
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Not All Data are Created Equal:
Data and Pointer Prioritization for Scalable
Protection Against Data-Oriented Attacks

Salman Ahmed, IBM Research; Hans Liljestrand, University of Waterloo;
Hani Jamjoom, IBM Research; Matthew Hicks, Virginia Tech; N. Asokan,

University of Waterloo; Danfeng (Daphne) Yao, Virginia Tech
https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-salman

USENIX’23 Artifact Appendix: Not All Data are Created Equal: Data and
Pointer Prioritization for Scalable Protection Against Data-Oriented

Attacks

Salman Ahmed, Hans Liljestrand, Hani Jamjoom, Matthew Hicks, N. Asokan, Danfeng (Daphne) Yao

A Artifact Appendix

A.1 Abstract
This artifact provides a comprehensive guide on installing
and utilizing our proposed Data and Pointer Prioritization
(DPP) framework. The DPP framework incorporates rule-
based heuristics to automatically identify and prioritize/rank
sensitive memory objects from an application. Within this arti-
fact, we outline the necessary prerequisites, requirements, and
software dependencies for DPP, along with detailed instruc-
tions on accessing, setting up, and installing the framework.
Additionally, we delve into the usage of the DPP framework,
specifically focusing on prioritizing sensitive data objects
through a straightforward program.

A.2 Description & Requirements
The source code of DPP consists of a set of LLVM analysis
passes and modifications to the AddressSanitizer’s (ASan)
instrumentation mechanism. To generate the data-flow graph,
DPP utilizes the SVF tool (available at https://github.c
om/SVF-tools/SVF). We have made changes to LLVM’s
build script (CMakeFiles.txt) to include SVF’s source as an in-
tree build (as a library) during the compilation of the LLVM
source code. For ease of use, we provide the build script
(build.sh). Additionally, we have also modified SVF’s build
script and included a customized version of SVF in our repos-
itory. It’s important to note that compiling and building the
LLVM source code requires CMake and the Ninja build sys-
tems as prerequisites.

Regarding the datasets, most of them, such as the Juliet
Test Suite and the Linux Flaw Project, are publicly available.
Additionally, the source codes of other applications used in
our evaluation can also be accessed publicly. However, to
simplify access and ensure convenience, we have included all
of these datasets in our repository.

A.2.1 Security, privacy, and ethical concerns

No destructive steps are taken or no security mechanism are
disabled during the build process of DPP. One just needs to
install a compatible version (>= 3.13.4) of CMake.

A.2.2 How to access

The source code of DPP is available publicly on GitHub
at https://github.com/salmanyam/DPP with commit
53cbccb. The full URL is https://github.com/salmany
am/DPP/tree/53cbccb6e6eaab6eaabbb06ea21fd31dd8
3e6eff.

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

To compile and build the LLVM source code containing
DPP’s passes, we use Ubuntu 18.04. You will need CMake
version 3.13.4 or higher to successfully compile and build the
LLVM source code. Additionally, we suggest using the Ninja
build system for this process. Ideally, on a system with all
the necessary prerequisites, including Ninja and a compatible
CMake version, the build process should proceed smoothly
without any complications. It’s worth noting that while the
scripts have been tested on Ubuntu 18.04, they should also be
compatible with the latest Ubuntu distributions.

A.2.5 Benchmarks

All the datasets and source codes that have been used in our
evaluation are publicly available. However, we have provided
the datasets and source code in our repository.

• Juliet Test Suite: https://github.com/salmanyam/d
pp-data/tree/main/juliet-test-suite

• Linux Flaw Project: https://github.com/salmany
am/dpp-data/tree/main/linux_flaw_project

• Other applications’ source code: https://github.com
/salmanyam/dpp-data/tree/main/src

• Besides, we provide the LLVM IR files in https://gi
thub.com/salmanyam/dpp-data/tree/main/IRx86

