
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Spying through Your Voice Assistants:
Realistic Voice Command Fingerprinting

Dilawer Ahmed, Aafaq Sabir, and Anupam Das, North Carolina State University
https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-dilawer

Spying through Your Voice Assistants: Realistic Voice Command Fingerprinting

Dilawer Ahmed
North Carolina State University

dahmed2@ncsu.edu

Aafaq Sabir
North Carolina State University

asabir2@ncsu.edu

Anupam Das
North Carolina State University

anupam.das@ncsu.edu

Abstract
Voice assistants are becoming increasingly pervasive due to

the convenience and automation they provide through the

voice interface. However, such convenience often comes with

unforeseen security and privacy risks. For example, encrypted

traffic from voice assistants can leak sensitive information

about their users’ habits and lifestyles. In this paper, we

present a taxonomy of fingerprinting voice commands on the

most popular voice assistant platforms (Google, Alexa, and

Siri). We also provide a deeper understanding of the feasibility

of fingerprinting third-party applications and streaming ser-

vices over the voice interface. Our analysis not only improves

the state-of-the-art technique but also studies a more real-

istic setup for fingerprinting voice activities over encrypted

traffic. Our proposed technique considers a passive network

eavesdropper observing encrypted traffic from various de-

vices within a home and, therefore, first detects the invoca-

tion/activation of voice assistants followed by what specific

voice command is issued. Using an end-to-end system design,

we show that it is possible to detect when a voice assistant is

activated with 99% accuracy and then utilize the subsequent

traffic pattern to infer more fine-grained user activities with

around 77-80% accuracy.

1 Introduction

Voice assistants offer convenience by automating various day-

to-day activities through voice commands (e.g., searching the

web, making online purchases, etc.). Furthermore, voice assis-

tants enable the automation of home appliances through voice

commands. Today, around 42.1% of the US population uses a

voice assistant [26] and this number is expected to increase in

the next year [18]. Amazon Alexa, Google Assistant, and Siri

are the top three most popular consumer voice assistants [28].

Amazon Alexa is the market leader, making up more than half

the smart speaker sales by brand in 2022 [49].

However, such convenience also poses new security and

privacy risks. The general perception is that any communica-

tion between a user and their voice assistant remains private

over the internet and is not visible to any party that is not

directly concerned in relation to the request. In other words,

any passive network observer, local or remote, should not be

able to infer high-level user commands just by passively view-

ing the encrypted network traffic. Any amount of information

leaked is a weakness in this assumption and means that a pri-

vacy leakage has occurred, which depending on the amount

of information leaked, can be a serious privacy threat.

Voice assistants, generally, have different types of re-

sponses to different types of commands. Some commands

require built-in responses, while others require a generic web-

searched response. Some voice assistants, such as Amazon

Alexa, also provide third-party functionality called "skills,"

which are analogous to the concept of apps on mobile de-

vices. Third parties develop most of the available skills in

the Amazon skill store to extend the voice assistant’s capa-

bilities. Researchers have recently looked at analyzing the

skills ecosystem and have identified various flaws in the vet-

ting process [31] as well as potential malicious skills them-

selves [30, 48]. Since the primary mode of interaction with

voice assistants is through voice commands, prior work has

also shown that, under ideal settings, fingerprinting simple

voice commands is possible [10,29,33,60]. The latest work by

Mao et al. [33] shows that Alexa voice commands can be fin-

gerprinted with around 93% accuracy, highlighting the threat

of a passive adversary on user privacy. However, existing

works have considered an ideal setting where the adversary

can sniff traffic on the local network. In the real world, such a

vantage point is hard to achieve for home networks. Further-

more, existing works only consider isolated traffic from voice

assistants, thus, do not consider an end-to-end analysis.

In this paper, we consider a threat model in which the ad-

versary is not on the local network and has no direct way of

knowing the exact time when any activity was active on the

voice assistant. We consider the adversary outside the home

network/router. While being more realistic, this threat model

brings the challenge of not being able to filter out only the

desired device traffic from all the home traffic due to the use

of NAT, which is standard on home networks. To address the

USENIX Association 32nd USENIX Security Symposium 2419

problem of filtering device traffic and inferring the time of

activity, we exploit the fact that the traffic corresponding to

the voice assistant activity (i.e., voice command) will be ob-

served on the network immediately following the invocation

of the device. So, we first train a model to infer, from the live

network traffic, when a voice assistant device is activated, i.e.,

when the wake word is triggered. We then probabilistically

filter the immediate subsequent network traffic to filter out the

flows unrelated to the voice assistant and use the remaining

flows to fingerprint the actual voice command. We explore

additional network traffic-level features that were not consid-

ered by previous works. We also expand our work to include

streaming commands and skills. Specifically, we focus on

popular and privacy-sensitive activities. Furthermore, we an-

alyze three popular voice assistant platforms to ensure our

approach is generalizable across platforms.

In particular, we seek to answer the following research

questions RQ1: Can we fingerprint the activation of voice

interface across different voice assistant platforms? Detect-

ing the time of invocation is not just an essential first step in

fingerprinting voice commands but also information leakage

in itself. RQ2: Can we fingerprint voice commands across

different voice platforms as well as different forms of voice

commands (e.g., skills and streaming commands)? We finger-

print Alexa, Google Assistant, and Siri under realistic settings

to understand how the machine learning model’s performance

varies across voice assistants. We also study different types

of voice commands, such as invoking a streaming service

or third-party skills. RQ3: Can we build an end-to-end fin-

gerprinting approach under a real-world setting? By first

inferring the invocation of the assistant and then fingerprint-

ing the activity, we can design an end-to-end solution that can

be deployed to fingerprint voice assistants in the wild.

To answer these questions, we collect network traffic for

different voice commands using three popular voice assis-

tants (Google, Alexa, and Siri). We also collect traffic for

streaming services and skills for Alexa. In addition, to an-

alyze the end-to-end performance in the presence of noise,

we also collect a dataset for Alexa, which contains a mix of

skills, streaming commands, and simple commands with ad-

ditional background noise traffic from a smartphone, laptop

and smart TV to emulate a noisy home network. Next, we

train lightweight machine learning models to detect the ac-

tivation or invocation of voice assistants from the encrypted

network traffic and use the following traffic to fingerprint the

actual voice command. In summary, we make the following

contributions:

• We show that adversaries can fingerprint voice assistant

activities on all three major voice assistant platforms im-

proving the state-of-the-art [33] with AutoML [9, 19] and

novel features. We also consider a more realistic setting

where the adversary passively monitors all traffic from a

smart home, not just the local traffic from a voice assistant.

• We explore additional features using information from

flows, bursts, protocols, and endpoints to enhance classifier

performance. Compared to existing works [33, 60], such

features were often ranked higher by multiple feature im-

portance metrics such as ANOVA and Mutual Information.

Furthermore, when comparing with existing works, we see

a performance improvement in the range of 2% to 69%.

• We introduce an end-to-end approach, where we first de-

tect wake-word invocation from network traffic using a

lightweight machine learning classifier and then use the traf-

fic that follows to predict the actual command with around

77-80% accuracy in the presence of real-world background

noise from other devices using the same network.

• We present, to our knowledge, the first study of fingerprint-

ing streaming commands and third-party apps running on

top of voice assistants. We have publicly released our an-

notated data and models for the research community.1

2 Related Works

Inference through Network Traffic. There is a large body

of work in website fingerprinting, which refers to identifying

the website a user visits by analyzing the network traffic

generated while visiting a given website [12,21,23,40,41,53,

65]. Researchers have also looked at analyzing the encrypted

traffic generated by mobile apps to infer not only the app used

but also the specific functionality executed on the app [5, 7,

15, 44, 51, 56, 59]. Others have tried to infer contents from

encrypted VoIP [63, 64], and video-streaming traffic [46, 52].

Researchers have also shown that it is possible to infer the

SSH passphrase by exploiting the timing delays between

subsequent IP packets [55].

IoT Device & Activity Fingerprinting. Researchers have

used network traffic to identify IoT devices utilizing vari-

ous approaches, including DNS traffic, DHCP traffic, and

HTTP headers [43]. Supervised and unsupervised learning-

based approaches have also been used to identify IoT de-

vices [34, 36, 54]. Saidi et al. [50] proposed methods of de-

tecting IoT devices at scale. Ahmed et al. [6] presented the

largest to-date study of IoT device fingerprinting in which

they consider multiple factors such as fingerprinting across

time, region, and different datasets and under different con-

straints. There has also been research to infer the activities

being performed on IoT devices. Copos et al. [16] used Nest

Thermostat and Nest Protect to infer their activity and us-

age patterns from network traffic. OConnor et al. [39], and

Triminanda et al. [57] used packet size and direction to infer

activities on IoT devices. Apthorpe et al. [8] used traffic vol-

ume and shape-based features to infer device activity. Acar et

al. [4] identify the state and actions of multiple IoT devices

using different protocols such as WiFi, ZigBee, and BLE.

