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Abstract
The arms race between Internet freedom advocates and cen-

sors has catalyzed the emergence of sophisticated blocking

techniques and directed significant research emphasis toward

the development of automated censorship measurement and

evasion tools based on packet manipulation. However, we ob-

serve that the probing process of censorship middleboxes us-

ing state-of-the-art evasion tools can be easily fingerprinted by

censors, necessitating detection-resilient probing techniques.

We validate our hypothesis by developing a real-time de-

tection approach that utilizes Machine Learning (ML) to de-

tect flow-level packet-manipulation and an algorithm for IP-

level detection based on Threshold Random Walk (TRW).

We then take the first steps toward detection-resilient cen-

sorship evasion by presenting DeResistor
1, a system that fa-

cilitates detection-resilient probing for packet-manipulation-

based censorship-evasion. DeResistor aims to defuse detec-

tion logic employed by censors by performing detection-

guided pausing of censorship evasion attempts and interleav-

ing them with normal user-driven network activity.

We evaluate our techniques by leveraging Geneva, a

state-of-the-art evasion strategy generator, and validate them

against 11 simulated censors supplied by Geneva, while also

testing them against real-world censors (i.e., China’s Great

Firewall (GFW), India and Kazakhstan). From an adversar-

ial perspective, our proposed real-time detection method can

quickly detect clients that attempt to probe censorship mid-

dleboxes with manipulated packets after inspecting only two

probing flows. From a defense perspective, DeResistor is

effective at shielding Geneva training from detection while

enabling it to narrow the search space to produce less de-

tectable traffic. Importantly, censorship evasion strategies

generated using DeResistor can attain a high success rate

from different vantage points against the GFW (up to 98%)

and 100% in India and Kazakhstan. Finally, we discuss de-

tection countermeasures and extensibility of our approach to

other censor-probing-based tools.

1Could also be thought of as a system that delays and distributes censor-

ship probes similar to how a resistor regulates the flow of current.

1 Introduction

An increasing number of nation states are resorting to

widespread and draconian censorship of network traffic to sup-

press access to various forms of information (e.g., offensive

content, national-security threats, or politically uncomfort-

able literature). A popular and particularly egregious form of

censorship is blocking of forbidden keywords/domain names

(e.g., China [67], Pakistan [46], India [30]).

Through measurement studies and engagements with cen-

sorship middleboxes, researchers have observed that the state-

of-the-practice of such keyword-based censorship involves

the use of TCP Reset (RST) packets [40] or misguiding clients

(e.g., via DNS spoofing [7]). One way to confuse censors and

disarm them of their ability to tear down connections is to

perform evasive client-side packet manipulations. Early ef-

forts in censorship evasion involved manually crafting evasion

strategies [42, 63]. However, these countermeasures would be

easily thwarted by censors if widely deployed or integrated

into circumvention tools such as pluggable transports [4, 44].

With the continuing cat-and-mouse game between anti-

censorship researchers and censoring regimes, the quest for

reliable censorship circumvention solutions has given rise

to sophisticated and automated approaches such as Alem-

bic [45], SymTCP [64], and Geneva [13]. These approaches,

while having different strategies, are all designed to manip-

ulate IP packets at the transport layer with a goal to confuse

censorship middleboxes, thus enabling users to connect to

censored destinations.

Although these tools have been demonstrated to craft suc-

cessful evasion strategies against real-world censors, we ob-

serve that during their censor-probing phase, they produce ab-

normal network patterns that substantially differ from normal

flows. Such potential distinguishability of packet-manipulated

flows from ordinary ones leads to a practical concern: if these

tools are ubiquitously deployed, censors will leverage this vul-

nerability to detect them. The implication of such detection

depends on what the censor chooses to do but could involve:

(i) early blocking of clients that are running evasion tools to
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prevent them from reaching a successful evasion strategy; (ii)

misleading clients into converging on wrong or ineffective

strategies; or (iii) even referral to law enforcement [3].

Our paper focuses on Geneva [13], a genetic algorithm-

based censorship evasion tool that automates the generation

of evasion strategies against a target censor. To investigate the

feasibility of detecting censorship evasion systems, we extend

our preliminary study [6] in which we systematically investi-

gate the behavior of Geneva on behalf of an adversary (e.g., a

censoring regime) that aims to detect Geneva flows and block

them. We mimic an intelligent censor by proposing a real-time

detection approach that accurately detects all clients running

Geneva after fewer than three observations (§4). We do so

by leveraging Machine Learning (ML) techniques for flow-

level detection (§4.1) and the Threshold Random Walk (TRW)

algorithm [39] for IP-level detection using sequential hypoth-

esis testing (§4.2). Our ML detectors detect Geneva flows

with ≈ 99% accuracy. To make a final detection decision on

Geneva clients, we extend the classification system by lever-

aging TRW Ða hypothesis testing framework first developed

for port-scan detection. Our results reveal that Geneva clients

are easily detectable using ML detectors that enable TRW

to make fast and accurate rejection of Geneva sources, typi-

cally after approximately two flow-level observations. This

is achieved with a low false positive rate on diverse types of

publicly available traffic packet capture datasets (e.g., normal

traffic, network forensics, and malware infection) [6]. These

findings suggest that probing-based censorship evasion sys-

tems like Geneva need to be detection-resilient in the face

of dynamic and resourceful adversaries (e.g., state-sponsored

filtering middleboxes).

In light of our finding that evasion tools like Geneva are sus-

ceptible to adversarial detection, we explore the development

of a detection-resilient probing and circumvention strategy

generation system to effectively cope with the detect-block

arms race. We proceed by first framing the censorship prob-

lem as a two-player game, where a client in a censored regime

learns to improve its evasive packet manipulation strategy

generator through the feedback (e.g., censoring, detection)

returned from its opponent (i.e., the censor). Grounded in

this framing, we propose DeResistor, a system extension that

enables censorship evasion systems like Geneva to generate

detection-resilient packet-manipulation strategies to evade

censors. More precisely, we consider a censor that not only

performs censorship on the client’s connections to a forbidden

server, but also includes a detection module that captures any

packet manipulation attempt. Using the censor’s feedback,

the client automatically learns better strategies by optimizing

a two-objective fitness function to find a trade-off between a

strategy’s effectiveness and its detection-resilience. Further-

more, to avoid early rejection (i.e., IP blocking), we enhance

the client with a second module that offers a guided pausing

of the strategy generator training (probing phase) and switch-

ing to normal network traffic to confuse the censor’s detector.

This measure is crucial to delay the convergence of the TRW

algorithm into a detection decision until the censor probing

phase discovers a working evasion strategy.

We first evaluate DeResistor via in-situ experiments against

11 mock censors from the Geneva paper [13] and confirm its

detection-resilience across multiple runs. Our results suggest

that while a client running Geneva is detected and IP-blocked

after only two packet-manipulation attempts, DeResistor suc-

ceeds in avoiding IP-blocking until it finishes its training and

generates effective strategies. We then field-test DeResistor’s

censorship evasion effectiveness against China’s GFW, In-

dia and Kazakhstan. Specifically, we run DeResistor using

Geneva as a strategy generator from multiple vantage points

in Mainland China, one vantage point in India and one van-

tage point in Kazakhstan and evaluate its detection-resilience

against the ML and TRW-based detection approaches pro-

posed in §4. We show that DeResistor can make Geneva’s

training phase more resistant to detection while maintaining

a high censorship evasion success rate. To that end, this paper

makes the following contributions:

• We propose the first real-time detection approach of

clients probing a censor with manipulated packets for

censorship evasion.

• We develop and evaluate DeResistor, an approach that

protects the censor-probing phase of censorship evasion

tools from being detected.

• We show that DeResistor can guide Geneva into learn-

ing effective evasion strategies against real-world censors

with less detectable features.

• We discuss censor-side countermeasures and DeResistor’s

adaptability to different classes of probing-based censor-

ship evasion tools.

To foster future research, we have made our code publicly

available at: https://github.com/um-dsp/DeResistor.

2 Background and Related Work

We first review some background information and related

work on censorship measurement and evasion to facilitate the

explanation of our approaches in §4 and §5, as well as the

motivation behind the development of DeResistor.

