
An Experience Report on Extracting and Viewing Memory Events via
Wireshark

Sarah Laing
University of Calgary

Michael E. Locasto
University of Calgary

John Aycock
University of Calgary

Abstract

Modern program analysis environments lack a principled
method of monitoring low-level memory events. Such
monitoring is of great value to activities like debugging,
reverse engineering, vulnerability analysis, and security
policy enforcement. Although current systems can be
coerced to produce streams of memory events, most such
techniques are inefficient or overly invasive and offer an
unconstrained control over memory, which can subvert
the reliability of such memory interposition as part of the
attack engineering workflow.

Our system, Cage, is a kernel-level mechanism for
monitoring the memory events of a process. Like sev-
eral existing memory trapping systems, Cage modifies
and uses the functionality of the Linux kernel memory
page subsystem. Cage translates the memory activity
of a process into a packet-like format, and these events
are exported over a network device. The memory event
packets can be captured and displayed using an existing
network packet analyzer (Wireshark). At present, Cage
can monitor the memory events for the data, stack, and
heap of a process as well as arbitrarily cage any other
memory region. We have caged a Gnome login session
successfully and noticed no ill effects. We discuss sev-
eral potential applications that arise from imposing this
“network packet” metaphor on memory events.

1 Introduction

This paper is an experience report that discusses the pros
and cons of building an in-kernel memory event inter-
ception and export mechanism. Intercepting, extracting,
and analyzing memory events is a sequence of activity
common to both offensive and defensive systems secu-
rity (e.g., debugging, vulnerability analysis, process pro-

filing, heap analysis and structure setup to prepare for ex-
ploit delivery). We built a system called Cage that traps
user-selected types of memory events inside the kernel
and then exports them to a network interface. We are able
to filter these “packets” two ways: early with BPF [17],
and later with Wireshark. Besides applications like find-
ing and leaking portions of the address space, extensions
to BPF permit us to rewrite the events dynamically. A
primary contribution of this work is the definition of the
memory event protocol format, which facilitates process-
ing and both types of filtering.

The design of Cage builds on some existing memory
interception primitives and techniques, most notably the
Memalyze paper by skape, the ELFbac work from Dart-
mouth, and the Linux kernel’s own kmemcheck. Al-
though these techniques have illustrated the basics of this
approach to memory interception (i.e., using PTE bits
to mark certain memory pages), we highlight the diffi-
culties of composing them into a coherent and general-
purpose memory trapping mechanism that exposes a
computationally-constrained API (i.e., that of a packet
filter). So, while Cage’s memory interception mecha-
nism inherits a design from Memalyze, the system as a
whole is an argument for a principled engineering ap-
proach [6] to modeling extracted data (rather than in-
serting arbitrary computation into the dynamic memory
analysis).

1.1 Background Rationale

The disposition of a target process’s address space is of-
ten of more interest to various forms of analysis and at-
tack than the process’s specific place in “control flow.”
We agree with the observation that a data-centric view of
a target’s behavior is often more revealing than a control-
centric view. Cage is therefore focused on extracting

1



a stream of memory events from a process’s behavior
rather than recovering a control flow graph.

Many academic (and some commercial) defensive
techniques focus on making it difficult to intercept or
modify control flow, but it is no surprise that such in-
strumentation is often either overly invasive or ultimately
ineffective at recognizing arbitrary malicious computa-
tion. Instead, the most successful and widely deployed
defensive mechanisms (i.e., ASLR, DEP) cheaply alter
the structure or properties of the address space rather
than attempting to compute and supervise the “correct”
control flow of an application at any given point in execu-
tion. While they are not a panacea, such defensive weird
machines are more successful when they focus on mod-
ifying state rather than controlling computation. Attack
techniques can use ROP or various encodings if they re-
ally need to defeat protections that focus on control flow,
but attacks still need to be aware of the state of the target
if the exploit is to unfold successfully.

The poor fit of most control flow integrity solutions
teaches us something about the relative merits of study-
ing control flow versus studying memory properties. A
data-centric view of a target process is often a more fruit-
ful method of analysis than a control-flow centered view.
Although understanding how a process has reached a cer-
tain state is not unimportant, it is primarily useful insofar
as it indicates the dependencies between data artifacts at
a given point in time.

Getting control of EIP/RIP is but one piece of the
puzzle; the environment must be suitably friendly to
the subsequent computation (whether or not the exploit
is ephemeral or persistent). This often requires some
amount of control over the layout of memory objects.
Even post-exploitation, with an initial and carefully hid-
den foothold on a host, subsequent exploitation may re-
quire an analysis of a second target process or group of
threads. We argue that viewing the memory behavior of a
process through the restricted lens of a packet stream cre-
ates a well-understood API for manipulating the under-
lying data, and that attack or analysis tools are therefore
not in the position of needing to write custom analysis
code whose execution is unconstrained.

