
This artifact appendix is included in the Artifact Appendices to the 
Proceedings of the 32nd USENIX Security Symposium and appends to 
the paper of the same name that appears in the Proceedings of the 

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices 
to the Proceedings of the 32nd USENIX 

Security Symposium is sponsored 
by USENIX.

Fuzztruction: Using Fault Injection-based Fuzzing 
to Leverage Implicit Domain Knowledge

Nils Bars, Moritz Schloegel, Tobias Scharnowski, and Nico Schiller, 
Ruhr-Universität Bochum; Thorsten Holz, CISPA Helmholtz Center 

for Information Security
https://www.usenix.org/conference/usenixsecurity23/presentation/bars



USENIX’23 Artifact Appendix
Fuzztruction: Using Fault Injection-based Fuzzing to

Leverage Implicit Domain Knowledge

Nils Bars∗, Moritz Schloegel∗, Tobias Scharnowski∗

Nico Schiller∗, Thorsten Holz‡

∗Ruhr-Universität Bochum
‡CISPA Helmholtz Center for Information Security

A Artifact Appendix

A.1 Abstract
FUZZTRUCTION’s artifact contains the source code necessary
to run our fuzzer (as well as competing fuzzers). This docu-
ment describes how to set-up our fuzzer prototype, gives a
brief overview of the resource requirements to replicate the ex-
periment (i. e., a coverage comparison with other state-of-the-
art fuzzers) conducted in our paper, and contains instructions
for reproducing our results.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact is shipped via a Docker image used to spawn
a unified containerized environment to ease evaluation and
development independent of the underlying system. The con-
tainer’s life cycle is managed by the env/start.sh script
which by default forwards the ssh-agent (if any) and the
.gitconfig into the container. If this is undesired behavior,
the related functionality should be removed from the script
before conducting any experiments.

A.2.2 How to access

The artifact’s source code is accessible at https:
//github.com/fuzztruction/fuzztruction/tree/
91ba684d2b8fa21ae19e403496b507f3729c4ff5. The
repository and sub repositories contain extensive documen-
tation to make the artifact evaluation process as easy as
possible.

A.2.3 Hardware dependencies

For evaluation, we used two Intel(R) Xeon(R) Gold 6230R
CPUs, totaling 52 cores, 128 GB RAM, and about 1 TB SSD
disk space. Since some targets produce many test cases, which

are stored in /tmp, i. e., in RAM, we advise resizing the tmp
folder to 600 GiB and backing the amount exceeding the
RAM capacity via a swap file. The evaluation script will walk
you through these steps.

In our paper, we evaluated 12 targets, which we run five
times for 24 hours, and assigned all 52 cores to one experi-
ment. Consequently, a vast amount of computational power is
required to replicate the exact experiments conducted in our
paper. We believe this computational power is out-of-scope
for artifact review, thus we provide instructions on how to ap-
proximate our experiments using significantly less resources
in Section A.4.2.

A.2.4 Software dependencies

For running the artifact, a working Docker installation is re-
quired. All scripts that must be executed on the host system
(i. e., outside of the container) have been tested exclusively on
Ubuntu 22.04. However, since the scripts are rather simple,
they should work on any Linux distribution.

A.2.5 Benchmarks

All data required for the evaluation is part of the linked repos-
itory.

A.3 Set-up
The set-up is explained in detail in the main repository’s
README.md. For your convenience, we provide pre-built ver-
sions of FUZZTRUCTION. We recommend using these pre-
built versions of FUZZTRUCTION since slight changes in, for
example, libraries linked into a fuzzing target might cause de-
viations from the results presented in the paper. Furthermore,
compiling all targets takes considerable time, because we use
AFL++’s collision free encoding, which causes link time to
increase significantly. Overall, the compilation of all targets
takes multiple hours.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium    103

https://github.com/fuzztruction/fuzztruction/tree/91ba684d2b8fa21ae19e403496b507f3729c4ff5
https://github.com/fuzztruction/fuzztruction/tree/91ba684d2b8fa21ae19e403496b507f3729c4ff5
https://github.com/fuzztruction/fuzztruction/tree/91ba684d2b8fa21ae19e403496b507f3729c4ff5


A.3.1 Basic Test

Testing the set-up is possible using the steps provided in
the Fuzzing a Target using Fuzztruction section in the
README.md.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We demonstrate the generic capabilities of our ap-
proach by fuzzing even complex cryptographic proce-
dures, such as the parsing and validation of encrypted
RSA keys, automatically and without custom-crafted
seeds.

(C2): We implement and evaluate our prototype, called FUZ-
ZTRUCTION, against the state-of-the-art fuzzers AFL++,
SYMCC, and WEIZZ. Our results show that our approach
achieves significant gains in terms of coverage and num-
ber of software faults found.

Please note that claim C1 is a subset of C2, since outper-
forming all other competitors on a cryptographic target also
indirectly shows our approach’s applicability to complex cryp-
tographic targets.

A.4.2 Experiments

As described in the requirements section, we conducted an
extensive evaluation requiring considerable CPU time for
reproduction. Since comparing each individual result from the
paper with an experiment using fewer resources is impossible,
we suggest concentrating the evaluation efforts on a subset of
the fuzzing targets.

According to our statistical analysis presented in Table 2
in our paper, the three targets objdump, readelf and unzip
show no statically significant difference between the evaluated
fuzzer configurations. Thus, we advise excluding these targets
from the reproduction since they are no proxy for our claims.
For the remaining targets, we advise only considering the best
competitor (cf. Table 2) to further reduce the amount of CPU
time required.

Following our recommendations, the artifact evaluation
effort is composed of 52 CPUs * 9 targets * 2 fuzzers
(FUZZTRUCTION, best competitor) * 24h, which equates to
running a single 52 CPU machine for 18 days. If desired, the
list of targets might be further reduced by skipping targets not
employing cryptographic primitives (i. e.,, targets in Table 2
that are not marked with a lock) since targets using crypto-
graphic primitives are required to support both our claims. For
example, if fuzzing only 3 targets (e. g., rsa, vfychain, and
7zip-enc) with 2 fuzzers (FUZZTRUCTION, best competitor)
for 24 hours, your fuzzing run will take 6 days on a single 52
CPU machine.

Notably, since fuzzing is inherently non-deterministic, a
single run per target does not necessarily exactly align with

the results presented in the paper. Consequently, reducing the
number of tested targets in favor of doing multiple runs for
some targets might be desirable. Certainly, this trade-off is
primarily driven by the available hardware resources.

As a result of this experiment, we expect a plot similar to
Figure 3 in our paper. All steps required to run the experiment,
and to plot the data, are explained in the documentation found
in the artifact’s git repository. Please mind that some of the
targets are not supported by SYMCC.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

104    Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


