
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Evading Provenance-Based ML Detectors
with Adversarial System Actions

Kunal Mukherjee, Joshua Wiedemeier, Tianhao Wang, James Wei,
Feng Chen, Muhyun Kim, Murat Kantarcioglu, and Kangkook Jee,

The University of Texas at Dallas
https://www.usenix.org/conference/usenixsecurity23/presentation/mukherjee

Evading Provenance-Based ML Detectors with Adversarial System Actions

Kunal Mukherjee, Joshua Wiedemeier, Tianhao Wang, James Wei, Feng Chen, Muhyun Kim,
Murat Kantarcioglu, and Kangkook Jee

Department of Computer Science, The University of Texas at Dallas

A Artifact Appendix

A.1 Abstract

The artifact evaluation process is designed to validate the
repeatability and usability of the results presented in the re-
search paper "Evading Provenance-Based ML Detectors with
Adversarial System Actions." The paper introduces PROVN-
INJA, a novel framework designed to discover adversarial
samples, also known as gadgets, specifically tailored for path-
based Intrusion Detection Systems (IDS) and Graph Neural
Network-based IDS. The primary objective of PROVNINJA is
to identify actions that can successfully evade state-of-the-art
IDSs. The evaluation process comprises two main compo-
nents: training and testing the IDS and generating adversarial
examples to evade the IDSs. As a valuable resource, the au-
thors provide a GitHub link that grants access to the source
code, data, and scripts necessary for reproducing the results
described in the paper.

By offering these artifacts, the researchers enable fellow
researchers and practitioners to replicate and build upon their
work in provenance-based ML detectors. The artifacts include
comprehensive software, data, and scripts employed to gen-
erate the findings presented in the paper. The accessibility of
the GitHub repository ensures transparency. It fosters collab-
oration among researchers, facilitating advancements in the
domain of provenance-based ML detectors and contributing
to the overall improvement of security systems.

A.2 Description & Requirements

PROVNINJA is a system for generating evasive variants of
known attack chains by replacing rare system events with
chains of common system events that achieve the same ends.
To support the reproduction of our results, we have provided
the code, sample data, models, and intermediate files required
to produce evasive attacks from the evaluation. Although
our artifacts make no particular assumptions about compute
power, 25GB of disk space and 16GB of memory are required
to store and run the models, data samples, and software de-
pendencies.

A.2.1 Security, privacy, and ethical concerns

None. No destructive steps are taken, and no data is collected
during the evaluation process. The sample data provided is
from our local testbed environments, so real user data is not
exposed.

A.2.2 How to access

Our code, sample data, and sample results can
be accessed on GitHub at https://github.com/
syssec-utd/provninja/releases/tag/USENIX_23.
The sample data for the Supply Chain APT is
available at https://drive.google.com/file/d/
1Jz0ZuiZlUEZdAgqlnfmpN2_X0Cms6Sl8/view.

A.2.3 Hardware dependencies

Running our experiments requires 25GB of storage and 16GB
of memory for the data, code, and models.

A.2.4 Software dependencies

Our code is written in Python and uses Miniconda for
environment management. Miniconda can be installed
from https://conda.io/projects/conda/en/latest/
user-guide/install/index.html. Simply follow the in-
stallation directions for your machine architecture. Python
3.10 will be installed as part of the environment building
process. Our experiments were run on Ubuntu 18. Our Shade-
Watcher experiments use a Docker container; to install
Docker, please follow the instructions at https://docs.
docker.com/engine/install/.

A.2.5 Benchmarks

All the datasets and models required for use with this arti-
fact are provided in the GitHub repository and Google Drive
provided in A.2.4.

A.3 Set-up
These instructions assume that you have already installed
Miniconda and Docker.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 53

https://github.com/syssec-utd/provninja/releases/tag/USENIX_23
https://github.com/syssec-utd/provninja/releases/tag/USENIX_23
https://drive.google.com/file/d/1Jz0ZuiZlUEZdAgqlnfmpN2_X0Cms6Sl8/view
https://drive.google.com/file/d/1Jz0ZuiZlUEZdAgqlnfmpN2_X0Cms6Sl8/view
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

A.3.1 Installation

First, clone our code, data, and configuration files. Next, up-
date, build, and activate the Conda environment.
$ git clone \
https://github.com/syssec-utd/provninja \
--branch USENIX_23

$ cd provninja
$ conda update conda
$ conda env update -n provng -f provng.yml
$ conda activate provng

Next, build the Docker container for the ShadeWatcher ex-
periments.
$ cd intrusion-detection-system/shadewatcher
$ docker build . -t shadewatcher

A.3.2 Basic Test

Once the environment has been set up, you can verify that all
the packages have been installed correctly by running python
test_installation.py. This script will import all the rel-
evant modules and will print “INSTALLATION VERIFIED”
if the Conda environment has been installed correctly. Other-
wise, it will print “FAIL”, along with a brief exception mes-
sage. If the Docker build process finishes without issue, the
Docker environment is set up.

A.4 Evaluation workflow
We provide detailed instructions on how to reproduce support-
ing evidence for our major claims. In the README, we also
provide the exact commands to run for each major component.