2.1 Censorship Measurement

Early studies on Internet censorship focused on a small num-

ber of countries with stringent information control policies,

notably China [41, 43, 50, 66, 67] and Iran [9].

To better understand GFW’s operating mechanism, Xu et

al. [67] used probes with limited time-to-live (TTL) values

in TCP header to determine locations from which RST pack-

ets were injected. Crandall et al. [18] and Park et al. [50]

studied the effectiveness of keyword-based filtering in China.

Khattak et al. [40] studied limitations in the TCP and HTTP

inspections performed by GFW.

Over the last decade, with the prevalence of authoritarian
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governments making use of different network interference

technologies for censorship purposes, the literature has wit-

nessed more in-depth studies in different regions of the world,

including India [58, 69], Pakistan [5, 46], Russia [54, 68],

Syria [15], Thailand [27], and Turkmenistan [49]. This new

wave of censorship around the world has also led to the de-

velopment of global censorship monitoring platforms such

as OONI [26], CensoredPlanet [52], and ICLab [47]. De-

spite the difference in scale of these measurement studies,

most of them are designed to discover network interference

techniques widely used by state-sponsored censors via DNS

tampering [7, 8, 36, 51, 55], TCP packet injection [34, 61, 65],

and IP-based blocking [35, 37] (e.g., via null routing [60]).

2.2 Censorship Evasion

Prior research on bypassing censorship middleboxes have

broadly adopted one of two approaches. The first ap-

proach involves tunneling censored traffic, e.g., via domain

fronting [25], VPNs [48], or anonymity network relays such

as Tor [23] or I2P [35]. The second approach, which is also the

focus of our study, relies on confusing filtering middleboxes

with crafted packets [13, 42, 45, 49, 63, 64, 66] or ignoring

packets injected by censors [24, 36].

Some earlier works, including INTANG [63],

Lib•erate [42], and brdgrd [66], relied on semi-automated

efforts to discover packet-manipulation strategies through

characterization and reverse engineering of a targeted

censor’s blocking mechanism. Nevertheless, censors do adapt

and may change their blocking behaviors over time [8,36,49].

As a result, more sophisticated methods have been introduced

with new capabilities to automate the process of strategy

generation through Genetic algorithms (Geneva [13]) or

symbolic execution (e.g., SymTCP [64], Alembic [45]).

Of these tools, Geneva distinguishes itself with demon-

strated capabilities for not only re-deriving strategies de-

scribed in prior manual efforts but also generating new (pre-

viously unknown) evasion strategies against multiple cen-

sorship regimes, including China [14], India [10], Iran [11],

Kazakhstan [33], and Turkmenistan [49]. We therefore choose

Geneva as a foundational building block for DeResistor.

2.3 Geneva as a Motivation

Geneva implements a genetic algorithm that automatically

derives packet-manipulation-based evasion strategies against

a censor. Geneva’s strategies stem from four basic manipula-

tion primitives: drop, tamper headers, duplicate, and fragment

packets.

Strategies in Geneva comprise a set of (trigger, action tree)

pairs. Packets that match a given trigger (for instance, all

TCP packets with the ACK flag set) are modified using the

corresponding sequence of actions in an action tree. Triggers

represent TCP/IP fields in a packet header that, when matched,

cause packet manipulation actions to be applied. Actions are

the aforementioned permitted packet manipulations.

Geneva automatically derives censorship evasion strategies

through evolution of a series of generations. Each generation

comprises multiple individuals. The evolution is achieved

by random mutation that can occur at the level of actions,

triggers or entire individuals. Geneva also performs crossover

between a pair of individuals in the same generation. At the

final step of a generation, it runs a selection tournament. Some

individuals are drawn at random (with replacement) from

the population; the highest-fitness individual among them

is added to the offspring pool. This process repeats until

the offspring pool is the same size as the population pool.

The offspring pool then becomes the population for the next

generation. During its training, Geneva evaluates fitness by

running each strategy directly against the censor, resulting in

multiple probing attempts.

Due to the design choice of Geneva during the training

phase in which a censor is triggered repetitively, we are inter-

ested in investigating whether a censor can detect this probing

traffic to hinder the automated process of discovering eva-

sion strategies. In §4 we show that Geneva-generated probing

traffic can be easily and quickly detected. This pitfall is the

primary motivation for the creation of DeResistor (§5). We do

not introduce DeResistor as another strategy generation tool

to evade censorship, but we build it to offer other evasion tools

the protection from being detected by making their repetitive

censor-probing phase more resilient to detection.

3 Problem Formulation

As the arms-race between censored users and state-sponsored

censors continues, our goal is to build a detection-resilient

probing and evasion system that provides users with real-time

protection against censor-side detection. Anti-censorship tech-

nology deployers and censorship middleboxes can be consid-

ered as two contending agents engaging in a two-player game.

The instance of the game is that the censored user, whose in-

tention is to evade censorship, generates a strategy to bypass

the censor’s filtering middlebox. The user strives to maximize

their odds of bypassing the censor’s detection and/or block-

ing, whereas the censor aims to minimize the chance that the

user could evade it via its evasive maneuvers. We explore two

designs to model the game, generative adversarial models

and genetic algorithms.

3.1 Generative Adversarial Models

Generative Adversarial Networks (GANs) [29]) offer a nat-

ural formalism of the aforementioned two-player game as a

Minimax game [57]. In particular, an Internet user can be

modeled as a Generator G and the censor as a Discrimina-

tor D. In such a setup, while D learns to discern legitimate

connections from the censored ones (e.g., connection to a cen-

sored server), G learns more advanced packet manipulation

strategies that can overcome D’s censorship techniques.

At a high-level, the GAN setup seems suitable to our prob-

lem. Yet upon deeper examination, we find that such a setup
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is subject to data embedding-related constraints, especially if

we aim to evade real-world censors. Suppose an Internet user

inside a censorship regime attempts to connect to a censored

server. As per the GAN setup, G can be trained to take as an in-

put a normal network flow (i.e., without packet manipulations)

and generates a manipulated counterpart flow that is tested

against D. In this case, a flow has to be embedded to a vector

representation x. Next, G performs manipulations to produce

x̃. Previous work proposed multiple byte embedding methods

(e.g., AttackGAN [17], PacketCGAN [62], PAC-GAN [16],

and Flow-WGAN [31]). Unfortunately, these byte embedding

methods are not lossless. Hence, the embedding function is

neither invertible nor differentiable. Consequently, mapping

back x̃ to construct a unique network flow amenable to being

tested against the censor is practically challenging. More-

over, even if it is possible to map x̃ to multiple estimations

of packets, there is no guarantee that the constructed manipu-

lated packets, if found, preserve the same functionality/goal

of the desired traffic. In light of these practical limitations

of the GAN setup, next we explore genetic algorithm-based

modeling of detection-resilient censorship evasion.

3.2 Genetic Algorithms

We shift our focus to another generative modeling technique

that is suitable to the problem at hand and avoids the limita-

tions of the GAN alternative. In particular, we model the

generator G by a genetic algorithm that aims to fool the

censor (playing the role of the discriminator D). The cen-

sor’s response is (1) whether or not the generator’s con-

nection attempt is to be censored and (2) whether a prob-

ing/measurement tool is detected. The training of the genera-

tor is governed by the maximization of a fitness function that

considers the feedback of the censor.

Fortunately, Geneva’s genetic algorithm [13], explained in

§2.3, is a natural fit to play the Generator role. By leveraging

Geneva, we generate packet manipulation strategies as a set

of (trigger, action tree) pairs. For instance, if a packet matches

a given trigger (e.g., SYN flag), it is modified using the cor-

responding sequence of actions in an action tree. As a result,

we avoid the data-embedding problem of the GAN-based for-

mulation. The key challenge here is, if the censor detects and

blocks connections from the generative model (e.g., Geneva),

then how can we train the generator to make seamless packet

manipulation? In §4, we show that automated censorship eva-

sion tools like Geneva can be detected easily by the censor in

real-time. In §5, we then propose a detection-resilient design

that operates on top of existing strategy generators. Given

Geneva’s suitability to our problem and its reported effective-

ness, in the remainder of this paper, we use Geneva’s genetic

algorithm to illustrate strategy generation to better explain

our detection-resilient probing and censorship evasion ap-

proach. We also discuss in §7 DeResistor’s adaptability to

other censor-probing based strategy generation tools (e.g.,

SymTCP [64], INTANG [63], Lib•erate [42] and others).

