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Abstract

Although many users are aware of the threats that mal-
ware pose, users are unaware that malware can infect
peripheral devices. Many embedded devices support
firmware update capabilities, yet they do not authenticate
such updates; this allows adversaries to infect peripher-
als with malicious firmware. We present a case study
of the Logitech G600 mouse, demonstrating attacks on
networked systems which are also feasible against air-
gapped systems.

If the target machine is air-gapped, we show that the
Logitech G600 has enough space available to host an en-
tire malware package inside its firmware. We also wrote
a file transfer utility that transfers the malware from the
mouse to the target machine. If the target is networked,
the mouse can be used as a persistent threat that updates
and reinstalls malware as desired.

To mitigate these attacks, we implemented signature
verification code which is essential to preventing mali-
cious firmware from being installed on the mouse. We
demonstrate that it is reasonable to include such signa-
ture verification code in the bootloader of the mouse.

1 Introduction

In July of 2013, the US Commerce Department’s Inspec-
tor General released a report revealing that the US Eco-
nomic Development Administration (EDA) spent $2.7
million in December 2011 in response to a malware in-
fection [34]. The EDA had intended to destroy all of
its IT equipment — every computer, mouse, keyboard,
printer, camera, and monitor in their possession, valued
at over $3 million — and stopped only when they ex-
hausted their budget, with $170,500 of equipment ac-
tually destroyed. The precautions taken were due to a
misunderstanding across internal departments, leading
administrators to believe they were under a large-scale
and sophisticated cyber attack; in reality, only a handful
of computers were compromised, and the malware ap-
peared to be untargeted and easily quarantinable. Various
technology news organizations ridiculed the EDA for its
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lack of cybersecurity understanding, believing that pe-
ripherals would not have been compromised during the
incident [23, 13]. The Verge, a technology magazine,
observed that “throwing away computer mice seems like
a poor approach to ridding an organization of digital
threats” [23]. Ars Technica, a publication generally re-
spected for its technical accuracy, published an article ti-
tled “US agency baffled by modern technology, destroys
mice to get rid of viruses” [10].

These comments demonstrate the common belief that
peripherals such as mice cannot be infected by malware.
In this paper, we show that this belief is false. We give,
for the first time, an end-to-end demonstration of mouse-
borne malware. We show how unprivileged software
running on a PC host can replace the firmware on an off-
the-shelf Logitech G600 gaming mouse, and how com-
promised firmware on the mouse can in turn reinfect the
PC host.

Far from being benign, mice make an ideal vector for
compromise of hardened or air-gapped computers. A
compromised mouse could be carried by an unwitting
user into a secure facility. Mouse-to-host attack, like
keyboard-to-host attack [12], is simple and compact due
to the capabilities of the USB human interface device
(HID) stack.

We believe that mice, like other embedded devices,
should verify the integrity of firmware updates crypto-
graphically. We show that it is possible to implement
RSA signature verification within the space constraints
of a G600 mouse.

1.1 Background and Motivation

As antivirus software becomes more sophisticated, per-
sistent delivery of malware becomes increasingly diffi-
cult. Users are unlikely to suspect peripherals such as
keyboards and mice to be capable of containing mal-
ware, and modern anti-virus software is often incapable
of scanning peripherals’ firmware. With both users and
defensive software unaware of its presence, malware lo-
cated in a peripheral could have a long and undetected
life.

Malware positioned within a USB peripheral can in-
put HID codes to the computer on behalf of the user.
Many modern operating system protections and isola-



tions can be circumvented in this manner since such in-
puts are considered user-intended behavior. Addition-
ally, the attacker-controlled peripheral can retrieve mal-
ware from the web and install it on the host machine,
allowing attackers to persistently reinstall removed mal-
ware and update out-of-date malware. Furthermore, pe-
ripherals used across multiple computers can first be
compromised on an insecure machine and then be used
to compromise a secure machine.

1.2 Related Work

As antivirus software develops, people have put a great
deal of effort into delivering malware to locations un-
detectable by traditional antivirus scanning techniques.
Advanced rootkits such as Mebroot are executed before
the user’s operating system even boots, bypassing many
malware detection and prevention mechanisms [33].

