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Abstract
Improving the accuracy of static application security
testing (SAST) is key to fight critical vulnerabilities and
increase the security of the Web. However, even state-of-
the-art commercial tools have many blind spots that limit
their ability to properly analyze modern code and there-
fore to discover complex inter-procedural vulnerabilities.

In this paper, we present WHIP, the first approach
that enables SAST tools to ‘collaborate’ by sharing
information that can help them to overcome each
other’s limitations. Our technique only operates on the
application source code by using different tools as oracle
to search for signs of interrupted data flows. When we
discover such obstacles we inject alternative paths that
circumvent the piece of code that SAST tools were not
able to handle correctly.

We conducted extensive experiments by analyzing
over 100 popular PHP projects with more than 1,000 stars
on Github. Our experiments show that our approach en-
ables two popular SAST tools to increase their coverage
of the applications’ source code, resulting in an increase
of up to 25% in the number of high-severity alerts. We
manually inspected 30% of the novel 9,226 new alerts ob-
tained by WHIP and responsibly disclosed 35 zero days
injection vulnerabilities over 14 applications.

1 Introduction

According to a survey published as part of the OWASP
Code Review Guide [31], the most common approach
adopted by developers to identify injection vulnera-
bilities in Web applications is through Source Code
Scanning Tools. While these tools (also called Static Ap-
plication Security Testing tools, or SAST, in the industry)
are invaluable instruments for vulnerability detection,
their accuracy is still fairly limited. For instance, several

comparative studies [19, 22, 35] have found that even
commercial tools struggle to cope with the complexity
of real-world applications. Al Kassar et al. [6] recently
studied one of the reasons behind these limitations, by
assembling a library of hundreds of PHP and Javascript
code snippets (called testability tarpits by the authors)
whose presence prevented SAST tools from inferring the
data-flow link among two elements of a target program.

One of the main findings of Al Kassar’s study was that
tarpits affect different tools in different ways: what poses
a problem from one tool may be analyzed correctly by
another and vice versa. Moreover, the authors noticed
that these code patterns are very common in today’s ap-
plications, with the average project on Github containing
21 different tarpits, each present multiple times. This
translates to the fact that even the most advanced com-
mercial SAST tools on the market were unable to analyze
applications in depth, without encountering a pattern that
prevented them from correctly modeling the code [6].

These limitations are well known by practitioners,
who try to mitigate the risk of false negatives by
analyzing their application with multiple static analysis
tools, in the hope that what a product misses, another
can find. For instance, the NIST organization published
a document on static code analysis [25] where they
explicitly suggest the best practice of combining the
results of two or more tools.

This idea of combining the alarms generated by
different static analysis tools is also often supported by
researchers. For example, Nunes et al. [28] performed
an empirical study of combining the results of static
tools. Muske et al. [27] published instead a survey about
research directions on handling static analysis alarms.
The authors cite many papers that discuss the concept of
alarms ranking, where the severity of an alarm is chosen
based on how many tools raise the same alert.
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Unfortunately, combining the alarms of different tools
can reduce the risk of false negatives only to a certain
extent. In fact, any sufficiently complex application
would contain enough different tarpits to impede the
analysis of all SAST tools. Thus, even if for different
reasons, it is very likely that each tool would encounter a
snippet of code it cannot handle correctly. For this reason,
in this paper, we argue that it would be more beneficial
to somehow combine the internal model reconstructed
by different tools, and not just the vulnerabilities they
discover. However, the collaboration between the tools
– where one tool uses its strength to overcome the
weaknesses of another – has been rarely explored by
researchers. NAVEX [8] only mentions the collaboration
between static and dynamic analysis solutions, when
a crawler (dynamic) can be used to retrieve the flow
between files that are later analyzed by a static tool.

In this paper, we present the first approach to enable
the collaboration between SAST tools. Our novel
technique only operates on the application source
code, thus allowing our approach to be applied also
to commercial tools, without the need to access their
internal data structures. Our idea is to search for signs
of interrupted data flows, by using the tools as oracles,
and then inject another path to circumvent the piece of
code that tools were not able to handle correctly.

Our approach is general and can be applied to any
programming language. As an example, we implemented
a fully-automated prototype, called WHIP, targeting
the PHP language, which today is still by far the most
common language to develop Web applications (78%
market share in 2022 [1]).

We conducted a number of experiments to show
that WHIP can increase the amount of source code
processed and in turn lead to a higher number of security
alerts. For our experiments we used two research tools
(WAP and Progpilot) and two commercial SAST tools
(Comm_1 and Comm_2) 1. Research tools did not show
any benefits in the experiments due to the stronger effec-
tiveness of commercial tools compared to the research
tools. Basically, no data flow paths were emerging
from research tools that were not already discovered
by commercial ones. For this reason, we focused the
rest of our experiments on the commercial tools and
provide additional experiments targeting research tools
in Appendix A. Over 114 popular projects (all with more
than 1,000 stars on Github) Comm_2 reported 25% and
Comm_1 reported 10% more alerts, corresponding to
9,226 new high-severity alerts that none of the tools was
able to discover in isolation. By sampling and manually

1For legal reasons, we have to anonymize commercial products.

investigating 2,732 (30%) of these new alerts, we
confirmed the discovery of 35 zero-day vulnerabilities
across 14 applications, 24 of which have already been
confirmed by the respective developers. However,
research tools did not demonstrate clear benefits in
comparison to commercial tools in our approach.

Finally, we compared the complexity of the new
vulnerabilities discovered by WHIP with a dataset of
100 CVEs. Our analysis shows that by using a tool to
overcome the limitations of another, both tools are able
to explore deeper into the target dataflow. For instance,
while the average vulnerability in previous CVE
contained a path (between a source and a sink) of only
7.8 lines of code (LOC), the shortest path among our 35
new discoveries is 12 LOC long, and the average is 25.

The rest of the paper is organized as follows. Section 2
presents background information on the static analysis
tools and their efficiency in detecting injection vulnerabil-
ities. We then present a motivational example (Section 3)
inspired by one of our discoveries. Section 4 illustrates
our approach and the algorithm that we created to apply
the changes to the source code and force different tools
to collaborate. We discuss the impact of false positives
and false negatives in Section 5. Finally, we present the
design and results of our experiment in Section 6 and 7.

2 Background

Static analysis tools scan applications without the need
of deploying the project, by analyzing their code for
signs of security issues [23]. Researchers have proposed
different models to capture both the syntax and the
semantics of source code. Code property graphs [39]
(CPGs) became one of the most popular by merging in
a single model the abstract syntax tree with three other
graph-based representations: the control flow graph to
represent the order of execution of the statements, the
program dependency graph to capture the dependency
between two statements, and the call graph to represent
functions and methods invocations.

This graph-like representation is particularly suited to
detect one of the most prevalent classes of vulnerabilities,
called injection vulnerabilities. Injection vulnerabilities
occur when an attacker can inject harmful values into
an application that lead to unexpected results when
interpreted by other parts of the system. For example, an
attacker-controlled snippet included in an HTML page
can lead to an XSS vulnerability, which can cause the
victim browser to execute attack-provided code.

To detect these bugs, SAST tools need to reason
about the flow of user-provided information through the
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program, starting from the points where attackers can
inject their input (called “sources”) until the points in the
program where this input is consumed and interpreted
(called “sinks”). The variables which carry the data
between sources and sinks are called “tainted variables”.
Thus, detecting injection vulnerabilities boils down to
discovering a data-flow path that connects a source to
a sink, along which the data is not properly sanitized.

This process presents two main challenges. First, the
static analysis tool needs to be able to construct the
path in the first place, by understanding how data can
propagate among different variables and different parts
of the code (a process normally called taint propagation).
Second, the tool needs to correctly analyze the resulting
path to detect whether the user-provided input is properly
sanitized to protect against the specific type of injection
vulnerability that has been considered. Errors in these
two steps can cause the tool to miss vulnerabilities, but
also to raise false alarms.

To capture the reason behind these errors, Al Kassar
et al. [6] recently proposed the concept of the testability
tarpits, i.e., specific code patterns that can prevent a
static tool to properly analyze its code (and therefore
build a correct internal model). The authors found
hundreds of these tarpits and showed that even the best
SAST tools are strongly impacted and cannot fully
analyze real-world applications.

