Lowering the USB Fuzzing Barrier by Transparent Two-Way Emulation

Rijnard van Tonder
rvantonder @ml.sun.ac.za
MIH Media Lab, Stellenbosch University

Abstract

Increased focus on the Universal Serial Bus (USB) at-
tack surface of devices has recently resulted in a number
of new vulnerabilities. Much of this advance has been
aided by the advent of hardware-based USB emulation
techniques. However, existing tools and methods are far
from ideal, requiring a significant investment of time,
money, and effort. In this work, we present a USB test-
ing framework that improves significantly over existing
methods in providing a cost-effective and flexible way to
read and modify USB communication. Amongst other
benefits, the framework enables man-in-the-middle fuzz
testing between a host and peripheral. We achieve this
by performing two-way emulation using inexpensive
bespoke USB testing hardware, thereby delivering capa-
bilities of a USB analyzer at a tenth of the cost. Mutation
fuzzing is applied during live communication between a
host and peripheral, yielding new security-relevant bugs.
Lastly, we comment on the potential of the framework
to improve current exploitation techniques on the USB
channel.

Keywords:
middle

USB, emulation, fuzzing, man-in-the-

1 Introduction

Exploration of the USB attack surface has drawn
attention among security researchers as far back as
2005 [7], and while USB bugs and exploits have been
sporadically reported since 2009 [14], it is only in the
last two years that considerable headway has been made.
This is evidenced by a slew of new vulnerability reports
in 2013, registering far more USB security advisories
than previous years combined.! These bugs are exhib-
ited mostly in USB drivers of operating systems, and of-
ten lead to memory corruption vulnerabilities.

Perhaps the primary reason for the discovery of re-
cent bugs is the maturity of cost-effective USB hardware

Herman Engelbrecht
hebrecht@ml.sun.ac.za
MIH Media Lab, Stellenbosch University

which enables the injection of input into the USB chan-
nel [8]. One such piece of hardware, the Facedancer [2],
is a bespoke USB testing device that emulates a USB
device with the aid of software. This approach lends it-
self well to finding bugs throughout the USB software
stack, including core drivers, third-party drivers, and ap-
plication software which handle USB data. Dedicated
USB equipment, such as USB analyzers, are arguably
the most effective for this task, but often prove to be pro-
hibitively expensive. Other viable approaches for test-
ing specific USB software without the use of hardware
have also been demonstrated [6]. Here, fuzz testing (or
fuzzing) is made possible by emulating the presence of
USB devices in a guest operating system. Unfortunately,
this carries the limitation that USB software has to func-
tion within the constraints of the virtual operating sys-
tem. Because the USB protocol interacts closely with
hardware devices, this makes it difficult to achieve full
USB functionality.

We therefore argue that a hardware-based approach
should be preferred when exploring the USB attack
surface. The cost-effectiveness and flexibility of a
hardware-based approach, however, affect our ability to
explore it efficiently. In practice, it is difficult to achieve
both these goals with currently available solutions, which
are discussed in depth in Section 5.

This paper presents a novel approach for finding bugs
in USB software that is both cost-effective and highly
flexible. The goal of the design is to allow one to tap
into USB communication between a host and peripheral
device. The data should not only be readable (affording
functionality analogous to a bus-pirate device), but also
modifiable, as typically made possible by a USB ana-
lyzer. Moreover, this is achieved with two bespoke USB
emulation devices which establish two-way communica-
tion that is transparent to the host and peripheral. The at-
tributes of the Transparent Two-Way Emulation (TTWE)
framework thus enable us to perform man-in-the-middle
fuzzing. Beyond supplying USB analyzer capabilities at

a tenth of the cost, the framework also allows full control
over the software that handles USB communication, un-
like traditional bundled USB analyzer software. While
the framework makes use of affordable hardware, it is
a hybrid approach, and relies on a software component.
This software component enables the desired flexibility
and efficiency when exploring the USB attack surface,
since its role is to transparently mediate USB communi-
cation between a host and peripheral.

In this paper we discuss the architecture of the frame-
work, demonstrate the practical application thereof, and
show that it is effective at finding USB bugs that may
have security implications. The contributions of this
work in particular are:

1. A USB testing framework that

(a) Is flexible, by allowing man-in-the-middle
modification of USB host/peripheral commu-
nication through software,

(b) Is cost-effective in affording USB analyzer
functionality by combining two inexpensive
USB controllers, and

(c) Lowers the knowledge requirement for USB
testing by exposing existing host/device com-
munication; no prior knowledge of the USB
protocol is required to test (or fuzz) software.

