
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Humans vs. Machines in Malware Classification
Simone Aonzo, EURECOM; Yufei Han, INRIA;

Alessandro Mantovani and Davide Balzarotti, EURECOM
https://www.usenix.org/conference/usenixsecurity23/presentation/aonzo

Humans vs. Machines in Malware Classification

Simone Aonzo
EURECOM

Yufei Han
INRIA

Alessandro Mantovani
EURECOM

Davide Balzarotti
EURECOM

Abstract
Today, the classification of a file as either benign or mali-

cious is performed by a combination of deterministic indica-
tors (such as antivirus rules), Machine Learning classifiers,
and, more importantly, the judgment of human experts.

However, to compare the difference between human and
machine intelligence in malware analysis, it is first neces-
sary to understand how human subjects approach malware
classification. In this direction, our work presents the first
experimental study designed to capture which ‘features’ of a
suspicious program (e.g., static properties or runtime behav-
iors) are prioritized for malware classification according to
humans and machines intelligence. For this purpose, we cre-
ated a malware classification game where 110 human players
worldwide and with different seniority levels (72 novices and
38 experts) have competed to classify the highest number of
unknown samples based on detailed sandbox reports. Surpris-
ingly, we discovered that both experts and novices base their
decisions on approximately the same features, even if there
are clear differences between the two expertise classes.

Furthermore, we implemented two state-of-the-art Machine
Learning models for malware classification and evaluated
their performances on the same set of samples. The compara-
tive analysis of the results unveiled a common set of features
preferred by both Machine Learning models and helped better
understand the difference in the feature extraction.

This work reflects the difference in the decision-making
process of humans and computer algorithms and the different
ways they extract information from the same data. Its findings
serve multiple purposes, from training better malware analysts
to improving feature encoding.

1 Introduction

The evolution of technology and digitization has transformed
our lives and our society, but it has also given birth to a wide
range of new cyber-criminal activities. These activities, inde-
pendently of their goal, are often carried out using different

types of malicious software, also known as malware. Over
the past three decades, the steady rise of malware attacks
has created the need for specialized security experts trained
to study, recognize, and classify new malware strains: the
malware analysts. Their goal is to examine malicious soft-
ware, such as bots, worms, and trojans, to understand the
nature of their threat. This task usually requires examining
how the suspicious sample interacts with its environment,
observed by executing the sample inside a malware analysis
sandbox. Sandboxes come in different flavors and with dif-
ferent functionalities. However, they all provide the analysis
with a dynamic (i.e., behavioral) report that summarizes all
operations performed by the program, together with some
static properties extracted from the executable file.

In turn, such static and dynamic components are divided
into different fine-grained feature groups, which we will
henceforth call features for readability. For example, the Im-
port Table of a Portable Executable file is a static feature,
while the DNS queries it performed during its execution are
part of the network activity, which is a dynamic feature.

The role of a malware analysis report is to provide the
raw information required to classify the unknown program as
either benign or malicious. This malware classification task
can be challenging, as it requires reasoning about the possible
purpose and intent of the unknown software. Because of this,
in the past, this task was usually performed manually by expert
malware analysts. However, today a typical antivirus company
collects and analyses over 350,000 suspicious programs per
day [9], and these are not just minor variations of known
families: for instance, 41% of the families observed in the
wild in 2019 were never observed before [8]. It is clear that
the number of security experts cannot scale to cope with these
numbers.

Machine learning (ML) offers an easy-to-deploy and scal-
able solution to massive-scale malware classification appli-
cations. A vast amount of research has been conducted on
ML-based malware classification [15, 17, 18, 29, 30, 34, 35, 40,
44, 48, 50, 52, 53, 65, 68, 69, 71, 72, 78, 93–95, 97], often with
very promising results. However, unlike applications such as

USENIX Association 32nd USENIX Security Symposium 1145

speech and text recognition, where pronunciations and char-
acter shapes remain relatively constant over time, malware
constantly changes to evade detection. Therefore, it is unclear
how robust these previous results are and, more importantly,
which features really influences the accuracy of classification
in the previously reported results. In other words, no study
to date has examined whether human experts and ML-based
solutions use the same information to decide whether a sam-
ple is benign or malicious. We do not even know if different
humans rely on the same features or if the choices of the used
features change as the analyst’s background and experience
vary.

This paper tries to answer all these questions by conducting
the first experiments designed to compare 110 humans with
different expertise (72 novices and 38 experts) vs. different
state-of-the-art ML algorithms. Our goal is not to measure
who performs better but to understand how each group uses
the data extracted from malware analysis reports to make its
decision.

To collect the data, we designed an online game “Detect
Me If You Can!”, which asks the participants to classify 20
suspicious files based on their sandbox reports. Players have
to ‘buy’ each individual set of features to add them to their
report, allowing us to capture which information they consid-
ered more valuable and how many features they needed to
reach a decision. Even though we observed a general agree-
ment among the features preferred by all human subjects in
our experiments, experts and novices showed distinctive traits
(especially speed and accuracy). For example, while dealing
with goodware, experts used many more features, and novices
made more mistakes. This is because experts know that they
need to rule out any possible signs of bad intentions in order
to classify a sample as goodware.

Finally, to compare humans with machine intelligence, we
collected 21,944 reports, equally distributed among malware
and goodware, to train two Machine Learning-based malware
classification models based on the encoding techniques re-
cently proposed in state of the art. Both ML players performed
in the game like an average human expert, but with the excep-
tional advantage of accessing all the features simultaneously.
In a second test, we use the same algorithms to replay some
experts’ games using the same features that human subjects
used to classify each sample. In this case, the accuracy of the
two ML players was worse than random guess. This brings
us to one of the main findings of our study: the two ML algo-
rithms do NOT use the same features as human analysts do.
Quite the opposite: they often rely on static features, whereas
human subjects prefer mostly dynamic behavior features. ML
even ranked the resource section’s entries of executables as
the most relevant feature, which was constantly ranked in the
last place – and almost never used – by humans.

2 Related Work

For over two decades, the automated analysis of malicious
code has been one of the top research areas in system se-
curity. Because of the large number of samples that need to
be analyzed, previous studies have mainly focused on fully
automated techniques or approaches requiring minimal inter-
action with the analyst. These solutions range from malware
analysis sandboxes [19, 25, 46, 75, 80] to machine learning
classifiers [54, 55, 58, 66, 76].

For example, Darshan et al. [28] focus their vectorization
approach on the syscalls reported by the Cuckoo sandbox
logs. In the same year, Miller et al. [63] proposed four main
techniques to provide proper vectorized features for the use of
ML-based detectors. Other recent approaches are presented
by Karbab et al. [51], where the authors implement a natural
language processing methodology, and Ijaz [45], who shows
a comparison between the accuracy obtained by dynamic fea-
tures versus static features (retrieved thanks to static analysis
approaches). Jindal et al. [50] developed an end-to-end mal-
ware detection tool based on techniques borrowed from the
field of text classification.

Xiong et al. [88] performed a set of experiments to de-
tect malicious network traffic, where non-skilled users can
communicate with the framework and provide feedback with
respect to their feeling about the regularity of network activ-
ity. Researchers have also studied the use of graphical visu-
alization techniques to represent malware samples and help
analysts recognize specific behaviors and features [39,73,82].

More recently, in 2016, Yakdan et al. [89] proposed a work
about enhancing decompilers from a malware analyst point
of view. In the same year, Miller et al. [63] showed an innova-
tive way to integrate the human analysts into an automated
malware analysis pipeline that increased the detection rate
by 12%. Ugarte Pedrero et al. [83] have also asked malware
analysts to manually label previously-unknown malware clus-
ters.

While today most of the analysis is delegated to machines,
part of the job (in particular the interpretation of the analysis
results) is still performed by malware analysts [83].

Wong et al. [96] interviewed 21 malware analysts to un-
derstand the different aspects of this profession. The main
results of their study are a taxonomy that classifies malware
analysts into three different groups based on their high-level
objectives, the identification of five common workflows when
an analyst decides to analyze a malware sample in detail, and
the factors they consider when setting up a dynamic analysis
system. The key difference between our work and the latter is
that we conducted a user study on binary classification, while
their semi-structured interview yielded observations about the
goals and workflows in analyzing samples already classified
as malicious. Therefore, we argue that our work should be
considered complementary, and, as we will show below, we
have confirmed some observations.

1146 32nd USENIX Security Symposium USENIX Association

Very few works in the system security area have compared
experts and novices in the context of malware analysis. In
2015, Hibshi et al. [41] conducted a study in which they
assessed the role of the experience in the decision-making
model of experts and novices for vulnerability mitigation in
the source code. The effects of knowledge and expertise in
security are also the topic presented by Ben-Asher et al. [20],
where the authors develop a simple intrusion detection system
to study how individuals with different backgrounds identify
malicious events. More recently, Votipka et al. [85] carried
out a set of interviews about how experts approach reverse
engineering problems, while Mantovani et al. [59] studied the
different strategies adopted by expert and beginner reverse en-
gineers during the analysis of x86 disassembly code: a typical
static reverse engineering task that is often part of the malware
analysis process. Finally, several user studies about phishing
have been conducted to examine how individuals with differ-
ent levels of experience react to malicious web pages [64,98],
aiming at building a mental model of the investigated subjects
when performing phishing-related tasks.

Researchers in the program comprehension community
often compare expert and novice subjects outside the security
field when reading the source code to capture the role of
expertise and the adopted abstractions [23, 31, 37, 57, 87].

3 Methodology

Our study requires access to a large and diverse set of mal-
ware analysts. To remove biases introduced by the training
provided in a given workplace or by the workflow adopted
by all analysts in the same group, we wanted our participants
to come from a broad range of companies and have different
day-to-day activities.

To accommodate these constraints and collect participants
from all over the world, we decided to implement a web-
based platform specifically designed to conduct our exper-
iments. Moreover, we decided to adopt a gamification ap-
proach because scientific studies found that it has a positive
motivational effect on individuals and their overall perfor-
mances [38, 70]. Therefore, our platform implements a cus-
tom game, which we call Detect Me If You Can! (DMIYC,
from now on). From a gaming perspective, the typical de-
sign elements used in DMIYC are points and a leader board.
Points provide a way to numerically represent a player’s out-
come [86] while leader boards rank players according to their
relative success, thus measuring them against a specific suc-
cess criterion and showing who performed best in a certain
activity [26].

While a useful tool to create social pressure that can in-
crease the player’s level of engagement [22], the leader board
can also introduce tension and stress in the participants. To
soften this aspect, the participants of our game were com-
pletely anonymous, and players were only identified by their
arbitrary usernames. Moreover, the player’s position on the

leader board was only visible when the entire game was com-
pleted.

It is worth emphasizing that our study is not dedicated to
organizing a competitive gaming scenario for human subjects
or between human analysts and machine intelligence. In fact,
players need to independently select the features required to
reach their own decisions without knowing or interfering with
other participants’ scores while playing the game.

The study was piloted in collaboration with other members
of our group, who helped us improve the game’s rules and the
GUI. Moreover, the game included an initial demo phase to
ensure each player was familiar with the rules and interface.