Voice Command Fingerprinting. Kennedy et al. [29] in-

1https://github.com/dilawer11/va-fingerprinting

2420 32nd USENIX Security Symposium USENIX Association

https://github.com/dilawer11/va-fingerprinting

Setup details Kennedy et. al. [29] Batyr et. al. [10] Wang et al. [60] Mao et. al. [33] Our

Features used

Packet timing # # #

Packet sizes

Traffic direction

Burst-based # # # #

Flow-based # # # #

Ports-based # # # #

IP/domain-based # # # #

Protocol-based # # # #

Voice Alexa

Assistant Google Assistant # # #

Platforms Siri # # # #

Command types

Simple

Streaming # # # #

Skills # # # #

Adversary type
Local

Non-local # # # #

Assumptions
Filtered traffic #

Aligned traffic #

Analysis

Invocation Detection # # # #

Activity Detection

End-to-End # # # #

Table 1: Comparison with existing work on voice command fingerprinting. Symbols convey the following meanings –#: not considered,G#: partially considered,

 : considered.

troduced the voice command fingerprinting attack on Alexa.

They collected a dataset of 100 commands and achieved an

accuracy of 33.8%. Another work using this dataset used

locality-sensitive hashing to improve the accuracy of the ini-

tial work to 42% [10]. In a follow-up work to their original

work [29], Wang et al. performed open-world analysis, includ-

ing Google Home Assistant, and improved the accuracy to

92.89% [60]. Mao et al. [33] created a novel deep learning

model and included timing-based features to improve the ac-

curacy on the same dataset to 93.36% utilizing features such

as direction, time, and size of packets.

Distinction from Prior Work. Our approach is different as

we infer user activity within a time window of one minute

and engineer various features within this window to extract

as much information as possible, including simple and multi-

valued features. We extract many new features, such as proto-

cols, hostnames, and flow-based statistics. We also consider a

more realistic attack model where an adversary is not on the

local network but rather remotely observes network traffic. We

use the dataset mentioned above to benchmark our approach

and show that by utilizing our features, we can improve the

accuracy to 95.70% while using a stricter set of assumptions.

Prior works also do not consider invocation detection for any

platform and also do not consider activity detection for Siri.

To the best of our knowledge, we are the first to consider

different types of commands and skills. Previous research on

voice command fingerprinting only focuses on simple voice

commands, whereas we focus on both commonly used and

privacy-sensitive commands which can reveal sensitive infor-

mation about the user. Table 1 provides a comparison with

related works.

3 Methodology and Data Collection

3.1 Threat Model

The threat model consists of an adversary, which can passively

observe and capture the network traffic. The adversary’s ac-

cess point does not require them to be on the local network

as long as they have access to all the traffic from the target

device. Furthermore, the adversary and target device can be

separated by a NAT, meaning that the adversary cannot use a

simple IP filter to isolate the target device traffic from other

devices on the network. As a result, the traffic captured by

the adversary can have noise from other devices. The adver-

sary, however, cannot modify packets or decrypt any standard

encryption used in certain communication protocols such as

TLS. Any plain-text protocols can, however, be sniffed and

used for analysis (e.g., using DNS traffic for passive DNS

attack). Adversaries’ other capabilities include deploying its

own data collection setup, as described below, and using the

data to analyze and train the required models.

3.2 Proposed Approach

To detect activity or commands on the voice assistant, we first

need a mechanism to infer when a voice assistant is activated.

We can then use this information to isolate the traffic related

to the command and fingerprint the actual voice command.

To that end, we use a machine learning-based binary classi-

USENIX Association 32nd USENIX Security Symposium 2421

2422 32nd USENIX Security Symposium USENIX Association

Dataset
VA Type of Commands

Noise
Classes

Platform and Description (Samples)

simple_100_alexa Alexa
Simple voice

No 100 (100)
commands

stream_15_alexa Alexa
Streaming service

No 15 (100)
invocation commands

skills_100_alexa Alexa
Multiple skill

No 100 (100)
invocation commands

simple_50_google
Google Simple short

No 50 (100)
Assistant voice commands

simple_50_alexa Alexa
Simple short

No 50 (100)
voice commands

simple_50_siri Siri
Simple short

No 50 (100)
voice commands

mix_100_alexa Alexa
Simple, skills and

Yes
45 +40 +15

streaming commands = 100 (100)

Deep_VC [29]
Alexa Simple short

No 100 (1,500)
Google voice commands

other * N/A * N/A

Table 2: Characteristics of different datasets we collected for our study.

Web interaction scripts generated background traffic as a source of noise.

other datasets were collected to only evaluate a certain scenario and we have

described these datasets as and when needed.

referred to as apps for the Alexa ecosystem are typically de-

veloped by third parties to provide added functionality. An

example of a skill could be a bank skill that enables users

to fetch their bank balance [3] or a game skill that lets users

play the Jeopardy game [24]. We label all different com-

mands which can launch a skill by the identifier of that skill.

We capture traffic from 100 simple commands, 15 streaming

commands, and 100 skills each for 100 samples to create a

total of 215×100 = 21,500 samples.

The command selection process consisted of selecting pop-

ular or sensitive commands. We followed the steps that a

general user would adopt to select popular commands. For

example, utilizing platform-specific search engines and using

top-rated skills. For selecting sensitive commands, we focused

on commands/skills that leak a user’s gender, religious belief,

sexual orientation, financial interest, or political leaning.

Commands across other voice assistant platforms. These

datasets include simple voice commands from all three plat-

forms we consider. We capture traffic from 50 simple voice

commands on each platform with 100 samples for each com-

mand, totaling 50× 100 = 5,000 samples. The commands

between the voice assistants mostly overlap, however, some

commands varied between assistants to accommodate for

some assistants not supporting certain commands or not re-

sponding correctly. For simple voice commands, we again

focus on commands which can leak sensitive information

about users’ lifestyles.

Alexa traffic with background noise. The third type of

dataset we collect facilitates a realistic end-to-end experiment.

We create a command set with a mix of streaming commands

and skills to compose a total of 100 classes (15 streaming com-

mands, 40 skills, and 45 simple voice commands). We also

connected other devices to the same router to emulate a realis-

tic home network with traffic from other devices overlapping

with traffic from the voice assistant device. We create two

web-crawling scripts which generate a high amount of traffic.

One script repeatedly visits the top Alexa 1,000 domains and

clicks on the page several times at random locations to gener-

ate more randomized traffic. The other script repeatedly opens

the Amazon web page and does similar random clicking a few

times on each visit. This is to remove any potential bias due

to amazon.com domains only being accessed by the Alexa

device. The resulting dataset was approximately 12 times

larger than the dataset with only simple Alexa commands.

This shows that the amount of noise added is considerable,

and any system that does not consider noise should adversely

affect the classifier’s performance.

Other public datasets. We also use the "Deep VC Fin-

gerprinting" dataset [29], which was also used by existing

works [10,29,33,60] to benchmark our approach and compare

it to previous techniques for fingerprinting voice commands.

The dataset consists of 100 simple commands selected em-

pirically based on a mixed methods approach of selecting

top commands from Google Search, domain knowledge, and

personal experience. Each voice command was invoked 1,500

times to generate a total of 150,000 samples. Five different

voice templates were used for each command (text-to-speech),

and each voice has 300 samples collected through it. This

dataset, however, lacks validation of commands to ensure

the voice assistant properly perceived the command and the

invocation attempt did not lead to a false invocation.

3.5 Data Pre-processing

We use tshark [58] to convert the PCAP files to CSV for-

mat for further processing. Like most other devices, voice

assistants use standard encryption techniques to encrypt most

traffic between the device and internet endpoints. Thus, the

communication content itself is not observable over the chan-

nel. Some protocols, however, are not encrypted and are plain

text by default, e.g., DNS. Therefore, we extract only the

header level information for all packets other than DNS, i.e.,

packet length, IP addresses, ports, flags, time, etc. We also ex-

tract the query Hostname and response IP addresses for DNS

packets to create an IP address to Hostname mapping. This

process is similar to passive DNS. Utilizing the IP address –

Hostname mapping, we supplement our packet information

by adding a hostname field. We ignore and remove any traffic

not based on IP protocol from our captures, e.g., ARP. We also

perform some additional cleaning to remove malformed pack-

ets from the dataset. Finally, we store the processed packet

files (header information for each packet and the added infor-

mation) in CSV format.

USENIX Association 32nd USENIX Security Symposium 2423

4 Invocation Detection

Invocation detection refers to identifying when a smart voice

assistant device was activated or invoked. Invocation detec-

tion is integral to any efficient real-world attack on voice

assistants because the adversary would not have a trivial or

straightforward method to find when the user invoked a voice

assistant just by observing the network traffic. So invocation

detection would help pinpoint the time of invocation, which

can then be used for activity detection by focusing on traf-

fic following the user request to the voice assistant. Hence,

invocation detection is the first step in our attack.