4 Real-Time Censorship Evasion Detection

To demonstrate how probing traffic of automated evasion tools

can be easily detected, we introduce a two-step approach to

detect Geneva clients on the censor side with high confidence.

4.1 Flow-Level ML-Based Detection

By running Geneva against the censor, middlebox operators

can collect Geneva traces and train a ML model fCensor that

distinguishes Geneva traffic from normal traffic. Figure 1

shows feature analysis of Geneva flows. From the density

plots, we notice that Geneva TCP packets have several cor-

rupt data-offset fields and tend to have smaller size compared

to normal traffic. Furthermore, Geneva may tamper with other

TCP header fields like checksum or TTL, as part of its probing

design to locate filtering middleboxes. We also notice that

overlapping TCP segments are more likely to occur in Geneva

traffic due to the tampering of packet payloads. Using these

distinctive features, a fairly simple ML model (e.g., Deci-

sion Trees, Random Forests) is able to accurately distinguish

Geneva flows from normal flows. Figure 2 shows that all four

models (Decision Trees (DT), Random Forests (RF), Logistic

Regression (LR) and Support Vector Machines (SVM)) can

detect almost all Geneva flows in the test set, with negligible

false positives (AUC > 0.99).

However, we notice that some Geneva flows might resem-

ble normal flows, which could confuse fCensor and result in

an incorrect decision based on observing only one flow. Con-

sequently, a one-flow detection algorithm is ineffective to be

deployed for real-time blocking. To address this limitation,

we develop a sequential hypothesis-testing approach based on

the popular TRW algorithm [39] used in port-scan detection.

TRW enables a censor to make more confident multi-flow

decisions (block or pending) at the IP level.

4.2 IP-Level TRW-Based Detection

For a given source IP address (IP), let Yi be a random variable

that represents the outcome of the ith flow started by (IP). In

our case, the outcome of an observation is the prediction made

by fCensor. Formally, Yi = fCensor(xi). If fCensor classifies xi as

Geneva flow,Yi = 0. Otherwise,Yi = 1. As outcomes Y1,Y2, ...,

are observed, we wish to determine, with high probability of

correctness, whether (IP) is a Geneva client. Additionally,

we would like to make the decision as quickly as possible

before Geneva successfully evades the censor. Specifically,

we consider two hypotheses H0 and H1, where H0 is the

hypothesis that source (IP) is running Geneva and H1 is the

hypothesis that it is a benign source. The TRW algorithm

assumes that conditional on the hypothesis H j, the random

variables Yi|H j, i = 1,2, ... are independent. Then, we express

the distribution of the Bernoulli random variable Yi as:

Pr[Yi = 0|H0] = θ0, Pr[Yi = 1|H0] = 1−θ0

Pr[Yi = 0|H1] = θ1, Pr[Yi = 1|H1] = 1−θ1

(1)
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Figure 1: Geneva training feature analysis. Scatter plots show data-points of Geneva vs. normal traffic. Curves show data

distribution density of each traffic type.

Figure 2: ML model performance for flow-level detection.

Since fCensor is trained to make mostly correct predictions,

if (IP) makes a Geneva attempt xi, then Yi = fCensor(xi) = 0

is the most likely observation. Consequently, θ0 > θ1. With

respect to Equation 1, θ0 and θ1 can be set as: θ0 =
T P

T P+FN

and θ1 =
FP

T N+FP
, where T P and FP denote respectively the

number of true positives and false positives that fCensor makes

on a test set. The algorithm makes a correct detection when it

selects H0 while H0 is in fact true, and it makes a false positive

when it selects H0 while H1 is the correct hypothesis. To

ensure that TRW converges to a decision with high precision,

we use the detection probability PD and the false positive

probability PF to specify performance conditions with respect

to user-selected values α and β. We desire that PF ≤ α and

PD ≥ β, where typical values are α = 0.01 and β = 0.99.

As shown in Figure 3, given a new observation Yn, we

compute the likelihood ratio Λ of the n events observed so far

Block Source IP

Flow xn

Event Yn = f(xn)

Update Y=(Y1 ,...,Yn) 

and  

Output H0 
(Geneva)

Yes
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(Benign)
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Continue with more observations

No     History-Aware Reset of        

Figure 3: Flow diagram of TRW for real-time Geneva detection.

The blue box represents an extension to the original TRW algorithm.

as Y = (Y1, ...,Yn), where,

Λ(Y ) =
Pr[Y |H1]

Pr[Y |H0]
=

n

∏
i=1

Pr[Yi|H1]

Pr[Yi|H0]
(2)

After n events, if Λ(Y ) ≤ η0, then TRW stops observing

flows coming from (IP) and decides to block it. If Λ(Y )≥ η1

then TRW converges to the decision that (IP) is currently

benign. In this case, we add a new step to the original TRW

(i.e., blue box in Figure 3). More precisely, although it is

currently benign, we perform a history-aware reset of the

ratio to keep observing for possible Geneva attempts. For

instance, if (IP) had previous history of Geneva detection
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(i.e., hist > 0), then Λ(Y ) is reset to a value that considers

the number of previous detections (hist) and the number of

previous benign observations (n− hist). Formally, Λ(Y )←−
hist
n
.η0 +(1− hist

n
).η1, otherwise (if hist = 0) we reset it to

its initial value and continue observing future flows of (IP) to

detect potential future Geneva traffic. Finally, if η0 < Λ(Y )<
η1, then a decision cannot be made yet. Thus, we wait for

the next observation and update Λ(Y ). The thresholds η1 and

η0 should be chosen such that the false alarm and detection

probability conditions are satisfied. As explained in the TRW

paper [39], we can choose η1 =
β
α and η0 =

1−β
1−α .

Using the proposed ML-TRW-based detection approach

we were able to detect Geneva probes (training) after it tests

only 2 strategies of the first generation. This result is consis-

tent across all simulated censors and China’s Great Firewall.

Considering that Geneva can derive previous manipulation

strategies proposed in other censor probing-based tools (e.g.

INTANG, liberate) [13], we believe that our detection ap-

proach is adaptable to be performed against them. In particu-

lar, the ML model used for flow-level detection can be trained

on the network traces of any other probing-based tool.

5 DeResistor System Design

We now expand on the problem formulation described in §3

and describe the components of both players engaged in the

two-opponent arms-race. As illustrated in Figure 4, Player 1

is an Internet user in a censored regime that aims to gener-

ate censorship evasion strategies by running a strategy gen-

erator. Player 2 is composed of a real-word censor and a

ML model fDeResistor that we locally train to detect Player 1

probes. fDeResistor is intended to expose Player 1 to real-time

detection threat to enable more detection-resilient strategy

generation through adversarial training. It can be trained sim-

ilarly to what was illustrated earlier in §4. We continue to

adopt Geneva’s genetic algorithm to play the role of strategy

generation within our design. We design DeResistor with the

following goals/requirements in mind:

• Detection-Resilience: DeResistor has to remain stealthy

against a censor-side evasion detection.

• Balance Strategy Fitness and Detection-Resilience:

DeResistor has to find an optimal trade-off between evasion

strategy fitness and vulnerability to censor-side detection.

• Leverage Background Traffic on Demand: DeResistor

has to avoid early detection and blocking by utilizing normal

background traffic as a cover.