2. Bug-finding results and analysis, for which we de-
liver an interpretation of the effectiveness in finding
bugs using this approach.

3. Enhanced USB testing methods where we suggest
further applications that the TTWE framework af-
fords, such as cataloging USB host/peripheral re-
sponses.

As a departure point for discussing the framework ar-
chitecture, an overview of the USB protocol is provided
in Section 2. We proceed by discussing the architecture
in depth, and the necessary logic for achieving the test-
ing framework in Section 3. This is followed by our bug-
finding results in Section 4 and an analysis of the frame-
work in Section 5. Finally, we discuss related work and
conclude in Sections 6 and 7, respectively.

2 Background

This section aims to give a high-level overview of the
USB specification so that the framework implementation
can be understood. In particular, the USB specification
makes use of varying transfer types; transfers contain re-
quests, descriptors, or data which are sent over endpoints
to facilitate communication between a host and periph-
eral. We explain these in turn before considering the de-
sign of the framework.

2.1 Requests and Descriptors

The USB specification defines eleven standard
requests. A request from the host, such as
get_descriptor, expects to receive a descriptor
from the peripheral, while other requests such as
set_address require the peripheral to perform an ac-
tion. The peripheral responds with descriptors of varying
types, containing the respective information. Requests
and descriptors allow the USB host to learn about the ca-
pabilities of the peripheral, and are also used to load the
appropriate software driver.

The USB specification defines eleven standard de-
scriptor types, including device, configuration, and end-
point descriptors. Other descriptors may exist, like the
Human Interface Device (HID) descriptor for keyboards
and other input devices. A complete listing of requests
and descriptors are available in the USB Device Working
Group documentation [5].

2.2 Endpoints

USB endpoints provide a way for the host and periph-
eral to agree on the direction and address for a given
transfer. The address is a number between 0 and 15. End-
point 0 is a special address; it is a bi-directional endpoint
that is used during control transfers (see Section 2.3 be-
low). All USB devices must support communication on
endpoint 0. Control transfers require bi-directional com-
munication between host and peripheral, and therefore
endpoint O uses both an IN and OUT direction. Endpoints
for non-control transfers carry data that is particular to
the peripheral. These endpoints, numbered 1 through 15,
are unidirectional; an endpoint can either support an IN
or an OUT direction, but not both. If bi-directional com-
munication is required outside of endpoint O, then sep-
arate endpoints are needed. For example, a USB mass-
storage device may designate in its endpoint descriptor
that it will use endpoint 1 with an IN direction, and end-
point 2 with an OUT direction.

Endpoint directions are always specified from the per-
spective of the host. Furthermore, endpoint addresses are
always defined by the peripheral’s USB controller.

2.3 Transfer types

Four USB transfer types exist: control, bulk, interrupt,
and isochronous. Transfer types are used for different
purposes; in this paper, we distinguish simply between
control and non-control transfers. Control transfers es-
tablish initial communication between a host and periph-
eral, whereas non-control transfers typically carry data
specific to peripheral functionality. For instance, a mass-
storage USB device would transfer file data using a bulk

transfer, and a keyboard would transfer keystrokes using
an interrupt transfer. In both instances, these peripherals
would first establish basic communication with control
transfers.

2.3.1 Control transfers

Control transfers constitute the means by which a host
learns about the peripheral attached to it. Control trans-
fers comprise requests and descriptors as discussed in
Section 2.1. The host enumerates the peripheral by send-
ing requests, and the peripheral responds either with data
(in a descriptor) or by performing an appropriate action.
Control transfers only take place over endpoint 0. Once
enumeration over endpoint 0 is complete, the host and
peripheral can start exchanging data over non-control
endpoints.

Control transfers have additional structure in the form
of stages: setup, data, and status stages. Depending on
the request, different stages take place. For instance,
a peripheral will respond with a descriptor in the data
stage in response to a get_descriptor request. In a
set_address request, however, there is no data stage,
and the peripheral will only respond with a status stage,
indicating whether it was successful (ACK), is still busy
(NAK), or failed (STALL). In Section 3.2 we consider how
these considerations play a role in the implementation of
the framework.