Finally, even if the internal graph representation of
a web application is built correctly, it is often very large
and very time-consuming to explore exhaustively. Thus,
static analysis tools often employ several thresholds to
limit their analysis and produce results in a reasonable
time. For example, in our experiments, we noticed that
commercial tools apply thresholds (which are often
outside the control of the user) to limit the depth of the
call graph, as well as the length of the data and control
flow paths they analyze.

Some testability tarpits could be mitigated by mod-
ifying the tool and improving its code analysis engine.
This can be challenging in the case of commercial tools
or when research tools are no longer supported. On top
of that, not all testability tarpits can be resolved. For
instance, to handle dynamic features (such as reflection
and dynamic function invocation) static tools can only
offer solutions through over- and under-approximations:
the first increasing source code coverage at the price of
higher false positives, the second ignoring certain fea-
tures at the price of increased false negatives. Each com-
mercial static tool is optimized to find the right balance
between accuracy, the number of alerts provided to de-
velopers to manually review, and the time and resources

1 <?php
2 f u n c t i o n func1 ( $ v a r s ) {
3 $ r e s = " " ;
4 f o r e a c h ( $ v a r s a s $va r => $ v a l ) {
5 $ r e s = $ r e s . $ va r ;
6 }
7 r e t u r n $ r e s ;
8 }
9 f u n c t i o n func2 ( ) {

10 $ a r g s = f u n c _ g e t _ a r g s ( ) ;
11 $ r e t = c a l l _ u s e r _ f u n c _ a r r a y ( ’ s p r i n t f ’ , $ a r g s ) ;
12 r e t u r n $ r e t ;
13 }
14

15 $ v a r s = $_POST ;
16 $x = func1 ( $ v a r s ) ;
17 $y = func2 ( $x ) ;
18 echo $y ;

Listing 1: Example of an XSS vulnerability

required to scan projects. This tuning requires static tools
to carefully choose the type of code analysis they imple-
ment and the threshold they use to control their operation.

As a result of all these limitations, even state of the art
SAST tools are often limited to the discovery of shallow
vulnerabilities.

3 Motivation

Listing 1 shows a snippet of PHP code inspired by
a real XSS vulnerability we discovered in the Cacti
fault management framework. The vulnerability exists
because the attacker controls the $_POST variable at
line 15, whose value can reach, without being properly
sanitized, the echo statement at line 18. Despite the fact
that the code is very simple, none of the SAST tools we
used in our experiment can detect this vulnerability.

To understand the reason we can look at Figure 1,
which shows the data flow graph of our motivational
example. In the figure, there are three sets of blocks,
associated respectively to the main function (in the
middle) to func1 (on the right), and to func2 (on the
left). Finally, the edges illustrate the data flow between
the different lines of code.

In general, SAST tools identify vulnerabilities by
detecting a path between a source and a sink [9, 39].
However, in our example, none of the SAST tools that
we tested, including the commercial ones, encountered
a specific testability tarpit that prevented them from
detecting the data-flow that connects the source to
the sink. We can detect the testability tarpit that the
SAST tool couldn’t "understand" by transforming the
corresponding line of code and test again if the tool
can detect the vulnerability. If it detects it in the second
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Figure 1: The data flow of the motivational example Figure 2: The motivational example
with the solution

case but not in the original we can conclude that it is
unable to infer that particular edge. In one case, func1
uses a foreach loop to concatenate the keys of an array,
an operation that is not handled correctly by Comm_1.
As a result, the red edge in Figure 1 would be missing
from Comm_1 internal representation, thus breaking the
path associated with the vulnerability. The second case
is due to func2, which receives its arguments through
the built-in function func_get_args and then calls the
built-in function sprintf dynamically through the PHP
function call_user_func. This code poses problems
to Comm_2, resulting again in a missing edge (the green
one in the figure) and thus in a fragmented path that
prevents the tool to detect the vulnerability.

This example clearly shows two important aspects,
which served as motivation for our research. First, the
fact that the reasons why SAST tools fail to discover
vulnerabilities are different [13, 21, 36]. Second, the fact
that existing tools cannot be combined to overcome each
other’s limitations. Today, all an analyst can do is run
both tools in isolation, in both cases failing to discover
the aforementioned vulnerability.

Thus, the main goal of our research is to propose a new
way to allow a tool to help another. Our intuition is that if
we could transfer somehow the part of the dataflow graph
of func1 from Comm_2 to Comm_1, then Comm_1
would have a complete picture of the program and could
detect the unsanitized data-flow path associated to the
XSS vulnerability. Similarly, transferring the missing
red edge from Comm_1 to Comm_2 would achieve
the same result, this time helping Comm_2 to detect
the vulnerability. In other words, while different tools
use different strategies and are affected by different
limitations, their combined model of the program is more
complete, and therefore more effective at finding bugs,

than their two models in isolation.

4 Approach

As we explained in the previous section, our goal is
to share information about the internal models of two
or more tools. However, many popular SAST tools are
commercial applications that do not provide access to
their code or data structures. Therefore, we need to find
a general solution that considers each tool as a black
box, which poses a serious constraint to the design of
our system.

Our solution is to operate only on the source code of
the target application, by using an approach based on two
main operations: infer and stitch. The infer operation
extracts security-relevant data-flow paths (i.e., those that
originate from a source that can contain user-controlled
input values) from one SAST tool. To achieve this, we
first inject fake sink instructions related to one type of
vulnerability (e.g., echo for XSS) into the target appli-
cation. Then, we scan the modified application with each
SAST tool and we process all the reported alerts related
to the fake sinks. If the path between a source and the
fake sink is reported as vulnerable by tool A, it means that
the tool was able to build an uninterrupted data-flow path
between the two statements. Then, if the same path is
NOT reported as vulnerable by another SAST tool B, we
can deduce that its code likely contained some testability
tarpits that prevented B to reconstruct the same data-flow.
Thus, we can use what we learned from A to “stitch” (the
second building-block of our approach) the two ends
of the data-flow together, by creating a new edge in the
data-flow graph that can help B to conduct its analysis.

It is important to note that we do not permanently
modify the application. Instead, our technique only
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Algorithm 1 Approach
1: Input
2: A web application
3: T s set of SAST tools
4: V vulnerability type
5: Output
6: Ns new findings of type V
7: Prepare
8: i←0
9: ST i← /0

10: Fsi←scan(T s,A,V )

11: InferStitch
12: Ai←inject(A,V )
13: repeat
14: i← i+1
15: Fsi←scan(T s,Ai−1,V )
16: ST i←infer(Ai−1,Fsi)
17: Ai←stitch(ST i,Ai−1)
18: until ST i≡ /0

19: Evaluate
20: Ai←clean(Ai−1)
21: Fsi+1←scan(T s,Ai,V )
22: Ns←diff(Fsi+1,Fs0)

creates a temporary variant for the purpose of SAST
testing. While the variant does not preserve the original
semantic of the code, it does not need to be executed
and its only purpose is to increase the code coverage of
SAST tools and their ability to discover vulnerabilities.

In summary, our technique modifies the application
by using a set of SAST tools as oracles to infer which
variables are connected to a given source without being
properly sanitized. If a tool detects these connections,
we forcefully add new data-flow edges to the application
(through new variable assignments) to help other tools
discover the same connections. The implementation of
our prototype is available in our repository [4].

In order to implement this idea, we first need to decide
at which granularity we want to perform our “infer and
stitch” operations. For instance, one could implement
this approach at the variable assignment level, adding
a fake sink every time a variable assignment takes place.
However, such a fine-grained solution would require
the introduction of a huge number of fake sinks and,
as a consequence, a very long post-processing phase to
analyze the SAST findings.

Therefore, we decided to implement our solution at
the function level, where information can only flow
between parameters or from a parameter to a return
value, thus limiting the number of fake sinks we need
to introduce and the required SAST processing time.

ß The complete approach is presented in Algorithm 1.
It takes as input a web application A, a class of vulnera-
bilities V , and a set of SAST tools T s. It then outputs any
new alert (of the selected vulnerability class) generated

from the SAST tools after our transformation. We now
explain our approach in more detail, by using again our
motivational example presented in Listing 1 and two
commercial tools.

