é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

EnicMar: External-Memory Oblivious Map
for Secure Enclaves
Afonso Tinoco, Sixiang Gao, and Elaine Shi, CMU

https://www.usenix.org/conference/usenixsecurity23/presentation/tinoco

This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the
32nd USENIX Security Symposium.

August 9-11, 2023 « Anaheim, CA, USA
978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX
Security Symposium is sponsored
by USENIX.

+ B — = -
n A : 4
- pl TENE »

ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix: EnigMap: External-Memory Oblivious
Map for Secure Enclaves

Afonso Tinoco!?

Sixiang Gao!

Elaine Shi!

CMU!, IST?

A Artifact Appendix

A.1 Abstract

These artifacts are meant to compliment the paper ENIGMAP:
External-Memory Oblivious Map for Secure Enclaves. Our
goal with the artifacts is to provide the motivation on why
external memory algorithms are relevant for enclaves, our
opensource implementation of ENIGMAP, experiments that
allow to easily replicate the results in our paper, and details
explanation on how the security goals are achieved by our
implementation code. We additionally provide the signal and
signal-ht code we used to benchmark signal original code. We
provide all our experiment code as single line commands to
make results simpler to reproduce, and the commands should
be simple to modify to try new sets of experimental param-
eters. We also provide a section explaining at a high level
how our implementation works. Our main goal with the ex-
periments is not to reproduce the exact same numbers as we
have in our graphs, as it will vary greatly with hardware used,
but to show that the speedup against signal, as well as the
assymptotic behavior is on the order of magnitude shown in
our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Tag usenix-artifacts in this repo: https://github.com/
odslib/EnigMap/tree/usenix-artifacts

Listing 1: download artifacts

git clone \

https :// github .com/ odslib/EnigMap. git \
ARTIFACTS60

cd ARTIFACTS60/

git checkout usenix—artifacts

A.2.3 Hardware dependencies

In terms of infrastructure we require 3 types of machines to

reproduce our code. Machine A is used mostly for benchmark-

ing SGX, machine B is used to generate a single graph in our
experiments, machine C is where most of our experiments

Were run.

(Machine A) - CPU with SGXvl1, configured with at least
128MB of EPC and at least 16GB of RAM. In our exper-
iments we used an intel E2200 processor.

(Machine B) - CPU with SGXv2, configured with 4GB EPC,
at least §GB RAM and an SSD available for storage. This
is used mostly for benchmarking ocalls.

(Machine C) - CPU with SGXv2, configured with 192GB
EPC, at least 256GB RAM and and SSD available for
storage. This is used for most of the experiments. We
have a server available with 512GB max EPC and 1TB
RAM that can be used to reproduce the experiments for
artifact evaluation. Please contact us if access is needed
(send us a(n annonymized) public key and we will gen-
erate a user in our server)

A.2.4 Software dependencies

Our artifacts are meant to be run under docker, we provide
the image use to build and run them under tools/docker/build-
Dockerlmage.sh . Alternatively, we also provide a script to
setup a vanila ubuntu 22.04 install (tools/docker/setup_sgx.sh)
to run the artifacts.

A.2.5 Benchmarks

We ran baseline benchmarks on private contact discovery
using signal and signal-ht (signal-icelake) code. We included
them in our repo.

A.3 Set-up
A.3.1 Installation

First, build the docker image:

Listing 2: build docker images
#!/bin/bash

USENIX Association

Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 235

https://github.com/odslib/EnigMap/tree/usenix-artifacts
https://github.com/odslib/EnigMap/tree/usenix-artifacts

cd ARTIFACTS60/
cd tools/docker/
sh buildDockerImage . sh

Second, for every test, run docker at the top level of the
repo, mounting the ssd for storage and with access to SGX
(running with priviledged works for this):

Listing 3: start test environment

#!/bin/bash

cd ARTIFACTS60/

docker run —-it ——rm -m512G \

—-v $PWD:/ builder —v /mnt/ssdO :/mnt/ssd0 \
—privileged xtrmO/cppbuilder

source /startsgxenv.sh

We expect every experiment to be run inside this docker envi-
roment, additionally some experiments modify configuration
files, we assume for every experiment that the configuration
files start as they are in the artifact code. We note that some
modifications to the config might require deleting the build
directory and running cmake again.