There are a great many options for intercepting exe-
cution and extracting information from various points in
the system stack (see Section 2 for a partial list). While
extracting from PHY would be great, for now we choose
to work within the confines of ring 0. Most of the user-
level mechanisms are unsatisfactory from a granularity
perspective (e.g., library interception) or a performance
and complexity perspective (DBI). The hardware facili-
ties like segments and debug registers are attractive, but

have fallen out of use (segments) or are too few in num-
ber (debug registers). In some sense, the unused PTE bits
represent a sweet spot in the hobbled architectural fea-
tures available in x86 for introspection and monitoring:
a type of “firmware” version of a debug register – not as
efficient, but plentiful and somewhat more flexible.

1.2 Weaving Functionality In: AOP vs.
ROP

The interception of memory events as driven by a packet-
filter like policy opens up the potential for temporal con-
ditions or complex triggering expressions. In some ways,
this is an aspect-oriented approach to exploit program-
ming, where exploit functionality is invoked at particular
program states; this complements the ROP approach of
stitching together exploit functionality from existing pro-
gram code.

The composition of temporal watchpoints and entropy
extraction is an interesting application of Cage (i.e., wait
for a non-specified period of time under a complex ex-
pression to witness the desired data, then extract it). It
would also be interesting to answer the question: on av-
erage, how long does it take until an application reads
or writes an “interesting” data structure? The benefit of
Cage’s approach is that a combination of pre and post
filters (accomplished with BPF and Wireshark, respec-
tively) can support post-hoc analysis of this type. For
example, an analyst could examine how frequently sshd
touches the memory where server keys are stored (or
other important state involved in the key exchange and
transport setup).

1.3 Objections and Limitations

While Cage interposes on memory accesses, its current
implementation is only a passive observer most of the
time – it does not supply the ability to statically read the
process address space from byte zero onward. Cage ob-
serves only the dynamic memory accesses of a target pro-
cess. We show later how to modify the dynamic stream
of memory events (since we already intercept them).

The mechanism Cage uses is inherently inefficient at
scale, and this is unsurprising as noted by previous work
proposing this kind of mechanism. Its penalty, however,
can be tuned by the user via two main features. First,
our chmem(2) interface (and chmem(1) tool) allows the
user to select a small number of pages (memory regions)
to trap. Second, the analyst/user can write BPF filters to
discard events that are not of interest (or simply count
them without emitting them).

2



Of course, the actual slowdown incurred will de-
pend on how often pages of interest are referenced by
the target program. As we note above, efficient and
full-featured interception and introspection are not well-
supported on x86, and so most such efforts have to make
due with whatever they manage to cobble together. We
view Cage and systems like it mainly as an argument for
the creation of a “super-MMU” that efficiently supports
such labeling, state extraction, and event aggregation.
Such a wish hearkens back to tagged architectures, but
instead of dynamic data flow tracking, we see great po-
tential for both offensive and defensive weird machines.

Finally, one might object that in order to make use of
Cage, the box must already be exploited. Our implemen-
tation of Cage is built as part of the Linux kernel source;
we do not demonstrate the insertion of Cage or Cage-like
functionality as a rootkit. Cage is not an exploit tech-
nique or rootkit, but rather a principled way of intercept-
ing memory events that can serve as part of a toolkit for
continued analysis of a machine and its programs.

2 Related Work

Cage’s main area of contribution is in practical program
analysis. Dynamic memory analysis is of general inter-
est, and can be accomplished in many different ways and
at different levels of the system stack. There is a wide
menu of ways to try to trap memory events, with varying
implications for how much data is captured, the gran-
ularity of information, and the cost of interception and
extraction. We focus on the x86 platform in our work.

2.1 Memory Trapping Alternatives

There are a number of approaches to trapping mem-
ory events; they vary according to their chosen inter-
ception and inspection techniques. In general, intercep-
tion must rely on hardware features like exceptions, seg-
mentation, interrupt instructions, traps arising from hard-
ware watchpoints, or traps arising from page meta-data
checks. Some work also relies on PHY-level snooping
(e.g., CoPILOT [19], in this case, checking the integrity
of kernel instructions) on the memory bus.

The Standard Approaches Most commodity plat-
forms come with tools similar to gdb, strace, and the abil-
ity to perform library interception of malloc and cousins.
System call tracing via strace(1) and similar tools exam-
ines only the system-call level memory events and is a
read-only view of this event stream. Library interception

offers a bit finer granularity and the possibility of rewrit-
ing the events, but still misses instruction-level memory
events (this lack of fine-grained instruction–level details
is the stated motivation behind many projects, including
Fenris1). Basic debuggers like gdb offer fine-grained ob-
servation and control, but require some scripting (gdb of-
fers Python bindings and its own native command set).
Some other debuggers (e.g., IDA) offer facilities more
specialized to reverse engineering, such as propagation
of labels and tags to group common pieces of function-
ality. Generally, the ptrace(2) mechanism offers custom
debuggers or program supervision, but means that arbi-
trary userspace C code must be implemented by an ana-
lyst.