3.1 Game Rules

DMIYC players must correctly classify the higher number of
samples, some of which are malicious and some benign, using
as few features as possible. Our objective is to understand
which features humans inspect before reaching a decision.
When an analyst first encounters a new sample in our game,
she has no prior knowledge of its nature. However, the more
she analyzes its different characteristics, the more (in some
sort of mental bayesian process) she updates her belief of
whether the program is benign or malicious. While she might
never be entirely convinced, once she reaches sufficient confi-
dence about her decision, she would classify the sample and
move on to the next one. To capture this process, we decided
to present each sample with an initial blank report. The player
is then instructed to add new features to the report by choosing
them from a pre-defined catalog until she has gained enough
information to make a confident binary classification.

DMIYC is divided into 20 rounds, and a player has 20
potential points for each round; however, each new set of
features added to the report decreases the potential points
by one, while if the player buys an “empty” feature (e.g., a
sample without network activity), no points are subtracted.
We set the cost of a feature to prevent players from clicking
on every piece of information without any specific order and
precisely capture which set of features are preferred by a
given user.

If the sample is correctly classified, the player gets the
remaining potential points; otherwise, no points are given
in case of a wrong classification. Since there are 15 sets of
features to choose from in each round, and the score starts
from 20, the game guarantees that every correct answer always
scores a positive amount of points between 5 and 20. The
final score is computed by summing up all points obtained in
each round multiplied by the number of correct answers (to
increase the importance of correct classification). This makes
19 ·20 ·20 = 7600 the highest possible score, corresponding
to 19 points (because the player must buy at least one feature)
for every 20 rounds in which the player has answered all 20
times correctly. As described in Section 4, we removed from
our analysis the players who submitted at least one answer

USENIX Association 32nd USENIX Security Symposium 1147

Figure 1: Shortened User Interface of “Detect Me If You
Can!”

without inspecting any feature (some beginners who probably
decided not to complete the assignment).

Given that the score, the number of correct answers, and
the leaderboard are only visible at the end of the experiment,
a participant has no additional information to optimize her
strategy based on the result of other participants. For this
reason, we did not employ any particular game-theoretical
design.

Finally, to mimic the professional pressure that analysts
encounter in their career, we added an overall limit of 60 min-
utes to complete the task over 20 samples, corresponding to
three minutes per sample on average. In comparison, Ugarte-
Pedrero et al. [83] reported that professional malware analysts
often classify samples based on static and dynamic features
in less than 30 seconds.

3.2 Game UI

A shortened version of the user interface of DMIYC is de-
picted in Figure 1. The control panel on the left of the game
UI contains information about the game’s progress, including
the sample counter compared with the total number of sam-
ples to classify, the remaining time, and how many features
the player has already added to the current report.

The sidebar also shows the list of available features, di-
vided into two main groups: static and dynamic. The interface
shows in green the features already added to the report and
those that the player has not inspected in gray. Finally, a strike-
through name means that the player has already tried to buy
that feature, but it turned out to be empty. The top of the UI
contains the player’s two main buttons to classify the current
sample as either malicious or benign, while the central part
of the screen shows the current report. The ‘Basic Properties’
feature is collapsed in the picture, while ‘Network’ and ‘Run-
time DLLs’ are expanded. This functionality is useful when
the player deals with verbose outputs.

3.3 Features
Our game uses all features that are generally extracted from
the file (static features) or the runtime behavior collected by a
malware analysis sandbox (dynamic features).

Static captures different aspects of the file extracted by pars-
ing the Portable Executable (PE) format file. PE is the format
used by Microsoft Windows operating systems to store exe-
cutables, object code, and DLLs. Our study is focused on PE
because it is the most common file format of malware [8] in
the desktop/server ecosystem.

Authenticode is a Microsoft code signing technology de-
signed to guarantee the origin and integrity of an executable.
Once an executable is signed, its code cannot change without
breaking the envelope integrity. In this way, the user is guar-
anteed that the only code they are executing is created by the
software publisher that signed it. Hence, the Signature feature
contains the signer’s certificate and if the certificate is valid
or not.

The Header Metadata feature gathers together PE header
info and metadata, like the target architecture (32 or 64 bit),
the compilation timestamp, the release version, copyright
strings, number of sections, and the total entropy of the file.
A PE file consists of many headers and sections that tell
the dynamic linker how to map the file into memory. For
example, usually the .text section, which holds program
code, is mapped as execute/readonly, and the .data section,
holding global variables, is mapped as no-execute/readwrite.
The Section feature contains all this information, plus the
entropy of each section.

Software frequently depends on the functions exposed by
the operating system. Windows exports most of its functions,
called Application Programming Interfaces (API), required
for these interactions in Dynamic Link Libary (DLL) files.
Executables import and call these functions typically from
various DLLs that provide different functionality. The func-
tions an executable imports from other files (mostly DLLs)
are called imported functions or, in short, imports.

The resources required by the executable file, such as icons,
menu, dialog, etc., are stored in the resource section .rsrc of
an executable file. Often, attackers store additional binary, de-
coy documents, and configuration data in the resource section,
so examining the resource can reveal valuable information
about a binary. The Resources feature contains the informa-
tion of the resource section’s entries, plus each resource’s
entropy.

Strings are ASCII and Unicode-printable sequences of char-
acters embedded within a file. Extracting strings can give
clues about the program functionality and indicators associ-
ated with a suspect binary. Strings feature contains, indeed,
the strings extracted from the binary, and they can contain
references to filenames, URLs, domain names, IP addresses,
shell commands, registry keys, etc.

Finally, our static features also include results from Virus-

1148 32nd USENIX Security Symposium USENIX Association

Total engines, namely VT Labels. VirusTotal aggregates many
antivirus products and online scan engines. Therefore, its re-
ports contain how many engines analyzed the sample and how
many classified the sample as malicious with the correspond-
ing label. Detection labels by antivirus engines can be seen
as a serialization of the tags an engine assigns to the sam-
ple, for example, the family name, the class of malware (e.g.,
ransomware, spyware, adware), file properties (e.g., packed,
themida, bundle) and behaviors (e.g., spam, ddos, infosteal).
Moreover, we also included the VT Submission History, which
includes the first time it was submitted, and the submission
names, i.e., a list containing the filename of the sample when-
ever it was submitted.

Dynamic features are extracted from the execution of the
target sample in a controlled environment that logged all the
interactions between the sample and the operating system.
In this case, the names of the feature are self-explanatory:
Network traffic summarized in UDP, TCP and HTTP; Pro-
cesses created, terminated, or invoked shell commands; Ser-
vices started, stopped or created; any modification to Windows
Registry keys; Mutexes created or opened; File System opera-
tions (files read, written, and deleted); and the list of Runtime
DLLs, i.e., dynamic libraries loaded at runtime.

To sum up, the list of features, divided into static and
dynamic, available to DMIYC players. Static Properties:
Virus Total Labels, Virus Total Submission History, Signa-
ture, Header Metadata, Sections, Imports, Resources, Strings.
Dynamic Behavior: Network, Processes, Services, Registry,
Mutexes, File System, Runtime DLLs.

3.4 Game Samples
We choose the samples to include in our experiments among
real-world benign and malicious PE files. Each sample was
submitted to VirusTotal, and the game information was ex-
tracted from its static and dynamic reports (we did not con-
sider samples with an empty dynamic report). For the sake
of precision, given the fact that Virus Total offers different
dynamic reports from different sandboxes, we rely on the
results generated by VirusTotal Jujubox [12]. Each report
was also anonymized to prevent players from guessing the
correct answer just by searching on the internet, for example,
by looking for the sample’s hash. We selected 11 malware
and nine goodware; the list is summarized in Table 1, in the
same order as they appear to the players. The rationale behind
our choice was to create a representative dataset of the most
common types of malware with their typical behaviors, while
the goodware is composed of carefully verified third-party
benign applications. Moreover, we verified that each sample
report contained sufficient indicators of whether it was benign
or malicious. For instance, sample #17 (WinDirStat, a disk
usage statistics viewer) report contains many file operations,
which might confuse it with ransomware, although all opera-
tions are read, and the sample does not write any files. On the

Table 1: Samples of the game
Sample M|G Malware Family Description

1 M hematite file infector
2 M kryptik trojan
3 M onlineio adware
4 G - Dell Backup & Recovery
5 G - TeamViewer
6 M sysn dropper
7 G - Google Chrome installer
8 M nanolocker ransomware
9 M doomjuice worm
10 M zbot spyware
11 G - Fallout 4 component
12 G - custom Autohotkey
13 M nitol backdoor
14 G - DOSBox
15 M zbot packed spyware
16 M nanocore RAT
17 G - WinDirStat
18 G - Java Update Checker
19 G - Media Player Classic
20 M zdowbot keylogger downloader

other hand, sample #3 is signed, but the signature is invalid.
To mimic the scenario in which analysts need to classify

previously-unknown samples based on their features (and
not just on the AV labels), we removed the antivirus features
for all except four reports. Among the remaining four, two
were correctly classified by the antiviruses (one benign and
one malicious), and one was a benign file misclassified as
malicious. The last was a zbot (sample number 15) repacked
with the PEtite file compressor. In this case, we manually
reset all the antivirus engines’ results to create a case of a
malicious file with zero detection. In this way, we tried to
reproduce a typical scenario in which malware authors re-
release a new version of their software in a compressed form
to bypass static signatures. Our game also includes another
version of the zbot family (sample number 10), this time
unpacked.

Finally, sample number 12 was custom-developed by us.
It is a benign program that uses AutoHotKey (AHK) [2],
a popular Windows scripting language that provides easy
keyboard shortcuts and software automation. AHK is used
by benign software but also, as reported by Trend Micro re-
searchers [5, 11], by malware detected in the wild. What
makes this sample interesting from a classification point of
view is that the PE executables generated by AutoHotkey
rely on Windows APIs to intercept events by using a hooking
technique, the same also employed by some keyloggers. We
did not develop a dummy example but a complete tool with
useful functionalities: our program was designed to associate
special key shortcuts to open different websites in the default
browser.

USENIX Association 32nd USENIX Security Symposium 1149

It is important to note that all reports contained enough
information to perform a correct classification, and we ensure
that all signs of malicious behavior or harmless activity were
captured in the respective features (e.g., we did not include
malicious files that did not work correctly).

4 Participants

To recruit a sufficient number of participants with different
backgrounds and expertise levels, we invited the participants
by means of an invitation key that we sent to specific groups
of candidates. Our experts have been recruited among compa-
nies and academic researchers in the malware analysis field,
while novices were recruited among master students and be-
ginner CTF players. Our participants are employed in seven
renowned cybersecurity companies (a minimum of three to
five participants for each company), while students (MSc and
Ph.D.) and researchers were recruited from four universities
located in two different countries. However, it is important to
stress that we ensure that each participant we invited had some
background in malware analysis. Apart from those who work
in the sector, academic researchers have written papers related
to malware analysis, students have attended at least a course
on malware classification, and CTF players had experience
reversing Windows malware.

More specifically, we generated different invite keys for the
different groups. Then, when accessing the website for the
registration, the participants had to enter some information
about their job type, age, and years of experience in malware
analysis. The reason we did not just rely on self-evaluating
questions to classify experts or novices is that participants
may adjust their answers to portray themselves as more or less
skilled if they are concerned with the interviewer’s percep-
tion [43, 81]. However, the fact that our novices are beginners
has been confirmed by the fact that they reported dedicating
zero years to malware analysis.

