
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

The Gates of Time: Improving Cache Attacks
with Transient Execution

Daniel Katzman, Tel Aviv University; William Kosasih, The University of Adelaide;
Chitchanok Chuengsatiansup, The University of Melbourne;

Eyal Ronen, Tel Aviv University; Yuval Yarom, The University of Adelaide
https://www.usenix.org/conference/usenixsecurity23/presentation/katzman

USENIX’23 Artifact Appendix: The Gates of Time: Improving Cache
Attacks with Transient Execution

Daniel Katzman , William Kosasih , Chitchanok Chuengsatiansup , Eyal Ronen , Yuval Yarom

Tel-Aviv University
The University of Adelaide

The University of Melbourne

A Artifact Appendix

A.1 Abstract
We implement a speculative execution attack that improves
cache attacks by means of amplifying cache states. In ad-
dition to that, the construct that we use to perform this
amplification technique is also capable to facilitate robust
computation on cache states. This project is available at
https://github.com/0xADE1A1DE/GoT. In this Artifact Eval-
uation, we are applying for:

• "Artifact Available" badge

• "Artifact Functional" badge

• "Results Reproduced" badge

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

A.2.2 How to access

Artifact can be accessed here:
https://github.com/0xADE1A1DE/
GoT/commit/5bac7ece92f61025b7c1942c59b95e8a999ec231

A.2.3 Hardware dependencies

Amplification, Eviction Set, and Prime + Store Attack
Dynabook TECRA A50- EC, with an Intel(R) Core(TM) i5-
8250U CPU
Trace Processing and Stitching

A High Performance Computing (HPC) node with 80
threads and AVX-2 instruction-set support.
Circuit Evaluation

Intel(R) Core(TM) i7-9750H with cores 0,1,6,7 isolated.

A.2.4 Software dependencies

Amplification, Eviction Set, and Prime + Store Attack

Ubuntu 20.04.3 LTS, Chromium commit hash
(be87c21d2a7069363dfd66f278739d7e4211145e), em-
scripten.
Trace Processing and Stitching

A reasonably modern HPC node with Linux.
Circuit Evaluation

Ubuntu 21.04, huge-pages enabled, gnuplot.

A.2.5 Benchmarks

Amplification, Eviction Set, and Prime + Store Attack
None

Trace Processing and Stitching

• Dataset: The dataset consists of several components, in-
cluding the raw traces obtained from the Prime+Store at-
tack on ElGamal, the true key (referred to as the “ground
truth”) of the ElGamal encryption algorithm, and the
frequency analysis of these traces. The latter serves as
a guide for selecting the optimal starting trace for key
expansion.

• Location: The dataset is located in the
artifacts repository under the directory:
“trace_processing_and_stitching/DATASETS”

Circuit Evaluation

• Dataset: The dataset contains raw circuit accuracy data
which provides guidance on how to create the figures.
Furthermore, scripts that can be used to generate figures
that match those in the paper are also included in the
dataset.

• Location: The dataset can be found in the artifacts repos-
itory under the directory: “circuits/FIGURES”

A.3 Set-up
A.3.1 Installation

Amplification, Eviction Set, and Prime + Store Attack

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 117

• Install gcc/g++, python3, matplotlib, gnuplot

• Install and activate emscripten

git clone https://github.com/emscripten-
core/emsdk.git

cd emsdk

./emsdk install latest

./emsdk activate latest

source ./emsdk_env.sh

• Switch the processor to run in performance mode (mean-
ing the processor is set to its’ maximum frequency), by
run the following command as superuser (‘sudo -s‘)

for i in 0..7; do echo performance >
/sys/devices/system/cpu/cpu$i/cpufreq/
scaling_governor; done

• Clone the GoT repo:

git clone https://github.com/0xADE1A1DE/GoT.git

• Get Chromium at commit hash
be87c21d2a7069363dfd66f278739d7e4211145e

Apply /GoT/amplification_eviction_set_finding/
wasm/v8.diff, which does the following:

– Creates a special native function %CustomFn

* Gives access to clflush

* Memory fences mfence; lfence

* Non functioning virtual to physical address
resolution (requires running Chromium with-
out sandbox, and some more tedious setup,
this part is not used by our experiments)

– Alters the assembler to emit rdtsc
when asked to emit a mov register,
imm with imm==0xddaa00ccbb00 ||
imm==0xddaa00ccbb80 This is used to pro-
vide our program with the ability to measure with
rdtsc.

Note: The experiment requiring this patch is for Figure
9, we only use the clflush and fences capabilities
provided by this patch.