4.1 Phase I: Prepare
In this phase (cf. lines 7-10 of Algorithm 1), we simply
init two variables (i.e., the iteration step i is set to 0, the
initial set of stitches ST 0 is set to the empty set) and we
run the SAST tools against the original application to col-
lect the set of findings Fs0 of type V (e.g., XSS). These
findings will serve as a baseline to evaluate the effective-
ness of our approach in detecting novel findings. When
running Comm_2 and Comm_1 on our motivational vul-
nerable example, Fs0 is empty as both tools are unable
to discover the XSS vulnerability when used in isolation.

4.2 Phase II: Infer and Stitch
In this phase (cf. lines 11-18 of Algorithm 1), our first
objective is to use a set of SAST tools to determine
if there is propagation of tainted values between the
input and output of functions. To do this, we modify
the application source code by “injecting” (cf. line 12)
fake sinks that are related to the chosen vulnerability
type after each function call. These sinks should be
recognizable by all the static tools in the approach. For
example, we choose to use the echo statement to write a
code snippet that directly prints the user-provided input.
We then scan this code using our tools and if they all
detect the presence of an XSS vulnerability in the code,
we consider the sink to be suitable for our approach.

Our tool uses this technique to print both the inputs
and output values of each function. Note that, no fake
sinks are added for functions that neither return a value
nor get input parameters. Since printing a variable can
lead to an XSS vulnerability, we expect SAST tools to
raise an alert if the variable is tainted (i.e., it can contain
unsanitized user input).

For instance, in our motivational example our
approach would modify the call to func1, by adding two
fake sinks, as follows:

$x = func1($vars);
/*E1 -16*/ echo $vars;
/*E2 -16*/ echo $x;

These added instructions are labeled with E1-16 and
E2-16 to indicate they are fake sinks generated for the
function call at line 16 of Listing 1.

The approach is now ready to iterate over the infer
and stitch operations (cf. repeat-until loop). Once the
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iteration step is increased (cf. line 14), the SAST tools
are run against the modified application (cf. line 15) and
the infer operation (cf. line 16) is then used to process
the SAST findings. In particular, the SAST findings
related to the injected fake sinks are automatically
inspected and the following conditions evaluated:
[C1] at least one SAST tool (say A) detects that tainted
data can flow from one function parameter (say $in) to
the return value of the function (say $out); and
[C2] another SAST tool (say B) reports that tainted data
can only flow into $in, but not to $out.

If both [C1] and [C2] are true, our approach uses the
findings of tool A to help tool B by introducing a new
“stitch” in the dataflow to enforce the data-flow connec-
tion between $in and $out. The inferred stitches are
concretized in our approach again as a modification at
the source code of the application, this time through the
use of a conditional assignment for each stitch. This is
done by the stitch operation at line 17 of our algorithm.
For instance, for the stitch ST1 capturing the data-flow
connection between $in and $out, the conditional as-
signment hereafter would be added just after the function:

$out = func($in);
/* STITCH_BEGIN: ST1 */
if(round(rand(0,1))){

$out = $in;
}
/* STITCH_END */

Listing 2: Simple stitch

We wrap the assignment inside an if statement to create
an alternative edge in the data-flow, without completely
replacing the path through the function. This, as we
will explain in Section 5, is important to prevent our
transformation to introduce new false negatives. As
a condition we chose an expression that is randomly
computed as true or false at runtime.

In the general case in which a function has more than
one parameter, they are all individually tested and, if
more than one argument is part of taint propagation,
multiple edges (stitches) will be introduced in separate
conditional blocks – like in the following example:

$out = func($in1 ,$in2);
/* STITCH_BEGIN: ST1 */
if(round(rand(0,1))){

$out = $in1;
}
/* STITCH_END */
/* STITCH_BEGIN: ST2 */
else if(round(rand(0,1))){

$out = $in2;
}
/* STITCH_END */

Note that while adding stitches, the fake sinks of the
input parameters that were used to infer these stitches
are removed, as they are not needed anymore. If the
fake sinks of all the input parameters of a function are
removed, then also the fake sink of the function return
variable is removed.

We now describe the whole iterative approach against
our motivational example. In the first iteration, Comm_2
raised an alert for both E1-16 and E2-16, a sign that its
static analysis algorithm correctly concluded that func1
propagated tainted information from its parameter to its
return value. However, while Comm_2 succeeded, other
tools might miss this connection. In fact, in this case
Comm_1 raised an alert for E1-16 but NOT for E2-16,
due to its inability to process correctly the foreach loop
in the function body.

To sum up, from this first iteration our approach
learned that, through the function func1, tainted data
propagates from the $vars variable to the $x variable.
Since not all SAST tools in our set detected it, our
approach forcefully add this dependency in the program.

To make the relationship between the $vars and
$x variables explicit, our approach modifies again the
source code of the application, this time by adding a
simple conditional assignment as in Listing 2 where
$vars and $x replace $in and $out, respectively.

In summary, with the stitch operation of our
approach, we modify the application to add new
instructions that explicitly connect two variables, when
at least one tool detects that tainted data can flow from
one to the other.

It shall be noted that one iteration of the infer
and stitch operations is not sufficient to discover the
vulnerability of our motivational example. In fact, if we
consider the whole code of our example, during the first
iteration Comm_2 raises alert for both the input and the
output of the first function (func1), while Comm_1 only
raises an alert about its input, as it is unable to properly
process the function (because of the missing red edge
in the first function, cf. Figure 1). On the other hand,
Comm_2 reports only the input for the second function
(func2), because of the missing green edge in its model
(cf. Figure 1), while Comm_1 does not raise any alert,
as its analysis is still blocked by the first function.

In other words, the interplay between different tarpits
that affect different tools result in the fact that none are
able to process the entire chain during the first iteration.
Therefore, our infer and stitch operations need to be
repeated in an iterative fashion until an equilibrium
is reached, i.e., until no new edges (new stitches) are
discovered in the graph. To sum up, in the first iteration
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our approach helps Comm_1 to understand that $x
is tainted, and thanks to this information during the
second iteration Comm_1 detects that $y is tainted as
well – a piece of information that helps Comm_2, which
previously missed this connection.

Figure 2 shows the data-flow graph of the modified
application after two iterations of our approach. The new
edges, marked in blue, are the stitches introduced by
our approach. In the third iteration no new stitches are
inferred and our approach moves to the evaluation phase.

4.3 Phase III: Evaluate

In this final phase (cf. lines 19-22 of Algorithm 1), our
approach first cleans the application code from any
remaining fake sinks (cf. clean instruction at line 20)
and then scans it with all SAST tools in the arsenal. By
removing from these SAST findings for vulnerability
class V those already reported on the original application
(cf. diff at line 22), our approach can output the novel
SAST findings emerging because of the stitches added in
the previous phase. In order to remove already reported
SAST findings, our diff instruction compares findings
as follows. Two findings F1 and F2 are considered
identical if and only if the sink line of F1 is identical to
the sink line of F2.

For our motivational example, the comparison is
trivial as there were no findings reported on the original
application. By running our infer and stitch operations,
new stitches were added in the first two iterations and
none were uncovered during the third iteration. When
scanning the final code, both SAST tools in our arsenal
were correctly reporting the XSS vulnerability, indicating
that two new findings emerged as a direct consequence of
our approach that forced the SAST tools to collaborate.

5 False Positives and False Negatives

SAST tools employ various techniques to analyze
the source code of an application. In particular, to
handle dynamic code constructs that cannot be resolved
statically, all SAST tools use some form of over- and
under-approximation. The two are often combined to
find a balance between the amount of code that can be
analyzed and the number of false alerts generated [5].
Additionally, SAST tools also incorporate heuristics
to halt the analysis of a particular path when specific
thresholds are reached (e.g. if the path involves over 500
variables or more than 5 nested functions). The aim is
to improve performance and keep the running time in

a reasonable range, but this approach can decrease the
ability of the tool to detect vulnerabilities.

Our approach reduces false negatives by allowing
all tools to access data-flow connections that emerge
by combining and complementing the models of each
individual tool. As an additional benefit, our approach
also reduces the impact of performance-related thresh-
olds since, by adding stitches, we introduce shortcuts
that bypass functions and make data-flow paths shorter.
This again helps in reducing false negatives. It is also
important to note that, by construction, our approach
cannot increase false negatives as it cannot miss what
individual tools would already detect in isolation. This
is also confirmed experimentally in our results, where
we never encountered a target application for which our
approach was not detecting a finding that was previously
detected by one of the SAST tools.

