
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

BotScreen: Trust Everybody,
but Cut the Aimbots Yourself

Minyeop Choi, KAIST; Gihyuk Ko, Cyber Security Research Center
at KAIST and Carnegie Mellon University; Sang Kil Cha, KAIST

and Cyber Security Research Center at KAIST
https://www.usenix.org/conference/usenixsecurity23/presentation/choi

USENIX’23 Artifact Appendix: BotScreen: Trust Everybody, but Cut the
Aimbots Yourself

Minyeop Choi1, Gihyuk Ko2,3, and Sang Kil Cha1,2

1KAIST 2Cyber Security Research Center at KAIST 3Carnegie Mellon University
{okas832,gihyuk.ko,sangkilc}@kaist.ac.kr

A Artifact Appendix

A.1 Abstract
BotScreen is a client-side distributed system for detecting aim-
bots in FPS games. In its operation, BotScreen is deployed
in each client’s machine and pre-processes incoming stream
of FPS game data in a trusted manner (i.e., in SGX). Then,
BotScreen uses a pre-trained deep learning model (SGRU) to
detect aimbots in the game. This artifact includes the source
code of BotScreen, the (anonymized) dataset of gameplay
logs we collected for training and validation of BotScreen,
and scripts for reproducing results in the paper. In the fol-
lowing sections, we provide step-wise instructions in order to
reproduce the results in our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Not applicable.

A.2.2 How to access

The source code of BotScreen is accessible through GitHub
at https://github.com/SoftSec-KAIST/BotScreen/
tree/8ad88322f6abbcff6de1974103b275940a839028.
We also provide pre-processed dataset as well as pre-trained
weights of the SGRU models used in our experiments at
https://doi.org/10.5281/zenodo.8058051.

A.2.3 Hardware dependencies

To reproduce the results in our paper locally, a machine with at
least one PyTorch-supported GPU is required. Specifically, we
recommend using a GPU that has more than 11GB of VRAM.
In our experiments, we used a machine equipped with 4 Intel
Xeon Silver 4214 CPUs and 4 NVIDIA RTX 2080 Ti (11GB
VRAM) GPU cards for training SGRU models, and used a
machine equipped with an AMD Ryzen 9 5950X CPU and
one NVIDIA RTX 3090 Ti (24GB VRAM) for testing the
trained models.

A.2.4 Software dependencies

BotScreen is designed to run on a Linux machine, and we
tested it on Ubuntu 20.04 and Ubuntu 22.04. Also, BotScreen
is written in Python 3 (3.10), and it depends on packages
such as torch, numpy, pandas, and more. Please refer to the
provided requirements.txt for a full list of required Python
packages.

A.2.5 Benchmarks

We make our anonymized pre-processed dataset, pre-trained
SGRU models and pre-evaluated data available through Zen-
odo: https://doi.org/10.5281/zenodo.8058051.

A.3 Set-up
A.3.1 Installation

Our implementation of BotScreen depends on several Python
packages. The required Python packages can be installed
through pip, via running the following command:
$ pip3 install -r requirements.txt

Please also note that our scripts run via GNU Makefile. In
the provided makefile, the default configurations for training
and evaluation parameters are set.

A.3.2 Basic Test

First, download the dataset from https://doi.org/10.
5281/zenodo.8058051 and place the data_processed
folder into the root of the source code.

Next, one can train SGRU models using downloaded
dataset by running the following:
$ make train
The above command will train a total of 7 SGRU
models, where each model is trained according to the
7-fold cross-validation split of the dataset. Specifi-
cally, it will produce the following files as output
in the trained_models directory: config.json, and
gru_k0.pt-gru_k6.pt. config.json saves the model pa-
rameters in JSON format, and gru_k0-6.pt contains the

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 15

https://github.com/SoftSec-KAIST/BotScreen/tree/8ad88322f6abbcff6de1974103b275940a839028
https://github.com/SoftSec-KAIST/BotScreen/tree/8ad88322f6abbcff6de1974103b275940a839028
https://doi.org/10.5281/zenodo.8058051
https://doi.org/10.5281/zenodo.8058051
https://doi.org/10.5281/zenodo.8058051
https://doi.org/10.5281/zenodo.8058051

trained weights of each SGRU model from 7-fold cross vali-
dation.