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 71

https://github.com/SVF-tools/SVF
https://github.com/SVF-tools/SVF
https://github.com/salmanyam/DPP
https://github.com/salmanyam/DPP/tree/53cbccb6e6eaab6eaabbb06ea21fd31dd83e6eff
https://github.com/salmanyam/DPP/tree/53cbccb6e6eaab6eaabbb06ea21fd31dd83e6eff
https://github.com/salmanyam/DPP/tree/53cbccb6e6eaab6eaabbb06ea21fd31dd83e6eff
https://github.com/salmanyam/dpp-data/tree/main/juliet-test-suite
https://github.com/salmanyam/dpp-data/tree/main/juliet-test-suite
https://github.com/salmanyam/dpp-data/tree/main/linux_flaw_project
https://github.com/salmanyam/dpp-data/tree/main/linux_flaw_project
https://github.com/salmanyam/dpp-data/tree/main/src
https://github.com/salmanyam/dpp-data/tree/main/src
https://github.com/salmanyam/dpp-data/tree/main/IRx86
https://github.com/salmanyam/dpp-data/tree/main/IRx86

A.3 Set-up
To replicate the evaluation environment for DPP, we recom-
mend setting up an Ubuntu 18.04 distribution. To ensure a
compatible CMake version is installed, we provide a con-
venient script called install_cmake.sh. After running this
script, it is necessary to exit and restart the terminal to ap-
ply the installation changes effectively. Additionally, we offer
another script, prerequisites.sh, which installs all the nec-
essary prerequisites. If you have a fresh installation of the
Ubuntu 18.04 distribution, please follow these steps from the
root directory of our repository:

$./prerequisites.sh
$./install_cmake.sh

By following these steps, you can quickly set up the re-
quired environment for DPP and ensure all dependencies are
properly installed.

A.3.1 Installation

To compile and build DPP along with the LLVM source, one
needs to issue the build script (build.sh) provided in our
repository. This script will do an in-source compilation of
SVF and build LLVM binaries (clang, opt, llvm-ar, lld,
etc) under dpp-llvm/build/bin.

A.3.2 Basic Test

To show simple prioritization results, we provide a simple
program (dpp-data/example/example.c) and its LLVM
IR (dpp-data/example/example.opt). The following com-
mands give simple prioritization results.

$ LLVM_DIR=${PWD}/dpp-llvm/build/bin
$ ${LLVM_DIR}/opt -S -passes="print-dpp-global"

--dpp-rule="all" -disable-output < ${PWD}/
dpp-data/example/example.opt

The commands run all rules and prioritize/ranks the data
objects in the simple program. The output of the command is
the following:

######## SUMMARY: 4 data objects #############
AddrVFGNode ID: 17 AddrPE: [34<--35]

%9 = call noalias i8* @malloc(i64 %8) #6, !
dbg !25 { ln: 8 cl: 25 fl: example.c } 4
10

--
AddrVFGNode ID: 15 AddrPE: [22<--23]

%4 = alloca i8*, align 8 { ln: 8 fl: example.
c } 2 10

--
AddrVFGNode ID: 11 AddrPE: [6<--7]
@stdin = external dso_local global %struct.

_IO_FILE*, align 8 { Glob } 1 1

--
AddrVFGNode ID: 14 AddrPE: [20<--21]

%3 = alloca [10 x i8], align 1 { ln: 6 fl:
example.c } 1 0

--

As can be seen from the output, there are four data objects
prioritized by DPP for the simple program. Since the simple
program is small and most data objects are input-dependent,
almost all the data objects have been prioritized.

The following command is used to run the prioritization
using a single rule:

$ LLVM_DIR=${PWD}/dpp-llvm/build/bin
$ ${LLVM_DIR}/opt -S -passes="print-dpp-global"

--dpp-rule="rule9" -disable-output < ${PWD
}/dpp-data/example/example.opt

The output of the above command is as follows:

AddrVFGNode ID: 17 AddrPE: [34<--35]
%9 = call noalias i8* @malloc(i64 %8) #6, !

dbg !25 { ln: 8 cl: 25 fl: example.c }
--

In addition to this simple program, we have provided
many LLVM IR files for real-world applications in https:
//github.com/salmanyam/dpp-data/tree/main/IRx86.
We can use the abovementioned command to obtain the prior-
itized data objects by changing the input to those commands.
For example, the following command takes the IR file of
wuftpd and runs the prioritization using all rules.

$ LLVM_DIR=${PWD}/dpp-llvm/build/bin
$ ${LLVM_DIR}/opt -S -passes="print-dpp-global"

--dpp-rule="all" -disable-output < ${PWD}/
dpp-data/IRx86/wuftpd-2.6.0.bc

72 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://github.com/salmanyam/dpp-data/tree/main/IRx86
https://github.com/salmanyam/dpp-data/tree/main/IRx86

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