Users invoke or activate the voice assistant by uttering the

wake word of the corresponding voice assistant. For example,

"Alexa" is the default wake word on Amazon Echo devices.

Apple’s Siri assistant, by default, responds to "Hey, Siri". "Ok,

Google" and "Hey, Google" are the default wake words on

Google Assistant. Voice assistants remain in their idle state

until they hear the wake word, which triggers them to start

recording and communicating with the backend. This network

communication results in a significant uptick in traffic imme-

diately following the utterance of the wake word. Figure 2

shows an example of this uptick and spike in network traffic

immediately following an invocation.

In a real-world attack, the invocation detection process

should be quick, lightweight, and efficient. A complicated and

complex model can waste significant computing resources, so

we opt for only a few features and relatively simple machine

learning models. To achieve this, we opted for a prediction

every 2 seconds as this allows us to be precise enough with

predicting invocation while also balancing the load of pre-

diction calls on the underlying hardware. We created sliding

windows of width 4 seconds over the continuous network traf-

fic, which slides 2 seconds (corresponding to one shift every 2

seconds). The value 4 for window_ width was selected experi-

mentally by evaluating different values such as 2, 4, 6, and 10.

We found that across all three platforms, window_width=2

gave the worst performance (around 70% accuracy) while

window_width=4 gave the best performance (around 99% ac-

curacy). Increasing the window_width to 6 and 10 decreased

the accuracy by 1% and 4%, respectively. We mark each

window as having an invocation (1 or positive class), if we

invoked the voice assistant in the first 2 seconds (out of 4 sec-

onds) of the window. Otherwise, we mark it as not having an

invocation (0 or negative class). The goal is to teach the classi-

fier to differentiate between an invocation and idle state. Thus,

while creating training data, we skip the traffic after a positive

class label for a specific time interval. This "skipped" traffic

is used for activity detection as it corresponds to an activity

or voice command. Including this traffic as ‘non-invocations’

or negative class samples will lead to false positives as the

voice assistant would not be in an idle state. We then extract

features from each of these windows.

4.1 Feature Extraction & ML Model

Features Used. We saw that each voice assistant gen-

erated a sudden network traffic spike to a particular set

of domains for each invocation. For example, saying the

wake word to Alexa resulted in a sudden spike of network

activity to two domains, namely, unagi-na.amazon.com

and avs-alexa-4-na.amazon.com. Using UDP protocol,

Google Assistant communicated with www.google.com. Siri

contacted dejavu.apple.com using TCP protocol. Figure 8

in Appendix B highlights the top five endpoints contacted in

the four-second window of an invocation for all three voice

assistants. The figure confirms the unique selected domains

(in orange color) for all three voice assistants.

We found that Alexa sends, on average, more traffic to

device-metrics-us.amazon.com, but is only present in a

few of the windows and hence not a good candidate. Con-

versely, for Google Assistant, 8.8.8.8 is present in all in-

vocations but lacks in the amount of network traffic in each

window, and this is Google’s DNS domain and hence also

not suited. On the other hand, the domains we selected are

present in all the data windows and send/receive a significant

amount of traffic. We, therefore, compute and extract the total

size of incoming and outgoing packets to/from these selected

domains as features to detect invocation. As a result, we have

two to four features for each platform corresponding to the in-

coming and outgoing traffic size for the selected domains. For

example, in the case of Alexa, we have four features, i.e., total

output and input size for avs-alexa-4-na.amazon.com and

the total output and input size for unagi-na.amazon.com.

Similarly, for Siri, we have two features, i.e., total output and

input size for dejavu.apple.com.

To measure the effectiveness of these features and under-

stand if other applications (e.g., web activity) would conflict

with these features and potentially cause false positives, we

collected additional traffic to these domains through various

sources such as web browsers, mobile apps etc. We plot the

scatter plot of these features in Figure 3. We see that traffic

from voice assistants to these domains significantly differs

from the traffic generated to these domains using other ap-

plications. For example, voice assistants usually send more

outgoing traffic (as they send voice recordings) and receive

less incoming traffic. It was also interesting to note that even

mobile versions of these voice assistants have varying traffic,

as Siri uses less traffic to these domains on the mobile version.

In contrast, the Alexa app uses more traffic to these domains

and does not use the unagi-na.amazon.com. In our case, the

Alexa app used avs-alexa-13-na.amazon.com instead of

avs-alexa-4-na.amazon.com. However, we consider these

domains to be the same as they are most likely used for load

balancing across platforms. Thus, an attacker can use such

unique domains to segregate network traffic.

Machine Learning Model. We compare the performance of

multiple machine learning models such as AdaBoost classifier,

2424 32nd USENIX Security Symposium USENIX Association

USENIX Association 32nd USENIX Security Symposium 2425

http://google.com, http://apple.com websites and per-

formed random user interactions. Raw PCAP size without traf-

fic from other devices is about 15MB, and with background

traffic, it was about 7.2GB. We extract the same features from

this ‘idle’ traffic dataset and use the already trained model to

test against this ‘idle’ traffic trace. We achieved perfect results

of 100% accuracy across the three voice platforms with or

without noise.

We calculated the time-to-predict, which measures how

long it takes to predict an output label given the raw input

data, to be, on average, 9.91 ms across all three voice assistant

platforms. The time-to-predict counts the total time from

converting the raw data to CSV, cleaning and preprocessing,

extracting features, and finally using the trained ML model

to predict a label on a single-core CPU with no additional

hardware accelerators.

Takeaway. We show that inferring the activation of a voice

assistant interface through encrypted network traffic is practi-

cally feasible across the three popular platforms. We achieve

near-perfect results for all three voice assistants. We also show

that our results do not suffer from the base-rate problem since

traffic in an idle state is dissimilar from traffic immediately

following an invocation and, thus, easy to distinguish by a

classifier. We also show that background noise does not sig-

nificantly affect the performance of detecting the invocation

of the voice assistants.

5 Activity Detection

Activity detection is the process of inferring the actual com-

mand or application (i.e., skill) executed. The workflow to use

a voice assistant begins with invoking the voice interface with

the wake word and following it with the phrase relevant to the

voice command. To achieve this, we extract a fixed duration

of traffic, following and including the invocation of the device.

Consequently, any traffic before the invocation or after the

command expires is unrelated to the command or skill and is

typically a source of noise. Such traffic can be eliminated as it

usually is general device traffic, e.g., keep-alive connections,

pings, and device status messages.

To set an optimal threshold of the amount of traffic or in-

terval to consider for fingerprinting commands, we have to

consider the run time of the command. Different commands

and skills can have diverse run times. For example, simple

commands usually only last for up to 30 seconds, but stream-

ing commands can often run until explicitly stopped (e.g.,

Spotify). In such cases, finding an optimal value for window

size would depend on the command at hand. Considering

multitiple different traffic cutoffs (e.g., one, two, and five min-

utes of traffic), we found that increasing this window size

from thirty seconds to two or five minutes would increase the

model’s performance on streaming commands, but it did not

help identify simple commands. To balance the tradeoff, we

use a window size of one minute.

5.1 NAT Issue

Since there might be a NAT active on the home router, the

adversary would not inherently be able to separate all the traf-

fic from an Amazon Echo (target) device from other devices

on that network. This is due to how NAT changes the IP ad-

dress from individual devices to the router’s public IP address,

and so, for an out-of-local network observer, all the traffic

would be seen coming from the router. An adversary would,

however, be able to separate one flow of traffic from another

because NAT does not change external IP, port, or protocol.

Therefore, we define a flow as all traffic with the same set

of IPs, ports, and protocols. For IP protocols that do not use

ports, we set the port number to 0. We also consider flows

to be direction agnostic, i.e., we do not distinguish between

incoming and outgoing flows (between the same endpoints).

We set the inactive flow timeout, which is the time after a

flow is considered to have expired, to 15 seconds. Active flow

timeout is set to one minute, the same as our activity detec-

tion window, since we do not consider traffic longer than a

one-minute duration. Note that our definition of flow does

not depend on the flow/connection definition of any particular

protocol, so if a TCP connection ends and another connection

to the same endpoint (IP, port) starts (e.g., new TCP hand-

shake) within 15 seconds, we consider them as a single-flow

instead of two separate flows.

5.2 Separating Voice Assistant Traffic

To isolate the traffic associated with voice assistants from

traffic generated by other devices, we use the fact that voice

assistants would generate activity-related traffic only after

it is invoked. Since we can only see flows without know-

ing which device inside the home network they belong to,

our goal is to filter the flows related to voice assistant activ-

ity from the others. Traffic related to voice assistant activity

could manifest either as a new flow or part of an established

flow. The new flows, generally, would start immediately after

the invocation of the voice assistants, and we can capture

the flows of interest by capturing traffic from all flows that

‘begin’ in the first m seconds following the invocation and

label these as new flows, where m is a variable time threshold.