2.3.2 Non-control transfers

Non-control transfers (bulk, interrupt, and
isochronous transfers) take place after the host has
enumerated the peripheral. In summary, bulk transfers
are used for large, time-insensitive data, isochronous for
time-critical, real-time data, and interrupt transfers for
periodic, low-bandwidth data. On most USB controller
chips, bulk and interrupt transfers are treated the same;
it is up to the host to signal when data is to be sent or
received. Furthermore, non-control transfers may rely on
additional, peripheral-specific protocols. One example
includes mass-storage devices that commonly use the
SCSI (Small Computer System Interface) protocol.
Some examples of data that is sent using non-control
transfers are provided in the table below.

Peripheral Type | Action Transfer Type
Keyboard Key presses Interrupt
Mouse Navigation and clicks | Interrupt
Mass-storage File operations Bulk

Printer File transfer Bulk
Microphone Audio recording Isochronous
Speaker Audio playback Isochronous

3 Framework Architecture

We remind the reader that the goal of the framework
is to allow one to tap into USB communication between
a host and peripheral device in order to read and modify
the data being transferred. In this section we consider a
conceptual overview of the framework, proceeded by the
hardware and software requirements to achieve effective
operation.

3.1 Design

With the aid of two bespoke hardware testing de-
vices, namely, two Facedancer devices [2], we are able
to expose USB communication to a Mediating Computer
(MC) with a man-in-the-middle strategy. These devices
are essentially USB controllers that can act as either a
USB host or device; detail of their hardware is given in
3.2. On its own, the Facedancer device can perform USB
host or device emulation via software driven commands
from a computer.

In our design, and with reference to Figure 1, we
place one Facedancer in Peripheral Emulation Mode to
interact with a USB HOST, and a second Facedancer act-
ing in Host Emulation Mode to interact with a USB
PERIPHERAL. By monitoring the hardware interrupts
triggered on the Facedancer USB controllers, the MC is
able to mediate communication by forwarding requests
from the HOST, and responses from the PERIPHERAL.
The HOST is under the impression that it is communi-
cating with an authentic USB peripheral, but in fact it
is an emulated USB peripheral whose responses are pre-
cisely that of the authentic USB PERIPHERAL monitored
by the Facedancer in Host Emulation Mode. Similarly,
the PERIPHERAL device is under the impression that it is
communicating with an authentic host, whose requests
are in fact emulated by continuously monitoring the au-
thentic HOST using the Facedancer in Peripheral Emula-
tion Mode.

The MC monitors the host by checking whether the
Facedancer has received host requests or data, and also
forwards device responses to the host via the Facedancer.
This operation is performed by a USB client driver on the
MC. In likewise manner, a USB Host driver monitors the
Facedancer, and forwards host requests. The USB client
and host driver exchange data via named pipes on the
MC—this allows the USB data to be exposed and manip-
ulated by any intermediary software, such as a mutation
fuzzer, before the data continues on its normal course.

Whereas understanding the design is straightforward,
there are a number of caveats which present themselves
when implementing the framework; we address these in
the next section.

HOST

s

EP10UT EPO EP3IN

-+

Facedancer
(Peripheral Emulation Mode)

USB Peripheral
Controller
Interrupts i
USB Peripheral

Mediating Emulation Driver
Computer
(MC)

l 1 TNamedpipes

USB Host
USB Host Emulation Driver
Controller T
Interrupts
Facedancer
(Host Emulation Mode)
EP20UT EPO EP1IN

Q PERIPHERAL

Figure 1: The TTWE Framework Architecture

3.2 Implementation

The design addresses the conceptual way in which we
are able to mediate and tap into USB communication.
There are, however, aspects of the USB protocol that
do not translate readily to the framework design. These
aspects include a) endpoint address numbering, and b)
USB handshaking that pertain to control transfers with-
out data stages. In this section we discuss the hardware
and software requirements of the framework, and further-
more emphasize the role of software in overcoming the
caveats mentioned.

3.2.1 Hardware

The functionality of the Facedancer device is cen-
tral to the operation of the framework. Currently, the
Facedancer is an affordable device > with attractive USB
testing abilities for the purposes of our framework. How-

ever, any device with similar functionality can serve
as a substitute; the framework is not specific to the
Facedancer. For this reason, we briefly mention the ma-
jor hardware components that bring about the required
functionality.?

