
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

URET: Universal Robustness
Evaluation Toolkit (for Evasion)

Kevin Eykholt, Taesung Lee, Douglas Schales, Jiyong Jang, and
Ian Molloy, IBM Research; Masha Zorin, University of Cambridge
https://www.usenix.org/conference/usenixsecurity23/presentation/eykholt

USENIX’23 Artifact Appendix: URET: Universal Robustness
Evaluation Toolkit (for Evasion)

Kevin Eykholt*
IBM Research

Jiyong Jang
IBM Research

Taesung Lee*

IBM Research

Ian Molloy
IBM Research

Douglas Schales
IBM Research

Masha Zorin
University of Cambridge

A Artifact Appendix

A.1 Abstract
The provided artifact contains URET as described in the paper.
The tools provided are sufficient to allow users to perform
custom adversarial evaluations on machine learning classifiers
regardless of input domain. Specifically, this version includes
input transformer definitions for the common input types (e.g.,
numerical, text, and categorical) as well as the binary file
input type described in the paper. With respect to results
reproduction, it contains the model checkpoints, evaluation
data, and notebooks used to generate most of the results in
Table 6.

Some components described in the paper have been pur-
posely left out of the provided artifact for proprietary reasons:

• No implementation of the “Model Guided” algorithm.
This implementation was deemed proprietary.

• No data/notebooks for the Malware experiments. The
malware samples used for evaluation are proprietary and
may pose a risk if improperly handled.

• No data/notebooks for the DGA experiments. The train-
ing and evaluation data are proprietary. The model code
is also proprietary.

Despite these limitations, the provided artifact can be used
to perform the custom evaluations described in the paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There should be no security, privacy, and ethical concerns.

A.2.2 How to access

URET is an evaluation toolkit for adversarial evasion at-
tacks. The public URET repository is accessible at https:

*These authors contributed equally.

//github.com/IBM/URET. It should contain the code nec-
essary to perform an evaluation as well as notebook exam-
ples of how to use URET. The stable URL used for Arti-
fact Evaluation is https://github.com/IBM/URET/tree/
8bd1b4f4d78ac19f026e862b31ae933983c99551.

A.2.3 Hardware dependencies

Our artifact does not have any hardware requirement. Of note,
a GPU is not required to run the evaluation notebooks and
pre-trained model checkpoints have been provided. We tested
our artifact on an Ubuntu 18.04 system with 8 CPU cores.

A.2.4 Software dependencies

The artifact repository contains a setup script for installing
the required python libraries to use URET, independent of any
machine learning libraries (e.g., Tensorflow, PyTorch, etc.).
However, the example notebooks require a different setup
script, which is included in the artifact, as the model check-
points were trained using older libraries. The example note-
books were tested using Python 3.8. In Section A.3., we detail
the necessary steps to install the required python libraries. We
recommend evaluators create a virtual environment prior to
running the setup script.

A.2.5 Benchmarks

The artifact requires the 2018 Home Mortgage Disclosure Act
(HMDA) dataset to run the evaluation notebooks. We have
already included a copy of the dataset in the artifact.

A.3 Set-up
A.3.1 Installation

Here, we provide instructions to deploy URET and run the
evaluation notebooks. This was tested using Python 3.8.

1. Clone the artifact from the stable URL:
https://github.com/IBM/URET/tree/
8bd1b4f4d78ac19f026e862b31ae933983c99551

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 213

https://github.com/IBM/URET
https://github.com/IBM/URET
https://github.com/IBM/URET
https://github.com/IBM/URET/tree/8bd1b4f4d78ac19f026e862b31ae933983c99551
https://github.com/IBM/URET/tree/8bd1b4f4d78ac19f026e862b31ae933983c99551
https://github.com/IBM/URET/tree/8bd1b4f4d78ac19f026e862b31ae933983c99551
https://github.com/IBM/URET/tree/8bd1b4f4d78ac19f026e862b31ae933983c99551

2. In the artifact directory, replace the existing setup.py file
with the version from from notebooks/setup.py.

3. Run the setup script in the top level directory (i.e. pip in-
stall -e .) to install the evaluation libraries. It is suggested
you do this in a virtual environment.

After step 3, URET should be ready for use. To re-
produce most of the results in Table 6, move in to the
notebooks/ directory and run HMDA_results.ipynb. We
have included pre-computed adversarial examples gener-
ated from running each of the exploration algorithms de-
scribed in the paper. This samples are stored in note-
books/data/HMDA_adv_samples. Note that running a genera-
tion notebook (e.g., notebooks/HMDA_random.ipynb) will
overwrite the saved samples by default.