USB HID as a delivery mechanism. The USB HID
class has a standardized protocol for communication
with keyboards, mice, and an array of other USB de-
vices [32]. Several projects have developed custom HID
hardware for exploit delivery. In 2010, a briefing on
how to write software complying to the USB HID spec-
ification was given at BlackHat, demonstrating how to
construct a USB device that uses the USB HID proto-
col to emulate a legitimate user [30]. Crenshaw demon-
strated the feasibility of a malicious USB HID dongle
and showed how to lock Windows systems down against
the installation of new USB devices [14]. There are a
number of programmable HID USB keystroke dongle
(PHUKD) designs and tutorials available on the web.
PHUKD allows an attacker to deliver keystrokes to a
user’s computer by inserting the dongle into an avail-
able USB slot, ultimately gaining control of the com-
puter [28]. A radio frequency version of the device, UR-
FUKED, has been shown to allow adaptive, remote de-
livery of HID keystrokes to a computer [17].

Attacks on embedded device firmware. Firmware
update attacks, or the process of compromising a victim’s
embedded device by installing firmware of attacker con-
struction, have been demonstrated in several arenas. Cui
et al. reverse-engineered HP laserjet printer firmware,
leveraging its insecure update mechanism to allow the
delivery of firmware to the printer of their choosing [15].

Additionally, Cui et al. provided a survey indicating
that insecure update mechanisms were not restricted to
the printers used to demonstrate their attack [15]. Even
more generally, Belissimo et al. surveyed the security of
software updates and found secure software updates to
be challenging to implement and make available in prac-
tice [6].

Such attacks can apply to embedded systems that are
part of traditional PCs. For example, Miller showed how
to modify the firmware on Apple laptop batteries [26].
In 2009, Chen successfully reverse-engineered and ex-
ploited a firmware updater for a full-size, wired Ap-
ple keyboard, allowing delivery of a persistent rootkit
to the keyboard itself [12]; as Chen observed, the key-
board could then compromise its host through USB HID.
Brocker and Checkoway demonstrated a sophisticated at-
tack to enable a Macbook camera’s recording mode with-
out illuminating the LED [11]. The reprogrammed cam-
era could also masquerade as a USB HID device, en-
abling VM escape, though the camera firmware does not
persist across reboots.

Our findings are analogous to Chen’s, but for an off-
the-shelf mouse rather than keyboard. Compared to
Chen, we provide an end-to-end demonstration (it is not
clear that Chen implemented his proposed keyboard-to-
host attack); in addition, we show that cryptographic pro-
tection against unauthorized firmware is feasible on the
mouse.

Malicious mice. There has been a fair amount of work
outside of academia involving mice specifically; these at-
tacks often rely on modifying the hardware of the mouse.

Several individuals have used the pixel array presented
by the optical laser on the mouse to turn it into various
kinds of low-definition cameras. Franci Kapel turned
a mouse into a web camera while Jeroen “Sprite_tm”
Domburg combined the pixel array with movement in-
formation to turn it into a scanner [22, 16].

In March 2014, German technology magazine c’t re-
ported a novel trigger for sending the payload. The
mouse waits to deliver the payload until the 18×18 pixel
matrix read in by the optical laser matches a particular
pattern [3, 8].1

This inspired Imgur user Indyaner to experiment with
adding custom hardware to mice in order to deliver mal-
ware. Indyaner added custom hardware to a Logitech
mouse and repackaged it [19, 7]. Notably, the Arduino
that Indyaner used has an ATmega32u4 which is very
similar to the ATmega32u2 that we found inside of the
Logitech G600 gaming mouse.

Netragard conducted a devastating pentest involving
modified mice. After modifying the mouse’s hardware,
they repackaged it and mailed it to a target in the com-
pany with fliers to disguise the mouse as a promotional
gift. The target employee proceeded to plug the mouse in
at work, causing the mouse to contact Netragard’s com-
mand and control server [29]. This validates our state-
ment that a mouse is a valid vector for infiltrating an or-
ganization.



1.3 Attack Model

There are two components to our attack: infecting the
mouse and exploiting the target. In this section, we
present several options for both of these components.

1.3.1 Infecting the Mouse

Ensuring that an infected mouse is attached to the target
machine requires different steps depending on whether
the target is networked or air-gapped.

The networked case is simpler since the mouse is
already connected to the target machine. The mouse
firmware must be updateable, and the adversary must
control a program capable of updating the mouse run-
ning on the target’s machine. Since USB is not a
protected resource, the adversary’s program only needs
user-level privileges. Common techniques for obtaining
such user-level privileges include web exploits, drive-by-
downloads, and distributing Trojan horses in repackaged
software. Alternatively, an attacker could deliver users a
seemingly legitimate mouse firmware update via a man-
in-the-middle attack, posing as the mouse manufacturing
company. We note that the original firmware updater we
modified was delivered over HTTP, which would enable
this kind of attack [25].

