used in KiB, as
indicated

You should see the same set of 14 lines as shown above,
though the exact times of course will vary according to your
hardware. The bandwidths you see should match the above,
however.

If you run the test more than once, you will see means and
stddevs of all of your runs.

A.4 Evaluation workflow
A.4.1 Major Claims

Our primary claim is this:

(C1): Under realistic Internet networking conditions, DUO-
RAM outperforms FLORAM (which itself outperforms
Circuit ORAM) over a range of ORAM sizes, because
it is primarily CPU-bound, while the other schemes are
primarily network-bound. Our observation is that it is
easier to deploy machines with more local computational
power and memory than it is to increase bandwidth or
reduce latency between the multiple independent parties
running the protocol.

We support this primary claim with the following major
claims:
(C2): DUORAM’s wall-clock performance changes much less

as network conditions change than does FLORAM’s.
(C3): DUORAM uses much less bandwidth than FLORAM or

Circuit ORAM, and 3P-DUORAM’s online bandwidth
usage is in fact independent of the ORAM size.

(C4): Even in the less realistic setting where the independent
parties running the protocols are colocated, DUORAM’s
wall-clock performance is better than FLORAM’s and
Circuit ORAM’s, but for a smaller range of ORAM sizes.

(C5): 2P-DUORAM’s online performance improves notice-
ably with increased CPU core availability, unlike FLO-
RAM. (Under our standard network conditions, 3P-
DUORAM’s online wall-clock time is much smaller than
that of FLORAM, regardless of the number of cores.)

A.4.2 Experiments

We provide three sets of experiments: the “small”, the “large”,
and the “scaling” experiments.
The “small” experiments. These experiments support most
of our major claims.
(E1): Compare the wall-clock time of 2P-DUORAM, 3P-

DUORAM, and FLORAM to do 128 interleaved opera-
tions under standard network conditions while varying
the ORAM size from 216 to 226 (64-bit items); the re-
sults of this experiment appear in Figure 7(a). Supports
claim (C1).

(E2): Compare the wall-clock time of 2P-DUORAM, 3P-
DUORAM, and FLORAM to do 128 interleaved opera-
tions for a 220-sized ORAM and 30 ms latency, while
varying the bandwidth from 10 to 110 Mbit/s; the results
of this experiment appear in Figure 7(b). Supports claim
(C2).

(E3): Compare the wall-clock time of 2P-DUORAM, 3P-
DUORAM, and FLORAM to do 128 interleaved opera-
tions for a 220-sized ORAM and 100 Mbit/s bandwidth,
while varying the latency from 10 to 70 ms; the results
of this experiment appear in Figure 7(c). Supports claim
(C2).

(E4): Compare the bandwidth used by 2P-DUORAM, 3P-
DUORAM, and FLORAM to do 128 operations (read,
write, or interleaved reads and writes) under standard
network conditions while varying the ORAM size from

230 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

216 to 226; the results of this experiment appear in Fig-
ures 8(a), 8(b), and 8(c). Supports claim (C3).

(E5): Compare the wall-clock time of 3P-DUORAM, FLO-
RAM, and Circuit ORAM to do 128 read operations under
standard network conditions while varying the ORAM
size from 216 to 226; the results of this experiment appear
in Figure 9(a). Supports claim (C1).

(E6): Compare the wall-clock time of 3P-DUORAM, FLO-
RAM, and Circuit ORAM to do 128 read operations under
colocated network conditions while varying the ORAM
size from 216 to 226; the results of this experiment appear
in Figure 9(b). Supports claim (C4).

(E7): Compare the bandwidth used by 3P-DUORAM, FLO-
RAM, and Circuit ORAM to do 128 read operations while
varying the ORAM size from 216 to 226; the results of
this experiment appear in Figure 9(c). Supports claim
(C3).

