
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

TVA: A multi-party computation system
for secure and expressive time series analytics
Muhammad Faisal, Boston University; Jerry Zhang, University of California

San Diego; John Liagouris, Vasiliki Kalavri, and Mayank Varia, Boston University
https://www.usenix.org/conference/usenixsecurity23/presentation/faisal

USENIX’23 Artifact Appendix:
TVA: A multi-party computation system for secure and expressive

time series analytics

Muhammad Faisal
Boston University

Jerry Zhang*

University of California San Diego
John Liagouris

Boston University

Vasiliki Kalavri
Boston University

Mayank Varia
Boston University

A Artifact Appendix

A.1 Abstract

TVA is a multi-party computation (MPC) system for secure
analytics on secret-shared time series data. Our work intro-
duces new secure time series protocols that compute tumbling
and session window operators. We implement these operators
in the semi-honest setting using the 3PC replicated secret-
sharing protocol and in the malicious setting using the 4PC
Fantastic Four protocol. We run experiments to evaluate the
performance of the newly introduced protocols using queries
from real-world applications. The experiments require the
deployment of two MPI clusters on AWS: (i) using machines
in the same region (LAN setting) and (ii) using machines in
different regions (WAN setting).

A.2 Description & Requirements

TVA is a typical MPC system that consists of input par-
ties, computing parties, output parties. Our experiments are
designed to evaluate the computation performed by the ma-
chines that host the computing parties. Before starting any
experiment, the software needs to be deployed and initialized
on each machine hosting a computing party to form a MPC
cluster.

A.2.1 Security, privacy, and ethical concerns

There are no such concerns for our artifact deployment and
evaluation. We emphasize that TVA is an academic proof-of-
concept prototype and has not received careful code review.
This implementation is NOT ready for production use.

A.2.2 How to access

We host our artifact on Github.

*Work completed at Boston University.

A.2.3 Hardware dependencies

TVA does not require special hardware and can operate on
general-purpose CPU-based machines. For the experiments,
we use two types of machines which are available on AWS:
EC2 r5.8xlarge instances (32 vCPUS and 256GB RAM)
and EC2 r5n.16xlarge instances (64 vCPUs and 512GB
RAM). We use the r5.8xlarge machines when evaluat-
ing end-to-end latency for queries in the LAN and WAN
settings (experiments E1-E4 in Section A.4.2). We use the
r5n.16xlarge machines in the experiments that compare
TVA with Waldo (experiments E5, E6 in Section A.4.2).

We provide SSH access to our AWS clusters so that the
reviewers can reproduce the results using the same hardware
and settings we used.

A.2.4 Software dependencies

Our artifact is implemented in C++14. The artifact requires
two dependency packages: libsodium (1.0.18) and MPICH
(3.3.2). We used Linux Ubuntu (20.04.4), which also re-
quires installation of CMake (>=3.15.0) and pkg-config
(>=0.29.2). The installation may require other packages based
on the operating system version’s pre-installed packages.
For more details, check our dependency installation script
./scripts/setup.sh.

A.2.5 Benchmarks

Our main performance results are based on two set of exper-
iments. The first set evaluates the end-to-end latency of the
real-world queries described in Section 6.2 in the paper. The
results are shown in Figure 4. The second set of experiments
is used to compare TVA’s performance with the Waldo time
series database. We report the comparison results in Table 2
and Figure 3.

TVA’s workload consists of both local computation and
communication among the parties. Depending on the net-
work bandwidth and latency characteristics of the cluster, we
categorize the experimental setting as follows:

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 317

https://github.com/CASP-Systems-BU/tva/tree/stable

• Same Machine: In this scenario, computing parties are
deployed on the same machine. This is useful for test-
ing the framework setup and protocol correctness. The
experiments can be run with the following command.

cd b u i l d && cmake . . && make c l o u d
mpirun −np 3 . / c l o u d

• LAN: In this scenario, parties are deployed on different
machines but in the same data center. For these experi-
ments, we use the AWS us-east-2 region. Network la-
tency in this setting is less than 1ms. The experiments can
be run using the following command, where machine-i
represents the machine of the corresponding computing
party.

mpirun −np 3 − h o s t s \
machine −1 , machine −2 , machine −3 . / c l o u d

• WAN: In this scenario, we deploy computing par-
ties on machines across different regions. Specifi-
cally, we use the following four regions: us-east-2
(Ohio), us-east-1 (Virginia), us-west-1 (California),
and us-west-2 (Oregon). Network latency between ma-
chines in these experiments should be around 40ms.

• WAN-Simulated: For simulating the same conditions as
those Waldo has been evaluated in, we use a simulated
WAN network where latency between computing parties
is fixed at 20ms. To achieve this configuration, deploy
a LAN setting as described above and run the script
"./scripts/waldo_wan.sh" to simulate the WAN.

A.3 Set-up
A.3.1 Installation

There are two phases to correctly set up TVA. Since the
system consists of multiple computing parties (either 3 or 4
parties), we first need to install the framework on each party
independently and then set up the MPI cluster.

Computing Party setup: In this step, we install the TVA
source code and its dependencies. First, install the following
dependencies:

• building tools: cmake and pkgconfig.

• libsodium: We use it for random number generation.

• MPICH / OpenMPI: We use it for establishing commu-
nication among the computing parties.

