
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

IvySyn: Automated Vulnerability Discovery
in Deep Learning Frameworks

Neophytos Christou, Di Jin, and Vaggelis Atlidakis, Brown University;
Baishakhi Ray, Columbia University; Vasileios P. Kemerlis, Brown University

https://www.usenix.org/conference/usenixsecurity23/presentation/christou

USENIX’23 Artifact Appendix
IvySyn: Automated Vulnerability Discovery in Deep Learning Frameworks

Neophytos Christou
Brown University

Di Jin
Brown University

Vaggelis Atlidakis
Brown University

Baishakhi Ray
Columbia University

Vasileios P. Kemerlis
Brown University

A Artifact Appendix

A.1 Abstract
This is the artifact appendix for the IvySyn fuzzing frame-
work. It contains instructions about how to setup, run, and
reproduce the results of IvySyn, along with information re-
garding system and resource requirements.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

IvySyn is a fuzzer for discovering security-critical bugs in
Deep Learning (DL) frameworks. The list of APIs for which
IvySyn has uncovered bugs, during our experiments, is avail-
able in the repository of the project. If, during the reproduction
of any reported result, IvySyn produces PoVs for APIs not
listed in project repository, contact the authors via HotCRP
or follow the Responsible Disclosure steps in README.md to
report the (newly discovered) vulnerabilities to the developers
of the corresponding framework(s).

A.2.2 How to access

IvySyn is available at: https://gitlab.com/brown-ssl
/ivysyn/-/tree/4b3d26dda0ddea11282c2658e28090a
738dfd6c7 (stable ref.)

A.2.3 Hardware dependencies

The provided Docker images are configured to use 4 CPUs
and 16GB of RAM, but can also be set to use fewer (or more)
resources, as needed.

A.2.4 Software dependencies

We provide a Docker image that builds and runs IvySyn, and
hence Docker is required. Some scripts run outside Docker
containers and were tested on Debian v11—but they are rela-
tively simple and should work on any Linux distribution.

A.2.5 Benchmarks

All the data required for running our benchmarks are either
included in the project repository or can be produced by our
scripts during setup. Note that the prototype implementation
of IvySyn fuzzes both CPU- and GPU-specific implemen-
tations of DL kernels. However, we are not able to provide
access to machines with GPUs. Therefore, the benchmarks
in the artifact fuzz only kernels with CPU implementations.
This does not have any effect on the claims of the paper, other
than a smaller number of instrumented and fuzzed kernels.

A.3 Setup

A.3.1 Installation

To setup IvySyn, simply invoke docker/download
-prebuilt-image.sh. This script will download a pre-built
Docker image of IvySyn. Alternatively, in order to build
the IvySyn Docker image from scratch, invoke the script
docker/build-docker-image.sh, under the root directory
of the project repository. (Note that building the image from
scratch requires ≈3.5 hours on a 16-core, 64GB RAM host;
and the total size of the fully built image is ≈35GB.)

• To start the container, simply run:
docker/run-docker-image.sh
(This script is configured to run the container with access
to 4 CPUs and 16GB of RAM.)

• To provide more/less resources to the container,
use the optional --memory (e.g., --memory 8g)
and --cpus (e.g., --cpus 2) arguments to the
run-docker-image.sh script. If you increase the num-
ber of CPUs the container can use, you should also in-
crease the amount of RAM, since more parallel jobs may
require more memory.

• To get a shell on the container, run:
docker exec -it ivysyn-instance /bin/bash

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 135

https://gitlab.com/brown-ssl/ivysyn/-/tree/ivysyn-sec23ae/results/found_bugs
https://gitlab.com/brown-ssl/ivysyn/-/tree/ivysyn-sec23ae#responsible-disclosure
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/README.md
https://gitlab.com/brown-ssl/ivysyn/-/tree/4b3d26dda0ddea11282c2658e28090a738dfd6c7
https://gitlab.com/brown-ssl/ivysyn/-/tree/4b3d26dda0ddea11282c2658e28090a738dfd6c7
https://gitlab.com/brown-ssl/ivysyn/-/tree/4b3d26dda0ddea11282c2658e28090a738dfd6c7
https://www.docker.com
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/docker/download-prebuilt-image.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/docker/download-prebuilt-image.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/docker/build-docker-image.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/docker/run-docker-image.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/docker/run-docker-image.sh

If you wish to run the experiments for comparing IvySyn
with the two other fuzzers, namely Atheris and DocTer, an
additional ≈39GB of storage is required for their correspond-
ing Docker images (i.e., ≈26GB for Atheris and ≈13GB
for DocTer). For more details, refer to A.4.1 and A.4.2.