To run all seven small experiments:
Preparation: cd repro

Execution: ./repro-all-dockers small numops
Here, numops is the number of read, write, or interleaved
operations to run in each experiment; the default of 128 is
what we used in the paper. Using 128 will require about 10
hours of compute time.

Results: The above command will output the data (up
to ORAM sizes of 226) for Figures 7(a), 7(b), 7(c), 8(a),
8(b), 8(c), 9(a), 9(b), and 9(c), clearly labeled and sepa-
rated into the data for each line in each subfigure. Running
repro-all-dockers multiple times will accumulate data,
and means and standard deviations will be output for all data
points when more than one run has been completed. From this
data, one should be able to verify our major claims (though
depending on your hardware, the exact numbers will surely
vary).
The optional “large” experiments. These experiments do
not directly support our major claims, but may optionally be
run in case you are curious to see what happens at larger
ORAM sizes. These experiments require at least 660 GB of
available RAM, which is why they are optional.
(E8): Compare the wall-clock time of 3P-DUORAM, FLO-

RAM, and Circuit ORAM to do 128 read operations under
standard network conditions while varying the ORAM
size from 228 to 232; the results of this experiment appear
in the rightmost three data points of Figure 9(a).

(E9): Compare the wall-clock time of 3P-DUORAM, FLO-
RAM, and Circuit ORAM to do 128 read operations under
colocated network conditions while varying the ORAM
size from 228 to 232; the results of this experiment appear
in the rightmost three data points of Figure 9(b).

(E10): Compare the bandwidth used by 3P-DUORAM, FLO-
RAM, and Circuit ORAM to do 128 read operations while
varying the ORAM size from 228 to 232; the results of
this experiment appear in the rightmost three data points
of Figure 9(c).

To run all three large experiments:
Preparation: cd repro
Execution: ./repro-all-dockers large numops

Again, numops is the number of read operations to run in
each experiment; the default of 128 is what we used in the
paper. Using 128 will require about 40 hours of compute
time. Lowering numops will reduce the time, but not the
requirement for 660 GB of available RAM.

Results: The above command will output the data (for
ORAM sizes from 228 to 232) for Figures 9(a), 9(b), and 9(c),
similar to the small experiments above.
The “scaling” experiment. This experiment varies the num-
ber of cores:
(E11): Compare the online wall-clock time of 2P-DUORAM,

3P-DUORAM, and FLORAM to do 128 read operations
under standard network conditions while varying the
number of available cores for each party from 4 to 32.
The results of this experiment for ORAM sizes of 216,
220, and 226 appear in Figures 10(a), 10(b), and 10(c)
respectively. Supports claim (C5).

To run the scaling experiment:
Preparation: Reproducing Figure 10 (the effect of scaling

the number of cores) is slightly more work because it depends
more on your hardware configuration. First, cd repro. The
top of the script repro-scaling in that directory has instruc-
tions. Set the variables (in the script, not environment vari-
ables) BASE_DUORAM_NUMA_P0 and BASE_DUORAM_NUMA_P1
to numactl commands (examples are given in the comments)
to divide your system into two partitions as separate as pos-
sible: separate NUMA nodes if you have them, otherwise
separate CPUs if you have them, otherwise separate cores. If
each of your two partitions has n cores, ensure that the ele-
ments of CORESLIST do not exceed n (of course, you cannot
replicate those data points in that case, but the trend should
still be apparent). The paper uses values of n up to 32 cores
in each partition, so 64 cores in total (P2 can reuse the cores
of P0 since P2’s primary work is done after P0 and P1’s main
work has finished).

Execution: ./repro-scaling numops, where
numops as before defaults to 128. Using 128 will
require about 4 to 5 hours of compute time.

Results: The output will be similar to that described above
with clearly labelled data for Figures 10(a), 10(b), and 10(c)
(with an additional column for core count).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this Artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 231

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendixxxx
	Abstract
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies

	Setup
	Installation
	Basic test

	Evaluation workflow
	Major Claims
	Experiments

	Version