As shown in Figure 2, the main hardware components
of the Facedancer are an FTDI USB/serial adapter chip,
a 16-bit microcontroller, and a MAX3421E USB con-
troller chip. USB emulation can be performed by send-
ing software-driven USB data and commands to the mi-
crocontroller via the FTDI adapter. The microcontroller
drives the USB controller, which may be placed in either
host or peripheral mode by toggling a mode bit in one of
the controller registers. Recall that in Figure 1, we place
one Facedancer’s USB controller in host mode, and the
other in peripheral mode. The microcontroller listens for
responses from the USB controller, which are in turn for-
warded back to the computer driving emulation. Basic
firmware is required for the microcontroller to perform
these actions; such firmware is readily available for the
Facedancer components [1].

ATarget

usB
controller

16-bit
Microcontroller

FTDI USB/serial
adapter

yMC

Figure 2: The Facedancer hardware design for perform-
ing USB device emulation

3.2.2 Software

The USB host and client drivers monitor the respective
USB controller interrupts to determine when data can
be sent and received. The drivers process the endpoint
source and destination of data once it is available, and
this data is sent between the drivers on dedicated named
pipes. Another important responsibility of the software
is handling special cases of the USB protocol. Problems
that arise due to endpoint numbering are addressed by
an endpoint hijacking approach. Complications in USB
handshaking are handled by emulating certain aspects of
the handshake procedure.

Endpoint Hijacking When a host receives an end-
point descriptor from a device in response to a
get_configuration request, it is informed of the end-
point address(es) that the device intends to use for non-
control transfers. For example, consider the USB device
in Figure 1 (depicted as a mass-storage stick), which re-
quires a bulk IN endpoint with address 1, and a bulk OUT
endpoint with address 2. Recall from Section 2.2 that the
direction is always from the perspective of the host, but
the endpoint addresses, directions, and transfer types are
specified in an endpoint descriptor which are fixed by the
peripheral’s USB controller,

When the MAX3421E USB controller operates in
Host Emulation Mode, it is able to send and receive on
any endpoint number. However, when the MAX3421E
USB controller of the Facedancer in Figure 2 is operated
in Peripheral Emulation Mode, its endpoint capabilities
are fixed in hardware, and cannot be changed. These ca-
pabilities are as follows:

Endpoint Address | Direction | Transfer Type
EPO IN/OUT Control

EP1 ouT Non-control
EP2 IN Non-control
EP3 IN Non-control

Consider that an authentic USB peripheral may have
different endpoint capabilities, which are also fixed. It is
thus possible that endpoint addresses can be mismatched
between the emulated peripheral’s USB controller and
the authentic USB peripheral’s. In our case, the USB
controller supports only an OUT direction on EP1, yet
the authentic peripheral specifies that it must use EP1
with an IN direction. To overcome this problem, we
“hijack” and modify the endpoint descriptor with the
MC. When the MC detects an endpoint descriptor be-
ing sent from the authentic peripheral in response to a
get_endpoint_descriptor from the host, it creates a
new mapping whereby everything received on EP1IN of
the USB host emulator will be sent on EP3IN of the USB
peripheral emulator. Similarly, a mapping is created for
the EP20UT/EP10UT pipe.

With the endpoint mapping in place, the authentic host
and device can continue communication on the perceived
information pipes. Since the USB specification does not
mandate the capabilities of endpoints other than endpoint
0, the nature of the endpoint addressing scheme in our
framework is thus obscured from the host and device,
allowing a transparent data channel. With this scheme
we can cope with any manner of endpoint addressing that
a peripheral may require, provided the USB controller
supports the same number of endpoints.

Emulating Handshaking A further consideration in
our framework concerns USB control transfers which do

not have a data stage. These control transfers include
set_address, set_configuration, set_interface,
and clear_feature requests. Because these transfers
do not have a data stage, the peripheral would simply
respond with a status packet, such as an ACK. The frame-
work makes provision for mediating data transfers across
the pipes, but for status packets, one of two work-around
solutions is required:

1. After forwarding the host request, blindly acknowl-
edge it with the peripheral emulator, without know-
ing the authentic peripheral’s status result.