A.3.2 Basic Test

After setting up URET, the easiest method to test functionality
is to run one of the adversarial generation notebooks. We
recommend running notebooks/HMDA_random.ipynb as it is
the fastest algorithm to run. The notebook should run without
errors, though you may get some warning messages. Cell 4
should display several progress bars and text related to the
model being evaluated and the adversarial success rate of the
generated samples.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): URET can be used to perform generating adversarial
evasion examples for a variety of input domains and for-
mats. This claim proven by experiment E1 and Sections
6.2 and 6.3 in the paper. Experiment E1 is described in
Section 6.1 of the main paper and its results are reported
in Table 6.

(C2): URET can generate adversarial examples for inputs
containing a multiple features in the input. This claim
proven by experiment E1.

(C3): URET can generate adversarial examples for inputs
containing a single feature. This claim proven by Sec-
tions 6.2 and 6.3 in the paper.

(C4): URET presents several different exploration confirma-
tions that can be selected based on user needs. Experi-
ment E1 shows results for several exploration configu-
rations as well as a baseline (Random) to highlight the
success rate/speed tradeoff.

A.4.2 Experiments

(E1): [HMDA Adversarial Examples][6 Human-hours]:
Generate adversarial examples for five HMDA classifi-
cation models using a baseline four exploration configu-
rations.

Preparation: Follow the installation instructions in
Section A.3.1. Once URET has been installed along with
its required libraries, change to the notebooks/ directory
before beginning the experiment.
Execution: We have pre-computed adversarial exam-
ples for each of the generation notebooks. If the evalua-
tor wants to re-generate the adversarial examples, then
run the following notebooks:

1. notebooks/HMDA_random.ipynb - [25 Human-
minutes] This generates adversarial examples where
every transformation edge is selected randomly.

2. notebooks/HMDA_brute.ipynb - [1.5-2 Human-
hours] This generates adversarial examples by ex-
ploring every edge.

3. notebooks/HMDA_lookup.ipynb - [1 Human-hour]
This generates adversarial examples using the
lookup table algorithm. Each generation process
will first compute a transformation weight lookup
table followed by generation.

4. notebooks/HMDA_simanneal.ipynb - [2.5-3
Human-hours] This generates adversarial examples
using the simulated annealing algorithm. The
default configuration file assigns 1 sec of attack
time per sample.

Of the models, we found that the random forest and
multi-layer perception models require the most amount
of time to generate.
Results: To generate attack success rate and transforma-
tion count results on generated adversarial examples, run
notebooks/HMDA_results.ipynb. It expects that there
are adversarial examples for each exploration configura-
tion and model.
To get the per sample generation times, we divide the
generation time shown in the generation notebooks by
the number of samples (2000). We have noticed that the
simulated annealing generation time can be sometimes
longer than the specified amount.

We have provide configuration files for each of the exper-
iments shown in Table 6 of the paper. Due to randomness,
there may be some slight variation in the success rate, trans-
formation count, and per sample generation time between
adversarial example generations. The configuration files can
be found in notebooks/configs/HMDA. If interested, the eval-
uator can alter these configuration files to try different explo-
ration settings. For the non-simulated annealing configuration
files, consider modifying the beam width (i.e., how many po-
tential transformation candidates are considered) and beam
depth (i.e., how many transformations can be applied). For
simulated annealing, consider modifying the transformation
parameters:

• max_transform_i_sampled - Upper limit on feature trans-
formation applied in a single transformation step

214 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

• global_max_transforms - how many transformations can
be applied

or the attack time. We note that for simulated annealing, modi-
fying the number of transformations without increasing attack
time may result in decreasing the success rate given its ran-
dom exploration process.

Note that we do not include the code, models, or data for the
experiments show in sections 6.2 and 6.3 in main paper. We
are unable to share the relevant material due to the proprietary
nature of data. Section 6.1 is the only experiment that uses
entirely non-proprietary data.

A.5 Notes on Reusability
URET is intended to be an evolving set of tools that can
be used to evaluate adversarial robustness of classifiers with
respect to evasion. If users find the current set of modules
insufficient for their needs, they are encouraged to implement
their own custom modules using the common interfaces ex-
posed by URET. Specifically, we expect users may need to
customize some or all of the following component:

• Input Transformers and Subtransformers (found in
uret/transformers) - For data types beyond the basic and
binary types we include in URET, users will need to
provide new implementations, which the exploration al-
gorithms can use.

• Custom Loss Functions (found in uret/transformers) -
URET uses two common loss types: 1) classification
loss based on ground truth labels or model predictions
and 2) Distance based loss function. Users that require
alerted or unique loss functions (e.g., a loss based on
time series input data) can define their own function to
provide to the explorer during initialization.

• Dependencies - Some feature relationships need to be
handled outside of the transformation interface, such
as normalization of a multi-feature vector input. These
dependencies can be functionally defined and specified
in the URET configuration file for the explorer to enforce
during example generation.

The goal of URET was to provide a basic, but easily ex-
pandable set of tools to be used for adversarial evaluations.
We hope that as users customize URET for their own needs,
their implementations can be integrated into the public repos-
itory to expand URET’s capabilities and help other users.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 215

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

