
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Curve Trees: Practical and Transparent
Zero-Knowledge Accumulators

Matteo Campanelli, Protocol Labs; Mathias Hall-Andersen
and Simon Holmgaard Kamp, Aarhus University, Denmark

https://www.usenix.org/conference/usenixsecurity23/presentation/campanelli

USENIX’23 Artifact Appendix
Curve Trees: Practical and Transparent Zero-Knowledge Accumulators

Matteo Campanelli
Protocol Labs

matteo@protocol.ai

Mathias Hall-Andersen
Aarhus University

ma@cs.au.dk

Simon Holmgaard Kamp
Aarhus University

kamp@cs.au.dk

A Artifact Appendix

A.1 Abstract

We provide a Rust implementation of Curve Trees instantiated
with Bulletproofs. The repository includes an implementation
of the select and rerandomize primitive, which proofs that
a commitment is a rerandomization of a commitment in a
committed set. This primitive is then used to construct an
accumulator as well as a simple anonymous payment system.

A.2 Description & Requirements

Our results were produced using an AWS C6i.2xlarge in-
stance with 16GB of RAM and 8 vCPUs. This corresponds
to 4 physical cores on an Intel Xeon 8375C processor with
2.9 GHz clock speed. The benchmarks were compiled using
version 1.68.0 of the rust compiler. We found similar per-
formance on our laptops. The field arithmetic is optimized
for newer x86_64 chips, but the code will still work on other
architectures.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The code is available at https://
github.com/simonkamp/curve-trees/tree/
4467be81737732a5b2794b5ad70459681b3bd19c.

A.2.3 Hardware dependencies

Any system with access to the internet and a rust compiler
and standard library should be able to run the artifact.

A.2.4 Software dependencies

The only software dependency is the rust compiler, which can
be downloaded from https://rustup.rs/.

A.2.5 Benchmarks

None.

A.3 Set-up

Install the rust compiler (https://rustup.rs/). Install jq
command for formatting output (https://jqlang.github.
io/jq/).

A.3.1 Installation

Clone the repository.

A.3.2 Basic Test

Run cargo build.

A.4 Evaluation workflow

After the set-up above, verify the functionality of the artifact
by running the tests:

cargo test --release

A.4.1 Major Claims

(C1): The implementation of the select and rerandomize
primitive matches the performance reported in table 1 of
our paper. This is proven by the experiment (E1).

(C2): The implementation of the accumulator matches the
performance reported in table 2 of our paper. This is
proven by the experiment (E2).

(C3): The implementation of the VCash matches the perfor-
mance reported in table 3 of our paper. This is proven by
the experiment (E3).

A.4.2 Experiments

Each experiment will run benchmarks of the proving and
verification time for the set sizes and curves reported in the
relevant table of our paper.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 263

https://github.com/simonkamp/curve-trees/tree/4467be81737732a5b2794b5ad70459681b3bd19c
https://github.com/simonkamp/curve-trees/tree/4467be81737732a5b2794b5ad70459681b3bd19c
https://github.com/simonkamp/curve-trees/tree/4467be81737732a5b2794b5ad70459681b3bd19c
https://rustup.rs/
https://rustup.rs/
https://jqlang.github.io/jq/
https://jqlang.github.io/jq/

(Before experiments): [All tables] [1 human-minutes
+ 30 compute-minutes]: We recommend using the script
gen_fmt_estimates.sh to run all the benchmarks. The out-
put can be reprinted using fmt_estimates.sh.

(E1): [Table 1] [5 human-minutes + 0 compute-minutes]:
Demonstrates proof size, proving and verification times for
select-and-rerandomize of Curve Trees (batching and non-
batching case) in different curves and on different parameters
(Table 1). The results are found under “Table 1 (Accumulator)”
in the output of fmt_estimates.sh.

(E2): [Table 2] [5 human-minutes + 0 compute-minutes]:
Demonstrates proof size, proving and verification times for
accumulators from Curve Trees in different curves on sets
of size 230 (Table 2). The results are found under “Table 2
(SelectAndRerand)” in the output of fmt_estimates.sh.

(E3): [Table 3] [5 human-minutes + 0 compute-minutes]:
Demonstrates transaction size, proving and verification times
for VCash (Table 3). The results are found under “Table 3
(Pour)” in the output of fmt_estimates.sh.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

264 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