5.1 Two-Objective Fitness Function

DeResistor improves the genetic training using a two-

objective fitness function to encourage detection-resilience

(Figure 4). Formally, we define it as:

f itness(s) = a ·G(s)−b ·P(s), (3)

where s denotes a manipulation strategy. The first term of

the fitness function G(s) computes the evasion strategy’s ef-

fectiveness based on the censor feedback from running s,

while the second term P(s) computes the probability that s

is detectable, returned by fDeResistor. The fitness function is

composed of two conflicting objectives, hence, the negative

sign to the second term since we aim to maximize the strategy

effectiveness while minimizing detectability. DeResistor aims

to find an optimum trade-off between both objectives guided

by two parameters a and b, where a+b = 1. Each parameter

represents the weight of each objective in the fitness function,

according to the user preferences. For instance, if a user is

not interested in hiding its packet manipulation attempts (e.g.,

if the detection threat is minor), the parameters can be tuned

accordingly (i.e., a > b). On the other hand, using a very

large value of b compared to a is not recommended as it may

not lead to any working strategies. Given a set of strategies

{s1, ...,sn}, DeResistor runs each one against the censor to

compute their fitness G(si), it allows only some of the fittest

to survive, and mutates or crosses over the surviving ones to

generate new individuals for the next generation. In the set-

ting where the genetic algorithm is Geneva, we keep the same

genetic building blocks (i.e., s = (trigger,actiontree)), the

same mutation and crossover functions, and the same strategy

selection approach as defined in the original work.

5.2 Normal Background Traffic

Due to the two-objective fitness function, DeResistor can

eventually learn to produce detection-resilient strategies.

However, early in the training (e.g., generation 0), the gener-

ated strategies are expected to be very similar to Geneva’s,

which makes them likely to be detected by the censor-side

detector fCensor. Furthermore, our IP-level detection approach

(i.e., ML+TRW) is able to block a source IP running Geneva,

with high confidence, as soon as it evaluates 2 strategies

against the censor, including the canary (i.e., empty) strat-

egy, which is not enough to produce fitter future generations.

In order to avoid early IP-blocking by the TRW due to early

detection, DeResistor takes advantage of the seamless back-

ground benign traffic naturally produced by the client while

surfing the Internet to connect to uncensored URLs (e.g., using

a browser). Particularly, if s is detected (i.e., P(s)> 0.5), then

DeResistor pauses the censor probing (in this case Geneva

training) and switches to normal traffic (Figure 4). Until ex-

actly J normal network flows have been produced, the genetic

algorithm remains on standby. Otherwise, if s was not de-

tected, then DeResistor allows Geneva to continue its genetic

evolution normally (i.e., without pausing). We recall that the

TRW ratio Λ(Y ) gets closer to the threshold η1 if a benign

flow xn is observed, while it gets closer to η0 (i.e., closer to

block the IP source) if a Geneva flow is observed. Thus, a

number J of benign observations received from the same IP

address would increase Λ(Y ) and make it farther from η0,

which would delay detection and give more room to attempt

other strategies. We note that, for automation and experimen-

tal purposes, DeResistor can be configured to automatically
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Figure 4: DeResistor System Overview. s: a manipulation strategy, P(s): Probability that s is an evasion strategy.

Figure 5: An illustration of Geneva genetic evolution traces when

trained with DeResistor design vs. standalone training.

generate normal traffic on-demand through automated GET

requests (e.g., baidu.com for GFW experiments) or using

traffic generation tools, instead of relying on real traffic. For

instance, for in-situ experiments against mock censors we

leverage Harpoon [59], a flow-level traffic generator. In par-

ticular, when the censor-probing stops after a flow-level detec-

tion, Harpoon generates normal-like traffic between the client

and a local uncensored server. While automating the back-

ground normal traffic is convenient to accelerate experiments,

it is not recommended to use against a real-world censor since

tools like harpoon can be tracked and detected.

In Figure 5, we illustrate an example that shows how guided

pausing and blending with normal traffic in DeResistor traces

can help avoid TRW detection. In particular, DeResistor runs

the first strategy against the censor, that is likely to be detected

(white boxes); if that is the case, then it pauses the probing

and it returns after a jump (green box) of J normal flows is

produced (J = 1 in this case). Next, it continues to alternate

between detectable Geneva flows and normal flows until it

reaches future generations, where the optimization algorithm

gets closer to converging to a trade-off between the two ob-

jectives. This is shown using gray boxes for Generations 4

and 5 where DeResistor produces undetectable strategies.

Does the switch to normal traffic affect DeResistor

training? As shown in Figure 4, Geneva and the background

normal traffic modules are two separate processes. Conse-

quently, no fitness calculation is performed during the jump J

of normal traffic. As a result, it has no impact on the training

process of Geneva. Furthermore, the normal traffic is pro-

duced through normal network activity performed by the user

when Geneva is paused.

How to set the jump size J? Intuitively, if J is high, more

normal traffic will be observed from the source IP running

DeResistor, which would further confuse the ML-based eva-

sion strategy detector. However, sending multiple consec-

utive benign flows might trigger a ratio reset in the TRW

algorithm. We recall that, if Λ(Y ) surpasses the threshold η1,

then an automatic history-aware reset is performed (Figure 3,

Λ(Y )←− hist
n
.η0 +(1− hist

n
).η1). As DeResistor deployers, it

is in our interest to avoid triggering these resets. Given that

the reset considers the history of flow-level detection, if hist is

very high, then we might risk a ratio reset that is much closer

to η0 than to η1. Consequently, switching back to Geneva’s

evasion attempts might further decrease the ratio to make it

less than η0, which will cause an IP-level detection, hence, IP

blocking. In conclusion, our operational observations suggest

starting with J = 1 and then progressively consider increasing

it based on detection results. In §7, we further discuss the

impact of J parameter tuning when the TRW is set to perform

more aggressive detection.

6 System Evaluation

Our evaluation of DeResistor is guided by these questions:

RQ1: Is DeResistor effective at making Geneva’s probing

traffic more resilient to detection?

RQ2: Are strategies generated by DeResistor effective at

evading real-world censors?

RQ3: How effective is our approach in mitigating the de-

tectability of packet manipulation features?

6.1 Experimental Setup

For a fair comparison, we run DeResistor and Geneva in the

same experimental environment. To the extent possible, we

make our setup as close as possible to what was proposed

in the Geneva paper [13]. For our real-world evaluation, we

thus specifically focus on GFW’s HTTP censorship, India

and Kazakhstan. We run our experiments from three van-

tage points in China (Qingdao, Beijing, and Shanghai), one

vantage point in India (Bangalore) and one vantage point in

Kazakhstan (Oral) to evaluate DeResistor effectiveness in

fitness (s)

Evasion Strategy Censorship G(s)Generator Middlebox
(e.g., Geneva) (e.g., GFW)

No
P(s) > thresholdYes P08)

Evasion StrategyBackground DetectorTraffic Generator P(s) Detection
{e.g., browser) {e.g., ML-based) Strategy Resilience

Fitness Fitness

S

fitness(s)=(a. G(s)

Player 1: Evasion Strategy Player 2: Censorship and
Generation Detection

TRW
Rejection

Generhtion 0 Generation 5

Geneva Training: 7 1 C C

DeResistor Training :

Detected Geneva flow
DeResistor Undetected flow
Normal Traffic flow
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generating successful evasion strategies compared to Geneva.

In each vantage point we run Geneva and DeResistor three

times independently and collect the fittest strategies. We run

each training session with a starting population pool of 500 in-

dividuals, capped at 20 generations. Our experiments showed

that the adopted parameter-tuning is sufficient to successfully

train both tools against all the studied censors. Additionally,

we evaluate their detection-resilience against the real-time

detection system proposed in §4.

Deployment Alternatives: We envision three usage mod-

els for DeResistor: (1) One-shot Strategy Generation where

each client uses DeResistor to generate a set of strategies and

use them to access censored sites. When all strategies are

exhausted due to censor adaptation, users re-run DeResistor

to generate new strategies. (2) Strategy-as-a-Service where

DeResistor probes are performed by distributed nodes owned

by a centralized service. Users then query this service on de-

mand to obtain new strategies. This has the disadvantage that

access to the service itself could be blocked. (3) P2P Strategy

Generation where DeResistor nodes that are in-country (on

one side of the firewall) coordinate to explore, generate, and

share working Geneva strategies. In our experiments, we use

(1) where multiple effective strategies are generated in the

censor-probing phase that are then used to connect to multiple

censored websites.

In-Situ Validation: Like Geneva validation experiments

adopted in [13], we first perform a Dockerized evaluation

for DeResistor to train against 11 mock censors proposed by

Geneva authors. We run each strategy in an isolated environ-

ment with four containers (a client, a mock censor, a forbidden

server, and a legitimate server). The legitimate server con-

tainer is added to be engaged in a simulation of background

normal traffic created by Harpoon [59] (defined in §5) to be

used by DeResistor when the training is triggered to pause.

