
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

InceptIon: Exposing New Attack Surfaces
with Training in Transient Execution

Daniël Trujillo, Johannes Wikner, and Kaveh Razavi, ETH Zurich
https://www.usenix.org/conference/usenixsecurity23/presentation/trujillo

USENIX’23 Artifact Appendix: INCEPTION: Exposing New Attack Surfaces with
Training in Transient Execution

Daniël Trujillo †

ETH Zurich
Johannes Wikner †

ETH Zurich
Kaveh Razavi
ETH Zurich

† Equal contribution first authors

A Artifact Appendix

A.1 Abstract

Our paper introduces the new TTE class of transient execu-
tion attacks and presents an end-to-end exploit INCEPTION.
In particular, we make four major claims: 1) TTE allows ma-
nipulation of the BTB and RSB in transient execution, 2) a
PHANTOMCALL allows manipulation of the RSB from an ar-
bitrary instruction, 3) our end-to-end exploit INCEPTION leaks
arbitrary kernel memory, and 4) ibpb overhead is between
93.1% and 239.2%. To back up these claims, this artifact re-
produces experiments outlined in the paper, specifically those
described in Section 8, Section 7.1, Section 7.3 and Section 9.

All experiments should be run on an AMD Zen microar-
chitecture. Our end-to-end exploit INCEPTION requires an
Zen 1(+), Zen 2 or Zen 4 microarchitecture.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our exploit INCEPTION leaks kernel data from a user-
provided address. Potentially private data located at the pro-
vided address will be printed to stdout and stored in a file
(data.bin). An evaluator may choose to clear stdout and/or
remove the output file after running this experiment.

Other than this, our experiments do not impose any security,
privacy or ethical concerns.

A.2.2 How to access

The source code of INCEPTION is retrieved by cloning
https://github.com/comsec-group/inception.git.
The code for this artifact can be found under git tag
usenix-23-ae-final.

A.2.3 Hardware dependencies

All provided code should be run on an AMD Zen microar-
chitectures. The end-to-end exploit works only on Zen 1(+),
Zen 2 and Zen 4 microarchitectures.

A.2.4 Software dependencies

All experiments were ran on Ubuntu 22.04 LTS (Jammy
Jellyfish), with a Linux kernel 5.19.0-28-generic. The
following packages must be installed, available in the
Ubuntu apt repository. git build-essential clang
linux-{image,headers,modules,modules-extra}-
5.19.0-28-generic amd64-microcode=3.20191218
.1ubuntu2, python3.

A.2.5 Benchmarks

To evaluate ibpb as a mitigation, download UnixBench
from https://github.com/kdlucas/byte-unixbench
and place it under ./ibpb-eval.

A.3 Set-up
The experiments are designed to run on bare-metal, they will
not work inside a virtualized environment. You need an AMD
processor similar to the ones we used in the paper.

A.3.1 Installation

1. Install Ubuntu 22.04

2. Install necessary dependencies (c.f. §A.2.4).

3. Boot the newly installed kernel.

A.3.2 Basic Test

Navigate to the path of the repository and run ./check.sh.
This script should show three times PASS. If the first line
shows PASS, but the second or third line shows FAIL, all ex-
periment but E3 can be evaluated on your system.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 465

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): TTE allows manipulation of the BTB and RSB with
code executed in transient execution.

(C2): We can manipulate the RSB from an arbitrary instruc-
tion using a PHANTOMCALL.

(C3): Our end-to-end exploit INCEPTION leaks arbitrary ker-
nel memory.

(C4): ibpb can be used as mitigation against INCEPTION on
Zen 1(+) and Zen 2, and has an overhead between 93.1%
and 239.2%.

A.4.2 Experiments

(E1.1): [TTE of BTB] [1 minute]: this experiment executes
a branch in transient execution and determines whether
the state of the BTB has been changed. The experiments
are described in Section 8 and depicted in Figure 9.
How to: These experiments should be carried out under
tte_btb/.
Preparation: Install the kernel module under
kmod_ibpb.
Execution: To build and run, run ./run_all.sh.
Results: The script runs number of TTE tests. Lines
starting with sig_* indicates a cache signal caused by
TTE. The number is further represented within the array
rb, where it should be significantly higher than the other
numbers. The other numbers serves as indication for
noise and should be low or 0.

(E1.2): [TTE of RSB] [10 minutes]: this experiment executes
a branch in transient execution and determines whether
the state of the RSB has been changed. The experiments
are described in Section 5.2 and Section 8, and depicted
in Figure 1 and Figure 9.
How to: Navigate to ./tte_rsb.
Preparation: Before running this experiment, make
sure the machine is quiescent. Find two sibling cores
CORE 1 and CORE 2 on the target machine.
Execution: Follow the instructions in the provided
README.md. Run ./tte_rsb.sh <CORE 1> <CORE 2>
<OUTPUT DIR> <OPTIONAL CLANG ARGS>.
Results: The output files in the OUTPUT DIR show the
hits in the reload buffer for each return executed (one col-
umn for each return). If the RSB is uneffected by TTE,
stdout should show a diagonal line. If this diagonal line
is disturbed, entries are corrupted. If the last row of the
output (Hijacked) shows hits, speculative return targets
were hijacked using TTE.
Output files *_16.txt are the result of transiently exe-
cuting 16 calls, and they should show a corrupted entries
(disturbed diagonal line) on all AMD Zen microarchi-
tectures. On Zen 3 and Zen 4, the output should show
hijacked returns (hits in row Hijacked). Output files

*_32.txt are the result of transiently executing 32 calls,
and they should show hijacked returns for all AMD Zen
microarchitectures. However, note that depending on the
microarchitectural state, the desired number of calls do
not always fit in the transient window. Therefore, output
may not always show hijacked returns.