The second attack method is to deliver an already-
compromised mouse, prepared in a lab environment, to
a victim computer. A known infiltration technique is
to leave compromised USB peripherals, such as USB
mass storage devices, in a company parking lot [31].
Users find the storage devices and use them, assum-
ing they were incidentally dropped by a benign individ-
ual. A compromised mouse found in a shopping bag,
repackaged, with the receipt included, could just as eas-
ily be taken by an unsuspecting user, as demonstrated by
the Netragard pentest [29]. A common defense against
USB mass storage device attacks is to disable the Win-
dows AutoRun.exe service; this mitigation is ineffective
against mice.

1.3.2 Delivering the Malware

We consider two separate attack models: one where the
mouse is connected to a machine with Internet access and
another where the mouse is connected to an air-gapped
machine.

If the mouse is connected to a machine with Internet
access, then the mouse can simply open a shell in order to
download and run malware. This also allows the mouse
to retrieve updated versions of the malware or reinstall
malware if it has been detected and removed. This attack
model involves only low-complexity firmware modifica-
tion on the mouse.

If the mouse is connected to a machine without In-
ternet access, then the mouse must contain the entire
malware. It can then transfer this malware to the host
machine over USB. Some possibilities for this transfer
mechanism include: 1) constructing the malware using
shell utilities directed by key commands (see §5 for more
details), 2) identifying as a firewire-to-usb adapter and
using direct memory access [5], and 3) reporting as a usb
storage device with the executable onboard and clicking
on it . This attack model requires that the mouse is either
shared between secure and insecure computers or that the
mouse is attached to a secure computer after being deliv-
ered surreptitiously as described above.

Furthermore, peripherals are often reused when new
computers are acquired. A consumer may buy a new
desktop but reuse their old keyboard, monitor, mouse,
and speakers. In this way an infected mouse may trans-
fer across generations of computers.

1.4 Roadmap

To mount our attack, we first obtained a mouse whose
firmware can be updated and therefore compromised.
We describe this mouse and its architecture in §2. We
then reverse-engineered the mouse firmware with stan-
dard techniques as we describe in §3. We proceeded to
reverse-engineer the firmware updater and patch it to en-
able flashing the mouse with firmware of our construc-
tion, as we will discuss in §4. We describe our various
current exploits in §5; they all revolve around sending
HID codes to a terminal to execute arbitrary commands
and infect the target computer with malware. In §6 we
discuss potential alternate triggering mechanisms for our
attack. In §7, we propose mitigations to our attack and
discuss their feasibility.

1.5 Ethics and Disclosure

We notified the vendor of our findings on July 6, 2014.
We do not believe that the problems we identified are
unique to the mouse we studied. Rather, we believe
that every device with flashable firmware is potentially
at risk. Mice and keyboards are assumed to speak for
the user, simplifying device-to-host attacks; but other
devices, once compromised, can reinvent themselves as
keyboards [11].

2 Overview of the Mouse

In this section we will describe the architecture and reg-
ular behavior of our chosen mouse.



2.1 Choice of Mouse

For both ease of programming and wider spread com-
promise capability, we elected to use a mouse that has a
software firmware update mechanism. After finding up-
dateable mice via the web, we examined two such mice:
the Logitech G500s and G600. Manual disassembly and
inspection of the microcontrollers revealed that the Log-
itech G600 features an Atmel ATmega32u2 which has a
readily available data sheet and runs AVR, an 8 bit RISC
architecture. The Logitech G500s, however, appeared to
have a custom microcontroller and at the time of this re-
port did not appear to have publicly available program-
ming information. Therefore, we chose the G600 as our
target.

2.2 Mouse Firmware Structure

The ATmega32u2 uses a Harvard architecture, so the
chip’s memory is split into program and data memory.
Within the application section, the firmware is split into
two segments: an application segment and a bootloader
segment. The application segment starts at the beginning
of program memory whereas the bootloader segment oc-
cupies the last 1/8 of program memory.

The application segment contains all of the code to be
run during normal operation of the mouse. This includes
the mouse’s main sleep loop, SPI interrupt handling from
the optical laser, and sending both USB HID codes and
button presses to the host.