Creative Reuse of Hardware Facilities Most inter-
ception has to rest on some physical reality within the
system to guarantee consistency and fidelity. Hardware
debug registers offer an efficient means of “watching” a
small number of memory locations and can even be used
for very stealthy supervision [11]. Overloading the PTE
is a common approach for a variety of analysis tasks,
both offensive and defensive [20]. Finally, despite its
utility, few systems use hardware memory segmentation
and DPL bits overloading and then mostly for defensive
purposes [20, 5, 10].

Emulation, Supervision Environments, Embedded
Debuggers “Layer-below” approaches like emulation
and virtualization are popular solutions for providing an
environment for data collection and analysis of program
or guest behavior. Popular platforms for such work in-
clude Bochs [4] and QEMU because they offer a way to
easily modify CPU behavior in novel ways. Supervision
environments and virtualization also offer the ability to
support time-travel debugging [14] because of snapshot
facilities included in the platform.

Because emulation and virtualization can introduce
significant performance limitations (among other prob-
lems [7]), another common approach to instrumenting
programs is DBI; popular systems include Pin [16], Val-
grind [18], and DynamoRio [9, 8]. A complement to dy-
namic rewriting or runtime recompilation is static rewrit-
ing or instrumentation of program binaries, such as that
offered by the ERESI project’s elfsh [23]. Custom em-
bedded debuggers and reverse engineering frameworks
like RADARE [1] are largely concerned with recover-
ing, cataloging, and connecting high-level meta-data and
code properties with low-level program behavior.

1http://lcamtuf.coredump.cx/fenris/README

3



2.2 Mechanisms Most Similar to Cage
Encoding interesting conditions in page and TLB entries
has been tried before, notably with OllyBone [21], grse-
curity’s PAGEEXEC [22], and ELFbac [2]. Indeed, the
Page Fault Weird Machine [3] demonstrates how much
power lurks in the paging circuitry.

ELFbac [2] describes how to combine ELF section
names with page table marking tricks to trap certain
code-data ownership relationships. ELFbac focuses pri-
marily on the access control and labeling scheme behind
marking pages. Cage does not deal with such markings
or access control schemes built on page labels.

The Fenris project 2 offers a comprehensive set of pro-
gram analysis tools; like Fenris, Cage exports low-level
events from a single dynamic program path. In particu-
lar, the Ragnarok output mode of Fenris offers the ability
to organize information about the relationship of func-
tions to buffers. Ragnorok’s buffer view offers “a his-
tory of all modifications and I/O ops applied to a sin-
gle buffer.” Fenris is particularly focused on aiding the
understanding of program code / execution; in contrast,
Cage places relatively more emphases on memory event
behavior. Although the debugger tool part of Fenris pro-
vides a facility for reporting on “seen” addresses and set-
ting read and write watchpoints on memory ranges, but
this is largely limited to trapping at function invocation
(in contrast, Cage monitors and filters all memory behav-
ior of a process kernel-side).

Bochspwn [13] instrumented Bochs in order to spot
time-of-check-to-time-of-use (more generally, double-
fetch) vulnerabilities in the Windows kernel. Interest-
ingly, they mention the approach Cage uses as a poten-
tial design option but dismiss it in favor of using Bochs,
the “simplest to quickly implement” [13, page 17]. Cage,
running on native hardware as well as many VMs, does
not suffer from Bochspwn’s large performance hit as a
result. Bochspwn also looks for memory access pat-
terns3, although currently seems to look for just the one
pattern specific to the type of vulnerabilities they are
seeking; looking for other patterns they leave as future
work. By contrast, Cage is already a more general mech-
anism that permits arbitrary pre- and post-filtering of
memory accesses made within a user process.

Finally, Cage dynamically traces real program exe-
cution. Cage is not intended to be a symbolic execu-
tion framework, although it is possible that traces from
Cage could help drive or test other symbolic execution
engines.

2http://lcamtuf.coredump.cx/fenris/devel.
shtml

3https://github.com/j00ru/kfetch-toolkit

3 Motivation and Design Fundamentals

Cage’s main objective is to trap memory events and ex-
pose them as a stream of “network packets.” We do
not attempt to shoehorn them into a pre-existing network
protocol format, but rather expose them in such a way
so that existing tools (like Wireshark or BPF or other
domain-specific packet filtering languages) can offer the
ability to manipulate this stream in a well-understood and
constrained way.

It is important to note that although our description of
Cage and its implementation focuses on its real-time/in-
situ operation for trapping memory events, the data it
captures and produces can support post hoc and offline
analysis (indeed, we expect most users might adopt this
scenario).

