
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Device Tracking via Linux’s New
TCP Source Port Selection Algorithm

Moshe Kol, Amit Klein, and Yossi Gilad, Hebrew University of Jerusalem
https://www.usenix.org/conference/usenixsecurity23/presentation/kol

USENIX’23 Artifact Appendix: Device Tracking via Linux’s New TCP
Source Port Selection Algorithm

Moshe Kol
Hebrew University of Jerusalem

Amit Klein
Hebrew University of Jerusalem

Yossi Gilad
Hebrew University of Jerusalem

A Artifact Appendix

A.1 Abstract
This artifact contains a proof-of-concept implementation of
a device tracking technique for Linux-based devices by ex-
ploiting the way Linux selects TCP source ports. The Linux
TCP port selection algorithm is an adaptation of Algorithm 4
(“Double-Hash Port Selection Algorithm”) from RFC 6056.
The algorithm is used starting from kernel version 5.12-rc1.

The artifact contains a tracking server written in Go and a
tracking snippet written in HTML+JavaScript, served by the
tracking server using HTTP.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our attack generates a device ID for the tested device, that can
identify it across browsers, browser privacy modes, networks,
containers and VPNs. Therefore, for the sake of maintaining
evaluator’s privacy, we recommend evaluating our artifact on
a local/private network.

In addition, in the “Set-up” section, we instruct the evalua-
tor to use older versions of Ubuntu 22.04 and Google Chrome.
Older versions are at risk of security bugs, therefore using
local network is preferred.

A.2.2 How to access

The artifact is available on GitHub:
https://github.com/0xkol/

rfc6056-device-tracker/tree/
09dd6ab68e10566eb6ca7760ef78d4689c7e2b85

A.2.3 Hardware dependencies

8GB of RAM, 4 CPU cores and 50GB free disk space.

A.2.4 Software dependencies

Tracking client requirements

1. Linux kernel: The Linux kernel of the client device
must be one of the following versions: 5.12.*, 5.13.*,
5.14.*, 5.15–5.15.40, 5.16.*, 5.17–5.17.8.

2. Google Chrome: version 96.0.

3. (Optional) Python: Python 3.5 or above.

Tracking server requirements We assume that the track-
ing server runs on a Linux host.

1. Go version 1.18, the google/gopacket library and the
google/gopacket/pcap library.

2. libpcap-dev package (on Ubuntu).

3. git.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

To evaluate our attack, you will need two Linux machines:
one for our tracking server and one for the tracking client (that
interacts with the server using Chrome). The client machine
has specific Linux kernel constraint, so we recommend using
a virtual machine (VM) for it. The tracking server can run on
any Linux machine that has network connectivity (IPv4 and
IPv6) to the client machine. In this document we describe how
to run both server and client as (separate) virtual machines.

Configure Oracle VirtualBox: Download and Install Or-
acle VirtualBox from this URL https://www.virtualbox.
org/wiki/Downloads.

Configure Host-Only Network on VirtualBox:

1. Disable address range control (required
on Linux hosts only): Create the file
/etc/vbox/networks.conf and write this line
to it (including the asterisk): * 0.0.0.0/0 ::/0

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 373

https://github.com/0xkol/rfc6056-device-tracker/tree/09dd6ab68e10566eb6ca7760ef78d4689c7e2b85
https://github.com/0xkol/rfc6056-device-tracker/tree/09dd6ab68e10566eb6ca7760ef78d4689c7e2b85
https://github.com/0xkol/rfc6056-device-tracker/tree/09dd6ab68e10566eb6ca7760ef78d4689c7e2b85
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

2. Open "Host Network Manager": Open VirtualBox
and click on "File" → "Host Network Manager".

3. Create a New Host-Only Network: On "Host Network
Manager", click on the "Create" button. This will create
a new interface on your host with the name vboxnet0
(or similar).

4. Configure IPv6: By default, only IPv4 prefix will be
assigned to the new virtual interface (192.168.56.1/24
or similar). To configure IPv6, use our pre-generated
ULA prefix fd3f:e8d8:3a1f:0::/64. On the "IPv6
address" field enter fd3f:e8d8:3a1f:0::1 and on the
"IPv6 Prefix Length" enter 64.