The bootloader is responsible for managing the
firmware update process. As part of this responsibility,
it has privileges that the application segment does not
necessarily have. For instance, the bootloader is able
to write to application memory [1]. The firmware up-
date process does not write to the bootloader segment of
the mouse, so it is always possible to flash the mouse
with firmware. This proved valuable since it means that
a buggy firmware update does not permanently disable
the mouse.

2.3 Sending USB HID Codes

Because the G600 is a gaming mouse, it has far more but-
tons than the standard left button, right button, and scroll
wheel. It has an entire number pad on its side (labeled
G9 through G20) as well as a Gshift button that changes
the behavior of all buttons on the mouse much the same
way that a normal shift key changes the behavior of but-
tons on a key board. Due to this number pad, the mouse
registers itself as a composite mouse and keyboard, so
the computer is expecting to receive key input from the
device.

Using USB PCAP [27], a tool which allows users to
record USB traffic sent over the wire, and Wireshark, we

0x 01 00 1E 00 00 00 00 HID ’1’
0x 08 00 01 00 00 14 G9 button pressed
0x 01 00 00 00 00 00 00 HID clear
0x 01 00 00 00 00 00 G9 button up

Table 1: The sequence of signals involved in sending an
HID ’1’ over USB when button G9 is pressed

were able to identify USB packets that corresponded to
mouse movement and button presses. Four signals work
in tandem to send a USB button press; see Table 1 for an
example. HID related packets are prefixed with 0x01 and
contain standard HID keyboard codes. Packets encoding
the combination of buttons that are currently pressed be-
gin with 0x80 and end with 0x14. Bytes 1 through 3 con-
tain bit flags that represent all buttons currently pressed
down, allowing for combos based off of pressing multi-
ple buttons.

We also note that in the HID specification, modifier
keys such as Alt, Shift, Control, etc. are sent as bit flags
as well. Understanding how to send such keys plays a
crucial role in our final exploits.

In the USB protocol, devices register various commu-
nication “endpoints” which can send and receive data.
Each of these is numbered and can be set to fulfill a spe-
cific responsibility. The ATmega32u2 has 4 USB end-
points available for both input and output [1]. The out-
put buffers can be populated with a fixed number of data
bytes and flushed, triggering the data to be sent from the
mouse down the USB cable. USB PCAP revealed that
mouse movement was sent over USB endpoint 1 and but-
ton presses from the mouse are sent over USB endpoint
2. Endpoint 4 appears completely unused and is there-
fore an appealing candidate to use for communicating
with malware running on a target machine.

The ATmega32u2 supports two approaches to sending
consecutive USB packets: polling and interrupt driven.
In the polling option, an application desiring to send data
continuously checks the status of the RWAL (Read/Write
Allowed) flag until it signals that the data bank is ready
to be written to. In the interrupt driven approach, an in-
terrupt is fired every time that a data bank is available
to be written to. This interrupt is then caught by the ap-
propriate handler. Our reverse engineering indicated that
the mouse utilizes polling to determine when it can send
USB packets; see §3 for more details.

2.4 The Mechanics of a Firmware Update

A firmware update to the mouse is initiated from the soft-
ware updater on the host machine. A USB reset is sent
to switch the mouse from the application segment to the
bootloader segment, at which point the mouse begins lis-
tening for firmware update messages from the host. We



Firmware data
Firmware data 0xc00 001 YY2 ZZ3...ZZ31

Firmware update control flow
Start Update 0xd00 001 002 013 004...0031
Start Page 0xd00 WW1 WW2 023 004...0031
End Page 0xd00 WW1 WW2 013 004...0031
End Update 0xd00 001 002 033 004...0031

Table 2: The various signals involved in a firmware up-
date. All packets are 32 bytes in length. For sending the
firmware data the two-th byte indicates which data packet
out of 8 it is. The rest of the packet contains actual pro-
gram data. Bytes one and two of the Start Page and End
Page signals contain the address the of page to write.

remind the reader that Logitech wrote a custom firmware
updater in their bootloader, so there is no public docu-
mentation available.

There is a complex function in the bootloader that
controls how it responds to various USB packets. For
the purposes of this discussion, the only relevant pack-
ets are those that begin with 0xc0 which contain the ac-
tual bytes of the firmware and those that begin with 0xd0
which deal with various aspects of the control flow of
the firmware update; see Table 2 for details. We gave the
different packets semantic names based off of a series
of “case statements” in the bootloader that switch off of
various bytes of incoming USB packets.