A.3.2 Basic Test

For a quick smoke test, we recommend invoking the
do-run.sh script, inside the running Docker container of
IvySyn, and providing a small number of kernels to be
fuzzed with the --nkernels argument. For example:

./do-run.sh --seed 1 --pytorch --nkernels 5

Once the script done, it should display a summary of the
run, containing information about how to inspect the results.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): IvySyn automatically fuzzes DL frameworks and pro-
duces Proofs of Vulnerability (PoVs)—i.e., code snippets
that trigger memory errors in low-level (C/C++) code of
the respective framework via a high-level (Python) API.

(C2): IvySyn: (i) uncovers more crashes in the DL frame-
works than the state-of-the-art Python fuzzer Atheris,
and (ii) it does so faster. This is proven by the experiment
described in Section 7.2 of our paper.

(C3): IvySyn produces more PoVs per unit of time than
DocTer, yet another DL-framework fuzzer. This is
proven by the experiment in Section 7.3 of our paper.

A.4.2 Experiments

In what follows, we provide instructions on how to setup, run,
and interpret the results of our experiments. All compute-time
approximations assume you are using 16GB of RAM and 4
CPUs to run the Docker containers. For additional details, see
README.md at the root of the project repository.
(E1): [Up to 58 compute-hours – Up to 28 compute-hours

with suggested configuration + Up to 2GB disk]: Run
IvySyn on a selected framework and produce PoVs.
Preparation: Run and connect to the provided (or
custom-built) Docker image.
Execution: To perform a full run of IvySyn, invoke the
do-run.sh script, inside the running Docker container
of IvySyn, by providing an integer as the RNG seed
and either --tensorflow or --pytorch to choose the
framework to be fuzzed, as follows:

./do-run.sh --seed 123 --tensorflow

However, note that a full run will require ≈45 hours
for PyTorch and ≈12 hours for TensorFlow. We advise
restricting the amount of kernels that will be fuzzed, by
providing the extra --nkernels argument. Furthermore,
we suggest fuzzing 300 kernels for each framework.
This will require ≈17 hours for PyTorch and ≈9 hours
for TensorFlow, while still producing PoVs. Running on
TensorFlow will require an additional 2 hours for the
first invocation of the script, in order to compile the C++
developer-provided TensorFlow tests, which are also
used by IvySyn. Execute IvySyn as follows:

./do-run.sh --seed <rng seed> --tensorflow
--nkernels 300

Results: Once fuzzing is done, IvySyn will produce
PoVs under results/<framework>/ivysyn_povs
(where <framework> is pytorch or tensorflow). To
manually run and reproduce the PoVs, do the following
(in the IvySyn Docker container):

1. Activate the environment of the pip-installed
version of the corresponding framework. In the
case of PyTorch, run: source /home/ivyuser
/ivysyn/venv/anaconda3/bin/activate;
conda activate pytorch-1.11-orig. For
TensorFlow, run: source /home/ivyuser
/ivysyn/venv/tensorflow-2.6-orig/bin
/activate.

2. Run the PoVs produced under /home/ivyuser
/ivysyn/results/<framework>/ivysyn_povs
using python3 <pov.py> (where <pov.py> is the
filename of the selected PoV).

(E2): [Atheris-comparison] [Up to 400 compute-hours – Up
to 26 compute-hours with suggested configuration + Up
to 40GB disk space]: Run IvySyn and a selected vari-
ant of the Atheris fuzzer, and compare their efficiency
at uncovering crashing inputs.
Preparation: We provide a separate Docker image that
sets-up the two variants of Atheris, namely Atheris+
and Atheris++, which are described in Section 7.1 of
our paper. Similarly to the IvySyn image, you can build
this image from scratch, by running:

comparisons/atheris_comp/docker_env/docker
/build-docker-image.sh

or download a pre-built version of the image by running:

comparisons/atheris_comp/docker_env/docker
/download-prebuilt-image.sh

Execution: To perform the experiment that compares
IvySyn to Atheris, invoke the compare-fuzzers.sh
script outside the IvySyn container.