Cumulatively, we collected 145 registrations to the website,
but we discarded 13 users who did not complete the game.
Furthermore, we also removed the 35 players who did not
show a sufficient amount of meaningful and reasonable ac-
tivity, e.g., the ones who provided an answer in one or more
rounds without watching any feature. We did not warn players
about those post-processing controls as we wanted to use this
information to identify those who were not genuinely inter-
ested in our experiment. Finally, 110 players were considered
eligible, divided into 72 novices and 38 experts.

We summarize the results from the registration of each
player in Table 2. When the job does not match any of the
proposed categories (namely: student, academic researcher,
and industry), we label it as Other. Consequently, such a
division reflects the participants’ age, with a broad group of
people, most likely the students, aged 20-25. Remarkably,
in our final dataset of experts, 9 participants have worked in
malware analysis for 7-9 years, and five have worked in this

Table 2: Data required for the registration
Job

Student Researcher Industry Other

Experts - 7 27 4
Novices 72 - - -

Age

[20-25] [26-30] [31-40] [40+]

Experts - 7 21 10
Novices 61 13 - -

Years of experience

[0] [1-3] [4-6] [7-9] [10+]

Experts - 13 11 9 5
Novices 72 - - - -

field for more than ten years.

Human Study and Ethical Aspects – The methods
adopted in this research are consistent with our institution’s
ethical guidelines, and the data collection and storage are
compliant with the law in which our institution resides. All
participants were informed about the purpose of our study and
gave their explicit consent to take part in our experiment and
to provide their age and employment information (no name
or other personally identifiable information was collected in
our study).

5 Analysis of humans’ results

For each statistical test that we executed in this section, we
collected the resulting p-values, and we used the Bonferroni
correction method to correct them with an input α of 5e−
2. In the Bonferroni correction method, α determines the
type-I error (rejecting the null hypothesis while it is actually
true). All p-values we report in the rest of the paper already
take into account this correction. It is worth noting that the
conclusion of a hypothesis test in our study, i.e., whether a
null hypothesis should be rejected, is drawn based on the
statistical significance unveiled by the samples collected in
the game. Lastly, we use σ and M to denote respectively the
standard deviation and the median.

Table 3 reports a summary of the results of the 110 human
players, grouped by their skill level. If we consider the aver-
age time needed to complete the game, the final score, and
the number of correct answers, experts outperform novices,
unsurprisingly. On average, experts took less time (29 minutes
versus 44), scored more points (4103 versus 3072), and an-
swered more questions correctly (16.1 versus 13.7). Since the
classification is binary, even when the analyst is unsure about
the nature of a program, she would still have at least a 50%
probability of choosing the right category by chance. In fact,

1150 32nd USENIX Security Symposium USENIX Association

Table 3: An overall view of the results
Metric Experts Min Max Avg Std Median

Novices

Time E 7:48 56:48 29:04 08:53 26:51
N 8:14 59:58 44:31 10:05 46:32

Score E 2310 5339 4103 742 4329
N 1072 6042 3072 1054 2991

Right Answers E 13 19 16.1 1.4 16
N 8 19 13.7 2.4 14

Total E 42 165 82.0 35.1 70
Used Features N 37 146 81.7 27.5 68.5

Unique E 7 16 13.4 2.6 14
Used Features N 7 16 14.1 2.1 15

the standard deviation of the number of novices’ correct an-
swers (whom we expect to rely more on luck) is considerably
higher than among experts (2.4 vs. 1.4).

Therefore, we performed a Welch’s t-test to assess whether
any statistically-significant difference exists between the two
groups when considering I) the time needed to complete the
game, II) the final score, and III) the number of correct an-
swers. We assumed as a null hypothesis that there was no
difference between the two groups, performed the test, and
obtained a t-statistic value of I) -9.4, II) 6.4, and III) 5.8. The
three values were supported by a p-value < 1e− 3, which
allows us to reject the null hypothesis and conclude that there
are statistically significant differences in how the two groups
of participants performed in our experiment.

On the contrary, if we look instead at the total and the
unique number of features used by the two groups, we found
no statistically significant difference (p-value > 1e− 3). In
other words, both experts and novices used a similar amount
of features to reach a decision for each sample. Despite this,
experts completed the game considerably faster than novices.
In fact, if we look at the time spent on each feature, experts
looked at each newly acquired information for an average of
11 seconds before either taking a decision or acquiring a new
feature (σ = 17, M = 6). This time increases to 20 seconds
for novices (σ = 30, M = 10), showing that inexperienced
users take more time to spot the relevant part of an analysis
report.

Finally, none of the 110 humans was able to classify all 20
samples correctly, and experts have an average accuracy of
80%. The line that separates malware from goodware can be
very thin and, as we will see later in this section, some cases
can easily deceive even the experts’ eyes, especially when par-
ticipants did not have the entire report at their disposal. In fact,
even the five experts with 10+ years of experience in malware
analysis misclassified 〈2,2,2,3,3〉 samples, respectively.

We also tested whether there was a correlation (Pearson)
between years of experience and results (score or number
of correct answers), and we found no statistically significant
correlation.

Table 4: Correct answers when dealing with T/F P/N
Sample� 2 4 17 15
Type TP TN FP FN
Class Malicious Benign Benign Malicious
VT Matches 10 0 5 0

Experts 29/31 (93%) 27/29 (93%) 23/28 (82%) 28/28 (100%)
Novices 59/64 (92%) 57/63 (90%) 20/61 (32%) 49/61 (80%)

5.1 VirusTotal Impact

In Section 3.4 we described how we have deliberately in-
cluded in our game four samples with altered VirusTotal en-
gines’ reports to study how our participants react in response
to correct and incorrect antivirus engine results.

The results, computed only on the users who have looked at
the AV labels feature, are summarized in Table 4. Both experts
and novices obtained good results when dealing with correct
AV detections. However, the accuracy of novices significantly
decreased when the antivirus reports were misleading, partic-
ularly for the benign file with five detections. Experts were
less affected by this, probably because they are more aware
that both false positives and false negatives are pretty frequent
in VirusTotal. In fact, in 93% of the cases, expert analysts
correctly flagged sample 4 as a benign sample. However, the
behavioral analysis reports many file readings, and we man-
ually inserted some misleading AV labels implying that it is
generic ransomware. Nevertheless, the false positive (sample
17) is WinDirStat, an open-source graphical disk usage ana-
lyzer; as a matter of fact, its FileSystem feature does not show
any writings on files as real ransomware (e.g., nanolocker,
sample 8) would do. Surprisingly, all the experts correctly
classified the false negative (sample 15), showing that this
type of error does not affect their decision-making, while the
same cannot be said for the false positive.

5.2 Self Evaluation

At the end of the exercise, we asked each participant to indi-
cate the number of samples that they found difficult to classify
and for which the user was unsure about the final choice.

Overall, experts have wrongly classified on average 4.0
(σ = 1.4, M = 4) samples, and they reported to be unsure
about 3.6 (σ = 3.2, M = 4) of their answers. Novices have
responded incorrectly for 6.3 (σ = 2.4, M = 6) samples while
reporting being unsure about 6.7 (σ = 6.1, M = 5.5) answers.
It is interesting to note that, on average, the number of mis-
takes is lower than the number of samples that users found
difficult to classify. We can expect some of those complex
cases to be classified correctly by luck. However, roughly
half of the participants (49% of experts and 54% of novices)
overestimated their performance by providing many wrong
answers greater than the number of samples they were unsure
about the choice. In one extreme case, one expert made seven
mistakes while reporting to be unsure about only three of her

USENIX Association 32nd USENIX Security Symposium 1151

2 7 20 6 10 13 15 9 18 5 19 8 16 4 3 17 14 12 1 11
Sample

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Di

ffe
re

nc
e

be
tw

ee
n

pe
rc

en
ta

ge
s

Figure 2: Comparison of correct answers experts/novices

choices.

5.3 Samples Difficulty

As we already mentioned in Section 3, we intentionally se-
lected samples of different complexity for our experiment.
Based on the experts’ results, we can identify three classes:
10 samples were classified correctly by over 90% of the ex-
perts, seven samples were classified correctly by 70-90% of
the experts, and three samples posed severe problems to most
of our participants. These samples, one malicious and two be-
nign (number 1, 11, 12 in Table 1), were, in fact, misclassified
by over 60% of our experts.

One is a file infector, which could explain why its report
may contain signs of both malicious and benign behaviors.
The second is part of a popular videogame, a category that
often employs obfuscation techniques often associated with
malicious files. The last is an executable we generated using
AutoHotKey to create shortcuts to open different URLs in the
browser – and that therefore requires intercepting keyboard
events.

Figure 2, inspired by the finance candlestick chart, shows
for each sample the difference in classification accuracy be-
tween experts and novices (the orange line corresponds to
cases in which experts answered more correctly than novices
and the blue line vice versa). The samples are sorted in de-
scending order with respect to the correct answers of the
experts. We also plotted two dashed lines to indicate the 90%
and 70% thresholds we used to differentiate samples’ dif-
ficulty and the sample’s number (in direct correspondence
with Table 1) in the X-axis is in red for malware and green
for goodware. The graph shows that for most of the samples,
experts outperformed novices. In two cases (samples 10 and
4), the novices had a slight advantage, which became much
more significant for two out of three problematic samples,
probably because most experts were misled and responded
consistently; instead, novices were not sure and responded
more randomly.

Netw
ork

VT L
ab

els

Pro
ces

ses

File
Sy

ste
m

Sig
na

tur
e

Reg
istr

y

VT H
isto

ry

Se
rvi

ces

Im
po

rts
Str

ing
s

Hea
de

r

Mute
xe

s

Dyn
DLLs

Se
cti

on
s

Reso
urc

es

Feature

0%

10%

20%

30%

40%

50%

60%

70%

80%

Ho
w

m
an

y
tim

es
 it

 h
as

 b
ee

n
se

en

Experts
Novices

Figure 3: Features prevalence

5.4 Feature Ranking
The main goal of our work is not to measure how well hu-
mans perform at malware classification but, in particular, to
understand which features they rely upon for making their
decisions. Therefore, we computed how often our participants
used a given feature during the game. We recall that a player
is not aware whether a feature is present or not until she clicks
on it (as described in Section 3), therefore in this particular
discussion, we are considering the features irrespective of
their presence or absence, but by the fact that the player de-
cided to look at them. The result, which is one of the main
findings of this study, was quite surprising: independently of
their level of expertise, all players relied on the same set of
features.

The complete list of features with their prevalence for ex-
perts and novices is shown in Figure 3; the features marked
with a dagger (†) are the dynamic ones. Percentages are com-
puted over the total number of classified samples, i.e., 760 for
the 38 experts and 1440 for the 72 novices. The features are
ordered by the prevalence among experts.

We also investigated the five most frequent entries for ex-
perts and novices, broken down for the samples that were clas-
sified correctly and those that were misclassified (summarized
in Table 7 in the Appendix 10.1). All lists are strikingly simi-
lar irrespective of the correctness of the classsification. For the
experts are: †Network, VT labels, †Processes, †FileSystem,
and Signature. While for novices: VT labels, †Network, Sig-
nature, †Processes, and †FileSystem.

Even if VT labels was only present on 4/20 samples, par-
ticipants often tried to consult it. We remind the reader that
at the beginning of the round, the player could not know if
it was an empty feature or not until she tried to click on it.
Therefore, we counted whether the feature was present or not
because in this measurement, we are interested in the number
of times the player wanted to view a specific feature.