In the majority of cases (around 80% of the appli-
cations analyzed in our experiments), our approach is
returning novel SAST findings. Although the majority
of these findings are false positives, which is a common
occurrence with most SAST alerts, they all result from
the examination of novel security-related data-flow
paths. In fact, our approach only requires SAST tools to
analyze a path if it can be decomposed into a sequence
of sub-paths, each of which was already analyzed by
at least one SAST tool because the tool believed it
may transfer unsanitized user input. Therefore, our
algorithm does not introduce more false positives unless
one of the tools already introduced them because of an
over-approximation. In this case, the infer-and-stitch
approach enforces the same over-approximation on
the other tools, causing all of them to consider the
corresponding, potentially erroneous, path.

6 Experiments: methodology

We implemented our approach in a prototype tool named
WHIP. WHIP takes as input a web application and one
or more types of sinks (which depend on the class of
vulnerabilities the analyst wants to discover) and then
orchestrates the insertion of sinks, the execution of SAST
tools and the collection of the corresponding alerts, and
the injection of conditional assignments instruction to
create the new edges in the dataflow graph. The tool
automatically performs multiple iterations until the
data-flow graph converges and no new edges are inserted.

WHIP currently supports the PHP language, chosen
because it is still by far the most common language to
develop Web applications, with a 78% market share in
2022[1]. On the other hand, since we are building our
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stitches at the function call level and WHIP does not
require any static analysis, our approach can be applied
to any programming language supported by SAST tools.
To support a new language, the analyst just needs to list
the sinks statements used by the language and the syntax
required to assign variables. In the rest of this section,
we discuss the integration of SAST tools into WHIP, the
selection of tools we used in our experiments, and the
dataset of Web applications we tested with WHIP. The
results obtained are presented in Section 7.

6.1 SAST Tools Integration
Since WHIP needs to orchestrate the execution of
SAST tools, it requires a dedicated module to support
the interaction with each tool and the parsing of the
generated alerts. So the integration of a SAST tool
within WHIP requires the implementation of a small
interface that handles its operation and the collection
and inspection of its alerts.

In order to add a static tool to WHIP, two conditions
must be met: (1) the static tool needs to have a CLI
interface or some form of API to control its operation,
and (2) the output (alerts) of the tool need to be stored
in a way that allows for an automated extraction and
parsing. These requirements come from the fact that
WHIP is fully automated and requires the ability to
orchestrate the process. For instance, if the tools offer
CLI commands to scan a project and produce results,
to use them with WHIP, we run the scan command and
redirect their output to a text file. Then, we wrote a script
to parse the text file and extract the data required by
WHIP. The simple parsers we developed for some tools
are available in our repository [4].

It is typical for commercial SAST tools to provide
in their reports a list of findings along with the type
and severity of each entry. The severity was not
important in our experiments, since WHIP focuses on
injection vulnerabilities [2], which are considered by
all SAST tools as high severity risks. In addition, for
each alert, SAST tools may also report the full path
between the corresponding source and sink (i.e., the
attacker-controlled input and the point in which the
vulnerability is located in the code) to help developers
to understand the issue and provide a patch.

6.2 SAST Tools Selection
While our solution is generic and it can be applied to
any SAST tool, it is particularly useful in the presence
of commercial, closed-source tools whose source
code cannot be modified to take into account other

complementary solutions. For this reason, for our
experiments we selected two of the most widely used
commercial SAST tools that support PHP: Comm_2 and
Comm_1. We have acquired full licenses for both tools,
allowing us to run our tests without the restriction and
limited analysis time available in the free trial options.

On top of them, we also decided to include in our
tests a few selected open source (OS, in short) tools to
verify whether their presence could benefit the results by
helping commercial tools to overcome their limitations.
In fact, while much more limited in terms of complexity
and supported features, it would be enough for an OS
tool to discover a data-flow relationship missed by
the more mature commercial alternatives to provide a
valuable contribution to the overall collaborative effort.

Over the years, the research community has proposed
several static vulnerability detection tools for PHP
to choose from (including RIPS [12], phpSAFE [30],
WAP [38], Progpilot [32], WeVerca [14] and Pixy [18]).
For our experiments we selected Progpilot v1.0.2
and WAP v2.1 because they both support scanning
entire projects instead of individual files, they both
provide a CLI implementation, and they both support
object-oriented code. In addition, Al Kassar et al. [6]
found Progpilot to be the best OS tool in terms of its
ability to handle the authors’ testability tarpits library.

6.3 Dataset

To measure the benefits of combining multiple SAST
tools, we tested our tool (WHIP) on a set of modern and
popular web applications. We cloned the latest version
of all PHP projects from Github with more than 1,000
stars, resulting in an initial set of 1,183 projects. We
then extracted the number of sources of user-provided
inputs in each project, by grepping for the corresponding
predefined variables in PHP (e.g., $_GET and $_POST).
Roughly half of the projects (602 projects) do not have
any source. This is due to the fact that these are often
libraries used by other projects and not standalone ap-
plications. Among the remaining projects, 127 contained
more than 100 sources – thus making them a perfect
target for our vulnerability analysis. Thus, we selected
these 127 applications as a dataset for our experiments.

The analysis was performed on a machine with 16
cores and 64 GB of RAM. Since each SAST tool needed
to be invoked multiple times for each project, we ex-
cluded those for which a single analysis did not complete
within 6 hours. This was the case for 13 projects, reduc-
ing our final dataset to 114 projects. The complete list of
applications with their corresponding statistics is reported
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in Appendix in Table 4. The projects range from small
(with less than 10K LoC) to big (with more than 1M
LoC). Altogether, they account for 21.4M LoC, 1.9 mil-
lion functions, and 85K sources of user-provided input.

7 Experiments: Results

We break down the results of our experiments in six
different parts. First, we will examine the poor perfor-
mance and lack of contribution of open source tools.
Then, by using XSS as an example, we will analyze
different statistics that show how WHIP performed on
the 114 projects in our dataset, including the number
of iterations required to converge and the number of
additional edges that WHIP introduced in the PHP code.

In the third part, we will evaluate the impact of WHIP
by measuring the number of extra alerts raised by each
SAST tool for three types of injection vulnerabilities
(XSS, SQLI, and fileM). An increase in the number of
alerts indicates that the SAST tools were able to analyze
the application code more deeply and process more
paths that were previously blocked by the presence of
testability tarpits. In the fourth part, we will discuss
the advantages and disadvantages for companies that
will use WHIP. On the one hand, the tool will increase
the coverage of the source code and de-duplicate the
alerts from multiple tools. On the other hand, it will
require more time and resources to scan the project using
multiple SAST tools over a few iterations.

In the fifth part of this section, we show that the model
of the application built by SAST tools thanks to WHIP
is more than the sum of the individual models. In other
words, it is not just that one tool can help the other to
overcome its limitations, but that each tool can now
discover vulnerabilities that could not be previously
discovered by any tool in isolation.

Last, we compared the vulnerabilities we discovered
with a dataset of 100 past CVE reports in Appendix B.
By analyzing the length and complexity of the data-flow
paths associated with each bug, we found that our
discoveries have longer paths than the average reported
vulnerabilities. The average number of lines of code in
the past CVE reports was 7.8, while in our discoveries,
it ranged from 12 to 53 LOC, with an average of 24.9.