This allows us to capture only the more relevant flows to the

activity rather than the noisy flows from other devices. The

already active flows would be active before the invocation of

any particular activity and would therefore be activity agnos-

tic, generally contacting company-specific end-points, e.g.,

device-metrics-us.amazon.com to gather information

about device metrics. To capture traffic from relevant active

flows, we created a list of company-specific domains for each

voice assistant that was frequently contacted in traffic traces

across all commands, e.g., avs-alexa-4-na.amazon.com,

unagi-na.amazon.com, api.alexa.com, etc. for Amazon

Alexa. We capture all the traffic to these end-points and label

2426 32nd USENIX Security Symposium USENIX Association

USENIX Association 32nd USENIX Security Symposium 2427

Dataset Description Wang et al. [60] Mao et al. [33] Our
Labels

Assistant Type of activity Dataset Accuracy Accuracy Accuracy Precision Recall

Alexa Simple commands DeepVCFingerprint [60] 89.00% 90.36% 95.70% 95.80% 95.70% 100

Alexa Simple commands simple_100_alexa 46.30% 52.20% 80.30% 80.58% 81.44% 100

Alexa Skills skills_100_alexa 29.22% 36.34% 82.76% 85.33% 82.42% 100

Alexa Streaming stream_15_alexa 29.75% 52.45% 99.39% 99.30% 99.34% 15

Alexa Simple commands simple_50_alexa 38.40% 42.80% 87.70% 87.46% 88.20% 50

Google Simple commands simple_50_google 89.60% 90.60% 92.67% 92.66% 92.96% 50

Siri Simple commands simple_50_siri 77.40% 83.09% 92.80% 92.91% 93.18% 50

Alexa All types with noise mix_100_alexa 50.79% 58.70% 81.33% 81.28% 81.45% 100

Table 4: Activity detection performance for various datasets. Results show that all three platforms investigated more or less leak information about the types of

commands they execute. Streaming commands, in particular, are easier to fingerprint. Our method also outperforms existing approaches.

5.5 Comparison with Existing Works

To evaluate our approach and set a benchmark for perfor-

mance, we compare it to existing works using the Deep VC

Fingerprinting dataset [60]. Previous works [10, 29, 33, 60]

have all used this dataset for their evaluations. In particular,

we use the closed-world Amazon traces from the dataset with

a total of 150,000 samples (1,500 each for 100 simple voice

commands). Since the dataset simply contains separate PCAP

traces for each of the individual commands and does not mark

the timestamp of invocation, we cannot use this dataset for

invocation detection or track the flows that start within a cer-

tain time period after invocation. We can, however, consider

the PCAP files to contain all flows relevant to the voice com-

mands and perform voice command fingerprinting to set a

benchmark for this dataset. Table 4 compares the performance

on fingerprinting 100 closed-world Amazon Echo commands

from previous works. On this dataset, our model obtains an

accuracy of 95.70% using the same train and test split (90:10

for training and testing), which is an improvement over the

current state-of-the-art reported accuracy of 93.36%. This

shows that our model outperforms the current state of the art,

and thus we set a baseline for our approach. We will also

compare existing approaches on our datasets to demonstrate

significant improvement over the existing state of the art. 4

Previous works have only considered individual packet size,

direction, and timing-based features. However, endpoints, pro-

tocols, and flow-level information can provide additional in-

sights, such as which domains are being contacted in each

activity and the distribution of traffic per flow/burst rather than

the overall traffic. This additional information can provide the

classifier with additional context and make the classifier more

robust in the presence of background noise. For example, acti-

vating a certain Alexa skill might contact an endpoint unique

4For Mao et al., [33] we tried our best to replicate their proposed deep

learning models, but some parameters were not provided (e.g., input dimen-

sion, learning rate, optimizers, and activations), and thus we were not able to

exactly replicate their performance. Similarly, for Wang et al., [60], we had a

performance drop of 2-3% compared to the reported performance. However,

as we show on our realistic datasets, we outperform by around 2% to 69%.

to that skill or a set of skills and can identify the skill devel-

oper’s backend. Various feature importance/ranking metrics

such as ANOVA, Mutual Information and Random Forest’s

Gini index also rank these additional features (e.g., flow-based

and burst-based features) more frequently in the top 10 fea-

tures. More details available in Table 7 in Appendix C. The

usefulness of such features becomes even more evident when

we evaluate existing approaches on our dataset containing a

more realistic setup containing background noise. In fact, we

obtain a performance improvement in the range of 2% to 69%

compared to previous works. On average, across all datasets,

we obtain a performance improvement of 25.76% from Mao

et al. [33] and 32.77 % from Wang et al. [60]. The results

for each dataset are shown in Table 4. Thus, our approach

outperforms the current state of the art and establishes a new

baseline in a more realistic setup.

5.6 Comparing Voice Assistant Platforms

To compare the extent to which different voice assistant plat-

forms are vulnerable to voice command fingerprinting, we

evaluated three platforms (i.e., Alexa, Google Assistant, and

Siri). We used the traffic trace of 50 commands collected from

Nest Mini (Google Assistant), HomePod mini (Siri), and a set

of 50 similar commands for Alexa. The commands were sim-

ilar for each dataset, and we only made minimal changes to

the command set when an assistant did not properly respond

to a command, i.e., did not respond at all or replied with a

non-trivial or unexpected response.

Table 4 shows the performance across all three voice assis-

tants. We see that all voice assistants are similarly vulnerable

to voice fingerprinting attacks. The model performs slightly

better for Google Assistant and Siri compared to Alexa. We

found that most inaccuracies are due to commands that gener-

ate a similar response from the voice assistants, e.g., setting

and cancelling alarms are often mislabeled. We found another

source of errors to be the commands which initiate an internet

‘web’ search by the smart speaker, and the response is usually

generic, e.g., "Here is what I found on the web for..."

2428 32nd USENIX Security Symposium USENIX Association

USENIX Association 32nd USENIX Security Symposium 2429

Skills Pair Count

skill: Daily Evening Sikh Prayer* ↔ Morning Sikh Prayer* 16

skill: Dog Facts ↔ Unofficial Chuck Norris Facts 9

skill: Buddha Sense ↔ Me an Interview Question 8

skill: Cat Facts ↔ Dog Facts 7

Skill: Rain Sounds* ↔ Bird Sounds* 7

Simple Command Pair Count

where are the closest therapist? ↔ where can I find a divorce lawyer 13

tell me a Hannukah joke ↔ tell me a halloween joke 10

what are good date spots around ↔ where is the closest sperm bank? 9

how to deal with diabetes ↔ where can I find a divorce lawyer 9

add bananas to my shopping list ↔ remove milk from my shopping list 8

Table 5: Top misclassified pairs in Alexa skills and commands. Skills marked

with ‘*’ have same developer.

lab (as listed in Table 2) to fingerprint the activities from this

new dataset. The model achieved an accuracy of 83.81% with

a precision and recall of 83.52% and 83.87%, respectively.

We see a slight drop of 3.89% when trained and tested on

the same dataset (the accuracy was 87.7% as shown in Ta-

ble 4). The errors follow a similar pattern where commands

of similar nature are mislabeled as each other. For example,

the top classification error was the command “what are good

date spots around" being labeled as “what are good hotels in

Las Vegas". This evaluation shows that the model general-

izes quite well and can be deployed across ISPs and devices

manufactured by the same vendor.

Takeaway. We show we can fingerprint sensitive voice com-

mands effectively and with high accuracy across all three

voice assistant platforms. Further, we show that different types

of voice commands and skills have slight differences in how

easy/difficult it is to fingerprint them. Similar commands and

skills have similar traffic and can be easily wrongly labeled

as each other. Finally, we demonstrate that our approach gen-

eralizes across different networks and devices.

6 End-to-End Detection

We design an end-to-end classification system 5 for real-world

analysis and inference of traffic from a voice assistant. The

system trains separate invocation and activity detection mod-

els as described in the previous sections. Figure 7 highlights

the overall process. The end-to-end system consists of a soft-

ware control loop that captures 2 seconds of network traffic

from the router and stores it in a queue-like structure. It then

uses 4 seconds of traffic and extracts invocation detection-

related features and provides them to an already trained invo-

cation detection model. The invocation detection model then

provides a binary prediction of invocation detected or not. If

no invocation is detected, the loop goes to the next iteration

and provides the next 2 seconds of traffic. However, if an

invocation is detected, the next 56 seconds of traffic is used

to compose a traffic window of 60 seconds to infer the actual

5A short demo is available at: https://youtu.be/2Dv8cSkvC1g

activity on the voice assistant as described in Section 3. Using

the one-minute traffic, we perform flow filtering to extract the

fixed and new flows. Next, we extract the features for activity

detection from these flows and use the pre-trained AutoGluon

Tabular [19] classifier to predict the activity.