5. Click on the "Apply" button. You should see no errors.

Tracking Client Installation: We describe here how to
setup a tracking client machine using Oracle VirtualBox.

1. Download and Install Ubuntu 22.04: Download
Ubuntu Desktop 22.04 (not 22.04.1) from this URL
http://old-releases.ubuntu.com/releases/
jammy/ubuntu-22.04-desktop-amd64.iso. Install
Ubuntu as a new Virtual Machine on Oracle VirtualBox.
Notes:

• You may follow these instructions for refer-
ence: https://brb.nci.nih.gov/seqtools/
installUbuntu.html

• We recommend assigning to the VM 4GB of RAM, 2
CPUs and 20GB of disk space.

• Avoid downloading updates during installation.
Otherwise, Ubuntu will auto-update its kernel. Also,
make sure your machine is NOT connected to the
Internet during installation by changing the network
adapter from "NAT" to "Not attached" in the VM "Set-
tings" window.

• The kernel version of your installed Ubuntu should
be 5.15.0-25-generic. You can view it using the
command: uname -a

2. Connect to the Internet: When your VM is up and run-
ning, connect it to the Internet by changing the network
adapter from "Not attached" to "NAT" in the VM "Set-
tings" window. (Avoid updating Ubuntu if it prompts for
an update.)

3. Download and Install Google Chrome: Down-
load Google Chrome v96.0 from https://dl.
google.com/linux/chrome/deb/pool/main/g/
google-chrome-stable/google-chrome-stable_
96.0.4664.110-1_amd64.deb

Install using the following command:
sudo dpkg -i google-chrome-stable_96.*.deb

4. Switch to Host-Only Network: Open the VM "Set-
tings" window. On the "Network" tab change the net-
work adapter to "Host-only adapter" and choose the
name of the adapter you created previously (probably
vboxnet0 or similar).

5. Configure IPv6: Use the following command to ensure
IPv6 connectivity between the VMs:

sudo ip address add
fd3f:e8d8:3a1f:0::10/64 dev IFNAME

To find IFNAME, list the network adapters on the ma-
chine using the ip address command and note the in-
terface name whose name is not lo. Beware: This com-
mand does not survive reboot.

6. (Optional) You can verify that the machine you installed
is vulnerable (i.e. uses the un-patched version of Algo-
rithm 4 of RFC 6056) by invoking our Python 3 detection
tool: python3 CVE-2022-32296_tester.py

Expected output:

Verdict: RFC 6056 Algorithm 4 (Vulnerable)

Tracking Server Installation:

1. Install Ubuntu Desktop 22.04 on a separate virtual ma-
chine, similar to the "Tracking Client Installation".

2. Install Packages: Run the following commands:

sudo apt update
sudo apt install git golang-go libpcap-dev

3. Clone Repository: Clone the git repository using the
following commands:

git clone
https://github.com/0xkol/rfc6056-device-
tracker.git

cd rfc6056-device-tracker
git checkout 09dd6ab

4. Install Go Libraries: On the repository folder, type the
following commands:

go get github.com/google/gopacket
go get github.com/google/gopacket/pcap

5. Switch to Host-Only Network: Similar to what you did
for the client machine, change the network adapter to
"Host-only adapter" and choose the name of the adapter
you created previously. After this step, both the client
and server VMs should be up and running, with their net-
work adapter configured to the same Host-Only network
created previously.

374 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

http://old-releases.ubuntu.com/releases/jammy/ubuntu-22.04-desktop-amd64.iso
http://old-releases.ubuntu.com/releases/jammy/ubuntu-22.04-desktop-amd64.iso
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://dl.google.com/linux/chrome/deb/pool/main/g/google-chrome-stable/google-chrome-stable_96.0.4664.110-1_amd64.deb
https://dl.google.com/linux/chrome/deb/pool/main/g/google-chrome-stable/google-chrome-stable_96.0.4664.110-1_amd64.deb
https://dl.google.com/linux/chrome/deb/pool/main/g/google-chrome-stable/google-chrome-stable_96.0.4664.110-1_amd64.deb
https://dl.google.com/linux/chrome/deb/pool/main/g/google-chrome-stable/google-chrome-stable_96.0.4664.110-1_amd64.deb

6. Configure IPv6: Similar to what you did on the client
machine, type the following command:

sudo ip address add
fd3f:e8d8:3a1f:0::20/64 dev IFNAME

Beware: This command does not survive reboot.