Our analysis of the firmware update function in the
mouse firmware revealed five kinds of packets: Start Up-
date, Start Page, Firmware Data, End Page, and End Up-
date. A Start Update packet causes the bootloader to
erase all pages of program memory that contain appli-
cation code in preparation for receipt of a new firmware
version. The actual data transfer occurs page by page,
where transferring one page involves one Start Page
packet, eight Firmware Data packets, and then an End
Page packet. Once all of the pages have been transferred,
the host sends an End Update packet.

Upon receiving a Start Page packet, the mouse clears
out a page-sized temporary buffer in program mem-
ory. Then, as the bootloader receives each Firmware
Data packet, it writes the data into the temporary buffer.
Upon receiving an End Page packet, the firmware up-
dater writes the temporary buffer to program memory at
the page address indicated in the packet.

3 Firmware Analysis

With standard reverse-engineering techniques, we were
able to identify significant units of mouse firmware func-
tionality. The firmware contains over 12,000 lines of as-
sembly as well as 3 KB of data that contain informa-

tion such as the version string and device name. Ulti-
mately we gave precise, human readable names to over
160 functions compromised of over 4,000 lines of assem-
bly. During this process we reversed engineered substan-
tial portions of a USB library, an EEPROM library, an
SPI library and a math library. We are happy to have
avoided reversing the entire firmware; knowing what not
to read is just as important as knowing what to read when
attempting to quickly understand how a system works.

3.1 Obtaining the Firmware

Firmware for the Logitech G600 can be updated via soft-
ware available from the Logitech website. Both 32-
and 64-bit versions are available for download for recent
Windows platforms [25].

Inspection of the firmware updater revealed that there
were several Intel Hex (IHEX) files contained as Win-
dows Resources within. With basic tools (Windows Re-
source Hacker [20]), we were able to extract the IHEX
files — which we found to be different versions of the
G600 firmware as AVR binaries — modify them, and
replace them within the updater to be delivered to the
mouse which we will describe in more detail in §4.

3.2 Analysis Process

We developed a workflow for analyzing the firmware
with GCC tools. After extracting an IHEX file resource
using Windows Resource Hacker [20], we converted the
IHEX into an AVR binary file using avr-objcopy,
then disassembled it for reverse-engineering using
avr-objdump.

The manual was invaluable in understanding the se-
quence of steps necessary for reading from and writing
to USB. We particularly benefited from the information
it contained regarding various memory locations that are
used for interacting with USB, EEPROM, and SPI. Iden-
tifying references to these locations allowed us to quickly
pinpoint the leaf functions that dealt with the USB con-
troller. Additionally, searching for the constants we saw
in the PCAP (from §2.3) further helped us to locate func-
tions responsible for sending USB HID codes.

We pair programmed heavily; it prevented many mis-
understandings of the assembly. The merits of pair pro-
gramming particularly shined each time we completed
annotating a function and needed to articulate a higher
level function name that captured the precise role of that
function.

3.3 Static Analysis

To better focus our reverse engineering efforts, we wrote
a static analysis tool capable of recursively extracting the
call chain. This tool leveraged a symbol table that we



updated throughout the reversing process so that the call
chain used the meaningful names that we gave to func-
tions rather than their raw addresses when possible. This
helped us better visualize the overall flow of functions,
allowing us to more easily understand higher level pat-
terns in the firmware.

3.4 Hardware Debugging

We attempted to use microcontroller development hard-
ware to aid us in the firmware analysis process. Tools
like the AVR Dragon [2] allow users to use JTAG to set
hardware breakpoints and to re-flash the microcontroller.
However, we were unable to use JTAG with the Log-
itech G600. The ATmega32u2’s manual indicates that ir-
reversibly disabling JTAG is possible by blowing a hard-
ware fuse, so we conclude this was Logitech’s course of
action. This is one of many best practices for mitigating
attacks on embedded devices.

In addition to supporting JTAG, the ATmega32u2 sup-
ports debugWIRE, a proprietary hardware debugger of-
fered by Atmel. However, we lacked the proprietary
tools necessary to take advantage of debugWIRE and did
not pursue it further.

4 Firmware Update Process

In this section we will discuss the steps we took to mod-
ify the firmware updater as well as the process we devel-
oped for packaging malicious firmware and deploying it
to the mouse.

