
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

TAP: Transparent and Privacy-Preserving
Data Services

Daniel Reijsbergen and Aung Maw, Singapore University of Technology
and Design; Zheng Yang, Southwest University; Tien Tuan Anh Dinh
and Jianying Zhou, Singapore University of Technology and Design

https://www.usenix.org/conference/usenixsecurity23/presentation/reijsbergen

USENIX’23 Artifact Appendix:
TAP: Transparent and Privacy-Preserving Data Services

Daniël Reijsbergen† Aung Maw† Zheng Yang‡ Tien Tuan Anh Dinh† Jianying Zhou†

†Singapore University of Technology and Design, Singapore, Singapore
‡Southwest University, Chongqing, China

A Artifact Appendix

A.1 Abstract
This document describes the code that was used to produce
the experimental results in Section 6 of the TAP paper. TAP
provides a level of security and privacy that exceeds that of
related multi-user approaches (e.g., a trusted server), so the
main purpose of the experiments is to demonstrate that TAP
still has practical performance at scale despite the additional
security guarantees. As such, the experiments demonstrate the
feasibility (in terms of execution times) of database operations
in TAP, e.g., look-up, sum, min, max, and quantile queries.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None – however, if the machine on which the code is run
already has MySQL Server installed, then please remember
to reset the root password after concluding the experiments.

A.2.2 How to access

The artifact can be found here: https://github.
com/tap-group/transparent-data-service/tree/
9e97cd42e12fb2941253b0960d4689bf944889a0

A.2.3 Hardware dependencies

The microbenchmark experiments were performed on a Mac-
Book Pro with the following specifications (the code should
also work on Linux and Windows systems):

• Processor: 2.4 GHz Quad-Core Intel Core i5
• Memory: 16 GB 2133 MHz LPDDR3
• Operating System: MacOS Monterey Version 12.5.1

The other experiments were performed on Amazon Web Ser-
vices (AWS) machines: t2.micro to represent low-capacity
machines, t2.xlarge to represent medium-capacity machines,
and m5.4xlarge to represent high-capacity machines. The lat-
ter types have an hourly cost to run, and all types require an

AWS account. In the following, we will therefore focus on
running the code on a single PC or laptop with the above
specifications or similar – we will refer to such a machine as
a “medium-capacity machine”.

A.2.4 Software dependencies

Working installations of Go, MySQL, and GCC are required
(see also the installation guide below). All other dependencies
are installed automatically by Go.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

Go. The programming code is written in the Go language
and therefore requires a working Go installation (version 1.16
or above). To install Go, download it from https://go.dev/
doc/install and follow the installation instructions.

MySQL. The TAP implementation requires a working ver-
sion of MySql Server to simulate the server’s back-end, which
can be obtained, e.g., through https://dev.mysql.com/
downloads/installer/ for Windows. The installer may re-
quire that a root password is set. If so, set a temporary pass-
word (e.g., ‘0000’). The TAP code assumes that the root user
can access the database without a password. Once MySQL
Server has been installed, the password for the root user can
be removed as follows: start MySQL from the command line
using the following command (which assumes that ‘0000’ is
the root user’s password)

mysql -uroot -p0000

then run

SET PASSWORD FOR root@localhost='';

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 389

https://github.com/tap-group/transparent-data-service/tree/9e97cd42e12fb2941253b0960d4689bf944889a0
https://github.com/tap-group/transparent-data-service/tree/9e97cd42e12fb2941253b0960d4689bf944889a0
https://github.com/tap-group/transparent-data-service/tree/9e97cd42e12fb2941253b0960d4689bf944889a0
https://go.dev/doc/install
https://go.dev/doc/install
https://dev.mysql.com/downloads/installer/
https://dev.mysql.com/downloads/installer/

to remove the password. Finally, create a database named
‘tap’ by executing the following command in the command
line tool:

CREATE DATABASE tap;

GCC. The TAP implementation uses go-ethereum for op-
erations on elliptic curves, and go-ethereum in turn requires
GCC. To install GCC on Windows, one can use MinGW
https://www.mingw-w64.org/downloads/ – make sure
that the main executables are accessible via the system path
(e.g., by adding C:\Users\...\mingw64\bin to the system
path variable). On Linux-based systems, run

sudo apt install build-essential

in the command line.