By observing Figure 3, static file features (i.e., related to the

1152 32nd USENIX Security Symposium USENIX Association

PE file format and therefore without considering VT-relative
features) are more often located on the right side of the graph,
thus suggesting a human tendency to focus on the dynamic be-
havior. The Welch’s t-tests supported this intuition (p-values
< 0.001), but just for experts, who relied more heavily on dy-
namic features between the two groups (static file/dynamic
behavior – t-statistic value of -3.92). In Section 7 we will
show how this was the exact opposite for ML algorithms.

5.5 Malware Vs. Goodware

Looking at Figure 2, it seems that the goodware (character-
ized by green numbers on the X-axis) is more shifted to-
wards the right side of the graph, thus suggesting that our
participants had more trouble classifying them w.r.t. malware
(red numbers). Therefore, for each class (experts/novices), we
counted how many times they misclassified each group (mal-
ware/goodware). First, we measured their distribution, and
we found that experts, on average, misclassified 1.7 (σ = 1.0,
M = 1) malicious samples and 2.3 (σ = 2.3, M = 2) benign
ones. Novices, instead, 2.8 (σ = 1.6, M = 2) and 3.9 (σ = 1.7,
M = 3).

When Ugarte Pedrero et al. [83] asked malware analysts to
help them classify previously unknown clusters, they noticed
that malicious samples required less effort to classify than
benign applications. Therefore, we further investigated and
measured the average time spent and the number of watched
features while analyzing each misclassified sample. However,
maybe because there was a maximum amount of time to
complete the game, on average, we did not notice a significant
difference in the time: experts spent roughly 80 seconds per
sample and novices 120 seconds, regardless of the sample’s
nature. While for the number of watched features, on average,
experts used 14.8 (σ= 11.1, M = 12) features when analyzing
malware and 17.4 (σ = 11.3, M = 15) for goodware. For
novices the difference was less pronounced, 11.2 (σ = 1.6,
M = 10) and 12.6 (σ = 2.9, M = 11) respectively.

We performed a Welch’s t-test to assess whether any
statistically-significant difference exists between the two
groups (malware/goodware in this case) when considering
I) the number of misclassified samples, II) the average time
spent on each misclassified sample, and III) the number of
watched features when they misclassified a sample. We as-
sumed as a null hypothesis that there was no difference be-
tween the two groups and performed the test, and we repeated
the tests for each class (novices/experts). The results we ob-
tained allow us to draw the following conclusions. I) Novices
made more errors classifying goodware (t-statistic -2.8, p-
value < 1e−3), II) for both classes, analyzing goodware took
no longer than malware (p-values > 1e−3), and III) experts
used more features when analyzing goodware (t-statistic -0.6,
p-value < 1e−3). The last point seems particularly reason-
able because, in order to be confident that a sample is benign,
one has to rule out all possible ‘signs’ of malicious behavior.

6 Machine Learning Players

Quite surprisingly, we found a consensus among humans
about the key features used for malware classification, in-
dependently of their background and experience level. We
further introduce the machine learning-based classifiers and
compare their modus operandi with human experts. It is cru-
cial to point out that we excluded two features, VT labels and
VT history, when dealing with ML players because we used
them to select and label the malware/goodware samples to
form our benchmark dataset. Therefore, they must be removed
to avoid overfitting the ML models. In total, ML players have
13 features at their disposal, while humans have 15.

6.1 Benchmark Dataset
We created a well-balanced dataset for training and valida-
tion by downloading 21,944 VirusTotal complete reports of
PE executables. We only selected the reports that contain a
complete behavioral analysis of the sample, which VirusTotal
obtains by running the samples in Jujubox [12] sandbox.

For malware, we randomly selected samples submitted to
VirusTotal between 2018 and 2020 and classified them as
malicious by more than 21 antivirus engines, as suggested
by [60]. We ensured that no malware families were over-
represented in our dataset using AVClass [74]. In total, we
obtained a set of 10,972 malicious samples, in which the
most frequent family had 125/10,972 occurrences (namely
the 1.1% of the dataset).

We took a conservative strategy to build a goodware
dataset based on the fresh installation of all the community-
maintained packages (ensuring a rigorous moderation review
process in order to avoid pollution) of Chocolatey [4] in a
clean machine running Windows 10. After all, packages were
installed, we extracted all the executable files present on the
hard disk; therefore, our dataset contains a combination of
third-party and Windows system files. Finally, we removed
from our goodware dataset the files with more than three de-
tections on VT. This allowed us to discard borderline cases
(i.e., benign files with characteristics very similar to malware)
found in Chocolatey’s repository (e.g., hacking and scanning
tools). Using this procedure, we have collected 10,972 good-
ware, and about 95% (10,374/10,972) of the samples in this
set have zero detection.

6.2 Choice of ML-based Classification Models
Most of the features contained in the VT report are categorical.
Therefore, we vectorized all VT sandbox reports based on
the encoding scheme recently proposed by [45, 50, 63]. For
completeness, on our project web page [6] we provide all the
necessary details for the reproducibility of our work, and we
also share the source code used to conduct this experiment
alongside all our dataset reports.

USENIX Association 32nd USENIX Security Symposium 1153

The literature contains various ML-based malware classi-
fication methods using static and dynamic analysis features.
In [15,30,40,44,48,52,65,71,72,93–95,97], traditional mod-
els, e.g. Decision Trees (DT) and Random Forests (RF), were
applied to the static analysis features. Advanced models, such
as Deep Neural Networks [53, 69], treated raw binaries as
gray-scale images and employed computer vision methods
for malware classification. Recently, Graph Neural Network
(GNN) [16, 21, 90] was applied to control flow graphs of
malware. Long Short-Term Memory (LSTM) [42], Gated Re-
current Units (GRU) [24], and Recurrent Neural Nets (RNN)
[50] were used over dynamic analysis reports containing fea-
tures, e.g., system call traces, network activities, changes to
the registry, and file actions executed by malware for malware
classification. The success of these approaches confirms the
applicability of ML-based approaches in extracting useful
features of malware.

Our goal is to explain the contributions of the features ex-
tracted from static/dynamic analysis reports (described in Sec-
tion 3.3) in Machine-Learning based malware classification.
We opted for two popular Machine Learning models. The first
is Random Forest [44, 48, 65, 71, 72, 95]. The other model
is Convolution Neural Network (CNN) [14, 53, 91, 92]. The
use of CNN is summarized in the Appendix. In our study, we
first compress the categorical attributes into low-dimensional
numerical embedding vectors, i.e., word2vec embeddings (as
seen in Word2Vec [62]). The embeddings are treated as fea-
tures of the CNN-based classifier. We use RF and CNN as
two different players in the game, providing diversified per-
spectives of the classification boundary. RF uses the greedy
tree-branch split strategy to divide the feature space and lo-
cate the classification boundary. In contrast, CNN inclines to
directly fit the classification boundary in high-dimensional
feature space by minimizing the correntropy loss. While the
two ML players achieve high accuracy, their results are not
always consistent. One may misclassify samples correctly
classified by the other and vice versa.

6.3 Validation

We first evaluate the performances of the two ML players over
the 21,944 training samples via a 5-fold cross-validation (CV)
test. After that, we apply the ML models trained using the
21,944 samples to the 20 game samples. The CV test’s role is
to evaluate the ML player’s classification accuracy using the
encoded features.

In each fold of the CV test, we randomly select 80% of the
benign and malicious samples to tune the model parameters
of the ML players. The remaining 20% samples are used
as the test set to evaluate the classification accuracy. The
train-test split is repeated five times. We use the averaged and
standard deviation of the AUC-ROC to measure the overall
performance metric, as given by Table 8 in the Appendix, due
to the space limit.

The reported AUC-ROC scores are achieved by utilizing
500 trees for Random Forest. For the CNN-based model,
we choose a 4-layered CNN architecture implemented using
PyTorch. The first layer is a word2vec embedding module,
which compresses the categorical attributes in a static- or
dynamic-analysis-based VT report into a 528 dimensional
embedding vector. The second layer is composed of the first
convolution filters with a size of 20 and the number of the
output channels as 4. Following the convolution operation, a
max pooling function is enforced over the convolution output.
The third and fourth layers are given as fully connected layers
to linearly transform the pooled convolution responses to a 64-
dimensional and 2-dimensional vector, respectively. Finally, a
sigmoid function is adopted to produce the decision score in
[0,1] of the binary classification. The averaged AUC scores
of the RF and CNN-based participant derived from the test
are 0.9962 and 0.9950, indicating the effectiveness of the
two models in capturing the feature-label correlation in the
classification task.

7 Humans vs. Machines

Consistently with the observation in the CV test, the two
ML players produce similar accuracy during the game. Both
of them misclassified the game sample 3 (malicious) and
17 (benign). Besides, the RF-based players misclassified the
benign game sample number 12. In contrast, the CNN-based
player misclassified the malicious game samples 4 and 15.
RF-player achieved slightly better accuracy than the average
human expert (17/20), while the CNN-based acted like the
average expert (16/20).

Sample 17 is a curious case because we used it to study
how humans reacted to false positives, and, in a bizarre turn
of events, both ML players made a false-positive decision.
We remind the reader that ML players had no access to VT
information, and among the 18 experts who did not inspect
VT-related features, five (33%) made the same mistake.

Sample 3 is malware that directs to a malicious domain
(71.t.oneline[.]io). Although we have no data to prove
that humans did an internet search (we have set no limits
on this), all experts who have correctly classified this sam-
ple have looked at the Network feature. Human subjects can
proactively introduce additional knowledge beyond the train-
ing data set to help their decision-making. On the other hand,
the ML-driven models are constrained by the statistical as-
sociations in the training data. Thus, without checking the
domain’s maliciousness, the ML models fail to recognize the
file correctly.

Besides, most of the misclassified game files by the ML
players and the human subjects are different. Only sample 12,
misclassified by 57% of the experts, is also misrecognized by
the RF-based model. This shows that humans and ML players
do not share the same idea of what constitutes a difficult
sample to classify.

1154 32nd USENIX Security Symposium USENIX Association

The unveiled difference is related to the human’s ability
to change the decision strategy depending on the situation.
Indeed, according to cognitive psychology research [67], the
human decision is usually made based on an ensemble of
logical rules and concepts, such as permissions, obligations,
prohibitions, and heuristics. On the one hand, human subjects
can adjust the decision policies on a case-by-case basis, ac-
cording to the available information. On the other hand, once
trained, ML models are restricted to using the same set of
features adopted by the learning paradigm. They cannot flexi-
bly extend the feature space to enrich the description of the
suspicious files, as the human subjects did in the game. As a
result, different ML models would generate similar classifica-
tion boundaries with the same training samples. Furthermore,
the ML models are likely to fail without sufficient supporting
information on the feature, whereas the human subjects can
look for additional evidence to extend their knowledge base.

7.1 Feature Ranking

We adopt SHAP [13] as a model-agnostic model explana-
tion tool to measure the contribution of each type of feature
encoded from the VT reports. SHAP [79] computes the Shap-
ley value of each type of feature and ranks the features in
descending order. A higher Shapley value denotes stronger
relevance of the corresponding feature in the malware clas-
sification task. The Shapley value origins from game theory
and extends to evaluate feature-wise contributions in a given
learning task [32]. It is represented as the weighted average of
the marginal contribution of a feature concerning a machine
learning model as in Definition II.2 and Definition II.3 in [33].