136 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/do-run.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/README.md
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/do-run.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/comparisons/atheris_comparison/docker_env/docker/build-docker-image.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/comparisons/atheris_comparison/docker_env/docker/build-docker-image.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/comparisons/atheris_comparison/docker_env/docker/download-prebuilt-image.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/comparisons/atheris_comparison/docker_env/docker/download-prebuilt-image.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/compare-fuzzers.sh

You need to specify an RNG seed, the framework to fuzz
(either --tensorflow or --pytorch), the Atheris
variant (--atheris1, which corresponds to Atheris+;
or --atheris2, which corresponds to Atheris++), and
whether you want to limit the number of kernels to be
fuzzed using the --nkernels argument. For example:

./compare-fuzzers.sh --tensorflow
--atheris2 --seed 123 --nkernels 50

We suggest running at least 50 kernels to get a decent
approximation of the overall results.

The script above will:
1. Instrument the subset of 308 TensorFlow and 283

PyTorch kernels we performed our experiment
on (depending on the chosen framework) and re-
compile the target framework.

2. Execute IvySyn on the target kernels, limiting the
fuzzed kernels if --nkernels was specified.

3. Run the selected Atheris variant on the same sub-
set of fuzzed kernels.

4. Output a summary of the results.
Results: The compare-fuzzers.sh script will dis-
play a summary of the results. Specifically, a new
directory will be created at results/<framework>
/atheris_comp/ (where <framework> is pytorch or
tensorflow), containing the following:

• results.csv: start/end timestamp, as well as
whether a crash was found, for each API (CSV file).

• total_time.txt: total time of the run (text file).
• fuzzer_logs_dir.txt: name of the directory in

the Docker container with the raw logs produced by
the IvySyn fuzzer (text file).

The corresponding CSV that contains similar entries
for the Atheris run can be found at comparisons
/atheris_comp_fuzzed_<framework>.csv (where
<framework> is either pytorch or tensorflow).
The raw Atheris logs can be found in the Atheris
Docker container at /home/ivyuser/ivysyn-atheris
/fuzzer_output. To connect to the Atheris Docker
container, in order to manually inspect the logs, run
docker exec -it atheris-instance /bin/bash.

(E3): [DocTer-comparison] [Up to 34 compute-hours – Up
to 26 compute-hours with suggested configuration + Up
to 15GB disk space]: Run IvySyn and DocTer and
compare their effectiveness at producing PoVs.
Preparation: We provide a separate Docker image that
sets-up DocTer. Similarly to the IvySyn image, you can
either build it from scratch, by running:

comparisons/docter_comp/docker_env/docker
/build-docker-image.sh

or download a pre-built version of the image, by running:

comparisons/docter_comp/docker_env/docker
/download-prebuilt-image.sh

Execution: To perform the experiment that compares
IvySyn to DocTer, invoke the compare-fuzzers.sh
script outside the IvySyn container. You need to
specify an RNG seed, the framework to fuzz (either
--tensorflow or --pytorch), the --docter flag, and
whether you want to limit the number of kernels to be
fuzzed using the --nkernels argument. For example:

./compare-fuzzers.sh --tensorflow --docter
--seed 123 --nkernels 50

We suggest running at least 50 kernels to get a decent
approximation of the overall results.

The script above will:
1. Instrument the subset of 125 TensorFlow and 105

PyTorch kernels we performed our experiment
on (depending on the chosen framework) and re-
compile the target framework.

2. Execute IvySyn on the target kernels, limiting the
fuzzed kernels if --nkernels was specified.

3. Run DocTer on the same subset of fuzzed kernels.
4. Output a summary of the results.

Results: The compare-fuzzers.sh script will dis-
play a summary of the results. A new directory
with the IvySyn results will be created at results
/<framework>/docter_comp/ (where <framework>
is pytorch or tensorflow), and will contain files
similar to the ones mentioned in the Atheris ex-
periment (i.e., results.csv, total_time.txt, and
fuzzer_logs_dir.txt).
The corresponding CSV that contains similar entries
for the DocTer run can be found at comparisons
/docter_comp_fuzzed_<framework>.csv (where
<framework> is pytorch or tensorflow). The raw
DocTer logs can be found in the DocTer Docker
container at /home/workdir/<framework>. To con-
nect to the DocTer Docker container, in order to
manually inspect the logs, run docker exec -it
docter-instance /bin/bash.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 137

https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/compare-fuzzers.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/comparisons/docter_comparison/docker_env/docker/build-docker-image.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/comparisons/docter_comparison/docker_env/docker/build-docker-image.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/comparisons/docter_comparison/docker_env/docker/download-prebuilt-image.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/comparisons/docter_comparison/docker_env/docker/download-prebuilt-image.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/compare-fuzzers.sh
https://gitlab.com/brown-ssl/ivysyn/-/blob/ivysyn-sec23ae/compare-fuzzers.sh
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Setup
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