Harpoon is set to continuously send TCP packets from the

client container to the legitimate server container using the

same source IP engaged in the training-time evaluation of the

generated strategies against the censor. Despite the reality that

the mock censors are a bit outdated, we found them still rele-

vant to compare DeResistor results with Geneva, especially

for the detection resilience experiments. Furthermore, they

are designed to mimic some specific aspects of nation-state

censor behavior (e.g., China, India) [13].

Real-World Evaluation: Against the arguably most ad-

vanced Internet censorship apparatus, the Great Firewall

(GFW) of China, we perform a post-training evaluation on

the collected strategies by testing each strategy 30 times in

each vantage point (Table 2). The GFW injects RST pack-

ets if a censored word is included in the URL of an HTTP

GET request. Additionally, it performs residual censorship

where it forbids new connections between client’s IP ad-

dress and the website’s IP:port pair for approximately 90

seconds [63]. To avoid residual censorship, we use a different

destination port after each test of the same censored website.

Some websites are also censored by DNS (e.g., google.com,

wikipedia.org). In particular, the GFW performs DNS poi-

soning to point clients that attempt to connect to these web-

sites to a fake IP [36], which makes the intended destinations

unreachable. One way to circumvent DNS poisoning is to

first figure out the correct IP of the destination website, and

then point the domain to its correct hosting IP (e.g., editing

/etc/host in Linux). After sidestepping DNS poisoning,

we are able to run Geneva and DeResistor to connect to web-

sites like wikipedia.org and human rights watch (hrw.org).

Websites like google.com that are additionally censored by

null-routing in China are excluded from our experiments. Par-

ticularly, even if we figure out the correct hosting IP addresses

of sites such as google.com, GFW drops any connection at-

tempts to them. Therefore, packet-manipulation-based circum-

vention tools like Geneva cannot try evasion strategies since

no response is received to the First SYN packet. Additionally,

we run the same experiments in India using censored URLs

like bannedthought.net, xnxx.com, vidwatch.me and

Kazakhstan (e.g., youporn.com).

Detection Resilience: Our experiments also focus on eval-

uating the detection-resilience of DeResistor. For each run

against GFW, India, Kazakhstan or the mock censors we also

run the proposed real-time Geneva detection system (i.e.,

ML+TRW with history-aware reset) in parallel to monitor

the entire training process and block the client if detected

running censor-probing with 99% confidence. Particularly,

we use α = 0.99 as detection confidence and β = 0.01 as

allowed detection error. We balance between the strategy

success and the detection resilience objectives by running

DeResistor with a = 0.5, b = 0.5. As for the jump-size we

start with J = 1. An IP-level detection-resilience is observed if

DeResistor finishes its training without getting IP-blocked by

the TRW-based detector. A flow-level detection-resilience is

observed if the detection rate returned by fCensor decreases as

DeResistor reaches fitter strategies with respect to the adopted

two-objective fitness function in Equation 3.

6.2 Detection-Resilience Results

A strategy evaluation against the censor is tracked by a net-

work flow between the client and the server. We recall that,

our detection approach uses a ML model that performs a pre-

liminary flow-level detection ( fCensor). Each flow detection

is marked as another observation for the TRW algorithm to

make a more confident IP-level detection. Figure 6 shows

generations (x-axis) vs. flow-level detection rate trend (y-axis)

during Geneva and DeResistor training against GFW. Fur-

thermore, in Table 1, we report the IP-level detection results

recorded by the TRW on Geneva and DeResistor when trained

against different censors.

Flow-Level Detection Resilience: Figure 6 confirms that

DeResistor traces are way less detectable compared to Geneva.

In particular, as DeResistor training advances, the detection

rate continues to drop until it reaches 45.06% after 5 genera-
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Figure 6: Flow-level detection rate evolution during Geneva

and DeResistor training against China’s GFW. We consider

the 5 first generations.

tions while it stays very high (96.27%) during Geneva train-

ing. The immediate drop observed at the beginning of genera-

tion 1 (i.e., 1−→ 0.5) is caused by the guided pausing of the

genetic algorithm training when a flow is detected that permits

the client to engage with a number J of normal benign flows.

The same drop is observed when we run Geneva with guided

pauses for normal traffic injection (without multi-objective

optimization). However, due to the proposed two-objective

fitness function, the observed decrease in the detection rate

from generation 0 to generation 5 shows that DeResistor is

learning to generate less detectable strategies as it advances

to higher generations, compared to "Geneva+normal traffic".

To further explain our findings, we investigate the features

of DeResistor traces compared to Geneva traces and normal

traffic in Figure 7. Overall, we observe that the feature values

density of DeResistor (green curve) are closer to Normal traf-

fic (blue curve) compared to Geneva (red curve). Furthermore,

looking into the data-points of each traffic type (gray scatter

plots), it seems that DeResistor traces exhibit less overlap-

ping TCP segments, less corrupt data-offset fields, and less

corrupt SYN packets compared to Geneva. We conclude that

DeResistor is able to tone down detectable features exhibited

by Geneva, which leads to lower flow-level detection rate

(answers RQ3). However, we acknowledge that DeResistor

traces are still different from normal traces, which is natural

considering that its main objective is still to manipulate pack-

ets and evade censorship. It is noteworthy that DeResistor

can be even less detectable if the user chooses to give ad-

vantage to the detection-resilience objective at the expense

of the strategy success objective (e.g., a = 0.3, b = 0.7). In-

line with the GFW results, Table 1 (3rd column) shows that

DeResistor was able to reduce the flow-level detection rate

(99.5% −→ 34.93% and 49.22%) respectively against India

and Kazakhstan. Additionally, we observe similar decrease

(99.4%−→≈ 32%) when trained against the 11 mock censors.

IP-Level Detection Resilience: As reported before, us-

ing the proposed detection approach we were able to detect

with high confidence a source IP address running Geneva

Censors IP-Level Detection

(Geneva−→DeResistor)

Flow-Level Detection

(Geneva−→DeResistor)

Jump

Size

J

China’s

GFW

Detected after 2 flows

−→ Undetected

96.27% −→ 45.06% 1

India Detected after 2 flows

−→ Undetected

99.50% −→ 34.93% 1

Kazakhstan Detected after 2 flows

−→ Undetected

99.50% −→ 49.22% 1

Censor

1-4,7,9

Detected after 2 flows

−→ Undetected

99.4% −→ 32.46% 1

Censor

5,10.

Detected after 2 flows

−→ Undetected

99.4% −→ 31.21% 1

Censor 6 Detected after 2 flows

−→ Undetected

99.4% −→ 34.05 1

Censor 8 Detected after 2 flows

−→ Undetected

99.4%−→ 30.93% 1

Censor 11 Detected after 2 flows

−→ Undetected

99.4%−→ 29.91% 1

Table 1: Geneva vs. DeResistor detection results using history-

aware TRW. Details about mock censors can be found in [13].

after the TRW receives only 2 observations (i.e., 2 Geneva

flows/probes). According to results reported in Table 1, we

observe that, against all the studied censors, DeResistor was

able to complete its training without being rejected by TRW

(2nd column), which answers RQ1. A jump size J = 1 was

sufficient to reach these results (4th column). Particularly, as

we illustrated in Figure 5, after each flow-level detection of

a strategy test, the injected normal flow restores the likeli-

hood ratio Λ(Y ) of the TRW to its initial value. This pattern

encapsulates the Λ(Y ) between η0 and η1, which makes it

longer for the TRW to converge to a decision. Setting the

jump size to J = 1 is not only sufficient to avoid detection,

but also recommended to avoid triggering TRW resets. We

recall that, our implementation of TRW algorithm is powered

by a history-aware reset of the likelihood ratio in case the

TRW is converging to a decision that the source IP is benign.

Thus, it is in favor of the client to avoid pushing the TRW to

make a reset that considers all previous detection of packet

manipulations. More precisely, if we use higher jump size

J > 1, DeResistor would pause Geneva training until the client

has engaged in normal traffic of J > 1 flows, which might

cause an undesired reset that might lead to IP-level detection.