Note that Random Forest also has a built-in feature im-
portance evaluation tool, i.e., recursively feature elimination
using out-of-bag error (OOB) evaluation. Nevertheless, the
OOB-based feature importance measurement inclines to over-
estimate the importance of high-cardinality categorical vari-
ables. This makes not trustable the OOB-based feature im-
portance computation in our study. Table 5 shows the ranked
features in descending order according to the feature-wise
Shapley scores derived from SHAP and expert humans (with-
out considering the VT labels/history features as discussed
in Section 6). The features marked with a dagger (†) are
dynamic.

The first finding is that the two ML players share simi-
lar important features in the classification task. Resources,
†Network and Header Metadata appear in the top 5 features
for both ML players according to the feature-wise Shapley
values, despite the difference of learning mechanisms of RF
and CNN. Interestingly, also †Network and Signature appear
within human experts’ top five features.

It can also be noted that the two ML players prefer static
features rather than the dynamic ones that are favored by hu-
man subjects. In the first half of the ranking (1-7), human
participants have chosen five dynamic features and two static.

Table 5: Ranked features by the two ML players and experts
RF CNN Expert Humans

1 Resources Resources †Network
2 †Services Sections †Processes
3 Header Metadata †Network †FileSystem
4 †Network †Runtime DLLs Signature
5 Signature Header Metadata †Registry
6 †Runtime DLLs Signature †Services
7 Strings †Services Imports
8 Sections †FileSystem Strings
9 Imports Strings Header Metadata
10 †Mutexes †Registry †Mutexes
11 †Registry †Mutexes †Runtime DLLs
12 †FileSystem Imports Sections
13 †Processes †Processes Resources

In the second half (8-13), the two ML players have chosen
two static features and four dynamic ones. In fact, ML players
made significant use of static analysis features, and, amaz-
ingly, PE Resources is the most crucial for ML algorithms
while the least important for both human experts and novice
players.

As humans, we have tried to understand why ML models
prefer these features with an in-depth look at the reports, and
when necessary, we manually inspected the sample. We found
that malware tends to: embed executables/DLLs or big raw
data among resources, some PE header metadata contains
random strings or non-ASCII characters, does not sign or use
invalid signatures, and uses sections with non-standard names.
Some of our samples also had these three peculiarities; for
example, in the same order discussed above, samples number
6, 20, 3, and 15. Respectively, the 96%, 89%, 61%, and 91% of
expert humans who classified correctly those samples did not
watch Resources, Header Metadata, Signature and Sections.
As it turns out, humans and machines agree that Signature
is a crucial feature, while for the remaining static features,
humans did not need them to make a correct classification.

While more research works may be needed to underpin
the actual reason behind such differences between humans
and machines, two possible explanations come to mind. First,
dynamic attributes are not always present in all the reports.
Over the 21,944 malware and goodware samples, 83% of
them have at least one dynamic feature containing missing
values (i.e., NULL value). It is worth noting that such missing
features are ordinary; a program does not need to use all the
operating system’s capabilities. For example, ransomware just
needs to interact with the file system and the network, while
a browser has no apparent need to create services.

In contrast, static features are rarely missing. Misobserva-
tions in the dynamic features weaken the statistical feature-
label association and therefore downgrade the usefulness of
the dynamic features in the ML models. This is also related
to the difference in the decision logic of humans [67, 84]
and ML-based models [27]. Human subjects’ judgments are

USENIX Association 32nd USENIX Security Symposium 1155

made based on a combination of heuristics and rules. Miss-
ing some features/attributes does not prevent human subjects
from pursuing complementary rules to reach a correct con-
clusion. Nevertheless, the ML-based models, though they are
usually superior in capturing the complex statistical correla-
tion, they do not encode the causality reasoning rules [27].
Consequently, ML-based models are more prone to misobser-
vations in training data than humans.

The feature encoding is more complicated for dynamic at-
tributes, often containing semantically rich categorical data
types (w.r.t. static features containing more numerical fea-
tures). To handle the high dimensional and sparse one-hot
encoded representation of these categorical features, the
Word2Vec technique [61] was developed to compress the one-
hot encoded features into a low-dimensional embedding space.
Nevertheless, missing features induce unneglected negative
impacts on the representation stability of the Word2Vec based
embeddings [47, 61], which can cause model overfitting as a
consequence. It has been a challenging and open problem to
handle incomplete observations of discrete features.

Second, the feature space of the ML models cannot be
enriched in an on-the-fly manner by incrementally collecting
additional evidence of the security incidents. We witnessed
this limit by analyzing sample 3, misclassified by both ML-
based players. Another example is the game file 16, which
resolves the domain phone2347.ddns[.]net: a human sub-
ject can easily note that it is a dynamic DNS resolver, while
ML does not have access to this knowledge. Moreover, by
checking only the Gibberish Score used in our encoding pro-
cess (see Appendix A for more details), the domain is not
random enough to be categorized as automatically generated.
However, it still looks suspicious to the human subjects’ eyes;
overall, not what an analyst would expect from a sample that
has nothing to do with phone calls. This is additional semantic
information that is difficult for an automated ML algorithm
to capture proactively.

7.2 Game Replay with the ML players

The comparison is still not fair enough: the ML players had
access to ALL features for each sample, while human ex-
perts had to progressively select only a subset of them. This
raises a new question: If the ML players were to use the same
set of features used by the human subjects in the game, how
would they perform? To answer this question and help us bet-
ter unveil the difference in decision-making between human
subjects and ML models, we conducted two new experiments.
In the first, we selected the five most used features according
to their frequency among human experts’ gameplay records.
In the second, we extended the list to the top seven (except
for the VirusTotal features as discussed in Section 6.2).

We then use only these features as the input to the two ML
players and retrain them with the 21,944 file samples. After
that, we went over each round played by the top five human

experts, and we asked the retrained ML models to classify the
game samples involved in the rounds played by the top five
experts as per the following settings.

We give the retrained ML players the same features that
each human expert used in the game for each selected game
sample. To perform a fair comparison, we only selected those
game samples where the features used by the top human
experts were all within the range of the most used 5 and 7
features selected to train the classifiers. Consequently, both
the human experts and the ML players involved in the replay
test had access to the same feature pool for each game sample.
This limited our experiments to 8 game samples for the five-
feature experiment and 13 game samples for the seven-feature
experiment. It is possible that individual human experts use
only a fraction of the most used 5 and 7 features when they
play the game. Given a game sample i, for the features in
the top-ranked list that were not used by the human subject,
we consider them as missing features in the input to the ML
models for classifying this sample. To handle the missed fea-
ture values, both RF and CNN-based models first conduct
imputations by completing them with the most frequently ob-
served values in the corresponding feature dimensions. Then
the classifiers are applied over the completed input feature
vectors.

At first, for the two ML players using only the 5 and 7
features, we conducted the 5-fold CV test on the 21,944 sam-
ples to check the overall accuracy of the ML players with the
restricted feature space. We then apply the retrained models
with the top 5 and 7 features over the 20 game samples and
report the number of misclassified game files. Table 9 in Ap-
pendix.10.4 reports the average and standard deviation of
the ROC-AUC scores produced by the restricted ML models
in the 5-fold CV test. While the overall accuracy of the two
ML players is lower than when trained using all features, the
ROC-AUC remains high. With the top 7 features, RF and
CNN reach an ROC-AUC value of 0.95 and 0.97 respectively.

Table 6 reports the number of the correctly classified game
samples by the two ML players in the replay test. In the table,
we use x/y to denote that x game samples out of the whole y
samples are correctly classified. Interestingly, the game classi-
fication accuracy dropped significantly when the ML players
replayed experts’ games. First, the game performance of the
two ML players is worse than a random guess. In contrast,
human experts did a perfect job, with all the samples correctly
classified. Second, the accuracy score with the top 7 features
was even worse than that derived with the top 5 features (e.g.,
4/8 v.s. 5/13 for the RF model). The main reason is that
there were many more missing feature values in the seven
features, which caused the performance deterioration of the
ML models. In contrast, human experts rarely used more than
three features in their choices.

The cause of the performance degradation is twofold. First,
human experts do not necessarily use all the features for de-
cisions. As discussed before, human experts’ judgment is

1156 32nd USENIX Security Symposium USENIX Association

Table 6: Game Replay Accuracy w.r.t. ML players
Methods Top 5 features Top 7 features

RF 4/8 5/13
CNN 3/8 5/13

Human Experts 8/8 13/13

made based on their own set of heuristics and rules learned
from prior knowledge and experience of malware analysis
practices [67, 84]. In the game replay test, 80% of the human
experts used no more than three features while reaching the
correct malware classification. 50% of them used less than
five features. In contrast, with fewer features used, the less
information the ML models can employ to learn the statistical
association between features and labels. The classification
accuracy over the game samples of both ML models thus be-
comes significantly lower than using the complete feature set.
Second, while human experts can use partially observed in-
formation for their inference, any test inputs with incomplete
features to a trained ML model inevitably harm the model’s
accuracy. The ML-driven models are thus less usable com-
pared to manual investigation if training data and/or testing
data are partially observed.

8 Key Takeaways

We conducted the first empirical study comparing humans
(experts and novices) with machine intelligence in malware
classification based on sandbox reports.

First, we found that both experts and novices base their
decisions on the same set of features, with a slight difference
in the order. As expected, the critical difference is that experts
can provide a more accurate and fast classification with the
same information. This finding holds among experts from
different companies and countries and students from differ-
ent universities. Moreover, we also found that humans and
machines agree that network traffic and a valid signature are
among the most important features.

Second, novices make the majority of mistakes during good-
ware classification. In fact, experts analyze more features
when dealing with benign samples, confirming a recent obser-
vation [83] regarding the fact that benign files are the hardest
to classify correctly for analysts because analysts have to
rule out all possible malicious indicators. This difficulty with
goodware for novices is probably due to the fact that they
might be well-trained at detecting signs of potentially ma-
licious behavior, while finding the absence of such signs is
much more error-prone. Therefore, we need to improve this
aspect during teaching. On the other hand, ML classifiers are
designed to capture the data distribution of both benign and
malicious samples in the feature space. It implies that the clas-
sification boundary established by ML classifiers may also
help capture the common profiles of goodware; therefore, ma-
chines know distinctive traits for goodware and malware. We

also found no agreement between human players and machine
learning algorithms about which samples are more difficult to
classify, and this fact suggest that machines and humans have
complementary skills and a lot to still teach to each other.

Third, experts classify samples by using less than 1/3 of
the available features, with a clear preference for dynamic
attributes. Also, interviews of a recent work [96] bolsters the
fact that malware analysis is trending towards behavior-based
detection, because this can protect against undiscovered mal-
ware samples and remain effective for more extended periods
of time [7]. This reflects the difference between human and
machine intelligence. A human’s decision depends on a flexi-
ble combination of candidate heuristics. Misobservations of
the features do not prevent human experts from trying alter-
native heuristics. However, missing observations and a lack
of semantic understanding of the features weaken the trust-
worthiness of the machine intelligence’s decision. Echoed
by other previous studies [45, 50], how to properly extract
semantically meaningful logic is still a challenging task for
ML models. As recently proposed in [36, 77], one potentially
promising approach that could be used to address this issue
could be the integration of generative models, such as AutoEn-
coder, into the classifiers and the use of causality inference in
the decision process. The goal is to produce a semantically
meaningful reconstruction of missing features and encour-
age exploring causality relations between features to deliver
explainable classification. While these are exciting research
directions, we emphasize once again that for our study, we
used only state-of-the-art feature vectorization strategies, as
described in Section 6.2.

