
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

BoKASAN: Binary-only Kernel Address Sanitizer
for Effective Kernel Fuzzing

Mingi Cho, Dohyeon An, Hoyong Jin, and Taekyoung Kwon, Yonsei University
https://www.usenix.org/conference/usenixsecurity23/presentation/cho

USENIX’23 Artifact Appendix: BoKASAN: Binary-only Kernel Address
Sanitizer for Effective Kernel Fuzzing

Mingi Cho, Dohyeon An, Hoyong Jin, and Taekyoung Kwon, Yonsei University

A Artifact Appendix

A.1 Abstract

This artifact contains the source code of BoKASAN and the
necessary data for the experiments. For Artifact Functional,
two experiments are proposed, POC test and kernel fuzzing.
The recommended environment for the experiment is Ubuntu
20.04 running on the machine with a multi-core x86_64 CPU
and >=8GB of RAM. Using more CPU cores can reduce
compile time. We expect artifact evaluation to require three
human-hours and 12 compute-hours.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Access the Github repo at https://github.com/seclab-
yonsei/bokasan/tree/usenix-ae

A.2.3 Hardware dependencies

• Multi-core x86_64 CPU (e.g., Intel i5, i7)

• >=8GB RAM

• >=100GB HDD/SSD

A.2.4 Software dependencies

• Ubuntu 16.04, 18.04, or 20.04

• gcc-6 or 7

• qemu-system-x86

• Syzkaller

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

To install BoKASAN, download the target kernel and build
it with the ‘CONFIG_FUNCTION_TRACER’ flag set. Then,
compile the loadable BoKASAN module according to the
target kernel version. Finally, create a Linux image and in-
sert the compiled BoKASAN module. Detailed installation
instructions are described in README.md.

A.3.2 Basic Test

When the BoKASAN module is successfully compiled and
the .ko file is created, run the target kernel using QEMU and
load the module. If the installation is successful, we can find
that the BoKASAN module is loaded on the target kernel
using the lsmod command. We provide script/qemu.sh to run
the QEMU.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): BoKASAN detects out-of-bounds and use-after-free
bugs in kernels to which KASAN is not applied. This is
proven by the experiment (E1) described in Section 5.1
whose results are reported in Table 5.

(C2): BoKASAN detects out-of-bounds and use-after-free
bugs when fuzzing kernels to which KASAN is not ap-
plied. This is proven by the experiment (E2).

A.4.2 Experiments

(E1): [POC test] [30 human-minutes + 1 compute-hour]:
Reproduce Table 5 of the paper. Execute 15 POC codes
on the target kernel.
How to: Execute 15 POCs that trigger out-of-bounds
and use-after-free bugs on the target kernel running
on QEMU. The detailed process is described in
README.md.
Preparation: Download and compile Linux kernel
v4.19 without ‘CONFIG_KASAN’ flag. Make a Linux
image including the BoKASAN module. This is pre-
pared during the installation mentioned above. Then,

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 297

https://github.com/seclab-yonsei/bokasan/tree/usenix-ae
https://github.com/seclab-yonsei/bokasan/tree/usenix-ae
https://github.com/seclab-yonsei/bokasan/blob/master/README.md

execute compile.py and mount.sh in the poc/syz direc-
tory. As a result, a Linux image containing POC binaries
is created.
Execution: Run scripts/qemu.sh to boot the target ker-
nel. After the target kernel boots, executes the POC bina-
ries under the poc_syz directory. Each POC is located in
the “vuln type"_“vuln name" directory as the executable
binary named repro_setpid. Execute one of the POC,
wait for about 15 seconds, and then terminate QEMU
using the ctrl a+x command. Repeat the above steps to
test all of the POCs.
Results: When BoKASAN successfully detects a bug,
the message "BUG: KASAN: ..." is printed as dmesg.

(E2): [Fuzzing test] [30 human-minute + 6 compute-hour]:
Performing fuzzing on the kernel to which KASAN is not
applied using Syzkaller.
How to: Fuzzing the kernel to which KASAN is not ap-
plied using Syzkaller. The detailed process is described
in README.md.
Preparation: Download Syzkaller and patch it using
syzkaller/syz.diff. Then build Syzkaller following their
guidelines. Compile target kernel with KCOV and with-
out KASAN. Fuzzing Linux kernel 4.19 with the Linux
image including BoKASAN.
Execution: Run the scripts/run_fuzz.sh to perform
fuzzing.
Results: We can see the KASAN log in Syzkaller’s web
interface or in the results directory when BoKASAN
detects OOB and UAF bugs.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

298 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