7. Compile and Run the Tracking Server: Switch to the
git repository folder. Then, compile the tracker using:
go build -o tracker tracker.go

The compilation should succeed (no output on
the console). Proceed by running the server on
the interface you discovered on the previous step.
For example (assuming the interface is enp0s3):
sudo ./tracker -iface enp0s3

You should see the output:

RFC 6056 Device Tracker v1.3 start
(capturing on: enp0s3)

A.3.2 Basic Test

Connectivity Test: By now you should have two VMs con-
nected to the same Host-Only network, with IPv4 and IPv6
connectivity. Verify that you can ping from the client VM to
the server VM by issuing:

ping6 fd3f:e8d8:3a1f:0::20
ping SERVER_IPV4_ADDRESS

You can find SERVER_IPV4_ADDRESS by issuing the
ip address command on the server machine.

Browser Test: On the client VM, open the Google Chrome
browser and browse to the server using both IPv4 and
IPv6 (i.e. to URLs http://[fd3f:e8d8:3a1f:0::20]/
and http://SERVER_IPV4_ADDRESS/). You should see
a webpage with the title "RFC 6056 Device Tracker Demo".

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The same device ID is obtained in a Google Chrome
regular tab and an incognito tab. Section 6.1 in the paper.
Proven by experiment (E1).

(C2): The same device ID is obtained when using IPv4/IPv6.
Section 6.2 in the paper. Proven by experiment (E2).

(C3): The dwell time on Google Chrome varies between 5-15
seconds, depending on the RTT to the tracking server and
the physical machine. Section 6.4 in the paper. Proven
by experiment (E3).

A.4.2 Experiments

In all of the experiments, you should verify that the tracking
server is up and running, and that it has both IPv4 and IPv6
connectivity from the tracking client.
(E1): Cross browser privacy modes consistency. 30 human-

minutes, 30 compute-minutes.
Tracking Client VM Preparation: Open two Google
Chrome windows: a regular window and an incognito
window. On each window, browse to the tracking server.
Make sure that the "Tracker address" field contains the
IP address of the tracking server.
Execution: On the normal window, hit "Fingerprint
me!" to launch the fingerprinting process. Few seconds
later, you should see "fingerprint" and "fingerprint hash"
on the webpage. Write these down for later. Continue by
hitting "Fingerprint me!" on the incognito window and
ensure you get the same fingerprint. Avoid running two
fingerprinting measurements simultaneously.
Results: The same fingerprint should be generated on
each window.

(E2): Cross protocol consistency. 30 human-minutes, 30
compute-minutes.
Tracking Client VM Preparation: Open a Google
Chrome window (normal one is enough), and browse to
the tracking server (over IPv4 or IPv6, does not matter).
Execution: Fingerprint the client machine once us-
ing an IPv4 address of the tracking server. Write
down the fingerprint for a later comparison. Finger-
print the client machine again, but now use IPv6 as
the tracking server. (On the "Tracker address" field use
[fd3f:e8d8:3a1f:0::20] (including brackets!).) Ver-
ify that you get the same fingerprint on each run.
Results: The same fingerprint should be generated for
both IPv4 and IPv6.

(E3): Dwell time. 30 human-minutes, 30 compute-minutes.
Tracking Client VM Preparation: Open a Google
Chrome window and browse to the tracking server.
Execution: Fingerprint the client machine using IPv4
or IPv6 (it doesn’t matter which at this point) and write
down the "total time" reported in the webpage. Repeat
the experiment a few times to obtain an average readout.
Results: You should observe an average dwell time of 5-
15 seconds, depending on the network RTT and physical
machine.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220912. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 375

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