4.1 Modifying the Firmware Updater

On execution, the updater attempts to determine whether
a G600 is connected to the computer. If a G600 is de-
tected, it queries the G600 for its version of the firmware.
If the version of the firmware running on the mouse is at
least as recent as the version contained in the updater, the
updater will inform the user that the mouse is up-to-date
and exit. Otherwise, the user can initiate the firmware
update process.

In order to guarantee that the modified firmware would
reach the mouse, we used IDA Pro to examine the up-
dater and identified the conditional branch which aborts
the update process in the event of a failed version check.
We patched the updater to make this branch an uncon-
ditional jump to the code path that initiates the firmware
update.

Although Atmel offers a default firmware update pro-
tocol in the ATmega32u2 manual, Logitech elected to
implement a custom protocol in their bootloader. Anal-
ysis of the bootloader section revealed that the mouse
checks the firmware for corruption by calculating a

CRC16-CCITT[36] as part of this protocol. We note that
although the CRC is at the end of the application seg-
ment, it is not at the actual end of the firmware since the
application segment is followed by the bootloader.

4.2 Preparing a Firmware Update

Once we identified the function responsible for sending
HID codes, we hijacked the control flow of that function
to additionally call a custom function that we placed in
an unused section of program memory. After this initial
change, we developed the following four step workflow
to flash the mouse:

1. Write the custom functions in a stand alone assem-
bly file

2. Run a script to modify the firmware and prepare it
as an IHEX file

(a) Assemble our custom functions using
avr-gcc

(b) Copy the appropriate bytes from the compiled
binary to an unused portion of the original
firmware

(c) Compute a CRC of our modified firmware and
add it to the firmware

(d) Use avr-objcopy to convert the elf to an
IHEX file ready to be injected into the mouse
updater

3. Inject our modified firmware into the mouse updater
using a Windows resource extractor

4. Flash the mouse by running the modified mouse up-
dater

5 Results

The current state of the attack is that a modified Log-
itech firmware update utility first transfers new, arbitrary
firmware to the mouse. The malicious firmware then
waits for its internal timer to trigger and then sends ar-
bitrary HID key codes in order to open a shell on the
target machine and execute malicious commands. Fol-
lowing convention, we run calc.exe. Below we have
included an alternative malicious command2 that could
be run if the computer has Internet access.



<WIN> + R
powershell.exe
Start-BitsTransfer

-source http://pwn.com/pwn.exe
-destination .\pwn.exe

.\pwn.exe
exit

If the target computer does not have Internet access,
then the mouse needs to store and deliver the entire mal-
ware. To handle this scenario, we wrote a file transfer
utility to copy a binary stored on the mouse to the host
computer 3. As a proof of concept, we transfered a bi-
nary representation of the Fibonacci sequence from the
mouse to the host computer.

The mouse has over 6.75 KB of available space in the
application section to store a malicious binary; we could
squeeze in a slightly larger binary by storing a zipped
version on the mouse and unzipping it after we’ve trans-
fered it to the host computer. Despite the increases in
malware size over the past several years, there are still
many pieces of malware that fit into our available space
[24].

It is worth noting that this exploit can trivially be
turned into a VM escape by first sending the host key.
Additionally, we observe that it is somewhat common
for consoles to briefly pop up on a user’s screen in Win-
dows, often during an update. We videotaped our ex-
ploit, and the entire process takes less than one third of a
second and is indiscernible from a console-based update
process.

6 Other Triggers

There are several other options for triggering a firmware
update including timers based off of user inactivity, com-
munication with a adversary-controlled program on the
target, and fingerprinting of the target.

6.1 Timers and Clandestine attacks

We have two 8 bit registers available to us to use a
counter. So far, we have used that counter to count but-
ton presses so that we trigger the exploit every n button
presses. This eases testing, but it is not subtle from a
user’s point of view. However, as mentioned above, the
terminal only briefly flashes on the user’s screen.

Instead of sending the exploit in response to user ac-
tivity, it may be more subtle to respond to a period of
user inactivity. We believe we can do this by modifying
the main sleep loop, the code responsible for handling
timer interrupts, and the code responsible for handling
user-triggered interrupts such as mouse movement and

button clicks. The counter would represent the length of
time since the last user activity, and it would be reset to 0
every time the user triggers an interrupt. Every timer in-
terrupt, we could increment the counter to give us a run-
ning tally of how long it has been since user activity. In
the main sleep loop, we can check the counter and send
the exploit if it has been sufficiently long. Although we
have not actually implemented these enhancements, we
have identified and annotated all of the relevant portions
of the code.