For evaluation, we used the mix_100_alexa dataset, which

has traffic from a combination of 100 different Alexa com-

mands and skills. The dataset contains a mixed total of 100

different simple voice commands, streaming commands, and

skills. The dataset also contains background traffic generated

randomly from desktop devices, which will overlap with traf-

fic from Amazon Echo (Alexa voice assistant) and create

noisy traffic. This allows us to evaluate the performance of

both the end-to-end model and the effectiveness of the flow-

separating technique to differentiate flows from the voice

assistant to the flows from other internet-connected devices.

We used the first 80% data to train and optimize the classifier

and used the latter 20% to evaluate the performance. We did

not use the 5-fold cross-validation or random sampling to

ensure the results were not biased due to temporal factors

such as training samples temporally sandwiched between the

test data samples.

To first isolate and understand any difference in perfor-

mance due to background noise, we evaluate invocation de-

tection and activity detection separately. Using the Random

Forest classifier for invocation detection, we got 98.70% accu-

racy, 97.77% precision, and 99.68% recall, respectively. For

activity detection, we achieved 81.33% accuracy, 81.28% pre-

cision, and 81.45% recall, respectively. This shows that the

system performs well due to our flow filtering process, even in

the presence of relatively high background noise. Finally, we

combine the two models (as shown in Figure 7) and create our

end-to-end system. The end-to-end system has an accuracy,

precision, and recall of 79.91%, 80.34%, and 79.30%, respec-

tively. The average time-to-predict if Alexa was invoked is

9.9 ms (i.e., only the invocation detection model). However,

the average time to predict the exact voice command requires

891 ms (excluding the one-minute wait to obtain activity traf-

fic). This shows that our end-to-end system can infer voice

assistant activity in under one second.

Analysis of misclassifications in end-to-end scenarios

shows that most inaccuracies are due to similar commands or

skills being mislabeled as one another (similar to Table 5), es-

pecially ones that have similar functionality. We also found an

interesting case where an exercise skill (‘6-Minute Full body

stretch’) was labeled as a travel skill (‘MyVoiceTravel’) and

vice versa. Upon further investigation, we found that due to

our data collection only invoking the skill by only the ‘initial’

invocation phrases and not performing deeper interactions

(e.g., replying to if you want to start a workout or not), we had

some cases of skills just asking one prompt and then exiting

upon not hearing a response from the user. This is a limitation

of our data collection approach, and in the future, we plan to

explore deeper automated interaction with skills to potentially

2430 32nd USENIX Security Symposium USENIX Association

https://youtu.be/2Dv8cSkvC1g

Wait for next

window sample

Alexa

Invoked?

Invocation

Detection Model

Activity Detection

Model

Output LabelStart

No Yes

Wait for 1 minute

of traffic

Figure 7: The state diagram of how the end-to-end system works. The input

is a stream of packets fed into the system every 2 seconds. Upon detecting

invocation, the system waits for 1 minute of traffic to distinguish between

new flows and ongoing flows to determine the actual voice command.

gain more meaningful fingerprints.

Real-world End-to-end Evaluation. To confirm our find-

ings in a real-world setting, we perform a small-scale IRB-

approved user study over five sessions of one hour each spread

across five days. We used an Amazon Alexa voice assistant

for this experiment and set it up in our lab. We set up three

additional devices to the lab network that we monitor via an

upstream router: a laptop (Lenovo AMD Ubuntu Laptop), a

mobile phone (Google Pixel 3a), and a smart TV (LG WebOS

TV) to act as other household devices and generate realistic

noise when participants use and interact with these devices.

We instructed the participants in our study to use these de-

vices as they would use them in their own homes (e.g., watch

Netflix on a preinstalled account, surf the web, or play video

games online, etc.). However, for ethical considerations, we

instructed participants not to connect their personal devices to

the lab network or use sensitive applications (e.g., logging into

email, social networks or financial accounts) on the devices

we provided. We also avoided privacy-sensitive commands

in this study since participants may feel uneasy saying or

listening to the responses to these commands in the presence

of others. We had an average of three participants in each ses-

sion (for each one-hour session, participants were paid $10).

In the sessions, once participants began using the devices,

we asked the participants to give a command every few min-

utes (on average approximately 2-3 minutes) from a list of

15 randomly selected commands (which contained 6 simple

commands, 5 skills, 4 streaming commands) selected from

the mix_100_alexa dataset. We also asked the participants

to give a random command not from the list to evaluate the

performance of invocation detection on unseen commands.

For evaluation, we used the invocation and activity detection

models trained on the mix_100_alexa dataset.6

Participants invoked the voice assistant, in total, 80 times

across the five sessions for the closed-world end-to-end eval-

uation, each time choosing a random command from the 15

6If we trained the activity detection classifier to only focus on the 15

commands we get 92.5% accuracy.

unique known commands. The number of invocations for each

command was unbalanced since participants were randomly

choosing a command; however, we ensured that each com-

mand was at least invoked three times. Participants were also

asked to invoke voice assistants on unseen random commands

20 times in total across the five sessions, and we found that in

all cases, the invocation was correctly detected. For detecting

the exact voice command, we trained a multi-class classi-

fier on ‘known’ commands using the mix_100_alexa dataset

and used the classifier’s confidence score (i.e., the argmax of

the prediction probability) to distinguish if a test sample is

‘known’ versus ‘unknown’ as commonly adopted by existing

literature [6,12,53]. For the ‘unknown’ dataset, we utilized our

other datasets, e.g., simple_100_alexa, skills_100_alexa, and

stream_15_alexa datasets. Combined, these datasets consist

of 215 commands, 100 overlapping with the mix_100_alexa

dataset and hence tagged as ‘known’, and the remaining 115

can be considered ‘unknown’. Using a ROC curve, we de-

termined the optimal threshold value as 0.26 (i.e., minimizes

false positive and maximizes true positive). The threshold

value is defined based on the confidence score of the multi-

class classifier, and if the value is greater than the threshold for

a given sample, the sample is considered as ‘known’ and oth-

erwise as ‘unknown’. Using this threshold value, we achieved

an average accuracy of 90% in distinguishing known samples

from unknowns, with precision and recall being 92% and

91%, respectively.

Next, we used the multi-classifier trained on the

mix_100_alexa dataset to predict the samples classified as

‘known’. For the end-to-end classification accuracy, we con-

sider both the successful filtering of unknown samples and

the successful classification of known samples into their re-

spective class labels for any input. Out of the 80 ‘known’

commands, 73 were predicted as known and 7 as unknown.

Among the commands correctly predicted as known, 63

were also correctly classified into their respective classes,

whereas 10 were incorrectly classified. Thus, 63 of the 80

known commands were correctly classified. Of the 20 un-

known commands, 6 were classified as known and 14 as un-

known. The final end-to-end accuracy can then be computed

as (63+14)/100 = 77/100 = 77%. In some cases, these out-

put labels on unseen commands were closer to real activities,

e.g., the ‘Rain Sounds’ skill (unseen) was marked as ‘Zen

Sounds’ (seen), and set a timer for one minute (unseen) was

marked as set a timer for two minutes (seen). During this

experiment, per command, there was between 8 to 80 times

more traffic going through the router as background noise

compared to the dataset we collected without noise.

Takeaway. We show that our proposed filtering of active and

new flows enables us to fingerprint voice commands even in

the presence of background traffic from other devices on the

same network, as demonstrated through both simulations of

background traffic and real users generating traffic while using

other devices. Furthermore, we demonstrate that by utilizing

USENIX Association 32nd USENIX Security Symposium 2431

the confidence score of a multi-class classifier, it is possible to

establish a threshold that can effectively distinguish ‘known’

commands from ‘unknown’ under real-world settings.

7 Discussion

Potential Countermeasures. Voice command fingerprint-

ing relies on encrypted network traffic analysis. While the

literature on preventing voice command inference is minimal,

there is extensive literature on preventing general traffic anal-

ysis, such as website fingerprinting. Most of these defenses

should also (with minimal changes) effectively reduce the

performance of our inference attack. Our attack, in particu-

lar, depends upon the ability of the adversary to distinguish

network flows. Any countermeasure where flow information

is unavailable to the adversary, such as a home VPN, would

be effective against our attack. However, consumers typically

do not opt for home-level VPNs as they require additional

device configuration [14]. Other popular countermeasures in-

clude traffic padding and shaping [11, 27, 32, 35, 62], where

the goal is to make all traffic similar to each other and hence

reduce the information gained by the adversary. These coun-

termeasures would typically also employ some variation of a

VPN-like tunnel to ensure individual connection information

is unavailable to the adversary. However, such defenses result

in high overheads in terms of bandwidth and latency, ranging

from 40% to over 100% or efficacy [35], thus questioning the

real-time nature of voice assistants.

Another class of countermeasures relies on injecting ad-

versarial noise to fool classifiers [37, 45]. However, these

defenses are not foolproof and can be vulnerable as well [35].