Note: Due to the size of Chromium, and the
limited capacity of the storage in our system,
we suggest using our compilation located at
/home/acrypto/Documents/daniel/out/Default/chrome

Trace Processing and Stitching
Access to an HPC node with 80 threads and AVX-2 instruc-

tion set support helps in speeding up evaluation process.
Circuit Evaluation

Ensure that huge pages are enabled and core 0,1,6,7 (for
Core i7-9750H with 12 logical cores, these are core 0,1 and
their sibling cores) are isolated. On Ubuntu,

This can be achieved by adding the boot parameter:
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash

isolcpus=0.1,6,7 default_hugepagesz=1G
hugepagesz=1G hugepages=3000"

to /etc/default/grub.
Then run the command
sudo update-grub
Then Install gnuplot. In ubuntu, run
sudo apt install gnuplot

A.3.2 Basic Test

Circuit Evaluation To test that the program compiles suc-
cessfully and the environment requirements are met. This test
require huge pages to be enabled, refer to appendix A.3.1 on
how to enable. Run the program with
taskset -c 1 ./out gol_glider_demo
This will run the game of life glider demo. Expect a glider

to hover across your screen. Note that the process is pinned to
core 1, as it is isolated from the rest of the system to reduce
noise.

A.4 Evaluation workflow

Amplification, Eviction Set, and Prime + Store Attack
Refer to the readme file in

amplification_eviction_set_finding/README.md
and prime_store_attack_finding/README.md
Trace Processing and Stitching

Refer to the readme file in
trace_processing_and_stitching/README.md
Circuit Evaluation

Refer to the readme file in circuits/README.md

A.4.1 Major Claims

(C1): Amplification, Eviction Set, and Prime + Store Attack
We can achieve a difference of 100ms between medians
in native amplification (graph 8) We can achieve a dif-
ference of 1ms between medians in WASM amplification
(graph 9) We can find eviction sets in WASM (graph 10).
This is proven in experiment (E1)

(C2): Trace Processing and Stitching ElGamal Key Re-
covery using Prime+Store attack. This is proven by the
experiment (E2) described in [Section 6.3 - 6.6] whose
results are illustrated/reported in [Figure 11-12]

(C3): Circuit Evaluation Circuits achieve accuracy as de-
scribed in the paper. This is proven by the experiment
(E3) described in [Section 4] whose results are illus-
trated/reported in [Figure 3-6, and Table 1].

118 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

A.4.2 Experiments

(E1): Amplification, Eviction Set, and Prime + Store Attack
[3 human-hours + 3 compute-hours + 500MB disk]: In
this experiment
How to: Follow the steps detailed in appendix A.4
Preparation: Install emscripten. As described in ap-
pendix A.3.1
Execution: Refer to the steps described in ap-
pendix A.4.
Results: Refer to claim (C1).

(E2): Trace Processing and Stitching [1 human-hour + 1
compute-hour on (80 thread HPC) + 100MB disk]:
In this experiment, ElGamal traces obtained from
Prime+Store are transformed into square and multiply
traces, and then key stitching is performed to combine
partial traces into the complete ElGamal key.
How to: Follow the steps detailed in appendix A.4
Preparation: To compile the trace process-
ing and stitching programs, navigate to the
"trace_processing_and_stitching" directory in the
repository, and issue the make command.
make
Execution: Refer to the steps described in ap-
pendix A.4.
Results: You can follow the instructions outlined in sec-
tion appendix A.4. Running the “sigproc” command will
produce a set of square and multiply traces. It’s impor-
tant to note that these traces represent only portions of
the complete ElGamal key, and must be combined or
“stitched” together to retrieve the full key. This process is
accomplished using the “stitch_parallel_simd_any_pos”
and “stitch_parallel_simd” commands, which will gen-
erate the complete ElGamal key as the output in the
form of square and multiply representation. Use the
“sm_to_exponent” program to convert this into binary
format.

(E3): Circuit Evaluation [30 human-minutes + 3 compute-
days + 100MB disk]: This experiment evaluates the ac-
curacy of our circuits. Results are stored in each sub-
directory of the experiments under the name “RESULT”
which include the raw samples, their mean, and median.
How to: Follow the steps detailed in appendix A.4
Preparation: 1) Navigate to the "circuits" directory in
the cloned repository. 2) Execute ./compile.sh to com-
pile program.
Execution: Refer to the steps described in ap-
pendix A.4.
Results: Refer to the steps described in appendix A.4.
Results of each circuit experiment is stored in a di-
rectory named “RESULT”. This directory contains the
raw samples, mean, and median. Use the “final.csv” to
recreate the histograms presented in the paper. The “FI-
NAL_MEAN” and “FINAL_MEDIAN” files carry the

mean and median values respectively for each circuit,
and are the values used in the paper. Follow the steps in
appendix A.4 to generate figures identical to the ones
found in the paper from collected data.

A.5 Notes on Reusability
All of our experiments are done on specific hardware, and
reproducing on others may need additional tuning.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 119

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