7.1 Research Tools
In our experiments, Progpilot produced results only
for 26 out of 114 projects (23%) and crashed in the
remaining cases. WAP did better, successfully scanning
90 projects (79%). In both cases, the research tools did

Iteration 0 1 2 3 4 5 6 Total
Projects 9 31 33 23 10 3 5 114

Table 1: Number of Converged projects over iterations

Iteration 1 2 3 4 5 6 Total
Comm_1 5,475 1,847 365 131 68 46 7,932
Comm_2 6,976 1,450 462 240 144 104 9,376
Combined 12,451 3,297 827 371 212 150 17,308

Table 2: Inserted data-flow edges with XSS fake sinks

not report any additional alerts (i.e., no new edges) on
top of those reported by commercial tools, leading to the
conclusion that these tools could not be used to enhance
the analysis of commercial tools. This poor result is not
completely unexpected. In fact, in 2017 Nunes et al.[28]
already noticed that none of the static research tools for
PHP (RIPS, phpSAFE, WAP, Pixy, and WeVerca) were
able to successfully analyze a complex web application in
its entirety. Similarly, Al Kassar et al.[6] found that only
commercial SAST tools were up-to-date with recent PHP
language features and capable of scanning modern web
applications and that the two leading commercial tools
supersedes all other open source alternatives in terms
of supported testability tarpits. For this reason, we focus
in our main experiment on commercial tools and include
an experiment about research tools in Appendix A.

In conclusion, adding small tools to the arsenal has
a cost (in terms of analysis time) but may not bring
any clear benefits to security testing. On the other hand,
in the next sections we will see how the combination
of state of the art solutions can instead lead to a large
increase both in terms of code coverage and number of
alerts and discovered vulnerabilities.

7.2 General Statistics

Table 1 shows the number of iterations required by
WHIP to converge (i.e., until no more data-flow edges
were discovered) for different projects when we run the
experiment for XSS vulnerabilities. At each iteration,
each SAST tool was able to explore the application
deeper, i.e., to test the security of longer and longer
inter-procedural data-flow paths that were invisible (or
better, fragmented) without our approach. One iteration
was sufficient to converge for 31 of our 114 applications,
two could cover roughly half of the dataset, and the rest
required three or more iterations – with a maximum
of six. This is very important, as it means that some
applications contained paths between a source and a sink
that involved at least six different functions, all of which
contained snippets of code that both our tools were not
able to process correctly (different tools had problems
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with different code blocks in alternation).
Table 2 shows the number of edges added by WHIP to

the applications code, for each iteration and each SAST
tool. By far, the largest number of edges (12.4K and
3.2K respectively) were added over the first two passes.
In total, our approach added 17,308 new edges: 7.9K to
increase the coverage of Comm_1 and 9.4K to increase
the coverage of Comm_2.

It is also interesting to observe that not all applications
were impacted the same way. For instance, the Dolibarr
application contained the maximum number of sources
in our dataset (8,609 sources) with more than 8 million
lines of code. This project was also the one for which our
tool had the largest effect, introducing 108 new stitches
for Comm_2 and 206 for Comm_1 after four iterations.
At the other end of the spectrum we find the Valet-plus
project, which has the minimum number of sources in
our dataset (100), and for which our tool only added
two stitches for Comm_2 in the first iteration. Overall,
WHIP added 151.82 stitches per project, with a median
of 35. More details are presented in Table 4 in Appendix,
where for every project we show the number of stitches
added and the number of iterations run by WHIP.

7.3 New Alerts

To test for new alerts we run three separate experiments,
using WHIP to test high severity injection vulnerabilities
such as XSS, SQLi, and file manipulation (fileM)
vulnerabilities. As a reminder, the stitches we introduce
are always specific for a class of sinks as mixing two
types can lead to errors in the alerts. For instance, if a
function propagates information unsanitized for XSS
but sanitized for SQLi, adding a stitch would result in
a ‘shortcut‘ that can make tools erroneously report SQLi
vulnerabilities (since the alternative path we insert would
bypass the sanitization). Therefore, when we add stitches
for a given type of sink, we need to later test only for
vulnerabilities that involve the same sink type.

For the three experiments we collected all the
corresponding alerts (XSS, SQLi, and fileM, depending
on the experiment) raised by the SAST tools when
scanning (i) the original version of each application as
well as (ii) the modified versions generated by WHIP.

Overall, Comm_2 went from 49,231 alerts on the
original applications to 61,583 (+25.1%) on the stitched
versions. These were divided in 52,843 (versus 42,040)
XSS, 1,789 (vs 1,744) SQLi, and 6,861 (vs 5,447) fileM.
Comm_1 alerts increased instead from 50,217 to 54,985
(+9.49%), divided into 33,028 XSS (vs 30,062), 10,284
SQLi (vs 9,236), and 11,673 fileM (vs 10,919).

The complete breakdown of the discoveries for each
project is presented in Table 4. Even if we expect the
majority of these alerts to be false alarms (as we will
discuss in more details in Section 7.5), these numbers
show that both SAST tools were able to improve the
number of potentially vulnerable data flows by roughly
25% for Comm_2 and 10% for Comm_1.

We can further divide these sets of new alerts into
two different categories: Known and Unknown. The first
contains new alerts that are generated by one tool (with
the help of the other), but that the other tool was already
able to discover by itself. These alerts are associated with
source-sink paths in the data-flow graph that only contain
new edges for one tool. The second category (Unknown
alerts) contains instead the alert that one tool generated
(with the help of the other) but that none of the tools were
able to discover alone. In this case, the path associated
with the alert passes through stitches for both tools.

Figure 7.3 shows the breakdown of the Known and
Unknown alerts for the two tools and for the three
vulnerability types. We can see that, over the 114
projects, Comm_1 was missing around 1,936 known
alerts (1530, 151, and 255 for XSS, SQLI and fileM),
which were already reported by Comm_2. On the other
hand, Comm_2 was missing 5,864 known alerts (5076,
84, and 704 for XSS, SQLI and fileM) that were detected
by Comm_1. But it is much more important to focus on
the curves of the alerts that were previously unknown. In
this case, we can notice that a stunning 9,226 alerts with
the highest priority (respectively (i) 2,742 reported by
Comm_1: 1436 XSS, 897 SQLI, and 409 fileM and (ii)
6,484 by Comm_2: 5727 XSS, 51 SQLI, and 706 fileM)
were raised for the first time thanks to our tool.

If we look at the different applications in our dataset,
65 out of 114 show an increasing number of high severity
alerts for Comm_2, with an average number of new
alerts of 108.35. Comm_1 reported instead new alerts
in 61 projects, with an average of 41.82. At a closer
look, we can observe a clear relationship between the
number of sources, the number of stitches, and the
number of alerts. For instance, Dolibarr, phpipam and
testlink-code, the three projects with the highest
number of new alerts, all have more than 900 sources
each, and required more than three iterations for WHIP
to converge. On the other hand, out of the 35 projects
that have less than 200 sources, 19 did not have any new
discovery by Comm_2 and 21 had zero new alerts for
Comm_1. This seems to suggest again that the more
complex the application is, the more likely it is to benefit
from our approach, and the higher is the number of new
alerts generated by SAST tools.
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Figure 3: The incremental number of alerts regarding the number of projects

7.4 Overhead
Our approach offers many benefits for enterprises. First
of all, our solution increases the coverage of the source
code and allows existing tools to report new alerts and de-
tect new vulnerabilities. In addition, WHIP provides a so-
lution for companies that have invested in multiple SAST
tools but are facing difficulties in effectively integrating
them. Our approach enables the optimization of existing
tools and can also save time for testers. In fact, in our ex-
periments we identified 44,000 duplicate alerts that were
separately reported by Comm_1 and Comm_2, which our
tool automatically de-duplicates and reports only once.

The downside of our approach is the increased scan-
ning time and resource consumption, as static tools must
be re-executed over multiple iterations. In our experiment,
running Comm_2 alone for one iteration on all projects
took 11 hours, 23 minutes, and 21 seconds (6 minutes
per project on average). Comm_1 required 36 hours, 6
minutes, and 57 seconds (with an average time of 19 min-
utes per project). Due to the additional iterations, WHIP
took a total of 164 hours, 36 minutes, and 11 seconds to
run all experiments until all projects converged. Thus, on
average WHIP required 86 minutes per project, versus
25 minutes required by the two commercial tools in
isolation (corresponding to a slowdown factor of 3.4X).

A company can also decide to limit our approach
to three iterations (reducing the slowdown to 2.6X), a
good compromise if we think that only 18/144 projects
converged after three iterations, and that 83% of the new
alerts were reported over the first three iterations.

7.5 New Discoveries
As we previously explained, the use of our technique
allowed the two tools to report 9,226 completely new
high severity alerts, discovered after adding at least two
stitches. To conclude this section, we now look at those
alerts and, through a process of manual validation, try
to separate false positives from zero-days vulnerabilities.