If we need more than a 16 bit counter, it is possi-
ble to use the mouse’s data space to store the current
count. It was initially unclear what regions of memory
were safe to overwrite due to the Harvard architecture
of the mouse. However, during the reversing process
we developed a fairly comprehensive view of the loca-
tion in memory and purpose of the various global structs
that store the mouse’s state. If we were to avoid all such
structs, trial and error might quickly reveal locations in
data memory that we could reliably use.

In constructing any such timer, the adversary must
wait long enough to ensure that the user is not looking
while being careful to not wait so long as to let the target
computer enter sleep mode or lock the screen.

6.2 Communicating With The Malware

An alternative approach to trigger the mouse’s payload
would be some sort of communication with the host ma-
chine. If the mouse was flashed by the target user’s ma-
chine, then we can assume that there is some attacker-
controlled code running on the machine. Since USB is
not a restricted resource, the malware can send messages
to the mouse in order to inform the mouse that the mal-
ware is already present and that the mouse need not send
the payload. If the malicious mouse does not hear from
the malware in a sufficient period of time, it can then
trigger the payload and reinfect the host machine with
the malware.

6.3 Making the Attack Targeted

It is conceivable that a USB device may in some way
be able to fingerprint the host that it is connected to. A
malicious USB device can report itself as various differ-
ent devices, even a firewire-to-USB converter with di-
rect memory access [5], opening various opportunities
for gathering information about the host. If we can de-
velop such a fingerprinting mechanism, we open up new
avenues for targeted attacks. The malicious mouse can
scan host devices for fingerprints until it determines that
is connected to a target device and only then release its
payload. This will allow us to infect the mouse on a less
secure machine and avoid suspicion until we are con-



nected to a target more secure machine. Alternatively,
it would allow us to infect many mice but to only infect
the specific hosts that we wished to target, decreasing the
likelihood of detection.

7 Mitigations and Discussion

Logitech has taken responsible steps against the most
trivial attacks. Disabling JTAG prevents attackers from
gaining complete control over the mouse and bypassing
intended update functionality in entirety. However, the
firmware itself must be more carefully protected using
digital signature verification.

7.1 Mitigations

Ideally, the mouse should only accept a firmware update
that is authored by Logitech. In order to guarantee this,
the mouse must authenticate the author of the code via a
digital signature. We implemented a digital signature to
evaluate the space requirements that this would impose.
To be clear, we are describing a digital signature on the
firmware itself, verified by the mouse before being exe-
cuted, not a signature on the updater.

Although the mouse has several kilobytes of free space
available, the digital signature verification code must
fit in the bootloader since the bootloader controls the
firmware update process. The bootloader segment has
a maximum size of 4 KB on the ATmega32u2, and the
Logitech bootloader uses 3.3 KB of that space.

We implemented PKCS#1 v1.5 signing and RSA in C,
using SPONGENT/256/256/128 as our underlying hash
function [21, 9]. We did so with a mind toward space ef-
ficiency and applied various compile-time flags to mini-
mize the executable size. In total, the signature verifica-
tion code took 1.5 KB: SPONGENT took 400 bytes and
the rest of RSA and PKCS took 1100 bytes. Although
this requires more space than is currently available in the
Logitech bootloader, we do not view this as prohibitive
in general on the ATmega32u2. Note that Balasch et al.
were able to implement SPONGENT/256/256/128 using
12% less space with hand coded assembly [4], suggest-
ing that there is room for compacting the code size even
further.

However, this mitigation is not perfect. Due to the
small amount of memory available, once a mouse has
received illegitimate firmware, it has already overwrit-
ten its legitimate firmware with the unsafe version. This
leads to the classic fail-open/fail-closed problem for the
mouse, where the mouse must choose between running
the untrusted firmware or completely ceasing to operate.
In this case, ceasing to operate (failing closed) and wait-
ing for a legitimate firmware update is probably the better
choice, though it is still not ideal.

Exploitable vulnerabilities in the bootloader itself
would allow the cryptographic verification to be by-
passed, of course. We did not find any such vulnerabili-
ties in our reverse engineering.