Researchers have also looked at splitting traffic over multi-

ple networks (such as WiFi and cellular) [17, 22]. Such a

defense promises little to no overhead but is difficult to adopt

as consumer homes usually have one ISP. The most promising

and easy-to-apply approach for voice command fingerprint-

ing attacks is similar to the ‘k-anonymity’ approach proposed

by previous research in the context of website fingerprint-

ing [38, 61]. Since most voice commands are neatly grouped

based on their network usage (such as simple short commands,

streaming services, etc.), it is easy to shape them to match

one another with low overheads. Such an approach will only

leak which group a command belongs to but not what that

command is. We leave the implementation and evaluation of

such an approach for voice assistants to future work.

Limitations. Our work focuses on the top three most popular

voice assistants, and we leave other off-the-shelf voice assis-

tants from this analysis. Our approach also relies on manual

observation to select the endpoints to track the invocation

detection. These domains are sometimes region-specific (e.g.,

have a ‘na’ keyword in them due to architectural decisions for

different regions [1]), meaning they might only be used for

devices in the specific region. Outside these regions, devices

may contact their region-specific domains. However, Ren et

al. [47] showed that despite being in different regions, the

device still contacts mostly US-based endpoints. Regardless

we expect other region devices to contact these endpoints or

their region-specific endpoints, which would serve the same

purpose. Our work lacks a comprehensive open-world evalua-

tion for voice commands. We leave such exploration as future

work. Lastly, our approach requires isolating traffic from dif-

ferent flows, but this would not be possible if there is a VPN

or something similar. However, VPNs for IoT devices are not

widespread, and evaluation of voice command fingerprinting

attacks under VPN conditions is left as future work.

8 Conclusion

In this work, we show that it is possible to fingerprint dif-

ferent types of voice commands and skills on Amazon Echo

(Alexa) ecosystem with high accuracy. We also show that it

is also possible to fingerprint voice commands on different

platforms, including Google Assistant and Siri, with a similar,

if not better, performance. Using a novel time-series feature

engineering-based approach, we improve the state-of-the-art

performance on existing datasets and further demonstrate the

effectiveness of our approach under realistic settings. Using a

lightweight machine learning model for invocation detection,

we achieved almost perfect accuracy in detecting when the

voice assistants were activated without being plagued by a

base-rate problem. Furthermore, we show that even when the

adversary is out of the local network, we can achieve similar

performance on activity detection using invocation detection

and a novel method using our flow filtering technique for each

voice assistant. Finally, we show that invocation detection

models and activity detection models can be combined to

create an end-to-end classification system that can predict

activities under real-world performance constraints with a

high amount of background noise.

Acknowledgement

We thank our anonymous reviewers for their valuable feed-

back and our shepherd for helping us refine our work. This

material is based upon work supported in parts by the Na-

tional Science Foundation under grant number CNS-1849997

and the Center for Accelerated Real Time Analytics (CARTA)

- NCSU Research Site. Any opinions, findings, conclusions,

or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the

National Science Foundation.

References

[1] “Alexa Voice Service v20160207 | Alexa Voice Service.” [On-

line]. Available: https://developer.amazon.com/en-US/docs/alexa/

alexa-voice-service/api-overview.html

2432 32nd USENIX Security Symposium USENIX Association

https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/api-overview.html
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/api-overview.html

[2] “Voice apps lets you create alexa skills in minutes! no coding required!”

[Online]. Available: https://voiceapps.com/

[3] 1st Source Bank, “Amazon.com: 1st Source Bank : Alexa Skills.”

[Online]. Available: https://www.amazon.com/1st-Source-Bank/dp/

B07M8651TJ

[4] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,

M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo: I see your

smart home activities, even encrypted!” in Proceedings of the 13th

ACM Conference on Security and Privacy in Wireless and Mobile

Networks, 2020, pp. 207–218.

[5] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Multi-

classification approaches for classifying mobile app traffic,” Journal of

Network and Computer Applications, vol. 103, pp. 131–145, 2018.

[6] D. Ahmed, A. Das, and F. Zaffar, “Analyzing the Feasibility and Gener-

alizability of Fingerprinting Internet of Things Devices,” Proceedings

on Privacy Enhancing Technologies (PETS), no. 2, 2022.

[7] H. F. Alan and J. Kaur, “Can android applications be identified using

only tcp/ip headers of their launch time traffic?” in Proceedings of

the 9th ACM conference on security & privacy in wireless and mobile

networks, 2016, pp. 61–66.

[8] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and

N. Feamster, “Spying on the Smart Home: Privacy Attacks and

Defenses on Encrypted IoT Traffic,” arXiv:1708.05044 [cs], August

2017. [Online]. Available: http://arxiv.org/abs/1708.05044

[9] AutoML.org, “AutoML.” [Online]. Available: https://www.automl.org/

automl/

[10] C. Batyr and M. H. Gunes, “Voice Command Fingerprinting with

Locality Sensitive Hashes,” in Proceedings of the Joint Workshop on

CPS&IoT Security and Privacy (CPSIOTSEC ’20), New York, NY,

USA, November 2020, pp. 87–92.

[11] X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A Congestion

Sensitive Website Fingerprinting Defense,” in Proceedings of the 13th

Workshop on Privacy in the Electronic Society, Scottsdale Arizona

USA, November 2014, pp. 121–130.

[12] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a

distance: website fingerprinting attacks and defenses,” in Proceedings

of the ACM SIGSAC Conference on Computer and Communications

Securit (CSS ’12), 2012, pp. 605–616.

[13] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”

in Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD ’16), New York, NY,

USA, August 2016, pp. 785–794.

[14] C. Cimpanu, “Survey reveals users have no clue

about router security,” Apr 2018. [Online]. Avail-

able: https://www.bleepingcomputer.com/news/security/survey-

reveals-users-have-no-clue-about-router-security/

[15] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing an-

droid encrypted network traffic to identify user actions,” IEEE Transac-

tions on Information Forensics and Security, vol. 11, no. 1, pp. 114–125,

2015.

[16] B. Copos, K. Levitt, M. Bishop, and J. Rowe, “Is Anybody Home? In-

ferring Activity From Smart Home Network Traffic,” in IEEE Security

and Privacy Workshops (SPW), May 2016, pp. 245–251.

[17] W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter, J. Filter,

T. Engel, K. Wehrle, and A. Panchenko, “Trafficsliver: Fighting website

fingerprinting attacks with traffic splitting,” in Proceedings of the ACM

SIGSAC Conference on Computer and Communications Security, 2020,

pp. 1971–1985.

[18] M. Elena, “AI Voice Assistants: 9 Key Predictions For

The Future Of Technology,” August 2021. [Online]. Avail-

able: https://masterofcode.com/blog/9-key-predictions-for-the-future-

of-voice-assistants

[19] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and

A. Smola, “AutoGluon-Tabular: Robust and Accurate AutoML for

Structured Data,” arXiv:2003.06505 [cs, stat], March 2020. [Online].

Available: http://arxiv.org/abs/2003.06505

[20] T. Group, “tcpdump.” [Online]. Available: https://www.tcpdump.org/

[21] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website

fingerprinting technique,” in Proceedings of the 25th USENIX Security

Symposium (USENIX Security 16), 2016, pp. 1187–1203.

[22] S. Henri, G. García, P. Serrano, A. Banchs, and P. Thiran, “Protect-

ing against website fingerprinting with multihoming,” Proceedings on

Privacy Enhancing Technologies (PETS), no. 2, pp. 89–110, 2020.

[23] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting:

attacking popular privacy enhancing technologies with the multinomial

naive-bayes classifier,” in Proceedings of the ACM workshop on Cloud

Computing Security (CCSW ’09), 2009, pp. 31–42.

[24] V. Inc., “Jeopardy!” [Online]. Available: https://www.amazon.com/

Sony-Pictures-Television-Jeopardy/dp/B019G0M2WS

[25] U. Iqbal, P. N. Bahrami, R. Trimananda, H. Cui, A. Gamero-Garrido,

D. Dubois, D. Choffnes, A. Markopoulou, F. Roesner, and Z. Shafiq,

“Your Echos are Heard: Tracking, Profiling, and Ad Targeting in the

Amazon Smart Speaker Ecosystem,” arXiv:2204.10920 [cs], April

2022. [Online]. Available: http://arxiv.org/abs/2204.10920

[26] L. Jessica, “US Voice Assistants and Smart Speak-

ers Forecast 2022,” Tech. Rep., 2022. [Online]. Avail-

able: https://www.insiderintelligence.com/content/us-voice-assistants-

smart-speakers-forecast-2022

[27] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward an

efficient website fingerprinting defense,” in European Symposium on

Research in Computer Security, 2016, pp. 27–46.

[28] B. Katrina, “Infographic: The Most Popular Smart Speakers in the

U.S.” January 2022. [Online]. Available: https://www.statista.com/

chart/23943/share-of-us-adults-who-own-smart-speakers/

[29] S. Kennedy, H. Li, C. Wang, H. Liu, B. Wang, and W. Sun, “I Can Hear

Your Alexa: Voice Command Fingerprinting on Smart Home Speakers,”

in IEEE Conference on Communications and Network Security (CNS),

June 2019, pp. 232–240.