For instructions on how to install these dependencies on a
linux distribution, see the script "./scripts/setup.sh".

After completing the above step, you should be able to
use the system in the "Same Machine" setting, i.e., where all
computing parties run in the same machine. At this point, you
can run the tests to make sure everything is correct.

cd . / s c r i p t s
. / r u n _ t e s t s . sh

Cluster setup: To use the framework in the LAN or WAN
settings, we need to replicate the previous steps for each ma-
chine in the cluster. Once we have TVA working on every
machine, we can start building the cluster as follows:

1. Make sure that machines have pair wise SSH access
to each other. This step depends on the cloud service
provider, as firewall settings and defaults are different.

2. Modify the /etc/hosts file on each machine to in-
clude other computing parties with names in the format
machine-i for LAN, and machine-wan-i for WAN.

3. Build the code using either the semi-honest (semi) or
the malicious protocol (mal) on each machine with the
following script.

cd s c r i p t s
. / b u i l d _ e x p e r i m e n t s . sh semi # mal

4. Run one of the experiments under scripts such as
cloud.sh depending on which results you need to re-
produce.

cd s c r i p t s
. / c l o u d . sh semi l a n

A.3.2 Basic Test

After finishing setting up a machine, test the framework setup
using the following command:

cd s c r i p t s
. / r u n _ t e s t s . sh

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): TVA’s can successfully compute online queries with
rigid time constraints and evaluate complex analytics on
millions of input rows with modest use of resources. For
this part, we need to reproduce the results in Figure 4
and Table 3.

(C2): For multi-predicate queries, TVA provides lower la-
tency compared to Waldo both in the malicious setting
and in the semi-honest setting. For this, we need to re-
produce the results in Table 2.

(C3): For window queries, TVA is up to two orders of magni-
tude faster than Waldo, which becomes competitive only
when the ratio of the window length over the whole time
domain is relatively small. The results of this experiment
are shown in Figure 3 and exact numbers are reported in
Section 6.1.2.

318 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

A.4.2 Experiments

The following steps are required if using a private cluster.
However, we can provide SSH access to our AWS machines
and, in this case, you can start from the execution step directly.

For experiments E1 and E2, use the LAN setting described
in Section A.2.5. For experiments E3 and E4, use the WAN
setting. For experiments E5 and E6, use the WAN-Simulated.
Use machines similar to machines 5.8xlarge for experi-
ments E1 through E4, and machines similar to machines
5n.16xlarge for experiments E5 and E6.
(E1): [Semi-honest LAN] [15 human-minutes + 1.5 compute-

hour]: In this experiment, we reproduce the results in
Figure 4-a, which represents the latency for the 3 appli-
cation queries in the semi-honest 3PC protocol when the
cluster is deployed in the LAN setting.
Preparation: Prepare a cluster with three machines
in the LAN setting as described in Sections A.2.5
and A.3.1.

Execution: Follow these steps:
1. On each machine, execute the following command

to build the experiments files:

cd s c r i p t s
. / b u i l d _ e x p e r i m e n t s . sh semi

2. Use the corresponding bash file on just one of the 3
machines to start the experiment execution.

On main machine o f t h e c l u s t e r
cd s c r i p t s
. / en e r gy . sh semi l a n
. / c l o u d . sh semi l a n
. / m e d i c a l . sh semi l a n

Results: The results will be appended to the files in the
results directory and you can compare the new results
with the old ones at the beginning of the file.

(E2): [Malicious LAN] [15 human-minutes + 3 compute-
hour]: Follow the same steps as in E1, except deploy 4
machines and replace the argument semi with mal.

(E3): [Semi-honest WAN] [15 human-minutes + 5 compute-
hour]: Follow the same steps as in E1, except deploy
the cluster in the WAN setting and replace the argument
lan with wan. Make sure to update the hosts file using
machine-wan-i as the host name.

(E4): [Malicious WAN] [15 human-minutes + 10 compute-
hour]: Follow the same steps as in E2, except deploy
the cluster in the WAN setting and replace the argument
lan with wan. Make sure to update the hosts file using
machine-wan-i as host the name.

(E5): [Semi-honest Waldo] [15 human-minutes + 1 compute-
hour]: In this experiment, we reproduce the results in
Figure 3 and Table 2.
Preparation: Prepare a cluster with 3 machines in the
LAN setting as described in Sections A.2.5 and A.3.1.

Use the script specified in WAN-Simulated to configure
the network latency.

Execution: Follow these steps:
1. On each machine, execute the following command

to build the experiments files:

cd s c r i p t s
. / waldo_wan . sh S
. / b u i l d _ e x p e r i m e n t s . sh semi

2. Use the corresponding bash file on just one of the 3
machines to start the experiment execution.

On main machine o f t h e c l u s t e r
cd s c r i p t s
. / wa ldo_ene rgy_ que ry . sh semi wan
. / w a l d o _ t a b l e _ e q u a l i t y . sh semi wan
. / w a l d o _ t a b l e _ g r e a t e r . sh semi wan

Results: The results will be appended to the files in the
results directory and you can compare the new results
with the old ones at the beginning of the file.

(E6): [Malicious Waldo] [15 human-minutes + 2 compute-
hour]: Follow the same steps as in E5 except use 4
machines and replace the argument semi with mal.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 319

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