Fourth, human analysts can consolidate the decision be-
yond the given behavioral reports by collecting additional
evidence and knowledge. The process of proactive knowl-
edge enriching is much more complex for ML models be-
cause the training strictly follows the definition of the feature
space, which makes the derived models a passive process of
knowledge encoding. By comparison, human subjects can
strengthen their classification by checking suspicious records
with additional information sources, even if the time limit
imposed in our game limited this process to not much more
than a quick query to a search engine. However, even if this
is an inherent problem of ML, this particular case highlights
the importance of enhancing ML models with open-source
intelligence results.

Fifth, none of the human participants or computer algo-
rithms were able to classify all the 20 game samples correctly.
Human experts classified correctly on average 16.1±1.4 with
a median of 16, i.e., an average accuracy of 80%. This number
is further supported by the median value of the number of
choices experts reported being unsure of, which is 4. Even if
some samples were specifically crafted to reflect complex real-
world situations (e.g., false positive/negative for AV products),
we manually selected the samples to ensure that malicious
or harmless activity indicators were always captured in the

USENIX Association 32nd USENIX Security Symposium 1157

reports. However, it was fascinating to observe that the False
Positive case posed many difficulties even to experts, while
no expert made any mistakes on the False Negative – among
those who looked at VT’s labels. As FPs could irreparably
damage the system functionality, as has happened several
times before [1,3,10], antivirus companies pay close attention
and perform extensive tests to reduce their number. Analysts,
on the other hand, are accustomed to new malware variants
and thus pay close attention to FNs, whereas in the presence
of a positive AV match they tend to believe the machines’
verdict.

As a last point, the results of this work can have a signifi-
cant impact on the human-computer interaction for malware
analysis during the review of sandbox reports. The computer
must make all the data collected through OSINT available to
human beings. Considering the domain name we discussed
in Section 7 as an example, if the human had seen that it was
a domain associated with malicious activity, he would have
immediately known it was malware. Then, the use of ML
models that precisely indicate what are the most significant
parts of the features that helped classify the sample (RF for
example) would help the human to point out which static mal-
ware parts are critical to the machine, so that she can focus on
the behavior and bridging the cognitive gap seen throughout
this paper.

9 Limitations and Conclusions

We introduced some design choices into the experimental
setup, which may have caused biases in the final outcome as
well as may have prevented us from unveiling further findings.

The granularity of the data collected with our web-based
platform did not allow us to understand further the exact
component of the feature that ignites the spark in the hu-
man mind. However, we argue that it is difficult to achieve
such granularity. A sufficiently precise eye tracking device
could provide excellent accuracy, but the experiment cannot
be conducted remotely. As an alternative, the use of a re-
stricted focus viewer to capture the part of the screen a user
is currently focusing on is a standard methodology in com-
prehension experiments [49]. However, it would significantly
impact the participants’ speed, and it would require more time
to conduct the experiments.

As Mantovani et al. [59], we did not offer money or goods
to participate in this study because many participants were
not allowed to receive compensation for their effort, and we
did not want to discriminate among different classes of users.
However, for some students involved in the study, the experi-
ment gave them credits for their malware analysis exam, and
experts voluntarily participated in the game.

The features list presented in the sidebar of our web UI
always follows the same ordering, and it might have intro-
duced a bias in the way our participants visited the features.
However, we underline that by comparing the features list

in the web-UI with the top-5 used features of table 7 only a
tiny part of these follow the order of the UI list. Moreover,
we introduced this design choice to mimic the VT interface
that was needed not to affect the user experience and usability,
especially for experts who work mainly with that interface.

Since we wanted to study existing ML solutions (and not
design a new one for our experiments), we based our dynamic
feature vectorization approach on what was described in re-
cent papers [15,40,50,97]. However, our tests show that more
research is needed in this area (in accordance with [45]): dy-
namic features usually generate a very sparse representation
that can lessen the stability of classification, especially when
dynamic features contain misobservations. This is a possi-
ble reason why the classification performance deteriorates
if we train an ML model on the same dynamic features cho-
sen by humans. In general, the performance of ML-based
classification and the features favored by the ML model de-
pend significantly on the choice of the model and the training
dataset.

Finally, expert analysts in our study likely misclassified
some samples because of the game mechanics. For example,
the cost of buying features might have reduced the accuracy;
however, this has affected both experts and novices. In any
case, our goal was to study which features were used more
often by humans and compare them with those of machine
learning algorithms. We want to stress that real-world clas-
sification is much more challenging, involving reports that
did not capture the relevant features of the program or sam-
ples that did not run correctly in the sandbox, thus resulting
in incomplete information. To cope with that, as extensively
discussed in [83] and [96], malware analysts may use various
techniques, including manual reverse engineering.

In the spirit of open science, we released the source code [6]
we used to create the ML players (a tool to vectorize VirusTo-
tal reports) and our game (that could have exciting teaching
applications). While we cannot share the complete VirusTotal
reports due to legal restrictions, we share the hashes of the
samples we used in our dataset.

Acknowledgements

We sincerely thank the anonymous reviewers for their con-
structive feedback that has helped to improve this paper sig-
nificantly, and Slasti Mormanti for his tireless support to our
research group.

This work has benefited from a government grant managed
by the National Research Agency under France 2030 with
reference “ANR-22-PECY-0007,” and the European Research
Council (ERC) under the Horizon 2020 research and innova-
tion program (grant agreement No 771844 BitCrumbs).

1158 32nd USENIX Security Symposium USENIX Association

References
[1] Antivirus software webroot bricks pcs by deleting windows system

files. https://liliputing.com/2017/04/whoops-antivirus-so
ftware-webroot-bricks-pcs-deleting-windows-system-fi
les.html, Accessed November 3, 2022.

[2] Autohotkey, the scripting language for windows. https://www.auto
hotkey.com/, Accessed November 3, 2022.

[3] Catastrophic avira antivirus update bricks windows pcs. https://www.
theregister.com/2012/05/16/avira_update_snafu/, Accessed
November 3, 2022.

[4] Chocolatey, the package manager for windows. https://chocolat
ey.org/, Accessed November 3, 2022.

[5] Credential stealer targets us, canadian bank customers. https://ww
w.trendmicro.com/en_us/research/20/l/stealth-creden
tial-stealer-targets-us-canadian-bank-customers.html,
Accessed November 3, 2022.

[6] Detectmeifyoucan ml. https://gitlab.eurecom.fr/saonzo/Det
ectMeIfYouCan_ML, Accessed November 3, 2022.

[7] How antivirus softwares are evolving with behaviour-based malware
detection algorithms. https://analyticsindiamag.com/how-an
tivirus-softwares-are-evolving-with-behaviour-based-
malware-detection-algorithms/, Accessed November 3, 2022.

[8] M-trends 2020. https://content.fireeye.com/m-trends/rpt
-m-trends-2020, Accessed November 3, 2022.

[9] Malware statistics. https://www.av-test.org/en/statistics/
malware/, Accessed November 3, 2022.

[10] Panda antivirus mistakenly flags itself as malware, bricks pcs. https:
//www.zdnet.com/article/panda-antivirus-mistakenly-f
lags-itself-as-malware-breaks-pcs/, Accessed November 3,
2022.

[11] Potential targeted attack uses autohotkey and excel. https://www.tr
endmicro.com/en_us/research/19/d/potential-targeted-a
ttack-uses-autohotkey-and-malicious-script-embedded-
in-excel-file-to-avoid-detection.html, Accessed November
3, 2022.

[12] Revamping in-house dynamic analysis with virustotal jujubox sandbox.
https://blog.virustotal.com/2019/10/in-house-dynamic-a
nalysis-virustotal-jujubox.html, Accessed November 3, 2022.

[13] Shapley additive explanations. https://shap.readthedocs.io/en
/latest/index.html, Accessed November 3, 2022.

[14] Rakshit Agrawal, Jack W. Stokes, Karthik Selvaraj, and Mady Mari-
nescu. Attention in recurrent neural networks for ransomware detection.
In ICASSP 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 3222–3226, 2019.

[15] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofi-
mov, and Giorgio Giacinto. Novel feature extraction, selection and
fusion for effective malware family classification. In Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy,
CODASPY ’16, page 183–194. Association for Computing Machinery,
2016.

[16] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi.
Learning to represent programs with graphs. In International Confer-
ence on Learning Representations, 2018.

[17] Blake Anderson Anderson, Daniel Quist, Joshua Neil, Curtis Storlie,
and Terran Lane. Graph-based malware detection using dynamic anal-
ysis. Journal in Computer Virology, 7:247–258, 2011.

[18] Srilatha Attaluri, Scott McGhee, and Mark Stamp. Profile hidden
markov models and metamorphic virus detection. Journal in computer
virology, 5:151–169, 2009.

[19] Ulrich Bayer, Engin Kirda, and Christopher Kruegel. Improving the
efficiency of dynamic malware analysis. In Proceedings of the 2010
ACM Symposium on Applied Computing, pages 1871–1878, 2010.

[20] Noam Ben-Asher and Cleotilde Gonzalez. Effects of cyber security
knowledge on attack detection. Computers in Human Behavior, 48:51–
61, 2015.

[21] David Bieber, Charles Sutton, H. Larochelle, and Daniel Tarlow. Learn-
ing to execute programs with instruction pointer attention graph neural
networks. NeurIPS 2020, abs/2010.12621, 2020.

[22] Juan C Burguillo. Using game theory and competition-based learning to
stimulate student motivation and performance. Computers & education,
55(2):566–575, 2010.

[23] Jean-Marie Burkhardt, Françoise Détienne, and Susan Wiedenbeck.
Mental representations constructed by experts and novices in object-
oriented program comprehension. In Human-Computer Interaction
INTERACT’97, pages 339–346. Springer, 1997.

[24] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on se-
quence modeling. CoRR, abs/1412.3555, 2014.

[25] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide
Balzarotti. Understanding linux malware. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 161–175. IEEE, 2018.

[26] Christian Crumlish and Erin Malone. Designing social interfaces:
Principles, patterns, and practices for improving the user experience.
" O’Reilly Media, Inc.", 2009.

[27] Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging
machine learning and logical reasoning by abductive learning. In
Advances in Neural Information Processing Systems, volume 32, pages
2815–2826, 2019.

[28] SL Shiva Darshan, MA Ajay Kumara, and CD Jaidhar. Windows
malware detection based on cuckoo sandbox generated report using
machine learning algorithm. In 2016 11th International Conference
on Industrial and Information Systems (ICIIS), pages 534–539. IEEE,
2016.

[29] Yuxin Ding, Xuebing Yuan, Ke Tang, Xiao Xiao, and Yibin Zhang. A
fast malware detection algorithm based on objective-oriented associa-
tion mining. Computers and Security, 39:315 – 324, 2013.

[30] Parvez Faruki, Vijay Laxmi, M. S. Gaur, and P. Vinod. Mining control
flow graph as api call-grams to detect portable executable malware.
In Proceedings of the Fifth International Conference on Security of
Information and Networks, SIN ’12, page 130–137. Association for
Computing Machinery, 2012.

[31] Vikki Fix, Susan Wiedenbeck, and Jean Scholtz. Mental represen-
tations of programs by novices and experts. In Proceedings of the
INTERACT’93 and CHI’93 conference on Human factors in computing
systems, pages 74–79, 1993.