Yet, we note that our observations reveal that clients running

DeResistor are safe to use even higher values of J.

6.3 Censorship Evasion Results

To explore whether Geneva can still generate evasion strate-

gies with high success rate when trained within the DeResistor

design, we report in Table 2 the success rate of representative

strategies generated by Geneva and DeResistor. Furthermore,

we manually analyze composed strategies that have multiple

actions. In particular, we removed individual actions and veri-

fied whether the strategy is no longer successful. Additionally,

we ensure that a strategy success (i.e., offers access to a cen-

sored website) is not by accident or due to a malfunction of

the censor-side. Hence, for each highly successful strategy,

we manually examine the resulting network traces, to verify
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Figure 7: DeResistor training feature analysis. The scatter plot displays data points for Geneva, DeResistor, and normal traffic. The curves

show the data distribution density of each traffic type.

Description Strategy Genetic Code
Generated By China India Kazakhstan

Geneva DeResistor Qingdao Shanghai Beijing Overall Bangalore Oral

Corrupt timestamp

and fake HTTP Re-

quest

[TCP:dataofs:8]-tamper{TCP:options-

timestamp:corrupt} (tamper{

TCP:load:replace:__HTTP_REQUEST__},)-|

✓ 95.83% 100% 100% 98.61% 0% 0%

Fake HTTP request. [TCP:dport:80]-tamper

{TCP:load:replace:__HTTP_REQUEST__}-|

✓ ✓ 100% 100% 84.21% 94.74% 0% 0%

TCB Desync. with

invalid dataofs and

corrupt checksum.

[TCP:flags:PA]-duplicate (tam-

per{TCP:dataofs:replace:10}

(tamper{TCP:chksum:corrupt},),)-|

✓ 90% 100% 86.67% 92.23% 0% 100%

Fake DNS request

and incorrect Ack.

[TCP:dport:80:4]-

tamper{TCP:load:replace:__DNS_REQUEST__}

(tamper{TCP:ack:replace:1621145327},)-|

✓ 50% 75% 47.61% 57.54% 0% 100%

Invalid Payload and

corrupt options.

[TCP:reserved:0]-tamper{TCP:load:corrupt}

(tamper{TCP:options-sack:corrupt},)-|

✓ 38.09% 52.38% 77.78% 56.08% 0% 63.33%

Invalid Payload and

corrupt options.

[TCP:reserved:0]-

tamper{TCP:load:corrupt}(tamper{TCP:options-

altchksum:replace:131},)-|

✓ ✓ 36.36% 56% 50% 47.45% 0% 63.33%

Invalid Payload and

corrupt urgptr.

[TCP:options-mss:]-tamper{TCP:load:corrupt}

(tamper{TCP:urgptr:corrupt},)-|

✓ 52.17% 48% 42.11% 47.43% 45% 56.67%

Invalid Payload. [TCP:flags:PA]-tamper{TCP:load:corrupt}-| ✓ ✓ 52.17% 39.1% 47.8% 46.36% 0% 66.67%

Invalid Payload and

incorrect reserved.

[TCP:reserved:0]-tamper{TCP:load:corrupt}

(tamper{TCP:reserved:replace:7},)-|

✓ 52.63% 41.67% 41.66% 45.32% 30% 63.33%

Incorrect dataofs

and segmentation.

[TCP:reserved:0:3]-

tamper{TCP:dataofs:replace:10}(fragment{tcp:-

1:False},)-|

✓ 80% 31.03% 24.13% 45.05% 0% 100%

Segmentation [TCP:flags:PA]-fragment{ip:20:False:6}-| ✓ 0% 0% 0% 0% 100% 0%

TCB Desync. with

stutter Req.

[TCP:flags:PA]-duplicate(tamper{IP:len:replace:64},)-

|

✓ ✓ 0% 0% 0% 0% 100% 0%

Segmentation and

corrupt dataofs

[TCP:options-wscale::3]-fragment{ip:-1:True:5}

(fragment{ip:4:True:43},

tamper{TCP:dataofs:replace:14})-| ✓ 0% 0% 0% 0% 100% 100%

Table 2: A summary of top strategies ([Trigger](actions)) generated by Geneva and DeResistor and their post-training success

rates. We run every strategy 30 times from each vantage point (VP). Strategies in rows 1-10 are produced in China’s VPs, rows

11-12 are produced in India and the final row is produced in Kazakhstan.

that every action of the strategy is actually performed on trig-

gered packets. We emphasize that these manual efforts are

performed only for the sake of conveying accurate results in

the paper and it is not a main component of DeResistor.

Strategies and Success Rates: Table 2 shows that DeRe-

sistor is able to automatically produce strategies with high suc-

cess rate in China (i.e., up to 98.61% in 1st row), India (100%

in rows 11-12) and Kazakhstan (100% in final row) (addresses
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RQ2). Although DeResistor’s search space is narrowed to

balance strategy effectiveness with detection-resilience, we

observe that the genetic algorithm is still successful in finding

multiple optimum solutions that satisfy the trade-off. Hence,

in addition to its detection resilience, DeResistor does not

sacrifice the success rate. However, we note that DeResistor

takes longer to find strategies with high fitness values. Since

Geneva does not punish detectability, it can start producing fit

strategies within the 4th generation, while DeResistor starts

to effectively find the evasion/detection-resilience trade-off

after at least 8 generations. Additionally, by design, Geneva

should be able to produce a higher number of fit strategies

given the difference in the fitness complexity.

Difference Between Geneva and DeResistor Strategies:

We examine DeResistor’s fit strategies to understand why

they are more resilient to detection. We find that most of

them do not include actions like tampering with dataofs, TCP

segments, or tampering with the TTL. Furthermore, unlike

Geneva, DeResistor strategies do not utilize invalid flags (e.g.,

FRAPUEN, FRAPUEN) for connection’s state tear-down (Ta-

ble 2), which confirms our previous observations in Figure

7. As explained before, DeResistor exhibits less detectable

features than Geneva. These findings validate our intuition

that DeResistor enables Geneva to learn from the detection

feedback of fDeResistor to produce more detection-resilient

strategies.

Success Rate Across Different Vantage Points: Over 30

runs, Table 2 shows that a strategy success rate against GFW

can slightly differ if performed from different vantage points

from within China. In some cases, we observe that an effective

strategy in one vantage point might not be effective in another

one. For instance, row 10 in Table 2 includes a strategy that is

highly effective in Qingdao (80%) but has a poor evasion per-

formance in Shanghai (31.03%) and Beijing (24.13%). This

is also observable in row 5 (77.78% in Beijing and 38.09%

in Qingdao). Although prior works have shown that GFW is

managed in a centralized manner [20, 28, 36, 56, 71], it is a

distributed system consisting of many filtering middleboxes

located across different autonomous systems. The difference

in successful evasion rates therefore could have been caused

by several reasons, including different filtering middleboxes

being under/over-loaded [70], or additional filtering policies

applied by regional ISPs [18, 67]. Our findings underscore

the importance of training and validating the effectiveness of

censorship evasion strategies across different network loca-

tions to obtain a non-biased overall view of their performance.

From Table 2, we confirm that strategies that work in China

do not necessarily work in India and vice versa. Some strate-

gies that are generated in China can also evade censorship in

Kazakhstan (rows 3-10).

7 Discussion

We next discuss how adaptive censors may attempt to detect

DeResistor-generated strategies. We also further explain how

our work can be adapted to numerous Geneva-like systems.

7.1 Adaptive Censors and Countermeasures

Training the censor-side model on DeResistor traces: In §4,

we described a real-time detection approach that includes

training ML models on Geneva traces. One way for the cen-

sor to turn around DeResistor detection-resilience is to train

fCensor on DeResistor traces instead, after excluding possi-

ble normal flows injected by DeResistor. As a result, fCensor

might be able to detect DeResistor flows and guide the TRW

algorithm to a confident IP-level detection.