Since the number is too high for a complete and thor-
ough manual investigation, we started by randomly sam-
pling 10 alerts for each project, for a total of 640 alerts.
If at least one of the ten alerts was confirmed as true
positive, we proceeded to verify all the other alerts for
the same project, to check how many alerts will be fixed
when we fix this real vulnerability. In total, this resulted
in a set of 2,732 alerts we manually investigated. Each
time we confirmed that an alert was a true positive, we
contacted the developers to initiate a process of responsi-
ble disclosure. In each communication we described the
issue and provided feedback on how the vulnerability
could be fixed, and in some cases even submitted
ourselves pull requests on Github containing the patch.

At the time of submission, we identified 35 zero-day
vulnerabilities in 14 projects. Developers have confirmed
24 of these vulnerabilities (from 9 different projects),
as shown in Table 3. The remaining 2697 alerts we
investigated turned out to be false alarms. The fact that
98% of the validated alerts were false positives should
not be a surprise as SAST tools are known, unfortunately,
for their very high false positive rates. With our approach,
the total number of generated alerts increased by roughly
10%. In fact, without WHIP, Comm_2 and Comm_1
already reported a stunning 99,448 alerts. If we consider
the fact that we only scanned very popular projects that
are regularly analyzed with SAST tools for security
purposes, we can expect the very vast majority (if not
all) of these alerts to be false alarms.

Table 3 reports the number of vulnerabilities aggre-
gated in groups, based on how they were handled by
the developers. For instance, in the Phoronix application
(line 7 in the table) our system found several ways to
bypass the sanitize function the authors used in their
project. While each way is an independent discovery and
therefore a true positive alert, the developers were able
to fix all of them by changing the sanitizer, and thus we
only requested one CVE covering all the corresponding
cases. On top of those already accepted, we also reported
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Type Project Stars Discoverd_By Vuls Status CVE FUNC LEN Stitch
1 XSS Vesta 2700 Comm_1 1 Confirmed CVE-2022-36305 6 23 2
2 XSS Jukebox-RFID 1000 Comm_2 4 Confirmed CVE-2022-36749 2 12 2
3 XSS Cacti 1200 Comm_2 3 Confirmed Requested 8 33 2
4 File M ICEcoder 1400 Comm_2 2 Confirmed CVE-2022-34026 4 14 2
5 XSS Dokuwiki 3500 Comm_1 1 Confirmed CVE-2022-28919 4 13 2
6 XSS PicUploader 1000 Comm_1 4 Confirmed CVE-2022-41442 4 16 2
7 XSS Phoronix 1700 Both* 7 Confirmed CVE-2022-40704 14 43 2
8 XSS Librenms 2800 Comm_2 1 Confirmed CVE-2022-36746 7 32 2
9 XSS Phpipam 1700 Comm_2 1 Pending CVE-2022-41443 5 17 2
10 File M Dzzoffice 3500 Comm_2 7 Pending - 4 11 2
11 XSS Razor 1100 Comm_2 1 Pending CVE-2022-36747 7 18 2
12 XSS Pfsense 3900 Comm_2 1 Confirmed CVE-2022-42247 4 16 3
13 XSS Carbon-Forum 1800 Comm_2 1 Pending - 8 47 4
14 XSS SuiteCRM 3100 Comm_2 1 Pending - 11 53 4

SUM 14 35

Both*: In Phoronix project, five discoveries deteced by Comm_2 and two detected by Comm_1

Table 3: New Vulnerabilities Detected with Our Approach

11 other potential vulnerabilities in five projects, for
which we did not yet receive an acknowledgment from
the developers. Table 3 also shows the number of stitches
required to discover each vulnerability. Among our find-
ings, 32 vulnerabilities were discovered with two stitches,
one with 3 stitches, and 2 after the insertion of 4 stitches.

At first, one might think that missing data-flow edges
(the main contribution WHIP helps to mitigate) is only
a tiny factor among many other limitations that affect
today’s SAST tools. However, it is important to stress
that missing edges is NOT a limitation per se, but only
the consequence of a multitude of other actual limitations.
In other words, many problems – from the inability to
support certain language features, to missing models of
API functions, to the inability to correctly reconstruct
inter-procedural control flows, to under-approximation
in resolving dynamic behaviors – ultimately result in the
inability of a tool to detect the data-flow link among two
parts of a program. Given the nature of injection vulnera-
bilities, these missing edges (independently from the rea-
son why they are missing) are the main cause of undiscov-
ered vulnerabilities in complex real-world applications.

Ethical Risk Assessment. In this study, we responsi-
bly disclosed 35 zero-day vulnerabilities that we detected
using our approach. We validated these vulnerabilities by
manually checking 2,732 out of 9,226 alerts generated
by WHIP. Due to the large number of alerts, we were
unable to check them all. If the ratio remains the same,
we could expect another 83 vulnerabilities to be present
in the remaining 6,494 unvalidated alerts. The names
of the static tools used to detect the alerts will be kept
anonymous, and we will not publish any information
about the non-reported alerts. Finally, we promise to

delete all alerts from our servers after the paper has been
reviewed and accepted.

8 Related work

We can identify three research directions related to our
work. First, researchers have conducted extensive tests
of different SAST tools and they concluded that none
of them outperforms the other in all situations. Second,
researchers have tried to mitigate the shortcomings of
a single tool by either 1) combining static and dynamic
techniques, 2) resorting to human experts to help the
tool perform better, or 3) combining multiple tools and
joining the results. However, our approach is the first
that, by combining the internal knowledge of different
tools, allows a set of tools to discover more than the sum
of the individual components.

Tools Comparison. Many research papers analyze static
tools to demonstrate that there is no tool that supersedes
all others. Nunes et al. [29] introduce a benchmark for
comparing static analysis tools and their effectiveness
in detecting security vulnerabilities. The authors chose
five static tools for PHP and they found that the best
tool varies from one scenario to another, depending
on the vulnerability class. Algaith et al. [7] compare
the same five static tools as well as their combinations.
The authors pointed out that none of the tools (or
combinations thereof) can discover all the vulnerabilities
in their dataset, but a set of three gave the maximum
number of discoveries.

While most of the research papers compare open-
source tools, few papers also include commercial tools.
For instance, Al Kassar et al. [6] include three tools,
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Spoto et al. [35] six and Kupsch et al. [19] compare
Fortify and Coverity on the analysis of a single project.

Tools Collaboration. In this work, we present a new
direction to enable static tools to collaborate and discover
more vulnerabilities. To the best of our knowledge, there
are no other works in this area, previous studies have
looked at other forms of collaborations – either between
static and dynamic tools, or between static tools and
human developers.

[I] Static + Dynamic. Static tools have obvious
limitations when it comes to handling dynamic features
[15, 16, 20], such as indirect function calls. NAVEX [8]
tries to overcome these limitations by proposing the
collaboration between static and dynamic approaches.
In this paper, the authors proposed to use a crawler to
capture the relationship between different web pages,
and then use this information to complement a static
analysis performed on the application’s source code.
We can distinguish two cases. If the name of the file is
defined statically, then there is no need for the dynamic
approach because SAST tools can already detect this file.
If, on the other hand, the file is included dynamically
then none of the static tools can detect this file, and
therefore the solution presented in this paper does
not help. Thus, we believe the two techniques to be
orthogonal with no intersections in their findings.

Other studies used dynamic techniques to verify the
discoveries of static tools. For example, Csallner et
al. [11] used a hybrid analysis approach to automate
bug findings. The proposed approach includes three
steps: dynamic inference, static analysis, and dynamic
verification. The same authors [10] also presented a
different approach in which a constraint solver was used
to generate concrete test cases to verify the static tools
alerts. There are also other types of collaborations, like
the one proposed by Hough et al. [17], in which the
authors employ human developers’ test suites to support
automated dynamic analysis.

[II] Static + Humans. A different form of col-
laboration that has been explored by researchers to
overcome some of the limitations of SAST tools is
based on human-in-the-loop approaches. For instance,
Al Kassar et al. [6] discuss the collaboration between
SAST tools and developers when they provide manual
transformation at the source code level to improve the
discoveries of the static tools. Other authors study how
to change the rules automatically depending on the
users’ preferences (e.g., in Mangal et al. [24]), or how
to provide feedback to the tool’s developers to improve
the results (e.g., in Sadowski et al. [34]).