2. Communicate the authentic peripheral’s status re-
sult once available. This requires extra logic so that
custom status messages can be communicated be-
tween emulator drivers.

We opted for the former approach. This allows us to
asynchronously ACK requests, and assume that the re-
quest will be successfully processed by the authentic pe-
ripheral. This poses the question, what if the request is
not processed successfully, and the authentic peripheral
responds with something other than an ACK? In such an
event, subsequent requests from the host would not re-
ceive a response, and the breakdown of communication
would become apparent on the host and client driver soft-
ware. During testing, we observed this communication
breakdown when we neglected to blindly ACK the afore-
mentioned requests. After doing so, we did not encounter
the scenario again in obtaining the results of Section 4,
so the approach proved sufficient for such purposes.

4 Results

In this section we discuss the preliminary results of
our framework in exposing USB communication, as well
as USB testing and fuzzing. The first significant result
is the ability to expose USB communication between an
authentic host and device, enabling man-in-the-middle
attacks without requiring prior knowledge of the USB
protocol. The second significant result is the discovery
of new bugs in USB software. Due to the recent imple-
mentation of our USB framework, a limited time of ap-
proximately one week was spent fuzzing various hosts.
Despite this brief period of dedicated testing, we discov-
ered security-relevant bugs. As vulnerability disclosure
is still being coordinated at the time of writing, critical
details have been omitted.

4.1 USB Enumeration & Functionality

Device Enumeration We have been able to success-
fully mediate communication between host and periph-
eral pairs, allowing the host to fully enumerate a vari-

ety of USB peripheral classes. These include the USB
HID, mass-storage, printer, and imaging device classes.
Because of the generic manner in which enumeration is
performed, we expect most device classes to work with
this framework in a plug-and-play manner.

Device Functionality USB mass-storage functionality
can be achieved successfully after device enumeration
takes place. This means that we can perform mount,
browse, read, and write actions on the mass-storage de-
vice from the host while tapping into USB communi-
cation. Consider Table 1 which presents mass-storage
functionality by Two-Way Emulation on a Linux host.
The orange row indicates the peripheral’s endpoint de-
scriptor, sent in the IN direction (DIR) on endpoint (EP)
0. The bold values 1 and 130 are the endpoint addresses
that are to be hijacked and modified on the fly. The end-
point address corresponds to the lower nibble of the hex-
adecimal representation of these values: 1h and 2h re-
spectively, with direction specified in the most signifi-
cant bit (Oh, or OUT, and lh, or IN respectively). The
subsequent yellow rows indicate the start of SCSI data
transmitting on the desired endpoints EP10UT and EP3IN
after enumeration. Finally, the green row indicates a
set_configuration request by the host in the OUT di-
rection; here, the host would receive a blind ACK, and the
request is forwarded to the mass-storage device.

DIR | EP | DATA (Base 10)

OUT | [0] | [128,6,0.1,0,0,64, 0]

IN [0] | [18.1,0,2,0,0,0,64,143,5, 135,99,2,1,1,2,3,1]

OUT | [0] | [0,5,25,0,0,0,0,0]

OUT | [0] | [128.6,0,1,0,0,18,0]

IN [0] | [18,1,0,2,0,0,0,64,143,5, 135,99,2,1,1,2,3,1]

OUT | [0] | [128,6,0,6,0,0,10,0]

IN 0] | [10,6,0,2,0,0,0,64,1,0]

OUT | [0] | [128,6.0,2,0,0,9,0]

IN 0] | 9.2.32,0.1,1,0, 128, 100]

OUT | [0] | [128.6,0,2,0,0,32,0]

N 0] | 9.2 32,0,1,1,0, 128, 100, 9, 4, 0, 0, 2, 8, 6, 80, 0, 7,
5,1,2,64,0,0,7,5,130,2, 64,0,0]

OUT | [0] | [128,6,0,3,0,0,255,0]

IN o | [4,3,94]

OUT | [0] | [128,6,2,3,9,4,255,0]

IN 0] | 26,3,77,0,97,0,115,0, 115,0,32,0,83,0, 116,0, 111,
0, 114, 0,97, 0, 103, 0, 101, 0]

OUT | [0] | [128.6,1,3,9,4,255,0]