(E2): [TTE of RSB using PHANTOMCALL] [10 minutes].
This experiment shows that AMD’s RSB can be manipu-
lated with a recursive PHANTOMCALL. The experiments
is described in Section 7.1 and depicted in Figure 5. The
results of this artifact should resemble those shown in
Figure 6. From the results produced by this experiment,
it should be possible to conclude that we can hijack re-
turn instructions on all Zen microarchitecture, and that
for Zen 1(+) and Zen 2 this only succeeds when a work-
load is running on the sibling hyperthread. However, the
exact (number of) entries corrupted (and potentially re-
turns hijacked) may differ slightly, since its dependent
on various circumstances, as pointed out in the paper.
How to: Navigate to ./phantomcall/zen_1_2
when running on Zen 1(+)/Zen 2, or navigate to
./inception/zen_3_4 when running on Zen 3/Zen 4.
Preparation: Before running this experiment, make
sure the machine is quiescent. Find two sibling cores
CORE 1 and CORE 2 on the target machine.
Execution: Follow the instructions in the provided
README.md. To start, run: ./recursive_pcall.sh
{ZEN/ZEN2/ZEN3/ZEN4} <CORE 1> <CORE 2>
<OUTPUT DIR> <OPTIONAL CLANG ARGS>. As an
example, if running on Zen 2, and if cores 1 and
9 are sibling hyperthreads, you may want to run:
./recursive_pcall.sh ZEN2 1 9 zen2_output.
Results: The experiment produces up to two output files
in the OUTPUT DIR:

1. no_ht.txt: this file contains the output of running
the experiment on CORE 1, while CORE 2 is dis-
abled.

2. ht.txt (only for Zen 1, Zen + and Zen 2): this file
contains the output of running the experiment on
CORE 1, while running a workload on CORE 2.

The output files show the hits in the reload buffer for each
return executed. The last row of the output (Hijacked)
indicates hijacked returns (e.g. the executed return trig-
gered the use of a transiently injected RSB entry). In case
the experiment is successfull, we expect the following
output:

• no_ht: For Zen 1(+) and Zen 2, this output should
show a diagonal line which stops at a certain point,
when it turns into a horizontal line. The last row
(Hijacked) should not show hits. For Zen 3 and
Zen 4, this experiment should show that we corrupt
enough entries to hijack return instructions: some
of the returns should show hits in the last row of the
matrix (Hijacked).

466 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

• ht (only for Zen 1, Zen + and Zen 2): This output
should show hits in the last row (Hijacked) for
each column, indicating that the transient control
flow was hijacked for each return executed.

(E3): [Leaking kernel memory with INCEPTION] [10 min-
utes]: this experiment shows that we can leak abitrary
kernel memory using PHANTOMCALL, using the setup
described in Section 7.3 and depicted in Figure 7.
How to: Navigate to ./inception/zen_1_2
when running on Zen 1(+) or Zen 2. Navigate to
./inception/zen_4 when running on Zen 4.
Preparation: Before running this experiment, make
sure the machine is quiescent. Follow the instructions
in the provided README.md on how to compile the re-
quired code for this experiment. Install the provided
kernel module, which prints a kernel address containing
a secret to dmesg, as described in README.md. When
running on Zen 4, optionally enable AutoIBRS: sudo
wrmsr 0xC0000080 -a 0x200d01.
Execution: Run INCEPTION: ./inception <KERNEL
ADDRESS>, where KERNEL ADDRESS can be found in the
dmesg output.
Results: The leaked bytes are printed to stdout. The
secret contains of 1024 As, 1024 Bs, 1024 Cs, and finally
1024 Ds.

(E4): [INCEPTION vs. ibpb] [10 minutes; 10 hours com-
pute]: this experiment evaluates ibpb against INCEP-
TION.
How to: This experiment should be carried out under
./ibpb-eval.
Preparation: Clone UnixBench, git clone
https://github.com/kdlucas/byte-unixbench.
Execution: Run UnixBench (./Run) 5 times and
save the results into a folder called baseline. Then
reboot with the kernel parameter retbleed=ibpb
(note: Zen3/4 requires the new kernel 6.2 parameter
retbleed=ibpb,force) and run UnixBench 5 more
times. Save the results in a folder called ibpb.
Results: To print the results in the format pre-
sented in Section 9, run ./parse.py <path>. You
may test the parser on pre-recorded results: ./parse
./raw/ee-tik-cn118.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 467

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