[32] Christopher Frye, Colin Rowat, and Ilya Feige. Asymmetric shapley
values: incorporating causal knowledge into model-agnostic explain-
ability. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 1229–1239. Curran Associates, Inc., 2020.

[33] Daniel Fryer, Inga Strümke, and Hien Nguyen. Shapley values for
feature selection: The good, the bad, and the axioms, 2021.

[34] Daniel Gibert, Carles Mateu, and Jordi Planes. Hydra: A multimodal
deep learning framework for malware classification. Computers and
Security, 95:101873, 2020.

[35] Daniel Gibert, Carles Mateu, Jordi Planes, and Ramon Vicens. Using
convolutional neural networks for classification of malware represented
as images. Journal of Computer Virology and Hacking Techniques,
15:15–28, 2019.

USENIX Association 32nd USENIX Security Symposium 1159

https://liliputing.com/2017/04/whoops-antivirus-software-webroot-bricks-pcs-deleting-windows-system-files.html
https://liliputing.com/2017/04/whoops-antivirus-software-webroot-bricks-pcs-deleting-windows-system-files.html
https://liliputing.com/2017/04/whoops-antivirus-software-webroot-bricks-pcs-deleting-windows-system-files.html
https://www.autohotkey.com/
https://www.autohotkey.com/
https://www.theregister.com/2012/05/16/avira_update_snafu/
https://www.theregister.com/2012/05/16/avira_update_snafu/
https://chocolatey.org/
https://chocolatey.org/
https://www.trendmicro.com/en_us/research/20/l/stealth-credential-stealer-targets-us-canadian-bank-customers.html
https://www.trendmicro.com/en_us/research/20/l/stealth-credential-stealer-targets-us-canadian-bank-customers.html
https://www.trendmicro.com/en_us/research/20/l/stealth-credential-stealer-targets-us-canadian-bank-customers.html
https://gitlab.eurecom.fr/saonzo/DetectMeIfYouCan_ML
https://gitlab.eurecom.fr/saonzo/DetectMeIfYouCan_ML
https://analyticsindiamag.com/how-antivirus-softwares-are-evolving-with-behaviour-based-malware-detection-algorithms/
https://analyticsindiamag.com/how-antivirus-softwares-are-evolving-with-behaviour-based-malware-detection-algorithms/
https://analyticsindiamag.com/how-antivirus-softwares-are-evolving-with-behaviour-based-malware-detection-algorithms/
https://content.fireeye.com/m-trends/rpt-m-trends-2020
https://content.fireeye.com/m-trends/rpt-m-trends-2020
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.zdnet.com/article/panda-antivirus-mistakenly-flags-itself-as-malware-breaks-pcs/
https://www.zdnet.com/article/panda-antivirus-mistakenly-flags-itself-as-malware-breaks-pcs/
https://www.zdnet.com/article/panda-antivirus-mistakenly-flags-itself-as-malware-breaks-pcs/
https://www.trendmicro.com/en_us/research/19/d/potential-targeted-attack-uses-autohotkey-and-malicious-script-embedded-in-excel-file-to-avoid-detection.html
https://www.trendmicro.com/en_us/research/19/d/potential-targeted-attack-uses-autohotkey-and-malicious-script-embedded-in-excel-file-to-avoid-detection.html
https://www.trendmicro.com/en_us/research/19/d/potential-targeted-attack-uses-autohotkey-and-malicious-script-embedded-in-excel-file-to-avoid-detection.html
https://www.trendmicro.com/en_us/research/19/d/potential-targeted-attack-uses-autohotkey-and-malicious-script-embedded-in-excel-file-to-avoid-detection.html
https://blog.virustotal.com/2019/10/in-house-dynamic-analysis-virustotal-jujubox.html
https://blog.virustotal.com/2019/10/in-house-dynamic-analysis-virustotal-jujubox.html
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html

[36] David Grangier and Iain Melvin. Feature set embedding for incomplete
data. In Proceedings of the 23rd International Conference on Neural
Information Processing Systems - Volume 1, NIPS’10, page 793–801,
Red Hook, NY, USA, 2010. Curran Associates Inc.

[37] Leo Gugerty and Gary Olson. Debugging by skilled and novice pro-
grammers. In Proceedings of the SIGCHI conference on human factors
in computing systems, pages 171–174, 1986.

[38] Juho Hamari, Jonna Koivisto, and Harri Sarsa. Does gamification
work?–a literature review of empirical studies on gamification. In
2014 47th Hawaii international conference on system sciences, pages
3025–3034. Ieee, 2014.

[39] KyoungSoo Han, Jae Hyun Lim, and Eul Gyu Im. Malware analysis
method using visualization of binary files. In Proceedings of the 2013
Research in Adaptive and Convergent Systems, pages 317–321. 2013.

[40] Mehadi Hassen and Philip K. Chan. Scalable function call graph-
based malware classification. In Proceedings of the Seventh ACM on
Conference on Data and Application Security and Privacy, CODASPY
’17, page 239–248. Association for Computing Machinery, 2017.

[41] Hanan Hibshi, Travis Breaux, Maria Riaz, and Laurie Williams. Dis-
covering decision-making patterns for security novices and experts.
Inst. for Softw. Research., Carnegie Mellon Univ., Pittsburgh, PA, Tech.
Rep. CMU-ISR-15-101, 2015.

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[43] Allyson L Holbrook, Melanie C Green, and Jon A Krosnick. Telephone
versus face-to-face interviewing of national probability samples with
long questionnaires: Comparisons of respondent satisficing and social
desirability response bias. Public opinion quarterly, 67(1):79–125,
2003.

[44] Xin Hu, Sandeep Bhatkar, Kent Griffin, and Kang G. Shin. Mutantx-s:
Scalable malware clustering based on static features. In Proceedings
of the 2013 USENIX Conference on Annual Technical Conference,
USENIX ATC’13, page 187–198. USENIX Association, 2013.

[45] Muhammad Ijaz, Muhammad Hanif Durad, and Maliha Ismail. Static
and dynamic malware analysis using machine learning. In 2019 16th
International bhurban conference on applied sciences and technology
(IBCAST), pages 687–691. IEEE, 2019.

[46] Daisuke Inoue, Katsunari Yoshioka, Masashi Eto, Yuji Hoshizawa, and
Koji Nakao. Automated malware analysis system and its sandbox for
revealing malware’s internal and external activities. IEICE transactions
on information and systems, 92(5):945–954, 2009.

[47] Hemant Ishwaran, Udaya B. Kogalur, Eugene H. Blackstone, and
Michael S. Lauer. Random survival forests. The Annals of Applied
Statistics, 2(3):841 – 860, 2008.

[48] Sachin Jain and Yogesh Kumar Meena. Byte level n–gram analysis
for malware detection. In International Conference on Information
Processing 2011, volume 157, pages 51–59, 2011.

[49] Anthony R Jansen, Alan F Blackwell, and Kim Marriott. A tool for
tracking visual attention: The restricted focus viewer. Behavior re-
search methods, instruments, & computers, 35(1):57–69, 2003.

[50] Chani Jindal, Christopher Salls, Hojjat Aghakhani, Keith Long, Christo-
pher Kruegel, and Giovanni Vigna. Neurlux: Dynamic malware anal-
ysis without feature engineering. In Proceedings of the 35th Annual
Computer Security Applications Conference, page 444–455, 2019.

[51] ElMouatez Billah Karbab and Mourad Debbabi. Maldy: Portable,
data-driven malware detection using natural language processing and
machine learning techniques on behavioral analysis reports. Digital
Investigation, 28:S77–S87, 2019.

[52] Joris Kinable and Orestis Kostakis. Malware classification based on
call graph clustering. Journal in Computer Virology, 7:233–245, 2011.

[53] Bojan Kolosnjaji, Ghadir Eraisha, George Webster, Apostolis Zarras,
and Claudia Eckert. Empowering convolutional networks for malware
classification and analysis. In 2017 International Joint Conference on
Neural Networks (IJCNN), pages 3838–3845, 2017.

[54] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eck-
ert. Deep learning for classification of malware system call sequences.
In Australasian Joint Conference on Artificial Intelligence, pages 137–
149. Springer, 2016.

[55] Deguang Kong and Guanhua Yan. Discriminant malware distance
learning on structural information for automated malware classification.
In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1357–1365, 2013.

[56] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521:436–444, 2015.

[57] SeolHwa Lee, Andrew Matteson, Danial Hooshyar, SongHyun Kim,
JaeBum Jung, GiChun Nam, and HeuiSeok Lim. Comparing program-
ming language comprehension between novice and expert program-
mers using eeg analysis. In 2016 IEEE 16th International Conference
on Bioinformatics and Bioengineering (BIBE), pages 350–355. IEEE,
2016.

[58] Liu Liu, Bao-sheng Wang, Bo Yu, and Qiu-xi Zhong. Automatic mal-
ware classification and new malware detection using machine learn-
ing. Frontiers of Information Technology & Electronic Engineering,
18(9):1336–1347, 2017.

[59] Alessandro Mantovani, Simone Aonzo, Yanick Fratantonio, and Da-
vide Balzarotti. Re-mind: a first look inside the mind of a reverse
engineer. In 31st USENIX Security Symposium (USENIX Security
2022). USENIX Association, August 2022.

[60] Alessandro Mantovani, Simone Aonzo, Xabier Ugarte-Pedrero, Alessio
Merlo, and Davide Balzarotti. Prevalence and impact of low-entropy
packing schemes in the malware ecosystem. In Network and Dis-
tributed System Security (NDSS) Symposium NDSS 20, 2020.

[61] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In Yoshua Bengio
and Yann LeCun, editors, 1st International Conference on Learning
Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings, 2013.

[62] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their com-
positionality. In Advances in neural information processing systems,
pages 3111–3119, 2013.

[63] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz,
Rekha Bachwani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar,
Tony Wu, George Yiu, et al. Reviewer integration and performance
measurement for malware detection. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 122–141. Springer, 2016.

[64] Daisuke Miyamoto, Takuji Iimura, Gregory Blanc, Hajime Tazaki, and
Youki Kadobayashi. Eyebit: Eye-tracking approach for enforcing
phishing prevention habits. In 2014 Third International Workshop
on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS), pages 56–65. IEEE, 2014.

[65] Robert Moskovitch, Dima Stopel, Clint Feher, Nir Nissim, Nathalie
Japkowicz, and Yuval Elovici Elovici. Unknown malcode detection
via text categorization and the imbalance problem. In 2008 IEEE
International Conference on Intelligence and Security Informatics,
pages 156–161, 2008.

[66] Saeed Nari and Ali A Ghorbani. Automated malware classification
based on network behavior. In 2013 International Conference on
Computing, Networking and Communications (ICNC), pages 642–647.
IEEE, 2013.

1160 32nd USENIX Security Symposium USENIX Association

[67] Jean Oh Oh, Felipe Meneguzzi, and Katia Sycara. Chapter 11 - prob-
abilistic plan recognition for proactive assistant agents. In Gita Suk-
thankar, Christopher Geib, Hung Hai Bui, David V. Pynadath, and
Robert P. Goldman, editors, Plan, Activity, and Intent Recognition,
pages 275 – 288. 2014.

[68] Jonas Pfoh, Christian Schneider, and Claudia Eckert. Leveraging string
kernels for malware detection. In Proceedings of International Confer-
ence on Network and System Security, pages 206–219, 2013.