7.2 Limitations and Severity

Thus far, we have treated the Logitech G600 as a case
study, discussing how it could be used to sabotage tar-
get users or corporations. However, since the G600 is
a gaming mouse, this drastically reduces the population
our specific exploit can reasonably target. This does not
reduce the strength of our attack in general, as these tech-
niques can be applied broadly as demonstrated by Ne-
tragard [29]. Nonetheless, the intended market for the
mouse must be considered.

Competitive gaming and eSports have become in-
creasingly popular over the past several years and the
associated prize pools have grown accordingly. For ex-
ample, the prize pool for the DOTA 2 international cham-
pionships in July of 2014 was over $10 million [35]. In
general, such competitions are extremely concerned with
cheating; players compete on airgapped systems that are
constantly monitored for suspect behavior. Players are
banned from bringing USB sticks (with configuration
files, etc.) due to the fear that they will have exploits on
the USB stick. However, players are allowed to bring
their own mice, keyboards, and other peripherals since
this is often an integral part of their performance. Our
exploit makes it clear that even allowing players to bring
their own peripherals opens the door for unfair play.

Another limitation of this style of exploit is that the re-
verse engineering process is laborious and often limited
to a specific peripheral. Furthermore, there is great varia-
tion among mice in the general population. As such, this
exploit is better suited for a targeted attack than mass ex-
ploitation. Such firmware update attacks are particularly
viable at the individual or corporate level. The mice used
within one company are often standardized, providing a
high chance of success within a given company.

8 Conclusion

We have presented an end-to-end demonstration of mal-
ware hosting on an off-the-shelf mouse, the Logitech
G600. We reverse-engineered the mouse firmware up-
date process and showed how it could be subverted to
install malware on the mouse. We showed how mouse-
hosted malware could take advantage of the USB HID
stack as an attack vector against the host. Contrary to
the common belief that mice are benign, mice turn out
to make an ideal vector for compromise of hardened or
air-gapped computers.



We implemented cryptographic verification code re-
quired to prevent the mouse from loading illegitimate
firmware in order to investigate the associated require-
ments. We conclude that signature verification code is
not prohibitively large.

Cryptographic verification could be bypassed if there
are exploitable vulnerabilities in the mouse bootloader
itself, and an attacker with physical access to a mouse
could modify its hardware or write malicious firmware
directly to flash. Ultimately, host security against ma-
licious mice must come down to distinguishing input
(mouse movements and keystrokes) generated by the
user from input faked by the mouse firmware, as pro-
posed in DARPA’s Active Authentication program [18].

Acknowledgements

Keaton Mowery and David Kohlbrenner aided us in
the modification of the x86 Logitech firmware updater.
Samuel Chen, who has extensive background in micro-
controller software development, kindly worked with us
on trying to enable JTAG with his personal AVR hard-
ware and software. Michael Walter provided an excel-
lent translation of the article from c’t. Stefan Savage had
helpful comments and suggestions.

References

[1] Atmel. Doc 7799: ATmega8U2/16U2/32U2 Complete.
http://www.atmel.com/images/doc7799.pdf,
September 2012. [Online; accessed 2014-03-12].

[2] Atmel. AVR Dragon Information Page. http://
www.atmel.com/tools/AVRDRAGON.aspx, 2014. [Online;
accessed 2014-03-10].

[3] Daniel Bachfeld. Im Auge der Maus. http://
www.heise.de/ct/heft/2014-8-Computermaeuse-
laden-Schaedlinge-aus-dem-Netz-nach-
2156334.html, March 2014. [Online; accessed 2014-05-21].
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Notes

1The c’t article makes a remarkable claim which we
have not seen followed up on. Their off-the-shelf mice,
when imaging mouse pads with a particular design,
would send commands to the host that would down-
load and install a remote-access tool. Patterns in the
mouse pad encode the download trigger and the IP ad-
dress to contact. They had received the mouse pads sev-
eral months earlier as a free conference give-away.

2Start-BitsTransfer is the Powershell equiva-
lent of wget. We note that the BitsTransfer utility may
be used from cmd as well.

3We considered two options for writing the file transfer
tool: copy con and Powershell. The copy con
approach relies on using Alt codes while the Powershell
approach would write the hex bytes into a Powershell
byte array and then use set-content to write to file.
We implemented the copy con approach and were
disappointed to discover a flaw: 0x00 terminates the
transfer. The Powershell approach is capable of writing
all bit patterns.