TAP Code. After downloading the TAP code, use the com-
mand line tool to navigate to the main folder and execute

go mod tidy

to instruct Go to download the required external libraries. It is
also helpful to ensure that the output folder is empty to avoid
confusion with the sample output files that are included with
the repository.

A.3.2 Basic Test

To check whether Go was successfully installed, execute the
following command on the command line:

go version

which should return the installed Go version. To check
whether MySQL Server was successfully installed, execute
the following command:

mysql -uroot

The above command should start the MySQL command line
tool. To check whether GCC was successfully installed, exe-
cute the following command:

gcc --version

This should return the version number of the GCC installa-
tion. Finally, to check whether the TAP implementation was
successfully built, execute the following command:

go run . -experiment1a

This starts a basic experiment that tests the time cost of pro-
cessing data insertions at the server – it should run for less than
a minute on a medium-capacity machine. After its comple-
tion, it should write “results:” to the command line, followed
by a list of simulation results (time and storage costs).

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Look-ups, which are essential for clients who monitor
their own data, have negligible overhead, and the cost of
the other operations is reasonable on a medium-capacity
machine. In particular, a look-up query in TAP takes
≈0.005s, a sum query takes ≈0.1s, a min/max/quantile
query takes ≈1s, and an audit takes ≈10s in a table with
100–10,000 rows. This is demonstrated by Experiment
E1 described in Section 6.2 whose results are displayed
in Figure 8a.

(C2): For look-up and sum queries, total processing times
are dominated by proof generation times at the server.
For min and quantile queries, proof generation and ver-
ification times are similar (around 10 seconds) at the
client and server. This is demonstrated by Experiment
E2 described in Section 6.3 whose results are displayed
in Figure 8b.

(C3): TAP has a smaller storage requirements for the ADS
than Merkle2, although audits and inserts are faster in
Merkle2. This is demonstrated by experiment E3 de-
scribed in Section 6.4 whose results are displayed in
Figure 9. (The IntegriDB implementation1 requires a
different set-up – e.g., a specific version of OpenSSL on
Linux – and is hence not integrated into the artifact.)

(C4): On a high-capacity machine, it is feasible to build
TAP’s data structure, audit (targeted portions of) the
data structure, and perform queries even in real-world
settings – i.e., databases to which millions of rows are
added every hour. In particular, the time cost of building
TAP’s data structure increases from ≈0.01s for 100 rows
to ≈1000s for 107 rows regardless of the number of sub-
trees. Furthermore, the cost of a full audit increases from
≈1 second for 100 rows to ≈450 seconds for 15 000
rows. Finally, the cost of a quantile query over 1) the
entire dataset or 2) a fixed number of subtrees depends at
most logarithmically on the total number of rows. This
is demonstrated by Experiment E4 described in Section
6.5 whose results are displayed in Figure 10.

A.4.2 Experiments

(E1): Microbenchmarks: <1 compute-hour + <1 MB disk
Execution: This experiment can be reproduced by exe-
cuting
go run . -experiment3
in the repository’s main folder. One query type – look-
up, sum, average, count, min, max, median, and top 5%
queries – is performed in each of experiments 3a–h
across 100 epochs.
Results: After each experiment (i.e., 3a–h), a csv-file
with a corresponding name will be written to the output

1https://github.com/integridb/Code

390 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://www.mingw-w64.org/downloads/
https://github.com/integridb/Code

folder – each row in the csv-file corresponds to the re-
sult for one epoch. Each csv-file can be used to plot a
line in Figure 8a with the epoch counter on the x-axis
and the query time duration on the y-axis. (The line for
audits comes independently from a modified version of
experiment7 as discussed under E4.) The time costs in
the output table should be similar to those mentioned
under C1 on a medium-capacity machine.