On the user’s side, DeResistor can also be trained with a

local ML detector fDeResistor that is retrained on the previous

cycle of DeResistor traces. Hence, this will further improve

the flow-level detection resilience of newly generated strate-

gies. To explore to what extent DeResistor can stand against

an improved censor-side ML detector, we perform multiple

cycles of the game DeResistor vs. Censor. Results are dis-

played in Table 3. In the first cycle of the game 1 , the censor

trains a flow-level ML detector fCensor on Geneva traces to be

used for TRW’s IP-level detection and DeResistor is trained

using a local flow-level detector fDeResistor also trained on

Geneva traces. As we revealed in §6, DeResistor wins cycle

1 . In 2 , the censor updates its fCensor by extending its

training data with DeResistor traces in addition to Geneva’s.

We assume that no changes are made on DeResistor training.

As a result, fCensor becomes more accurate than fDeResistor

which leads to a less accurate detection feedback for DeResis-

tor. Thus, the censor wins cycle 2 (DeResistor is detected

"✓"). In 3 , DeResistor allows normal background traffic

after every censor-probing flow even if it is not detected by

fDeResistor. This is intended to mitigate the impact of the flow-

level detection gap between fDeResistor and fCensor observed

in 2 by introducing periodic pauses independently from

fDeResistor feedback. Furthermore, fDeResistor can also be up-

dated to detect previous DeResistor traces and better simulate

fCensor for more accurate detection-resilience feedback. The

third row in Table 3 shows that DeResistor regains the upper

hand and avoids detection on the censor-side. Finally, in 4 ,

we assume that the censor performs a new update on its model

fCensor while DeResistor keeps the configuration of 3 . We

observe that DeResistor is still able to avoid IP-level detection

in 4 . Two explanations stand out: first, this time around,

fCensor and fDeResistor have comparable flow-level detection

rates (38.97% ≈ 39.45%), despite the additional update of

fCensor. Second, the regular pauses after every censor-probing

flow introduced in 3 mitigates the impact of any possible

discrepancy between fDeResistor detection feedback and the

real flow-level detection recorded by fCensor. We note that our

findings show that the introduced updates on DeResistor in

3 do not sacrifice its ability to generate highly fit strategies

for censorship evasion against GFW.

Filtering out the background normal traffic: We assume

O O
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Flow-Level Detection
(J = 1)

IP-Level Detection
(TRW)

fDeResistor fCensor J = 1 J = 2 J = 3

1 45.01% 45.06% ✕ ✕ ✕

2 45.01% 48.84% ✓ ✓ ✓

3 38.95% 39.05% ✕ ✕ ✕

4 38.97% 39.45% ✕ ✕ ✕

5
J̃max < Jmax J̃max > Jmax J̃max = Jmax

38.97% 39.45% 0/3 0/3 0/3

LSTM IP-Level Detection Accuracy

6
J < L

J = L
= 10)

J = 15
(J > L)

J = 25
(J > L) J >> L

99.63% 71.24% 37.89% 19.93% acc−→ 0%

Table 3: Future cycles of the DeResistor vs Censor game.

✓ denotes detected, ✕ denotes undetected. 1 and 3 are DeRe-

sistor’s moves, while 2 and 4 are censor’s moves. In 5, (*/3)

denotes the number of detections within 3 runs. In 6, L=10.

that the censor deploys a TRW that tries to filter out the back-

ground normal traffic to enable an IP-level detection of DeRe-

sistor. However, TRW is not designed to ignore all normal

traffic. Otherwise, it will be biased against normal users. Par-

ticularly, all its flow-level observations Y = {y1, ..,yn} defined

in 4.2 would only include flows that are detected as malicious.

Hence, on the IP-level, the TRW would block innocent users

based on potential erroneous detection of normal flows. In-

stead, the censor can attempt to approximate the jump size

(J̃ ≈ J), based on previous traces of DeResistor. In DeRe-

sistor’s side, we can make J more difficult to estimate by

randomly changing its value after each censor-probing flow

(J ∈ {1, ..,Jmax}). For a fair game, we assume that the cen-

sor also actively changes its approximation (J̃ ∈ {1, .., J̃max}),
where J̃max can be the maximum jump recorded by the pre-

vious cycles of DeResistor. In experiment 5 , We consider

three cases: when the censor’s approximation J̃max is lower

than the actual value Jmax, when it is higher and when they

are equal. To reduce the impact of the added randomness on

results, we perform each experiment 3 times. Table 3 shows

that for all runs DeResistor was able to complete its training

across multiple runs across the different experiments.

DeResistor vs. IP-level ML Detector: Apart from TRW,

we explore whether DeResistor can confuse another IP-level

detection approach. To that end, we train an LSTM [38] model

to map a sequence of flow-level observations with length L to

an IP-level label. LSTM (§B) is trained on different sequences

of DeResistor traces that include a random number of jumps

J < L (more about how to fix L is provided in §B). Each

sequence contains flow-level detection probabilities returned

by fCensor (i.e., Y = {P1, ..,Pn}). Similarly to the TRW, the

goal is to reach a confident IP-level decision that a user is truly

probing the censor. In experiment 6 (Table 3), our findings

show that LSTM can detect Geneva and DeResistor sequences

with 99.63% accuracy. The accuracy drops to 37.89% when

we use J > L and it continues to decrease closer to 0% if

DeResistor further allows more background traffic between

Geneva attempts. To improve the accuracy, the censor can try

to increase L to make it higher than J again. However, this

will always delay the IP-level decision until exactly L flow-

level decisions are observed even if all of them are coming

from Geneva (unlike TRW that automatically converges after

a minimum of Geneva flows). Additionally, we noticed that a

sequence with L−1 normal flows and only 1 flow of Geneva

is always labeled by LSTM as malicious. This might result

in blocking innocent users based on 1 potentially mistaken

flow-level detection. To summarize, although LSTM is more

capable to detect DeResistor, TRW is more suitable to reach

a high confidence decision of IP-level blocking, since it does

not rely on a fixed length of observations (i.e., L for LSTM).

It automatically stops observing flow-level detection as soon

as a high confidence decision is made.

Aggressive Detection: Another possible countermeasure

is to tune the TRW algorithm to make more aggressive IP-

level detection. This could be done either by decreasing the

TRW’s detection confidence (e.g., α = 0.8, instead of α =
0.99) or by performing detection-oriented ratio resets instead

of history-aware resets (refer to Figure 3). We recall that the

TRW automatically resets the likelihood ratio Λ(Y ) if a source

IP is found to be benign (i.e., Λ(Y ) > η1). If we reset Λ(Y )
to a value that is very close to η0 (e.g., Λ(Y )←− η0 + 0.1),

it will make the TRW biased toward making less confident

decisions. The natural side-effect here is that aggressive resets

are triggered after observing a sequence of normal network

flows. Consequently, this countermeasure will affect many

innocuous clients (i.e., IP addresses).

Misleading Detection Feedback: It is known that Geneva

might fall short if the censor detects its probing phase. In

particular, the censor could poison Geneva training by mak-

ing strategies appear to (not) work [13]. For DeResistor the

detection feedback is received from the local model fDeResistor

(̸= fCensor). Hence, while the censor can mislead censorship

feedback it cannot do the same for detection feedback.

7.2 Extending DeResistor Beyond Geneva

Playing the role of a strategy generation module, Geneva is

used as a foundational building block for DeResistor through-

out this paper.

Our success in adopting a genetic algorithm like Geneva to

the whole training process of DeResistor shows its potential

adaptability to other similar evasion tools.

Genetic Algorithms: A genetic algorithm designed to

generate evasion strategies by probing the censor is ideally

suited for deployment within DeResistor to enhance detec-

tion resilience. Geneva is equipped with a server-side deploy-

ment [12], allowing censored clients to connect to a Geneva-

supported server without having to discover client-side strat-

egy. Instead, Geneva can be trained on the censored server

using an external client (in a censored regime) that regularly

attempts connections to the server during the training phase.

As a probing-based method, the censor can implement our
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ML+TRW approach to detect abnormal network behaviors

from a censored server that is running server-side packet

manipulations. Even when running on the server-side, DeRe-

sistor is still fit to protect Geneva training from detection. In

particular, the two-objective fitness function can guide the

training into punishing detection. Furthermore, DeResistor

can perform guided pausing on Geneva training at the server-

side. As a result, no server-side strategy is tested against the

censor and the client connection attempts will be censored un-

til J number of flows (normally censored flows) is performed.