A.3.2 Basic Test

We include 3 tests here.
(T1) Make sure the code compiles:

Listing 4: compile the code

cmake —B build -G Ninja
ninja —C build

(T2) Make sure the tests run:

Listing 5: run unit tests on the code
ninja —-C build test

(T3) Make sure the test enclave compiles and runs in both
debug and release mode:

Listing 6: compile and run a test enclave

cd applications/benchmark_sgx
make clean

make

./ benchmark_sgx.elf

make clean

SGX_MODE=HW SGX_PRERELEASE=1 make
./ benchmark_sgx.elf

A.4 Evaluation workflow

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] This section should include
all the operational steps and experiments which must be per-
formed to evaluate if your your artifact is functional and to
validate your paper’s key results and claims. For that pur-
pose, we ask you to use the two following subsections and
cross-reference the items therein as explained next.

A.4.1 Major Claims

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] Enumerate here the major
claims (Cx) made in your paper. Follows an example:

(C1): EnigMap achieves assymptotically speedup on point
and batched search over signal’s implementation, having
speedups at any batch size at a realistic database size of
256 million entries. Our main claim is that switching
to EnigMap always provides speedup over signal’s orig-
inal implementation. Additionally, we also claim that
for external memory, EnigMap’s implementation is as-
symptotically as described in table 1 in our paper, and
concretely efficient.

Experiment (E2) shows the speedup for the database
in-RAM case, experiment (E3) shows this claim for the
disk eviction case, whose results are ilustrated for SGX1
and SGX2 respectively in figures 3 and 4 in our paper.
These two experiments prove the C1 claim.

Further more, we show a detailed view of the costs of
external memory and how our optimizations affect them
in experiment (E4), reflected in figures 5 and 6 in our
paper.

We also show the cost of insertion in experiment, re-
flected in figure 8 in our paper.

(C2): There is an inherent cost to using EWB that can be re-
duced with the OCALL approach described. EnigMap’s
ORAM tree and the OCALL eviction approach provide
a way to implicitly store the nonces of evicted pages
without any computational overhead compared to EWB,
thus saving the space of the evicted nonce table for more
EPC pages. We show the inherent costs of EWB and
OCALL in experiment (E1), reflected in figure 1 in our
paper. We also analyse the effect the of page size for
search in experiment (E7) and conclude that roughly 4k
is the optimal size for ORAM, reflected in figure 9 in
our paper.

(C3): Our faster initialization algorithm is inherently faster
than the naive approach of doing sequential insertions.
Experiment (ES), reflected in figure 9 in our paper shows
these results.

(C4): Our implementation of OBST::Get, OBST::Insert are
oblivious. We don’t have any experiment for this, but
we encorage to look at both the code and the generated
code for otree and concluding that all branches inside of
otree.hpp::OBST::Get and otree.hpp::OBST::Insert do
not depend on private data.

A.4.2 Experiments

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] Link explicitly the description
of your experiments to the items you have provided in the
previous subsection about Major Claims. Please provide your

236 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium

USENIX Association

estimates of human- and compute-time for each of the listed
experiments (using the suggested hardware/software configu-
ration above). Follows an example: Most of our experiments
are run accross exponentially increasing database sizes from a
few bytes to 1TB in size. We include both the time it takes to
run the experiments to reach the main conclusions above, as
well as the time to fully reproduce the graphs in our paper. We
also include the machines required to run each experiment.
(E1.1): [Benchmark SGX] [20 human minutes + 15 compute-
minutes] [Machine A or B or C] The main goal of this
experiment is to show the costs of ocall and and EWB
in our paper. We defer computing the cost of EWB to
experiment E1.2, altough we analyse it here for clarity.
How to: To run this experiment, compile and run ap-
plications/benchmark_sgx . These will show different
results based on the processor being used. For SGX1
please only use machine A, for SGX2 use machine B or
C. Our graphs in the paper used machine B.
Preparation: Pick a machine, clone the repo and go to
the folder applications/benchmark_sgx.
Execution: Compile and run the code:

Listing 7: compile and run a test enclave

cd applications/benchmark_sgx
make clean

SGX_MODE=HW SGX_PRERELEASE=1 make
./ benchmark. elf > output.txt

Copy paste the values from the benchmark at 4096
bytes to the definition of the data_v2 array at tools/-
plot_intrinsics_v2.py. The value for EWB should come
from (E1.2). Also update the iops based on the specifi-
cations of the SSD being used. Run the script, it should
generate a png file with figura 1a.

We generated figure 1b in excel by varying the number
of bytes in the encryption and ecall inside of application-
s/benchmark_sgx/bm.edl.

Results: For the first graph, we expect to see results
similar to figure la in our paper. For the excel graph,
similar to figure 1b.