(E2): End-to-end Costs: ≈1 compute-hour + <1 MB disk
Execution: This experiment can be reproduced by exe-
cuting
go run . -experiment4
Results: Each row in the resulting csv-file (out-
put/experiment4.csv) corresponds to a unique combi-
nation of a) query type (look-up, sum, min, and quantile)
and b) number of epochs (10, 30, 100) with 100 new rows
per epoch. The following columns contain the relevant
data: prefix_proc_time_server, prefix_proc_time_client,
query_proc_time_server, query_proc_time_client, and
total_time. The first two correspond to the “prefix tree
proof generation” and “prefix tree proof verification”
bars in Figure 8b. The “sum tree proof generation”, and
“sum tree proof verification” bars in Figure 8b represent
the difference between the total processing times and
the prefix tree processing times. Finally, the “other” bar
in Figure 8b represents the difference between the total
times and the query processing times. The “other” bar
captures network latency, but this is only relevant if the
client and server run on different machines.
The claim C2 can be verified by comparing
“query_proc_time_server” to “query_proc_time_client”
in the output file: the difference should be more stark in
the first six data rows (look-up and sum queries) than in
the last six data rows (min and quantile queries)

(E3): Baselines: 5–10 compute-hours + <1 MB disk
Execution: This experiment can be reproduced for TAP
by executing
go run . -experiment5
This records the storage cost of building TAP’s data
structure and the execution cost of the different query
types for a varying number of data rows. To reproduce
the results for Merkle2, execute
go run .
in the msquare subfolder of the repository.
Results: After completing the first command, a single
output table is created with the data for the graphs of
Figure 9 for TAP. The ‘storage’ column corresponds
to Fig 9a, the ‘auditor’ column to Fig 9b, the ‘insert’
column to Fig 9c, the ‘lookup’ column to Fig 9d, the
‘sum’ column to Fig 9e, and the ‘min’ column to Fig
9f. The number of rows is not printed by default, but
corresponds to 100 times the number in the function call
(as per lines 648-654 of main.go). The second command
will produce a table for Merkle2 with a similar structure

to the one for TAP in the msquare folder. C3 can be
verified by comparing the values in the two tables for
the same row index.
(Perhaps confusingly, the x-axis of Fig. 9a is labeled
“epochs” despite there being only one row per epoch.)

(E4): Scalability: >10 compute-hours + <1 GB disk
Preparation: The scalability experiments were de-
signed to be run overnight on a high-capacity machine,
and will take a considerable amount of time to complete
with the default settings (i.e., >10 hours on a high-end
AWS machine). The range of the experiments can be
changed by modifying lines 701 and 704 (the second
number in the function call represents the maximum
number of epochs, so setting this to a lower number will
substantially reduce processing times), and the number
of samples can be reduced by setting nSamples6 and
nSamples7 to 1 in lines 712–713 of main.go.
For example, setting nSamples6 and nSamples7 to 1,
and using
getExperimentRange(100, 10000, 3, 10, 100, 2)
in line 701 and
getExperimentRange(100, 1000, 2, 10, 100, 2)
in line 704 should cause both sets of experiments to con-
clude within 15 minutes on a medium-capacity machine.
Execution: This experiment can be reproduced by exe-
cuting
run . -experiment6
for Figures 10a, c, and d, and
run . -experiment7
for Figure 10b.
Results: The output table consists of one row for each
combination of user/sum tree numbers (assuming one
sum tree per district), and each cell contains the aver-
age result over several queries of the same type. The
“quantile_all_total” column contains the results for a
quantile query on the entire dataset (Fig. 10c) and “quan-
tile_limited_total” (Fig. 10d) for query over a single
subtree. On a medium-capacity machine, C4 can be ver-
ified by observing the trends in the table entries (even if
the overall execution times are higher).

A.5 Notes on Reusability
The TAP code can be used to perform queries on data tables
with the same format as those generated for the experiments
(as specified in tables/table_factory.go).

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 391

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

