
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Sqirl: Grey-Box Detection of SQL Injection
Vulnerabilities Using Reinforcement Learning

Salim Al Wahaibi, Myles Foley, and Sergio Maffeis, Imperial College London
https://www.usenix.org/conference/usenixsecurity23/presentation/al-wahaibi

A Artifact Appendix

A.1 Abstract
This artifact contains the codebase to run SQIRL, a novel ap-
proach to detecting SQL injection vulnerabilities using deep
reinforcement learning with multiple worker agents. Each
worker intelligently fuzzes the input fields discovered by an
automated crawling component. It also includes all the code
required to run the different versions of SQIRL including its
random (RAND-SQIRL), and federated (FED-SQIRL) variants.
The requirements to create the SQLiMicroBenchmark (SMB)
are also included. We further detail how to run SQIRL on the
SMB in order to reproduce the results found in the main body
of the paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

To reduce the effect of possible security concerns the SMB
runs inside a docker container. The SMB should not be ex-
posed on externally available ports as the SMB contains delib-
erately vulnerable samples.

SQIRL has the potential to find zero-day SQLi vulnerabili-
ties in web applications. However, we have designed SQIRL
to be a greybox tool that requires privileged access to the
webapplication-under-test. This prevents malicious user from
using this on targets that are unware they are being tested.

A.2.2 How to access

We release the artifact as a repository, a sta-
ble version of which can be found at: https:
//github.com/ICL-ml4csec/SQIRL/tree/
5a444ee7782a33a097f345fca837125ac2505ee0

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

• Python >= 3.8.16
• Python pip >= 23.0.1
• Docker Engine >= Docker version 23.0.5, build bc4487a
• Docker Compose version >= v2.17.3

A.2.5 Benchmarks

The SQLiMicroBenchmark or SMB is provided in the arti-
fact in the directory SQLiMicroBenchmark/. This requires
Docker in order to be run, and tested on.

A number of baselines are used as a point of comparison
to SQIRL. We do not document here how to install and setup
these baselines, we refer the reader to the relevant baselines if

they wish to compare against these. Please see the Appendix
in the main paper for the configuration used for the baselines.

Baselines:
• OWASP ZAP v2.11.1
• Sqlmap v1.6
• BurpSuite Pro v2022.6.1
• Arachni v1.6.1.3
• Wapiti 3.1.2
If user wish to experiment with the production grade web

applications we provide here the list of web applications and
plugins where relevant:

1. WordPress core v6.0 and plugins (Download Monitor
WordPress V 4.4.4, WP User Frontend 3.5.25, Sliced
Invoices 3.8.2, Plugin Photo Gallery 1.5.34, Supsystic
Ultimate Maps 1.1.12, WP Statistics 13.0.7, JoomSport)

2. B2evolution v7.2.3-stable
3. BBpress v2.6.9
4. Big tree CMS v4.4.16
5. Drupal v9.3.18
6. Joomla v4.2.0
7. Admidio v4.0
8. Gila CMS
9. Media wiki v1.38.2

10. Pbboard v3.0.3
11. Impresscms v1.4.4
12. WackoWiki v6.0.31
13. Sourcecodester E-learning System v1.0,
14. Sparks Hotel Management System v1.0

A.3 Set-up
A.3.1 Installation

Clone Repository:
git clone https://github.com/ICL-ml4csec/SQIRL

Install docker: If the docker engine and docker compose re-
quirements are not already met, then install them. Instructions
for this can be found here.
Setup SMB: From the SQLiMicroBenchmark/ directory cre-
ate the required docker containers: docker-compose up -d.
This can take a minute or two to install and configure. Note
that one of the containers ‘db-seeder’ will sleep for 40 seconds
before configuring the ‘db’ docker container, and will then
exit. This is the intended behaviour, after the configuration
containers ‘db’ and ‘php-apache’ should be running.

The log file required by SQIRL must be edited to provide
read and write access chmod +rw mysql/general.log.
SQIRL dependencies: We recommend running the SQIRL
framework from a virtual Python environment. We recom-
mend using conda, which can be installed following the guide
here. Note conda is not required and other frameworks such
as poetry or venv can be used. After install create the conda
environment:

• conda create -name sqirl python=3.9

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 365

https://github.com/ICL-ml4csec/SQIRL/tree/5a444ee7782a33a097f345fca837125ac2505ee0
https://github.com/ICL-ml4csec/SQIRL/tree/5a444ee7782a33a097f345fca837125ac2505ee0
https://github.com/ICL-ml4csec/SQIRL/tree/5a444ee7782a33a097f345fca837125ac2505ee0
https://docs.docker.com/engine/install/
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://python-poetry.org/docs/
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/

Figure 1: Expected result for basic test of SQIRL, showing
help options.