[69] Edmar Rezende, Guilherme Ruppert, Tiago Carvalho, Fabio Ramos,
and Paulo De Geus. Malicious software classification using transfer
learning of resnet-50 deep neural network. In The16th IEEE Interna-
tional Conference on Machine Learning and Applications (ICMLA),
pages 1011–1014, 2017.

[70] Michael Sailer, Jan Ulrich Hense, Sarah Katharina Mayr, and Heinz
Mandl. How gamification motivates: An experimental study of the
effects of specific game design elements on psychological need satis-
faction. Computers in Human Behavior, 69:371–380, 2017.

[71] Ashkan Sami, Babak Yadegari, Hossein Rahimi, Naser Peiravian, Sattar
Hashemi, and Ali Hamze. Malware detection based on mining api calls.
In Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC ’10, page 1020–1025. Association for Computing Machinery,
2010.

[72] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G. Bringas.
Opcode sequences as representation of executables for data-mining-
based unknown malware detection. Information Sciences, 231:64 – 82,
2013. Data Mining for Information Security.

[73] Josh Saxe, David Mentis, and Chris Greamo. Visualization of shared
system call sequence relationships in large malware corpora. In Pro-
ceedings of the ninth international symposium on visualization for
cyber security, pages 33–40, 2012.

[74] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero.
Avclass: A tool for massive malware labeling. In International Sympo-
sium on Research in Attacks, Intrusions, and Defenses, pages 230–253.
Springer, 2016.

[75] Giorgio Severi, Tim Leek, and Brendan Dolan-Gavitt. M alrec: com-
pact full-trace malware recording for retrospective deep analysis. In
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 3–23. Springer, 2018.

[76] Toshiki Shibahara, Takeshi Yagi, Mitsuaki Akiyama, Daiki Chiba, and
Takeshi Yada. Efficient dynamic malware analysis based on network
behavior using deep learning. In 2016 IEEE Global Communications
Conference (GLOBECOM), pages 1–7. IEEE, 2016.

[77] Marek Smieja, undefinedukasz Struski, Jacek Tabor, Bartosz Zieliński,
and Przemysław Spurek. Processing of missing data by neural net-
works. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 2724–2734, Red Hook,
NY, USA, 2018. Curran Associates Inc.

[78] Curtis Storlie, Blake Anderson, Scott Vander Wiel, Daniel Quist, Curtis
Hash, and Nathan Brown. Stochastic identification of malware with
dynamic traces. Annuals of Applied Statistics, 8:1–18, 2014.

[79] Erik Strumbelj. Explaining prediction models and individual predic-
tions with feature contributions. Knowledge and Information Systems,
41:647–655, 2014.

[80] Bo Sun, Akinori Fujino, Tatsuya Mori, Tao Ban, Takeshi Takahashi,
and Daisuke Inoue. Automatically generating malware analysis reports
using sandbox logs. IEICE TRANSACTIONS on Information and
Systems, 101(11):2622–2632, 2018.

[81] Roger Tourangeau and Ting Yan. Sensitive questions in surveys. Psy-
chological bulletin, 133(5):859, 2007.

[82] Philipp Trinius, Thorsten Holz, Jan Göbel, and Felix C Freiling. Visual
analysis of malware behavior using treemaps and thread graphs. In
2009 6th International Workshop on Visualization for Cyber Security,
pages 33–38. IEEE, 2009.

[83] Xabier Ugarte-Pedrero, Mariano Graziano, and Davide Balzarotti. A
close look at a daily dataset of malware samples. ACM Transactions
on Privacy and Security (TOPS), 22(1):1–30, 2019.

[84] J Van der Pligt. Decision making, psychology of. In International
Encyclopedia of the Social and Behavioral Sciences, pages 3309 – 3315.
2001.

[85] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S Foster, and
Michelle L Mazurek. An observational investigation of reverse en-
gineers’ processes. In 29th USENIX Security Symposium (USENIX
Security 2020), pages 1875–1892, 2020.

[86] Kevin Werbach and Dan Hunter. The gamification toolkit: dynamics,
mechanics, and components for the win. Wharton School Press, 2015.

[87] Susan Wiedenbeck, Vikki Fix, and Jean Scholtz. Characteristics of the
mental representations of novice and expert programmers: an empirical
study. International Journal of Man-Machine Studies, 39(5):793–812,
1993.

[88] Huijun Xiong, Prateek Malhotra, Deian Stefan, Chehai Wu, and Dan-
feng Yao. User-assisted host-based detection of outbound malware
traffic. In International Conference on Information and Communica-
tions Security, pages 293–307. Springer, 2009.

[89] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew
Smith. Helping johnny to analyze malware: A usability-optimized
decompiler and malware analysis user study. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 158–177. IEEE, 2016.

[90] Jiaqi Yan, Guanhua Yan, and Dong Jin. Classifying malware repre-
sented as control flow graphs using deep graph convolutional neural
network. In 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 52–63, 2019.

[91] Chun Yang, Yu Wen, Jianbin Guo, Haitao Song, Linfeng Li, Haoyang
Che, and Dan Meng. A convolutional neural network based classifier for
uncompressed malware samples. In Proceedings of the 1st Workshop on
Security-Oriented Designs of Computer Architectures and Processors,
SecArch’18, page 15–17, New York, NY, USA, 2018. Association for
Computing Machinery.

[92] Chun Yang, Jinghui Xu, Shuangshuang Liang, Yanna Wu, Yu Wen,
Boyang Zhang, and Dan Meng. Deepmal: maliciousness-preserving
adversarial instruction learning against static malware detection. Cy-
bersecurity, 4:2523–3246, 2021.

[93] Yanfang Ye, Lifei Chen, Dingding Wang, Tao Li, Qingshan Jiang, and
Min Zhao. An intelligent pe-malware detection system based on asso-
ciation mining. Journal in Computer Virology, 283(5), 2008.

[94] Yanfang Ye, Lifei Chen, Dingding Wang, Tao Li, Qingshan Jiang, and
Min Zhao. Sbmds: an interpretable string based malware detection sys-
tem using svm ensemble with bagging. Journal in Computer Virology,
283(5), 2008.

[95] Yanfang Ye, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. A
survey on malware detection using data mining techniques. ACM
Comput. Surv., 50(3), June 2017.

[96] Miuyin Yong Wong, Matthew Landen, Manos Antonakakis, Douglas M
Blough, Elissa M Redmiles, and Mustaque Ahamad. An inside look
into the practice of malware analysis. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages
3053–3069, 2021.

[97] Ding Yuxin and Zhu Siyi. Malware detection based on deep learning
algorithm. Neural Comput. Appl., 31(2):461–472, 2019.

[98] Olga A Zielinska, Allaire K Welk, Christopher B Mayhorn, and Emer-
son Murphy-Hill. Exploring expert and novice mental models of
phishing. In Proceedings of the human factors and ergonomics society
annual meeting, volume 59, pages 1132–1136. SAGE Publications
Sage CA: Los Angeles, CA, 2015.

USENIX Association 32nd USENIX Security Symposium 1161

10 Appendix

10.1 Most used features

In Table 7 we report the five most frequent entries for experts
and novices broken down for the samples that were classified
correctly and those that were misclassified.

Table 7: Most used five features
All Correct Misclassified

E
xp

er
ts

†Network †Network †Network
VT labels VT labels VT labels
†Processes †Processes †Processes
†FileSystem †FileSystem †FileSystem
Signature Signature Signature

N
ov

ic
es

VT labels VT labels VT labels
†Network †Network †Network
Signature Signature †Processes
†Processes †Processes Signature
†FileSystem †FileSystem †FileSystem

10.2 Validation of the ML participants

We first evaluate the classification performances of the two
ML-based participants over the 21,944 training samples via
a 5-fold cross-validation (CV) test. After that, we train the
two classifiers with the 21,944 training samples and apply the
final models to the 20 game samples. The cross-validation
test’s role is to evaluate the ML algorithms’ classification
capability when using the encoded feature vectors.

In each fold of the CV test, we randomly select 80% of
the benign and malicious samples from each class of the
training data set in order to tune the model parameters of the
ML participants. The remaining 20% samples are used as
the validation set to evaluate the classification accuracy. We
choose AUC-ROC score to evaluate the classification accuracy
with well-balanced training and testing samples. The train-
test split is repeated for five times. We use the averaged and
standard deviation of the AUC-ROC scores to measure the
overall performance metric as given in Table.8.

10.3 Choice of ML-based Malware Classifiers

The literature is full of ML-based classification methods ap-
plied to static and/or dynamic analysis reports of malware
samples [15, 17, 18, 29, 30, 40, 44, 48, 52, 65, 68, 71, 72, 78,
93–95, 97], for both malware detection and malware family
classification.

In our study, we opted for two popular Machine Learning
models. The first is Random Forest.According to previous
works [15, 17, 30, 40, 44, 48, 52, 65, 71, 72, 93, 95], Random
Forest can provide accurate detection using both static and

Table 8: 5-fold cross-validation test of the ML participants
Random Forest CNN

AUC-ROC 0.9962(4.324e-4) 0.9950(1.225e-4)
TPR with FPR=1% 0.9427(3.120e-4) 0.9386 (1.542e-4)

dynamic analysis-based features. As a tree-structured classifi-
cation mechanism, Random Forest can by-design handle the
categorical attributes in the static/dynamic analysis reports,
which can not be applied as a direct input to many other ML
models, such as Support Vector Machine and Deep Learn-
ing models. The other model is Convolution Neural Network
(CNN). As a modern machine learning model, CNN has been
applied in the use of malware detection [14, 53, 91, 92], the
first two [53, 91] transfer the binaries into gray images by
treating bytes as the intensity values of each pixel. Then CNN
is deployed to differentiate malware from benign executables
in a similar way as in image classification [56]. [14] builds
a CNN-based detector using the API call traces extracted
from the dynamic analysis of malware. In our study, we use
CNN with the categorical features provided in the VirusTotal
reports. We first compress the categorical attributes into low-
dimensional numerical embedding vectors, i.e., word2vec em-
beddings (as seen in Word2Vec [62]). The embedding vectors
are treated as features of the CNN-based detector. Another
related topic [16, 21, 90] is to apply Graph Neural Networks
(a CNN extension to graph-structured data) on control flow
graphs of malware. However, these GNN-based methods re-
quire the complete chain of operations to constitute the graph-
structured feature representation, which are not provided in
the VT reports.

10.4 CV test results
Table 9 reports the average and standard deviation of the
ROC-AUC scores produced by the restricted ML models in
the 5-fold CV test using the restricted feature space.

Table 9: ML players with the restricted feature space
Methods Top 5 features Top 7 features

RF 0.9554 (3.1013e-4) 0.9747 (9.7544e-4)
CNN 0.9410 (1.5000e-4) 0.9598 (1.0327e-4)

1162 32nd USENIX Security Symposium USENIX Association

	Introduction
	Related Work
	Methodology
	Game Rules
	Game UI
	Features
	Game Samples

	Participants
	Analysis of humans' results
	VirusTotal Impact
	Self Evaluation
	Samples Difficulty
	Feature Ranking
	Malware Vs. Goodware

	Machine Learning Players
	Benchmark Dataset
	Choice of ML-based Classification Models
	Validation

	Humans vs. Machines
	Feature Ranking
	Game Replay with the ML players

	Key Takeaways
	Limitations and Conclusions
	Appendix
	Most used features
	Validation of the ML participants
	Choice of ML-based Malware Classifiers
	CV test results