Combining the results of multiple tools. Many papers
have proposed to combine the output of different static
tools, as suggested by NIST “CAS Static Analysis Tool
Study Methodology” [25]. Meng et al. [26] show that
static tools for JAVA can report different alerts for the
same source code depending on the tool performance
in that specific class of bugs. So they ask the analyst
to provide the source code and an example of the set
of bugs she is looking for. The system then chooses
the right tools that are most likely to provide the best
results for that type of bugs and returns a merged list of
their discoveries. Rutar et al. [33] suggest a bug-finding
meta-tool for joining the results of different static tools
together. Wang et al. [37] introduce a web service
where the user can choose the type of bugs and upload
the source code. The system then scans the code with
multiple tools and returns the merged results to the user.
Finally, Nunes et al. [28] run an empirical experiment
on combining the results of five static tools for web
applications, reporting the increased percentage of the
true-positive and false-positive after this combination.

9 Conclusion

In this paper, we proposed a novel idea to ‘force’ differ-
ent SAST tools to collaborate to find more vulnerabilities.
Whereas each static tool has its own strengths and
weaknesses, our solution allows them to help each other
to overcome their respective challenges. Our approach
is completely automated and considers all tools as black
boxes (thus supporting commercial tools for which we
have no visibility on their internal data structures).

By routinely modifying the source code of the
application under test, our system can inject fake sinks to
infer how tainted values propagate through the different
program functions. Whenever one of the tools is unable
to ‘understand’ these connections, we help it by stitching
the data-flow with additional edges that bypass the
problematic function.

Our experiments performed on a large set of popular
PHP applications, show that our approach can success-
fully improve the amount of source-to-sink paths that
each tool is able to analyze. This leads to a total increase
in the number of critical alerts between 10-12%. By
manually validating a subset of these new alerts, we
discovered and reported 35 zero-day vulnerabilities in
14 projects with more than 1,000 stars on Github.
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A Experiment on Open Source Tools

The technique presented in this paper is designed to
leverage the strengths of multiple SAST tools. Therefore,
including a tool that does not provide any benefit only
results in an increase in the overhead. As previous
studies have shown, open source static analysis tools for
PHP are unable to cope with today’s code complexity,
they often lack support for object-oriented code, and
are far behind their commercial counterparts in terms
of discoveries and false alarms. Indeed, as we discussed
in the paper, including open source tools in our suite did
not lead to any new data-flow paths nor new findings on
top of those reported by commercial solutions.

However, if a user has only access to open source
solutions, our approach can still be beneficial, by
allowing a simple integration of different techniques
without requiring to merge complex code bases of
existing tools. To test this hypothesis, we repeated a
second time the experiment described in Section 6, this
time using only open source tools: Progpilot and WAP.

As discussed in Section 6.1, to integrate a new tool
in WHIP, a small interface needs to be implemented
to handle its operation and to collect and inspect its
alerts. Progpilot and WAP provide CLI commands to
scan projects and generate results. To use these tools,
we execute the scan command and redirect the output
to a text file. We then created a script to parse the text
file and extract the data needed by WHIP. The parser
we developed is available in our public repository [4].
The repository also includes an example that illustrates
a snippet of code containing a vulnerability with two
testability tarpits in the path between the source and
the sink. The first tarpit (the use of certain arithmetic
operations on strings) is handled correctly by WAP but
not supported by Progpilot, while the second (a wrong
sanitizer) does not cause problems in Progpilot but is
not recognized by WAP. Running WHIP on this example
shows how the two tools can ‘collaborate’ to jointly
analyze the code, resulting in the fact that both tools are
able to detect the vulnerability after two iterations.

In our dataset, only 26 out of 127 projects where
successfully analyzed by both Progpilot and WAP. In all
other cases, one of the two tools (or both) crashed during
the analysis. In addition, these projects were simpler and
smaller, accounting for only 7% of the total lines of PHP
code in our dataset. Out of the 26 projects, 5 converged

after 3 iterations, while the rest converged after two.
The number of alerts reported by WAP increased by
7%, while the number of alerts of Progpilot increased
by 15%. Thanks to WHIP, the two tools were able to
report 194 previously unknown alerts, which were not
discovered by either one or the other in isolation. Even
though, as expected, all the reported alerts were already
reported by our commercial solutions, this still shows
that our technique can help improve the results of any
combination of tools.

B Vulnerabilities Complexity

Our approach not only helps tools to discover more
vulnerabilities, but also to discover vulnerabilities
associated with long data-flow paths, which can be
difficult for analysts to discover even through manual
inspection. To support this hypothesis we built a dataset
of 100 vulnerabilities (CVEs) from Vuln-code DB [3],
for which there was enough information to reconstruct
the vulnerable source-to-sink path. This requires the
corresponding patch to clearly distinguish between the
security fix and other changes in the source code, and the
CVE to contain an example of input to reproduce the bug.
By using this information we manually reconstructed,
for each vulnerability, the path between the source and
the sink through a manual inspection of the source code.
Over the 100 vulnerabilities in our dataset, the average
number of functions traversed by these paths is 3.4 (with
a median of 3), while the average number of lines of
code is 7.8 (with a median of 5).

If we compare these values with the ones associated
with the vulnerabilities discovered by WHIP (as reported
in Table 3) we can notice a clear difference. For instance,
the length of the paths among the new vulnerabilities
we discovered span from 12 to 53 lines of code (with
a mean of 24.9 and a median of 17.5). Thus, if we take
the length of the vulnerable path as a possible measure
of the complexity of a vulnerability, our approach results
in vulnerabilities that are, on average, three times more
complex than those regularly reported by other means.

This is due to the fact that our solution helps SAST
tools to overcome their limitations and therefore to
explore deeper in the applications code and detect vul-
nerabilities associated with long inter-procedural paths.
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C Information and Results

Table 4: Dataset: Information and Results

ID Project Project info Comm_2 Comm_1 Stitches Iter
stars functions LoC sources before after diff before after diff