Figure 2: Expected result for basic test of SMB, showing all
containers have started.

SQIRL packages: Installing the SQIRL packages with pip
can be done using the following command: conda activate
sqirl && pip install -r requirements.txt.

A.3.2 Basic Test

SQIRL: python sqirl.py -help
This should startup SQIRL and then display the flags that

can be used when running, as shown in Figure 1.
SMB: cd SQLiMicroBenchmark && docker-compose up
-d && cd ..

This will start the containers required by the SMB, resulting
in the expected result shown in Figure 2

A.4 Evaluation workflow
We provide here the framework and instructions for using
SQIRL and the SMB.

A.4.1 Major Claims

(C1): SQIRL is able to find more vulnerabilities than existing
state-of-the-art-scanners and achieve 0 false positives.

Figure 3: Example of a vulnerability identified by SQIRL and
shown in the log files results_stats_X.stats, where X is
the worker agent that found the vulnerability.

(C2): SQIRL is able to find vulnerabilities in a lower number
of requests than other scanners.

A.4.2 Experiments

(E1): [10 human minutes + 20 compute hours + 16GB disk
+ 6CPU]: train SQIRL on the SMB to ensure training
functionality.
How to: First the SMB and python environment must
be set up. Then SQIRL can be run to start training. After
training has finished the log files and trained model can
be seen in a new sub-directory in stats_logs.
Preparation: Activate the docker container
docker-compose up -d. Then activate the envi-
ronment for SQIRL: conda activate sqirl.
Execution: Run from a terminal window Example A in
Table 1. Note this should run as a single command and
copying directly from the Table may cause an error due
to a newline.
Results: Each agent should finish running, after which
the worker server can be closed. There will be a new
directory in stats_logs that will contain a new model
in addition to log data.

(E2): [10 human minutes + 1 compute hour + 16GB disk +
6CPU]: Test SQIRL on the SMB to ensure get test results
functionality.
How to: First the SMB and python environment must
be set up. Then the SQIRL can be run to test for the SQLi
in the SMB. SQIRL will create a new sub-directory in
stats_logs containing log files and the model check-
point that resulted from the new run.
Preparation: Activate the docker container
docker-compose up -d. Then activate the envi-
ronment for sqirl: conda activate sqirl.
Execution: Run from a terminal window Example B in
Table 1. Note that the dir_from_training should be
changed to that from training in Experiment E1. Where
the save_dir is the resulting directory from the first
experiment.
Results: In the new sub-directory in stats_logs the
log file ‘results_stats_1.stats’ will contain the vul-
nerabilities found by SQIRL. These are identified by the
pattern shown in Figure 3. The number of requests used
to find these vulnerabilities can then be found by access-
ing http://localhost:8000/server-status and is
identified by the total number of accesses.

366 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

Table 1: Example commands used to run SQIRL. A: Training SQIRL with 4 worker agents, B: Testing SQIRL with 1 worker agent.

A: python3 sqirl.py -u http://localhost:8000/training.php --log_file ./SQLiMicroBenchmark/mysql/general.log \
--loss_criteria 200 --win_criteria 14 --agent 4 -i 4

B: python3 sqirl.py -u http://localhost:8000/no_feedback.php --log_file ./SQLiMicroBenchmark/mysql/general.log \
--agent 4 --model_dir ./stats_logs/dir_from_training/Checkpoint_Worker_Server/

A.5 Notes on Reusability
SQIRL is designed to be independent of the SQL database
that is being tested. We have developed SQIRL to work with
mysql v5.X, this can be extended by adding in the ability to
parse the required logs to the SQL Proxy (SQL_Proxy.py).
Any tokens specific to the database syntax would also be
required by the environment in order to generate syntactically
correct payloads.

Note that for newer versions of mysql the error logging
functionality changed to include malformed queries in the
general log. This can lead to SQIRL producing false positives
so it is advised to use mysql v5.X when testing SQIRL.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 367

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