IN 0] | [16,3,71,0,101,0,110,0, 101,0, 114, 0, 105, 0, 99, 0]

OUT | [0] | [128.6,3.3,9,4,255,0]

IN [0] | [18,3.49,0,57.0,54,0,50,0,51,0,55,0, 51,0, 54, 0]

OUT | [0] | [0,9,1,0,0,0,0,0]

OUT | [0] | [161,254,0,0,0,0,1,0]

IN [0] [0]

OUT | [1] | [85,83,66,67,1,0,0,0,36,0,0,0, 128, 0, 6, 18, 0, 0, 0,
36,0,0,0,0,0,0,0,0,0,0,0]

IN 31 | [0.128,4,2,31,0,0,0,71, 101, 110, 101, 114, 105, 99, 32,
70, 108, 97, 115, 104, 32, 68, 105, 115, 107, 32, 32, 32, 32, 32,
32, 56, 46, 48, 55]

IN 31 | 185,83,66,83,1,0,0,0,0,0,0,0,0]

OUT | [1] | [85,83,66,67,2,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0]

IN B3] | 185,83,66,83,2,0,0,0,0,0,0,0, 1]

OUT | [1] | [85,83,66,67,3,0,0,0,18,0,0,0,128,0,6,3,0,0,0,
18,0,0,0,0,0,0,0,0,0,0,0]

Table 1: Mass-storage device functionality by TTWE on a Linux Host

Other communication in this table corresponds to stan-
dard USB enumeration behavior. We were able to

achieve functionality in this fashion by writing additional
software for the Facedancer that handles, for example,
the granularity of bulk transfers in 512-byte blocks. If
we wanted to support HID functionality, it would require
writing additional software that simply monitors the in-
terrupt endpoints on the Facedancer. Thus, achieving de-
vice functionality after enumeration may require addi-
tional code, but fortunately this is a software restriction,
not a hardware one. Furthermore, this additional imple-
mentation in software pertains only to endpoint types,
and is not device or vendor specific.

4.2 USB Fuzzing

USB Printer Driver We discovered a bug in a pop-
ular operating system’s core USB printer driver, which
causes a kernel panic and system crash. Analysis of
the crash dump revealed that this is due to an arbitrary
memory read, resulting after heap corruption on the host.
At present this bug causes a denial-of-service, but it
may also allow arbitrary code execution. The bug was
found by rudimentary fuzzing techniques—bytes were
randomly mutated in flight during USB device enumera-
tion. Initially, the bug was found by using a real printer;
this was important since the host issued different requests
depending on the printer’s malformed responses. In par-
ticular, the bug is only triggered in response to a host
request for a specific string descriptor. After inducing a
system crash on the host, we could analyze the printer
response and replay it, this time using only peripheral
emulation.

USB Host Printer denial-of-service Another bug was
discovered in a popular operating system which would
cause an application to hang as soon as the user attempts
to print something. This was not specific to any appli-
cation, and would occur in word-processing programs,
browsers, editors, and so forth. We could thus envision
a scenario where an attacker may use a malicious USB
device to perform a denial-of-service attack on a locally
accessible computer. As long as the device remained in
the computer, the user would need to forcibly terminate
the application from which they attempted to print. It
was found that this bug was a result of the host waiting
in a busy-loop for certain USB ACK responses from the
peripheral. Again, this bug was found with the aid of a
real printer. After discovering the cause, we could re-
produce the attack by replaying it using pure emulation.
As before, the bug was triggered by refraining from re-
sponding to a specific host request.

USB Host Printer denial-of-service A certain printer
which supports printing from a USB mass-storage de-
vice was found to contain a bug which causes the printer

to crash. By using a real USB mass-storage device and
fuzzing the printer host, the bug is triggered by a mal-
formed SCSI response. As with previous bugs, we were
able to replay the responses so that the printer could be
crashed at will.

5 Analysis

Preliminary results indicate that our framework is ef-
fective, having detected novel bugs that would otherwise
require much more effort to find using traditional emu-
lation techniques. There are a number of improvements
that the framework delivers over traditional solutions.