Once the SGRU models are trained, one can evaluate their
effectiveness by running the following:
$ make eval
The above command will produce the following files as out-
put in the trained_models directory: eval_k0-eval_k6.
These files are pickle files containing (true label, predicted
label) tuples, generated to speed up further evaluation.

A.4 Evaluation workflow

A.4.1 Set up trained SRGU models

There are two ways to obtain the trained SRGU models. One
is to train new models from our dataset, and the other is to
use the pre-trained model that we provide through Zenodo.

[10 human-mins + 70 compute-hrs + 15GB disk]
(Option 1) Train from our dataset as follows,
$ unzip BotScreen_data.zip
$ mv BotScreen_data/data_processed ./
$ make train
$ make eval

[10 human-mins + 15GB disk]
(Option 2) Use the provided pre-trained model. This can
be done by copying data_processed and trained_models
from provided artifact into the root of the source code.
$ unzip BotScreen_data.zip
$ mv BotScreen_data/trained_models ./

A.4.2 Major Claims

(C1): BotScreen can detect aimbot properly. This is proven
by Experiment (E1) described in Section 5.2.1 of our
paper.

(C2): BotScreen can perform better than previously sug-
gested methods. This is proven by Experiment (E2) de-
scribed in Section 5.4 of our paper.

(C3): Differences in observations does not impact largely to
BotScreen. This is proven by Experiment (E3) described
in Section 5.5 of our paper.

A.4.3 Experiments

(E1): [5 human-minutes]
The experiment will show the accuracy of the detection
model.
How to: Run make experiments/exp_bench and see
result in bench.tsv.
Preparation: Trained model and evaluation data in
A.4.1 are needed.
Execution: $ make experiments/exp_bench

Results: Check the report file in bench/bench.tsv
Each line in bench.tsv shows the result of model’s
performance from each split.

(E2): [15 human-minutes + 30 compute-minutes]
The experiment will compare the performance between
previous tools and BotScreen.
How to: Run experiments in comp_study and
experiments/exp_bench.
Preparation: Dataset, trained model and evaluation
data in A.4.1 are needed.
Execution: Execute whole experiments is as follows,
$ make experiments/exp_bench
$ make comp_study/th_vara
$ make comp_study/th_acca
$ make comp_study/th_kill
$ make comp_study/ks_acca
$ make comp_study/os_cac
$ make comp_study/os_lac
$ make comp_study/os_smac
$ make comp_study/history

Results: Each experiment will print the evaluation
result.
$ make experiments/exp_bench
Botscreen:
best_acc: 0.9764, best_prec: 0.9685, auc_roc: 0.9712
TP: 63, TN: 185, FP: 1, FN: 5

Experiment comp_study/history will produces
history based detection result of each player in tsv file
per methods.
$ make comp_study/history
$ ls *.tsv
history_botscreen.tsv history_os_LAC.tsv
history_th_Kill.tsv history_ks_AccA.tsv
history_os_SMAC.tsv history_th_VacA.tsv
history_os_CAC.tsv history_th_AccA.tsv

(E3): [5 human-minutes + 20 compute-minutes]
The experiment will show the differences in detection
results between players.
How to: Run make experiments/stat_obs, make
experiments/exp_obs and see the statistic of differ-
ences of observation bewteen clients and see effects of
observation rate to accuracy.
Preparation: Dataset, trained model and evaluation
data in A.4.1 are needed.
Execution: Run as follows,
$ make experiments/stat_obs
$ make experiments/exp_obs

Results: After running experiments/stat_obs,
saved statistic data and visualized results of each game
are stored in the data_loss directory.

16 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

$ make experiments/stat_obs
$ ls data_loss/exp_1/
figures game_1 game_2 ...

Next, by running experiments/exp_obs, you
will get a figure in figures/fig_07_obs.pdf which
is Figure 8 in the paper.

A.5 Notes on Reusability
A.5.1 How to train and evaluate under different param-

eters

If you want to train and evaluate BotScreen with different
model parameters, you can try it by changing the correspond-
ing parameter values defined in makefile such as number of
hidden units, number of layers, and more. We refer to our pa-
per for a detailed explanation on what each parameter means.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 17

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Set up trained SRGU models
	Major Claims
	Experiments

	Notes on Reusability
	How to train and evaluate under different parameters

	Version