(E1.2): [Benchmark SGX] [4 human minutes + 20 compute-
minutes] [Machine A or B] The goal of this experiment
is to measure EWB time in a generic SGX machine.
It envolves picking an EPC larger than the maximum
EPC but smaller than the total RAM, and doing sequen-
tial reads and writes to force continuos EWB evictions,
and measureing the time based on that (see the function
ecall_bm_ewb)

How to: To run this experiment, compile and run ap-
plications/benchmark_ewb . These will show different
results based on the processor being used. For SGX1
please only use machine A, for SGX2 use machine B.
Our graphs in the paper used machine B.

Preparation: Pick a machine, clone the repo and go to
the folder applications/benchmark_ewb. Adjust the size

of maximum EPC (HeaplnitSize and HeapMaxSize) in
Enclave.config.xml to be larger than the maximum EPC
size on the machine, also adjust the variable ARR_SZ
in Enclave/TL/Libcxx.cpp to an appropriate value, so
that evictions will occur. The default parameters are all
already set for Machine B. We run experiments with
different sizes to make it explicit what the page size is.
Execution: Compile and run the code:

Listing 8: compile and run a test enclave

cd applications/benchmark_ewb
make clean

SGX_MODE=HW SGX_PRERELEASE=1 make
./benchmark. elf > output.txt

The output should be the total execution time. Divide
it by ARR_SZ/4096 to get the cost per page to use in
(E1.1).

Results: For the first graph, we expect to see results
similar to figure la in our paper. For the excel graph,
similar to figure 1b.

(E2): [Point query search inram] [30 human-minutes +

30/120 compute-minutes] [Machine C]: This experi-
ment computes the cost of point query for a scenario
that doesn’t need to use disk but needs to do ocalls to in
RAM storage. We will explain in here thoroughly how
to configure parameters that are further used in other
experiments. ODS/common/defs.hpp contains most of
the configurable parameters. Take a look at it to see the
definitions used and their meanings, configuring experi-
ments is mostly changing this file, as well as changing
the Enclave.config.xml used by the experiment. This
experiment uses applications/signal.

How to: Go to applications/signal.

Preparation: To run this experiment, con-
figure Enclave.config.xml to match the
EPC size of the machine used, configure
ORAM_SERVER__DIRECTLY_CACHED_LEVELS
to the maximum value that fits within EPC. Addi-
tionally set ORAM_USE_INRAM_SERVER to true.
Additionally set TEST_SELECTOR to 0 (search).
Execution: compile and run the enclave:

Listing 9: compile and run a test enclave

cd applications/signal

make clean

SGX_MODE=HW SGX_PRERELEASE=1 make
./ signal.elf > output. txt

You can plot the results manually or use tools/scripts/-
plot_search.py

Results: This will plot graphs similar to figure 3 and 4
in the paper, but not the same, as those graphs use E3.

(E3): [Point query search with disk] [15 human-minutes +

30/120 compute-minutes] [Machine C]: This experiment

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 237

computes the cost of point query for a scenario that needs
to use disk via ocalls.

How to: Go to applications/signal.

Preparation: To run this experiment, con-
figure Enclave.config.xml to match the
EPC size of the machine used, configure
ORAM_SERVER__DIRECTLY_CACHED_LEVELS
to the maximum value that fits within EPC. set
ORAM_USE_INRAM_SERVER to false. Set
TEST_SELECTOR to O (search).

Execution: compile and run the enclave:

Listing 10: compile and run a test enclave

cd applications/signal

make clean

SGX_MODE=HW SGX_PRERELEASE=1 make
./signal.elf > output.txt

You can plot the results manually or use tools/scripts/-
plot_search.py

Results: This will plot graphs similar to figure 3 and 4
in the paper. Results should be similar if the same EPC
size and maximum RAM were used.

(E4): [Cost of insertion] [30 human-minutes + 30/120

compute-minutes] [Machine C]: This shows the cost
of insertion queries.

How to: Go to applications/signal.

Preparation: To run this experiment, con-
figure Enclave.config.xml to match the
EPC size of the machine wused, configure
ORAM_SERVER__DIRECTLY_CACHED_LEVELS
to the maximum value that fits within EPC. Addi-
tionally set ORAM_USE_INRAM_SERVER to true.
Additionally set TEST_SELECTOR to 1 (insertion).
Execution: Compile and run the enclave:

Listing 11: compile and run a test enclave

cd applications/signal

make clean

SGX_MODE=HW SGX_PRERELEASE=1 make
./'signal.elf > output.txt

You can plot the results manually or use tools/scripts/-
plot_insertion.py

The results of this experiment are used to compute the
cost in E5 for the naive insertion.

Results: This will plot graphs similar to figure 8 in the

paper.

(ES): [Cost of initialization] [30 human-minutes + 120

compute-minutes/ 24 compute-hours] [Machine C]: This
shows the cost of initialization queries.

How to: Go to applications/signal.