Flexibility While the framework allows platform-
independent man-in-the-middle attacks on the USB pro-
tocol, this important feature is also possible with a USB
analyzer [4]. However, Davis [9] mentions the limita-
tions of the software provided with the tools: they lack
a proper software API, requiring the user to make use of
a custom scripting language [10]. Our framework does
not place restrictions on the user’s ability to manipulate
USB data. The host and client emulation drivers are im-
plemented in Python and expose the raw USB data over
Unix pipes. If desired, other forms of inter-process com-
munication (IPC) such as Unix sockets could also be em-
ployed. We opted for named pipes due to the simplicity
of having host and peripheral emulation drivers attach to
these endpoints, instead of implementing extra IPC func-
tionality in the drivers themselves. Moreover, the user is
not restricted to Python, and if desired, may implement
drivers that interact with the Facedancer in any preferred
language. A further advantage of our framework is the
ability to immediately replay USB communication from
either a host or peripheral in an emulated fashion—the
user need not write additional scripts to generate USB
traffic.

Cost Effective Despite the software limitation of the
USB analyzer, its capabilities go beyond that of other
tools and pure software solutions. Davis [11] attested in
2013 that it is the preferred device for finding USB bugs,
although at a cost of approximately $1,400. In contrast,
the hardware required by the Facedancer’s in our solution
would cost approximately $150 [3].

Background Knowledge Requirement As men-
tioned, a USB analyzer would typically require
understanding of the USB protocol for generating USB
traffic, as well as knowledge of a custom scripting lan-
guage. Similarly, a single bespoke testing device such as
the Facedancer requires knowledge of the USB protocol
so that it can be programmed to respond appropriately to

requests. For rudimentary fuzzing purposes, our solution
requires very little knowledge about the underlying
protocol, since the Facedancers simply relay device
responses. By exposing the raw communication, users
are able to capture, modify, and replay data between host
and device.

Limitations There is a notable delay in USB com-
munication between the host and peripheral due to the
emulation devices. Currently, the average delay be-
tween USB control transfers is 300 milliseconds, grant-
ing enough time to perform USB enumeration in our
setup. However, it was found that general mass-storage
actions, as discussed in Section 4, take an extended
amount of time. For example, it may take a few min-
utes to mount a mass-storage device, or list its contents.
This delayed behavior can therefore impact the speed of
fuzzing throughput on certain aspects of USB code.

One way to address the delay in communication
may be to optimize the interrupt handling code in the
Facedancer client and host drivers. Currently, the authen-
tic peripheral is polled until a response is received, which
is then forwarded to the host. Some hosts have a shorter
timeout for peripheral responses, and may reissue redun-
dant requests if the data is not relayed when it’s immedi-
ately available; fine-grained tuning of poll intervals could
thus quicken transmission. This could also be explored in
tandem with communicating the entire handshaking pro-
cess instead of performing blind ACKs for some requests,
as mentioned in Section 3.2.2.

6 Related Work

The Facedancer [2] presents recent advances in the arena
of USB software testing by way of device emulation
techniques. Bratus et al. demonstrate how this technique
enables “efficient injection of arbitrary traffic” into the
USB bus, while being affordable [8].

Software-only techniques for USB testing have been
considered, where USB devices are emulated in a guest
operating system environment [6]. Similar fuzzing in
various virtualized OS environments by Jodeit et al. [12]
has triggered bugs in virtualization software and USB
drivers. Although this technique has proven its ability to
find bugs, its effectiveness is limited to the capabilities
of the virtualization software. According to Jodeit et al.,
a further limitation includes the difficulty in reproducing
crashes.

Davis’s use of USB analyzers has produced a number
of CVE (Common Vulnerabilities and Exposures) iden-
tifiers relating to USB security on Windows, Solaris, and
OS X [9, 11]. Davis also demonstrates the Frisbee USB
testing automation by using USB analyzers within the

confines of a cumbersome scripting language [10]. Still,
this has proven to be one of the best approaches to date.

7 Conclusion

In this work we presented a framework that exposes
USB communication between a host and peripheral in a
flexible, cost-effective way. The framework contributes
to the growing demands of USB testing software by en-
abling man-in-the-middle attacks, and allowing users to
fuzz host and device USB software. We detected novel
bugs that resulted by modifying USB data during real-
time communication, and found that the bugs can be re-
produced by replaying the captured responses in an em-
ulated fashion.