1 easyappointments 2281 4561 54619 139 0 0 0 19 19 0 9 2
2 ampache 3074 9894 127334 662 12 66 54 557 557 0 29 1
3 amp-wp 1750 8038 111224 213 0 0 0 1 1 0 38 1
4 sqli-labs 4092 107 6791 214 77 77 0 83 122 39 63 3
5 jetpack 1402 20737 238372 1080 25 32 7 139 365 226 248 3
6 bjyadmin 1743 29217 178780 397 491 492 1 40 40 0 39 2
7 CodeIgniter 18183 3657 35663 308 0 0 0 18 18 0 6 2
8 boinc 1500 22237 124889 385 18 20 2 240 243 3 20 2
9 brefphp 2512 965 6867 145 7 7 0 5 5 0 0 0
10 upload-labs 2872 54 2649 129 25 25 0 43 43 0 11 3
11 cacti 1242 19825 169391 402 5429 6364 935 2397 2948 551 539 3
12 cashmusic 1166 60516 501394 1028 125 153 28 289 294 5 163 4
13 organizr 3914 56312 161912 293 10 10 0 46 46 0 1 1
14 unmark 1544 3151 40325 167 4 6 2 29 29 0 12 2
15 razor 1127 12572 91366 354 55 63 8 431 431 0 66 1
16 CodeIgniter4 4205 9602 110251 776 8 8 0 10 14 4 9 1
17 DVWA 6335 1555 21169 217 28 28 0 33 33 0 18 2
18 diskoverdata 1180 3598 34282 163 661 678 17 277 277 0 29 2
19 docker-labs 10842 23412 167147 1576 1444 1591 147 138 197 59 668 4
20 dolibarr 3339 55001 897702 8609 17249 19010 1761 13846 15044 1198 3860 6
21 drupal 3735 60469 834417 208 0 0 0 41 41 0 7 1
22 elementor 4519 8661 69504 102 4 4 0 20 20 0 18 4
23 facebook-php 3303 238 2794 115 5 5 0 2 2 0 0 0
24 yii2-fecshop 4952 17751 174633 118 4 6 2 162 162 0 11 2
25 loklak-wp 1511 28212 437612 1980 2191 2191 0 262 322 60 780 3
26 phimpme-drupal 1537 74385 699289 618 0 0 0 39 40 1 47 3
27 phimpme-wp 1534 9824 114294 1397 1224 1272 48 155 215 60 554 3
28 freescout 1563 36940 304065 229 0 0 0 56 56 0 14 1
29 FreshRSS 4542 2597 65362 168 29 29 0 82 82 0 3 1
30 Froxlor 1441 1395 60567 453 10 10 0 172 172 0 59 2
31 rhaphp 1078 15980 58617 201 5 9 4 54 55 1 15 2
32 Geocoder 3814 1453 17788 240 0 0 0 35 35 0 0 0
33 glpi 2691 13103 349606 3719 780 1925 1145 1223 1278 55 626 2
34 imgurl 1566 2542 36465 164 1 2 1 56 57 1 20 2
35 scws 1573 417 6722 121 12 36 24 105 105 0 6 1
36 VueThink 1347 1998 24799 119 19 53 34 50 50 0 21 6
37 icecoder 1352 1515 11963 228 192 207 15 137 137 0 21 1
38 php-webshells 1713 1114 67034 1986 2519 2541 22 2401 2435 34 133 2
39 openflights 1187 3189 10642 133 331 362 31 117 152 35 69 3
40 KodExplorer 5685 5197 58321 187 76 85 9 31 33 2 18 2
41 php-benchmark 1032 12335 155976 886 3 3 0 102 107 5 40 3
42 laravel 27494 23460 186354 443 0 0 0 2 2 0 1 1
43 Leantime 1279 2803 25268 386 29 29 0 37 37 0 34 1
44 siler 1124 1354 9518 175 0 0 0 0 0 0 0 0
45 laragon 2681 2532 49531 237 19 19 0 12 12 0 7 1
46 librenms 2801 14740 189156 597 39 103 64 969 990 21 158 6
47 Carbon-Forum 1822 3217 18462 113 33 38 5 85 85 0 20 3
48 Heimdall 4541 38854 500566 852 0 0 0 41 41 0 1 1
49 livehelperchat 1657 16291 259066 1026 455 801 346 615 791 176 335 3
50 Bonfire 1412 9957 94654 290 12 12 0 254 254 0 42 2
51 maccms10 1315 8759 79683 247 64 114 50 78 78 0 43 4
52 mailcow 5379 10489 117508 312 2201 2201 0 196 196 0 0 0
53 mantisbt 1430 4619 75258 101 48 113 65 273 286 13 197 4
54 matomo 16591 56514 278007 479 12 21 9 5 7 2 127 3
55 wp-heroku 1310 16100 364351 1579 1289 1447 158 214 271 57 671 4
56 microweber 2441 37534 223627 552 486 502 16 186 187 1 110 1
57 RPi-Jukebox 1027 689 7418 229 262 299 37 222 222 0 10 2
58 revolution 1303 13340 212276 261 4 5 1 72 96 24 36 3
59 Tieba-Cloud 1457 354 6752 106 155 161 6 154 212 58 41 2
60 nextcloud 19615 36516 374898 149 0 1 1 67 67 0 31 3
61 TeamPass 1423 36731 308672 190 100 102 2 1111 1112 1 46 2
62 php-saml 1041 3718 12467 126 0 0 0 3 3 0 29 1
63 opencart 6524 20323 140010 102 0 0 0 44 44 0 1 1
64 openemr 1950 43594 614196 5700 709 709 0 2165 2165 0 0 0
65 opnsense 2045 7011 90751 748 796 923 127 918 918 0 141 2
66 osTicket 2468 9694 186413 1372 152 569 417 546 549 3 284 2
67 owncloud 7785 141876 1142883 288 9 28 19 167 180 13 124 2
68 pfsense 3751 7660 144419 4501 841 944 103 312 330 18 382 3
69 codefever 2157 9893 84621 170 2 2 0 17 17 0 19 2
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70 phabricator 12264 42138 507825 119 0 0 0 24 25 1 22 1
71 cphalcon 10593 12477 136374 454 0 0 0 0 0 0 0 0
72 phoronix 1717 3491 69063 444 320 360 40 734 739 5 64 3
73 phpbb 1545 10958 373623 260 5 6 1 1051 1054 3 55 3
74 phpipam 1722 8574 81371 2633 392 3447 3055 2611 2711 100 640 5
75 phpmyadmin 6103 16629 169239 3082 9 30 21 417 433 16 353 5
76 AdminLTE 1539 889 9289 222 7 7 0 40 42 2 9 1
77 Piwigo 1971 9214 165970 743 263 314 51 572 581 9 200 2
78 PrestaShop 6544 39985 388000 762 153 181 28 333 351 18 125 2
79 PrivateBin 4191 1637 11487 182 4 4 0 1 2 1 8 1
80 q2a 1533 3052 39491 110 66 73 7 43 57 14 125 3
81 raspap-webgui 3682 6620 8196 263 16 16 0 81 81 0 6 1
82 chevereto 2573 2095 24861 451 33 58 25 243 246 3 76 3
83 roundcubemail 4481 5990 76416 507 105 114 9 340 407 67 191 3
84 SuiteCRM 3053 40136 453028 7669 1496 1979 483 4157 4620 463 1021 6
85 skratos 2444 2765 27039 102 0 0 0 6 6 0 3 1
86 CMS-Hunter 1560 3770 48828 337 401 401 0 20 20 0 18 2
87 vesta 2672 2512 38648 1571 146 146 0 91 113 22 173 4
88 sw-platform 1925 41493 523192 294 0 0 0 149 149 0 0 0
89 shopware 1282 51066 355113 179 0 5 5 2094 2094 0 14 1
90 dokuwiki 3476 7869 223130 569 13 17 4 57 65 8 57 1
91 symfony 27127 40468 825093 400 0 0 0 78 78 0 3 1
92 testlink-code 1162 42148 461497 977 734 1023 289 409 502 93 780 4
93 ThinkUp 3316 9827 124552 768 182 349 167 75 94 19 290 2
94 WDScanner 1616 476 5443 193 172 172 0 125 138 13 11 2
95 thinkphp 2856 3768 51134 325 90 154 64 18 18 0 21 2
96 typecho-fans 1428 24394 91606 232 15 27 12 154 158 4 131 6
97 vanilla 2548 25780 220101 217 2 34 32 102 102 0 30 3
98 adminer 5328 1612 26199 357 116 147 31 239 302 63 167 3
99 wordless 1405 7686 70934 105 53 53 0 35 35 0 6 2

100 valet-plus 1527 579 6141 100 0 0 0 11 13 2 2 1
101 Gazelle 1729 2277 71583 1361 2362 2391 29 1224 1808 584 99 2
102 mediawiki 3046 53017 618354 210 5 6 1 41 63 22 74 1
103 woocommerce 8062 20420 252407 968 0 0 0 68 68 0 204 3
104 WordPress 16450 44715 287812 1806 192 222 30 149 167 18 273 4
105 custom-fields-pro 1112 5458 18635 123 0 0 0 1 1 0 0 0
106 PicUploader 1017 67475 688682 184 5 5 0 390 402 12 26 1
107 FruityWifi 2026 4099 18112 186 63 63 0 31 32 1 2 1
108 yii 4830 11056 743321 1015 2 7 5 21 21 0 13 1
109 yii2 13966 11888 117759 431 0 0 0 3 3 0 3 1
110 YOURLS 8268 2548 42477 179 44 61 17 39 50 11 62 3
111 pikachu 2264 204 6934 223 211 211 0 71 76 5 39 2
112 zoneminder 3744 14517 213544 1531 219 323 104 334 688 354 313 2
113 skycaiji 1578 17181 137508 251 44 102 58 148 156 8 97 4
114 dzzoffice 3499 28897 150297 328 501 2562 2061 679 780 101 322 5

SUM 448K 1.9M 21.4M 85K 49231 61583 12352 50217 54985 4768 17308 251

Project info: Stars in Github, num of functions, PHP line of code, num of Sources. XSS, SQLI and FileM Discoveries: num of Comm_2 alerts (before,
after and diff), num of Comm_1 alerts (before, after and diff). Our approach - other info: num of stitches and the iterations till no more stitches.
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