A.4.1 Major Claims

(C1): PROVNINJA reduces detection rates of state-of-the-art
provenance-based IDS by up to 59%. This is proven by
experiments (E1), (E2) and (E3), as described in section
6.4 and presented in tables 2 and 3.

(C2): PROVNINJA is able to use event frequency data to
construct inconspicuous alternatives to rare events in
an attack chain. This is proven by experiment (E4); the
gadget chain generation process is discussed in section
4.6 and example gadget chains are presented in tables 1
and 9.

A.4.2 Experiments

(E1): [Path-based IDS] [10 human-minutes + 1 compute-
minute]: Run the trained path-based models on the orig-
inal attacks and the corresponding Ninja variants.
How to: In intrusion-detection-system/
path-based/, run python sigl.py and python
provdetector.py. Record the recall and F1 scores
for the original Enterprise APT and the “Gadget”

Enterprise APT. The expected results are provided in
the README.md file in this directory.
Preparation: To set the working directory, cd in
trusion-detection-system/path-based. No addi-
tional configuration beyond the Conda environment acti-
vation from A.3 is required.
Execution: Run python sigl.py and python
provdetector.py.
Results: Record the recall and F1 scores for the original
Enterprise APT and the “Gadget” Enterprise APT. The
recall and F1 scores for the “Gadget” Enterprise APT
should be significantly lower than those of the original
Enterprise APT.

(E2): [Graph-based IDS] [15 human-minutes + 5 compute-
minute]: Validate the graph-based IDS on the original
Supply Chain APT, then create ninja variants to evade
detection.
How to: In intrusion-detection-system/
graph-based/, run the S-GAT and Prov-GAT drivers;
observe that the weight averge recall and F1 scores
are acceptably high (>=0.88). Then, run python
provninjaGraph.py to generate adversarial examples
and observe the decrease in recall and F1 score.
Preparation: To set the working directory, cd
intrusion-detection-system/graph-based.
Download the sample Supply Chain APT data
from https://drive.google.com/file/d/
1Jz0ZuiZlUEZdAgqlnfmpN2_X0Cms6Sl8/view and
unzip it. To assist in this step, we have provided a shell
script download_sample_supply_chain_data.sh,
which will download and unzip the data (run ./down
load_sample_supply_chain_data.sh).
Execution: Run python gnnDriver.py gat -if 5
-hf 10 -lr 0.001 -e 20 -n 5 -bs 128 -bi -s
and python gnnDriver.py gat -if 768 -hf 10 -lr
0.001 -e 20 -n 5 -bs 128 -bi to validate the graph-
based IDS. Then, run python provninjaGraph.py to
create and evaluate the evasive attacks.
Results: From the classification reports, record the
weighted average recall and F1 scores for the original
Supply Chain APT and the evasive variants. The recall
and F1 scores for the evasive variants should be signif-
icantly lower than those of the original Supply Chain
APT.

(E3): [ShadeWatcher] [10 human-minutes + 20 compute-
minutes]: Demonstrate that PROVNINJA can evade
the SOTA provenance-based security detector, Shade-
Watcher.
How to: In the provided Docker con-
tainer, run shadewatcher_train.py and
shadewatcher_eval.py for the benign and anoma-
lous samples with and without gadgets to observe the
gadgets’ impact on detection rates.
Preparation: Execute the commands in order:

54 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://drive.google.com/file/d/1Jz0ZuiZlUEZdAgqlnfmpN2_X0Cms6Sl8/view
https://drive.google.com/file/d/1Jz0ZuiZlUEZdAgqlnfmpN2_X0Cms6Sl8/view

$ docker run -it --mount type=bind,\
source="pwd",target=/data \
-e DATASET_DIR=/data \
--name shadewatcher shadewatcher

$ cd /ShadeWatcher
$./prepare_shadewatcher.sh
Execution: Run the script to start the evalaution,
run_shadewatcher_experiments.sh, which will
train and evaluate the ShadeWatcher model on the
provided benign and anomalous data with and without
gadgets. Finally, run python3.6 stat_eval.py
tests to summarize the results.
Results: Observe the true positive decreases by 35%,
demonstrating PROVNINJA’s ability to evade Shade-
Watcher.

(E4): [Gadget Finding] [10 human-minutes + 1 compute-
minute]: Using some sample frequency data, cre-
ate high-regularity gadgets for winord.exe executes
notepad.exe.
How to: Run gadget-finder/gadget-finder.py
to generate gadgets and measure their regularity scores.
Observe that several usable (regularity > 0.003) gadgets
are created for this event.
Preparation: cd gadget-finder. Once you are in the
right working directory, no additional configuration be-
yond the Conda environment activation from A.3 is re-
quired.

Execution: Run the command:
python gadget-finder.py -i input.csv -p
FrequencyDB/SAMPLE_WINDOWS_FREQUENCY_DB.csv
-o output/gadgets.txt.
Results: Read the output/gadgets.txt file and see
that five usable (regularity > 0.003) gadgets are provided.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 55

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