Preparation: To run this experiment, con-
figure Enclave.config.xml to match the
EPC size of the machine used, configure

ORAM_SERVER__DIRECTLY_CACHED_LEVELS
to the maximum value that fits within EPC. Addi-
tionally set ORAM_USE_INRAM_SERVER to true.
Additionally set TEST_SELECTOR to 2 (initialization).
Execution: Compile and run the enclave:

Listing 12: compile and run a test enclave

cd applications/signal

make clean

SGX_MODE=HW SGX_PRERELEASE=1 make
./ signal.elf > output. txt

You can plot the results manually or use tools/scripts/-
plot_initialization.py

Use the results of E4 to get the costs for naive initial-
ization (cost of 1 insertion * number of elements in the
database)

Results: This will plot graphs similar to figure 7 in
the paper. We can see that the fast initialization has a
speedup over the naive initialization.

(E6): [Optimization breakdown] [45 human-minutes + 20

compute-minutes] [Machine B]: This experiment analy-
ses an execution trace of the code to generate figures 5
and 6.

How to: This uses ods outside of enclave to generate
flame graphs of the execution profile.

Preparation: Edit buildtype.cmake to change the build
type to debug.

Execution: Compile and run the proiling tests:

Listing 13: compile and run a test enclave

rm —rf build

cmake —B build -G Ninja

ninja —C build

./ build/tests/improvs_none

mv ./q#*/f=/flames—chrome. json \
./q#/f+*/improvs#_none. json

./ build/tests/improvs_packing

mv ./q#*/f=/flamex—chrome.json \
./ q#/f=/improvs_packing.json

./ build/tests /improvs_filecache

mv ./q#*/f=/flamex—chrome.json \
./q=/f=«/improvs_filecache . json
./ build/tests/improvs_bucketcache

mv ./q#*/f=*/flame*—chrome.json \
./ q=/f=/improvs_bucketcache.json
./ build/tests/profiling_test

Open the flamegraphs in chrome and analyse
the total time in each phase. To plot the graphs,
one can use plot_relative_performance.py or
plot_relative_performance_large.py.

With the default config, we get the plot in figure 5. Run
the experiment again with a larger database size (edit
the respective .cpp files for the tests) to get the case for
figure 6.

238 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium

USENIX Association

Results: This will plot graphs similar to figure 5 and 6
in the paper. We can see the effect of different optimiza-
tions.

(E7): [Optimal page size] [30 human-minutes + 30 compute-
minutes] [Machine B or C]: This experiment is meant to
analyse what is the optimal page size used for insertion.
We used machine B in our experiments to enforce disk
swap at smaller sizes, but this can also be ran on machine
C.

How to: Go to applications/signal.
Preparation: To run this
figure Enclave.config.xml to match the
EPC size of the machine wused, configure
ORAM_SERVER__DIRECTLY_CACHED_LEVELS
to the maximum value that fits within EPC. Ad-
ditionally set ORAM_USE_INRAM_SERVER
to true. Additionally set TEST_SELECTOR
to 0 (search). For each experiment, configure
ORAM_SERVER__LEVELS_PER_PACK to dif-
ferent values (1 corresponds to 296B page, 2 to 824B, 3
to 1880B, 4 to 3993B and 5 to 8216 in our plot).
Execution: Compile and run the enclave:

experiment, con-

Listing 14: compile and run a test enclave

cd applications/signal

make clean

SGX_MODE=HW SGX_PRERELEASE=1 make
./'signal.elf > output.txt

You can plot the results manually or use tools/scripts/-
plot_search_pagesize.py
Results: This will plot graphs similar to figure 9 in the
paper, we can see that the optimal page size is 4kb.
In all of the above blocks, please provide indications about
the expected outcome for each of the steps (given the sug-
gested hardware/software configuration above).

A.5 Notes on Reusability

We provide our code as an opensource Oblivious Data Struc-
ture Library project on https://github.com/odslib/
EnigMap. We are actively developing it, both in order to do
further reserach in oblivious algorithms as well as in order
to provide a way for developers to incorporate oblivious al-
gorithms into enclave code. We made our code to be easy
integrable into enclave applications. The example inside the
folder applications/signal is meant to be easily integrable as a
binary search tree or map into any SGX project.

We hope that our artifacts can be used by industry to pro-
vide fast private contact discovery in messaging applications
such as signal. We also hope that the code in EnigMap can be
further improved and serve as baseline for further research
in oblivious algorithms, all the oblivious primitives we devel-
oped in EnigMap can easily be integrated into other enclave
or oblivious algorithms projects.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association

Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 239

https://github.com/odslib/EnigMap
https://github.com/odslib/EnigMap
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