We believe there are a number of additional applica-
tions for the TTWE framework beyond those covered
in this paper. For one, the framework could be used
to capture authentic host/peripheral USB communica-
tion which may be catalogued to serve as seed values
for randomized fuzzing. This ability could speed up
fuzzing, and in some instances substitute for the need of
a physical device. Secondly, we envision that the frame-
work can be leveraged in exploitation techniques such as
Mulliner’s mass-storage TOCTTOU attack [13]. In lieu
of maintaining two emulated mass-storage filesystems as
per the original approach, and having to “switch between
the original and modified filesystem image” in order to
exploit the “read-it-twice” condition, one could instead
modify the data on the fly from a single filesystem image
at the exact moment that modification is desired. Such
an ability is made evident from the discussion in Sec-
tion 4.1.

The prospects of vulnerability discovery and exploita-
tion of the USB attack surface are expected to increase
as the tools for doing so improve. To echo the words of
Joshua Wright, “Security will not get better until tools
for practical exploration of the attack surface are made
available” [15]. We believe that the TTWE framework
makes practical exploration of the USB attack surface
flexible and affordable, thereby contributing to the effort
of securing USB software.

8 Acknowledgements

A hearty thank you to Willem Bester for taking the time
outside of his regular duties to deliver insightful com-
ments during the review of this work. The authors also
wish to thank Naspers for their financial support during
the course of this research.

References

[1] Facedancer Firmware Source Repository. https:
//goodfet.svn.sourceforge.net/svnroot/goodfet.
Accessed 25/05/2014.

[2] GoodFET Facedancer. https://goodfet.sourceforge.
net/hardware/facedancer21/. Accessed 25/05/2014.

[3] int3cc. http://int3.cc/products/facedancer21l. Ac-
cessed 25/05/2014.

[4] MQP Electronics. http://www.mgp.com/usb500.htm. Ac-
cessed 25/05/2014.

[S] USB Device Working Group. http://www.usb.org/
developers/docs/devclass_docs/. Accessed 25/05/2014.

[6] MWR InfoSecurity. https://labs.mwrinfosecurity.com/
blog/2011/07/14/usb-fuzzing-for-the-masses/, 2011.
Accessed 25/05/2014.

[71 BARRALL, D., AND DEWEY, D. Plug and root, the USB key to
the kingdom. In Black Hat Briefings (jul. 2005).

[8] BRATUS, S., GOODSPEED, T., JOHNSON, P. C., SMITH, S. W,
AND SPEERS, R. Perimeter-crossing buses: A new attack surface
for embedded systems. In 8th Workshop on Embedded Systems
Security (WESS) (sept. 2013).

[9] Davis, A. USB - Undermining security barriers. In Black Hat
Briefings (aug. 2011).

[10] DAvis, A. Fuzzing USB devices using frisbeelite. Tech. rep.,
NGS Secure Research, jan. 2012.

[11] DAvis, A. USB driver vulnerabilities whitepaper. Tech. rep.,
NCC Group, jan. 2013.

[12] JODEIT, M., AND JOHNS, M. USB device drivers: A stepping
stone into your kernel. In 2010 European Conference on Com-
puter Network Defense (2010).

[13] MULLINER, C., AND MICHELE, B. Read it twice! A mass-
storage-based tocttou attack. In 6th USENIX Workshop on Offen-
sive Technologies (aug. 2012).

[14] VEGA, R. D. Linux kernel USB device driver - buffer overflow.
Tech. rep., MWR InfoSecurity, oct. 2009.

[15] WRIGHT, . http://code.google.com/p/zigbee-
security/. Accessed 25/05/2014.

Notes

! CVE advisories related to USB software bugs

2013 2012 2011 2010 2009
CVE-2013-1285 CVE-2012-2693 CVE-2011-0712 CVE-2010-4656 CVE-2009-4067
CVE-2013-1286 CVE-2012-3723 CVE-2011-2295

CVE-2013-1287

CVE-2013-2888
CVE-2013-2889
CVE-2013-2890
CVE-2013-2891
CVE-2013-2892
CVE-2013-2893
CVE-2013-2894
CVE-2013-2895
CVE-2013-2896
CVE-2013-2897
CVE-2013-2898
CVE-2013-2899
CVE-2013-3200

2 $75 at the time of writing
3 A complete bill of materials for the Facedancer may be found at
http://goodfet.sourceforge.net/hardware/facedancer21/