[30] D. Kumar, R. Paccagnella, P. Murley, E. Hennenfent, J. Mason, A. Bates,

and M. Bailey, “Skill squatting attacks on amazon alexa,” in Proceed-

ings of the 27th USENIX Security Symposium (USENIX Security 18).

USENIX Association, Aug. 2018, pp. 33–47.

[31] C. Lentzsch, S. J. Shah, B. Andow, M. Degeling, A. Das, and W. Enck,

“Hey alexa, is this skill safe?: Taking a closer look at the alexa skill

ecosystem,” in 28th Annual Network and Distributed System Security

Symposium (NDSS 2021), 2021.

[32] D. Lu, S. Bhat, A. Kwon, and S. Devadas, “DynaFlow: An Efficient

Website Fingerprinting Defense Based on Dynamically-Adjusting

Flows,” in Proceedings of the Workshop on Privacy in the Electronic

Society (WPES ’18), New York, NY, USA, 2018, pp. 109–113.

[33] J. Mao, C. Wang, Y. Guo, G. Xu, S. Cao, X. Zhang, and Z. Bi, “A novel

model for voice command fingerprinting using deep learning,” Journal

of Information Security and Applications, vol. 65, p. 103085, March

2022.

[34] S. Marchal, M. Miettinen, T. D. Nguyen, A.-R. Sadeghi, and N. Asokan,

“AuDI: Toward Autonomous IoT Device-Type Identification Using

Periodic Communication,” IEEE Journal on Selected Areas in Commu-

nications, vol. 37, no. 6, pp. 1402–1412, June 2019.

[35] N. Mathews, J. K. Holland, S. E. Oh, M. S. Rahman, N. Hopper, and

M. Wright, “Sok: A critical evaluation of efficient website fingerprint-

ing defenses,” in IEEE Symposium on Security and Privacy (S&P).

IEEE Computer Society, 2023, pp. 344–361.

USENIX Association 32nd USENIX Security Symposium 2433

https://voiceapps.com/
https://www.amazon.com/1st-Source-Bank/dp/B07M8651TJ
https://www.amazon.com/1st-Source-Bank/dp/B07M8651TJ
http://arxiv.org/abs/1708.05044
https://www.automl.org/automl/
https://www.automl.org/automl/
https://www.bleepingcomputer.com/news/security/survey-reveals-users-have-no-clue-about-router-security/
https://www.bleepingcomputer.com/news/security/survey-reveals-users-have-no-clue-about-router-security/
https://masterofcode.com/blog/9-key-predictions-for-the-future-of-voice-assistants
https://masterofcode.com/blog/9-key-predictions-for-the-future-of-voice-assistants
http://arxiv.org/abs/2003.06505
https://www.tcpdump.org/
https://www.amazon.com/Sony-Pictures-Television-Jeopardy/dp/B019G0M2WS
https://www.amazon.com/Sony-Pictures-Television-Jeopardy/dp/B019G0M2WS
http://arxiv.org/abs/2204.10920
https://www.insiderintelligence.com/content/us-voice-assistants-smart-speakers-forecast-2022
https://www.insiderintelligence.com/content/us-voice-assistants-smart-speakers-forecast-2022
https://www.statista.com/chart/23943/share-of-us-adults-who-own-smart-speakers/
https://www.statista.com/chart/23943/share-of-us-adults-who-own-smart-speakers/

[36] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and

S. Tarkoma, “IoT SENTINEL: Automated Device-Type Identification

for Security Enforcement in IoT,” in IEEE 37th International Con-

ference on Distributed Computing Systems (ICDCS), June 2017, pp.

2177–2184.

[37] M. Nasr, A. Bahramali, and A. Houmansadr, “Defeating DNN-Based

Traffic Analysis Systems in Real-Time With Blind Adversarial Per-

turbations,” in Proceedings of the 30th USENIX Security Symposium

(USENIX Security 21), 2021, pp. 2705–2722.

[38] R. Nithyanand, X. Cai, and R. Johnson, “Glove: A Bespoke Website

Fingerprinting Defense,” in Proceedings of the 13th Workshop on Pri-

vacy in the Electronic Society, Scottsdale Arizona USA, November

2014, pp. 131–134.

[39] T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and A.-R.

Sadeghi, “HomeSnitch: behavior transparency and control for smart

home IoT devices,” in Proceedings of the 12th Conference on Security

and Privacy in Wireless and Mobile Networks (WiSec ’19), 2019, pp.

128–138.

[40] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp,

K. Wehrle, and T. Engel, “Website Fingerprinting at Internet Scale,” in

Proceedings 2016 Network and Distributed System Security Sympo-

sium, San Diego, CA, 2016.

[41] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-

printing in onion routing based anonymization networks,” in Proceed-

ings of the 10th ACM workshop on Privacy in the electronic society

(WPES ’11), 2011, pp. 103–114.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,

“Scikit-learn: Machine learning in python,” the Journal of machine

Learning research, vol. 12, pp. 2825–2830, 2011.

[43] R. Perdisci, T. Papastergiou, O. Alrawi, and M. Antonakakis,

“IoTFinder: Efficient Large-Scale Identification of IoT Devices via

Passive DNS Traffic Analysis,” in IEEE European Symposium on Secu-

rity and Privacy (EuroS&P), September 2020, pp. 474–489.

[44] E. Petagna, G. Laurenza, C. Ciccotelli, and L. Querzoni, “Peel the

onion: Recognition of android apps behind the tor network,” in Inter-

national Conference on Information Security Practice and Experience.

Springer, 2019, pp. 95–112.

[45] M. S. Rahman, M. Imani, N. Mathews, and M. Wright, “Mockingbird:

Defending Against Deep-Learning-Based Website Fingerprinting At-

tacks With Adversarial Traces,” IEEE Transactions on Information

Forensics and Security, vol. 16, pp. 1594–1609, 2021.

[46] A. Reed and M. Kranch, “Identifying https-protected netflix videos in

real-time,” in Proceedings of the 7th ACM on Conference on Data and

Application Security and Privacy, 2017, pp. 361–368.

[47] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and

H. Haddadi, “Information Exposure From Consumer IoT Devices: A

Multidimensional, Network-Informed Measurement Approach,” in Pro-

ceedings of the Internet Measurement Conference (IMC ’19), October

2019, pp. 267–279.

[48] A. Sabir, E. Lafontaine, and A. Das, “Hey alexa, who am i talking

to?: Analyzing users’ perception and awareness regarding third-party

alexa skills,” in Proceedings of the 2022 CHI Conference on Human

Factors in Computing Systems (CHI ’22). Association for Computing

Machinery, 2022.

[49] “Intriguing Amazon Alexa Statistics You Need to Know in

2022,” Safe at Last, February 2022. [Online]. Available: https:

//safeatlast.co/blog/amazon-alexa-statistics/

[50] S. J. Saidi, A. M. Mandalari, R. Kolcun, H. Haddadi, D. J. Dubois,

D. Choffnes, G. Smaragdakis, and A. Feldmann, “A haystack full of

needles: Scalable detection of iot devices in the wild,” in Proceedings

of the ACM Internet Measurement Conference (IMC ’20), 2020, pp.

87–100.

[51] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,

D. Xu, and J. Qian, “Eavesdropping on fine-grained user activities

within smartphone apps over encrypted network traffic,” in 10th

USENIX Workshop on Offensive Technologies (WOOT 16), 2016.

[52] T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, and T. Kohno, “De-

vices that tell on you: Privacy trends in consumer ubiquitous comput-

ing,” in Proceedings of the 16th USENIX Security Symposium (USENIX

Security 07). Boston, MA: USENIX Association, Aug. 2007.

[53] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep Fingerprinting:

Undermining Website Fingerprinting Defenses with Deep Learning,”

in Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security (CCS ’18), New York, NY, USA, 2018, pp.

1928–1943.

[54] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,

A. Vishwanath, and V. Sivaraman, “Classifying IoT Devices in Smart

Environments Using Network Traffic Characteristics,” IEEE Transac-

tions on Mobile Computing, vol. 18, no. 8, pp. 1745–1759, August

2019.

[55] D. Song, “Timing analysis of keystrokes and ssh timing attacks,” in Pro-

ceedings of the 10th USENIX Security Symposium (USENIX Security

01), 2001.

[56] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner:

Automatic fingerprinting of smartphone apps from encrypted network

traffic,” in IEEE European Symposium on Security and Privacy (Eu-

roS&P). IEEE, 2016, pp. 439–454.

[57] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky,

“Packet-level signatures for smart home devices,” in Proceedings of Net-

work and Distributed System Security Symposium (NDSS), San Diego,

CA, 2020.

[58] tshark, “tshark.” [Online]. Available: https://tshark.dev/

[59] T. van Ede, R. Bortolameotti, A. Continella, J. Ren, D. J. Dubois,

M. Lindorfer, D. Choffnes, M. van Steen, and A. Peter, “Flowprint:

Semi-supervised mobile-app fingerprinting on encrypted network traf-

fic,” in Network and Distributed System Security Symposium (NDSS),

vol. 27, 2020.