Geneva has also been extended to generate application-

layer evasion strategies [33]. Despite training on a different

network layer, such strategies also involve repetitively prob-

ing a censor, thus being susceptible to detection. DeResistor

therefore is also suitable to protect the training phase of such

strategies regardless of what network layer is being targeted.

Symbolic Execution: SymTCP [64] is another packet-

manipulation tool that automatically discovers censorship

evasion strategies, which also involve repetitively probing a

censor to check evasion effectiveness. In a similar fashion,

SymTCP probing can be protected when being integrated

with DeResistor. In particular, the symbolic execution can be

guided to explore execution paths that are detection-resilient

using the output of fDeResistor trained to detect SymTCP

probes. The feedback of fDeResistor can either be embedded to

the whole automatic process, or it might be useful for manual

selections of the best input packet sequences. Additionally,

the background traffic module can serve the same purpose

of avoiding early detection by performing detection-guided

pauses over the probing phase.

Guided Fuzz-Testing Tools: In addition to learning-based

tools, other approaches (e.g., CenTrace [53], INTANG [63],

and Lib•erate [42]) rely on fuzzing (brute force or guided

fuzzing) to perform censorship measurement or reveal defects

of middleboxes. These tools are also vulnerable to detection

as the ML+TRW approach proposed in §4 can be used to

detect network traces from these tools instead of Geneva.

DeResistor can aid in the probing phase of these tools by

making them more resilient to detection. In particular, the

background normal traffic module can be leveraged for guided

pausing of the probing phase while fDeResistor feedback can

be used to thwart highly detectable probing strategies.

8 Ethical Considerations

Internet censorship, especially when it comes to state-

sponsored network interference, is often motivated by po-

litical reasons [19, 21, 22, 32, 36]. Studies in this sensitive

domain thus have to be performed in a responsible manner.

Human Subject Risk: Our work does not involve human

subjects. Hence, there was no need to receive Institutional

Review Board (IRB) approval. For both the mock censors

and real-world experiments, we conducted all training and

post-training evaluations from vantage points under our con-

trol. We made sure that our probing interactions with censors

(mock or real-world) have no security and/or privacy impact

on other users. We do so by running all experiments with

devices isolated from real users/services and using special

credentials that are not associated with any real individuals.

The nodes under our control were operated in data centers

at different locations inside China, India and Kazakhstan but

not residential networks owned by any users. This setup is a

common practice within the censorship measurement com-

munity. Our experiments therefore do not impose any risk on

real users since we did not recruit or involve any human users.

On the surface, releasing DeResistor seems favorable

for censors. However, the overall consensus from the anti-

censorship community is that the evaders benefit more, out-

weighing what censors can gain. This is evident by numerous

prior studies [13, 25, 42, 63] that have been released and in-

corporated into popular circumvention tools [1, 2, 44]. On

balance, we believe DeResistor benefits anti-censorship ef-

forts by equipping them with detection-resilient censor prob-

ing capabilities while also evolving their strategy generation

schemes based on the detectability feedback from censors.

9 Conclusion

We have demonstrated that packet manipulation-based censor-

ship evasion tools such as Geneva can be detected and blocked

by censorship middleboxes. To enable resilient censorship

evasion in the face of sophisticated censor-side detection,

we designed DeResistor, as a detection-resilience extension

for automated packet-manipulation-based strategy generation

tools, such as Geneva. DeResistor factors in the likelihood of

detectability of censorship strategies when it generates eva-

sion strategies and guides Geneva’s strategy generator to rely

on less-detectable features. By doing so, it not only enables

the generation of a successful censorship evasion strategy, but

also shields Geneva from being detected by the censor. We

evaluated DeResistor first using 11 mock censors and then

against real-world censors, China’s GFW, India and Kaza-

khstan. Our evaluations from multiple vantage points from

within China, one vantage point in India and Kazakhstan sug-

gest that DeResistor can evade censors with high success

rate while remaining undetected. We also broadly discuss the

prospect of potential countermeasures from the censor and ap-

plicability of DeResistor to other packet manipulation-based

censorship evasion systems. DeResistor demonstrates a new

frontier in making censorship evasion work for billions of

users worldwide while minimizing the risk of being detected

and blocked by a nation-state censor.
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A Geneva Features Analysis

Table 4 summarizes features extracted from Geneva flows

that are useful for the ML-based detection of Geneva probes.

Figure 8 illustrates the difference in the distribution of payload

hashes observed in Geneva and normal flows. We see that

unlike the distribution for hashes from normal flows which

are evenly distributed, hashes from Geneva and DeResistor

tend be more skewed.
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Figure 8: Hash values of packet payloads in Geneva, Normal

and DeResistor flows.

B LSTM for IP-Level Detection

The choice of LSTM: LSTMs (Long Short-Term Memory)

models were proposed as time-efficient RNNs (Recurrent

Neural Networks). They have been widely used in sequence-

based decision ML tasks such as time series for weather fore-

casting [38] or DNA sequence classification [38], etc.) In this

paper, we train and test an LSTM model (Figure 9) to explore

the usability of ML for IP-level Geneva detection based on

the classification of a sequence of flow-level detection obser-

vations. As shown in Figure 9, our LSTM model has 3 layers:

the input layer ªLSTM1º takes as input a tensor of multiple

sequences with size L = 10, a second layer ªLSTM2º with

256 units, and a final sigmoid layer that returns the output

label (i.e., malicious IP or not).

The choice of the sequence length L: Considering that

DeResistor introduces a sequence of J jumps of normal flows,

to ensure LSTM receives a sequence of DeResistor flows that

include at least one Geneva flow, LSTM is trained with L > J

observations. Since J is usually less than 5 in the previous

experiments (until experiment 5 ), we select L = 10 to train

on previous DeResistor traces.

Figure 9: LSTM Model architecture for sequence-based IP-

level detection.

LSTM1_input mput: [CNone, 10. 1)]

InputLayer output: [CNone, 10, 1)]

LSTM1 input: (None, 10, 1)

LSTM tanh output: (None, 10, 256)

LSTM2 (None, 10, 256)input:

LSTM tanh output: (None, 150)

Output_layer mput: (None, 150)

Dense sigmoid output: (None, 2)
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TCP Flags Geneva probes may tamper with TCP flags. Hence, we keep track of each packet flag’s occurrence within a flow. We notice

that Geneva probing can result in sending packets with unusual flags (e.g., SRPECN, FSRPUEN) that are unlikely to occur in

a normal network flow.

Number of non-zero

SYN packets

Geneva flows contain SYN packets with non-zero payload length, which can overlap with another packet if it has the same

sequence number. In a normal flow, a SYN packet length is equal to zero. Figure 1 confirms that only Geneva flows (label=0)

include SYN packets with non-zero payload, which makes it a significant feature for Geneva users detection.

Number of overlap-

ping TCP segments

Geneva can fragment a packet into small segments and perform different actions on the resulting segments, which can lead to

sending overlapping packets to hide a forbidden keyword. Figure 1 shows that compared to normal flows, Geneva flows tend

to have a higher number of pairwise TCP overlaps, ranging from 0 to 60, while most normal flows do not surpass 10 overlaps.

Flow Size Normal (benign) flows usually have higher flow sizes (≈ 1000 - 30000 bytes) compared to an average of ≈ 150 bytes across

all Geneva flows.

Maximum Packet

Size

Inline with the previous observation, the maximum packet size within a flow is mostly higher in normal traffic compared to

Geneva traffic.

Number of corrupt

TCP data offsets

Geneva manipulations might lead to the corruption of the dataofs field of a TCP packet [13]. Figure 1 confirms that flows with

corrupt dataofs are mainly observed in Geneva traces (label=0), while it is always 0 for benign flows.

Content (Payload) Geneva might temper with packet payloads. Thus we consider it as another feature. Figure 8 shows that packet payloads of

DeResistor flows resemble more normal flows compared to Geneva’s.

More Features Corrupt TCP options is a candidate feature. However, we choose not to consider it, since it is usually either correlated with

the corrupt dataofs feature or the corrupt checksum feature. Additionally, we explore the Destination IP of Geneva packets as

another feature since Geneva mostly attempts connections with censored URLs.

Table 4: Summary of Geneva features used by flow-level detection classifiers.
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