[60] C. Wang, S. Kennedy, H. Li, K. Hudson, G. Atluri, X. Wei, W. Sun,

and B. Wang, “Fingerprinting encrypted voice traffic on smart speakers

with deep learning,” in Proceedings of the 13th ACM Conference on

Security and Privacy in Wireless and Mobile Networks (WiSec 20),

New York, NY, USA, July 2020, pp. 254–265.

[61] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective

attacks and provable defenses for website fingerprinting,” in Proceed-

ings of the 23rd USENIX Security Symposium (USENIX Security 14),

2014, pp. 143–157.

[62] T. Wang, I. Goldberg et al., “Walkie-talkie: An efficient defense against

passive website fingerprinting attacks.” in Proceedings of the 26th

USENIX Security Symposium (USENIX Security 17), 2017, pp. 1375–

1390.

[63] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Mas-

son, “Uncovering spoken phrases in encrypted voice over ip conver-

sations,” ACM Transactions on Information and System Security (TIS-

SEC), vol. 13, no. 4, pp. 1–30, 2010.

[64] C. V. Wright, L. Ballard, F. Monrose, and G. M. Masson, “Language

identification of encrypted VOIP traffic: Alejandra y roberto or alice

and bob?” in Proceedings of the 16th USENIX Security Symposium

(USENIX Security 07), vol. 3, 2007, pp. 43–54.

[65] Y. Xu, T. Wang, Q. Li, Q. Gong, Y. Chen, and Y. Jiang, “A Multi-tab

Website Fingerprinting Attack,” in Proceedings of the 34th Annual

Computer Security Applications Conference (ACSAC ’18), December

2018, pp. 327–341.

2434 32nd USENIX Security Symposium USENIX Association

https://safeatlast.co/blog/amazon-alexa-statistics/
https://safeatlast.co/blog/amazon-alexa-statistics/
https://tshark.dev/

Appendix

A Full Feature List

Table 6: List of all features considered with their respective groups.

Total Percentage Packet Length Unique Packet Length Flow Packet Count Burst Packet Count Inter-Packet Delay

out_icmp_percentage in_75per_len in_len_uniquelen out_mean_flownumpkts in_max_burstnumpkts in_mean_interpktdelay

out_tcprst_percentage out_mean_len in_median_uniquelen in_min_flownumpkts in_median_burstnumpkts out_min_interpktdelay

out_tcppsh_percentage in_max_len out_len_uniquelen out_std_flownumpkts out_min_burstnumpkts out_median_interpktdelay

out_tcpfin_percentage in_mean_len out_90per_uniquelen out_min_flownumpkts in_90per_burstnumpkts in_90per_interpktdelay

in_tcp_percentage out_min_len out_min_uniquelen in_75per_flownumpkts in_std_burstnumpkts in_std_interpktdelay

in_udp_percentage in_25per_len out_median_uniquelen out_75per_flownumpkts in_10per_burstnumpkts out_90per_interpktdelay

out_tcpack_percentage out_max_len in_25per_uniquelen out_max_flownumpkts in_75per_burstnumpkts out_max_interpktdelay

out_percentage in_10per_len out_mean_uniquelen out_median_flownumpkts out_10per_burstnumpkts in_75per_interpktdelay

out_tcp_percentage in_median_len in_90per_uniquelen in_10per_flownumpkts out_mean_burstnumpkts in_median_interpktdelay

in_percentage out_25per_len in_max_uniquelen in_median_flownumpkts in_mean_burstnumpkts out_mean_interpktdelay

in_tcpfin_percentage out_median_len in_75per_uniquelen in_90per_flownumpkts out_max_burstnumpkts out_75per_interpktdelay

in_tcppsh_percentage in_min_len out_max_uniquelen out_25per_flownumpkts out_90per_burstnumpkts in_25per_interpktdelay

out_udp_percentage in_len_len in_10per_uniquelen in_mean_flownumpkts in_min_burstnumpkts out_25per_interpktdelay

in_tcprst_percentage in_90per_len out_25per_uniquelen in_max_flownumpkts out_median_burstnumpkts in_min_interpktdelay

in_tcpurg_percentage out_10per_len out_10per_uniquelen out_10per_flownumpkts out_std_burstnumpkts out_10per_interpktdelay

out_dns_percentage out_90per_len out_75per_uniquelen in_25per_flownumpkts in_25per_burstnumpkts in_max_interpktdelay

out_tcpurg_percentage out_len_len in_mean_uniquelen out_90per_flownumpkts out_75per_burstnumpkts in_10per_interpktdelay

out_tcpsyn_percentage in_std_len out_std_uniquelen in_std_flownumpkts out_25per_burstnumpkts out_std_interpktdelay

in_tcpack_percentage out_75per_len in_min_uniquelen Flow Length Burst Length Inter-Burst Delays

in_dns_percentage out_std_len in_std_uniquelen in_75per_flowbytes out_90per_burstbytes in_25per_interburstdelay

in_tcpsyn_percentage Burst Time Flow Time out_10per_flowbytes in_90per_burstbytes out_25per_interburstdelay

in_icmp_percentage out_75per_bursttime out_25per_flowtime in_mean_flowbytes in_25per_burstbytes out_median_interburstdelay

Packet Lengths in_min_bursttime in_25per_flowtime out_90per_flowbytes in_mean_burstbytes out_75per_interburstdelay

out_tcp_dict_packetlens out_90per_bursttime in_std_flowtime out_std_flowbytes out_median_burstbytes out_mean_interburstdelay

out_all_dict_packetlens in_25per_bursttime in_10per_flowtime in_25per_flowbytes in_min_burstbytes out_10per_interburstdelay

in_udp_dict_packetlens in_median_bursttime out_median_flowtime in_90per_flowbytes out_25per_burstbytes in_median_interburstdelay

out_udp_dict_packetlens out_max_bursttime out_10per_flowtime in_10per_flowbytes out_max_burstbytes in_90per_interburstdelay

in_tcp_dict_packetlens out_10per_bursttime out_std_flowtime out_75per_flowbytes in_75per_burstbytes in_75per_interburstdelay

in_all_dict_packetlens out_25per_bursttime in_min_flowtime out_mean_flowbytes out_mean_burstbytes out_min_interburstdelay

External Counts out_mean_bursttime out_min_flowtime in_min_flowbytes out_std_burstbytes out_std_interburstdelay

unique_hostname_tld+1_extcount in_std_bursttime out_75per_flowtime in_std_flowbytes out_10per_burstbytes in_min_interburstdelay

unique_hostname_extcount in_10per_bursttime in_75per_flowtime out_min_flowbytes in_max_burstbytes in_std_interburstdelay

unique_ip_3octet_extcount out_std_bursttime in_mean_flowtime out_max_flowbytes in_std_burstbytes in_max_interburstdelay

ratio_extport443_extcount in_mean_bursttime in_median_flowtime out_25per_flowbytes in_10per_burstbytes in_10per_interburstdelay

unique_ip_extcount in_max_bursttime in_max_flowtime in_max_flowbytes out_min_burstbytes out_max_interburstdelay

unique_extport_extcount in_90per_bursttime out_max_flowtime out_median_flowbytes out_75per_burstbytes out_90per_interburstdelay

Protocols out_min_bursttime in_90per_flowtime in_median_flowbytes in_median_burstbytes in_mean_interburstdelay

in_protos_dict_protocols in_75per_bursttime out_90per_flowtime Hostname External Port IP

out_protocols_dict_protocols out_median_bursttime out_mean_flowtime udp_dict_hostname udp_dict_extport udp_dict_ip

in_protocols_dict_protocols Req Reply Packet Lengths Total Bytes all_dict_hostname tcp_dict_extport all_dict_ip

out_protos_dict_protocols all_dict_reqreplylens out_totalbytes tcp_dict_hostname all_dict_extport tcp_dict_ip

Total Packets udp_dict_reqreplylens in_totalbytes

out_totalpkts tcp_dict_reqreplylens

in_totalpkts

USENIX Association 32nd USENIX Security Symposium 2435

2436 32nd USENIX Security Symposium USENIX Association

	Introduction
	Related Works
	Methodology and Data Collection
	Threat Model
	Proposed Approach
	Data Collection Setup
	Datasets
	Data Pre-processing

	Invocation Detection
	Feature Extraction & ML Model
	Evaluation

	Activity Detection
	NAT Issue
	Separating Voice Assistant Traffic
	Feature Extraction
	Machine Learning Pipeline
	Comparison with Existing Works
	Comparing Voice Assistant Platforms
	Comparison of Different Command Types
	Generalizability Analysis

	End-to-End Detection
	Discussion
	Conclusion
	Full Feature List
	Traffic to Invocation Detection endpoints
	Feature Rankings