The Cage system contains two primary components:
(1) the memory event interception mechanism and the
(2) packet generation code. The memory interception
mechanism is based on a hybrid of PAGEEXEC [22] and
the design articulated by skape [20] without the use of
mirrored page tables. Cage is available on Github.4 Cage
is implemented as a set of modifications to the Linux ker-
nel 3.9.4 and is implemented to work on x86 64. Like
previous mechanisms, Cage takes advantage of unused
bits in the page table entries (see Figure 1).

3.1 Cage Workflow

Pages in the process address space can be marked as
caged by a combination of several pieces of state. First,
a process is marked as caged via a flag communicated in
the clone(2) call or when our new system call chmem(2)
is invoked. This state is stored in the task struct. Sec-
ond, pages inherit their PTE from the memory region
metadata structure, so we mark memory regions as caged
or not. This marking includes an arbitrary 10-bit label
which is exposed to our packet format and can help filter
sets of events.

An access to a caged page triggers a page fault be-
cause the caged page is being accessed from user space,
but is marked as a supervisor page. Normally, page faults
are handled by the page fault logic and might (for exam-
ple) swap in a page from disk, deal with copy-on-write,
or produce a segmentation violation. In this case, we
insert logic to check that this is indeed a caged page
and then uncage the page to allow the requested access
for the restarted instruction. However, leaving the page
uncaged would eliminate future traps on access. In ad-

4Code at: https://github.com/selaing/Cage.git. We
welcome technical feedback on this work-in-progress.

4



63 62. . . 52 51. . . 12 10. . . 9 8. . . 3 2 1 0
XD ignored physical frame address ignored status U/S R/W 1

(high bits reserved) bits

Figure 1: PTE diagram, based on [12]. Cage reserves bits 52–62 as a “label”. Like previous approaches to such
trapping, it overloads the User/Supervisor bit (2). We also overload bit 9 (to help distinguish a “Cage” page from other
abuses of bit 2), which is supposedly unused (but is actually used by the kernel).

dition, letting the instruction restart and execute would
allow the virtual-to-physical mapping to be stored in the
TLB. We need to allow the instruction to complete, but
then mark/re-cage the page and eliminate its entry from
the TLB so that future references to the page do not skip
the trap. Thus, we have to flush an entry from the TLB
each time we re-cage a page to remove the mapping
for the uncaged page from the TLB. Before letting the
uncaged instruction proceed, we enter single-step mode,
which allows us to re-cage after the instruction executes
once.

Before the instruction is restarted, we capture a variety
of information associated with the event, including:

1. the instruction pointer . . . bytes 0–7
2. the effective address (faulting address)

. . . bytes 8–15
3. the instruction label (Cage “label”, if any, of the

page containing the faulting instruction)
. . . bytes 16–17, 11 bits

4. the effective address label (Cage “label”)
. . . bytes 17–19, 11 bits

5. the PTE meta-data for the effective address (first 10
bits of the PTE) . . . bytes 19–20, 10 bits

6. type of access: r/w/x . . . byte 21
7. the instruction at the instruction pointer

. . . bytes 22–36
8. the PID and UID . . . bytes 37–40 and 41–44
9. the data at the effective address . . . bytes 45–52

The italicized text above indicates where the informa-
tion is placed in the memory event packet that is sent
through to Wireshark; the structure is shown in Figure 2.
In the next section, we discuss the coding details of Cage
and how it operates on a running example instruction and
memory access.

4 Implementation and Running Example

The information we extract during trapping the event
is placed into an instance of our data type struct
memevent_packet and then exported on a virtual

network interface (see Figure 2). We wrote an LKM to
create a network device. When the device is set to “up”,
it allocates memory for a ring buffer (10 packets long)
and sets a pointer to that memory in the Cage code so
that Cage functions can access and maintain this buffer.

If this pointer is set (not NULL), then packet creation
will occur. If it is NULL the packet creation does not
happen. Thus, unless the LKM is loaded and the de-
vice is set to “up” no packets are actually created. The
Cage code creates a packet using the metadata (listed in
Section 3) it has concerning the memory access. It then
looks up the net device struct associated with the net-
work device created by the LKM and calls the transmit
function for that network device. The transmit function
dequeues the packet off of the buffer in Cage.

It then encapsulates this information in an Ethernet
header (using an ether type that is listed as being unused
and available for personal use). A struct sk buff is cre-
ated and the packet (with its Ethernet header) is placed
in the sk buff. The function netif rx is then called
to pass the sk buff to the receive network path of the
kernel.5 This arrangement effectively turns this mem-
ory network device into a loopback device. Wireshark
can then capture off of this device and (coupled with the
dissector specification we wrote) can display the infor-
mation in the memory event packets. The flexibility of
this approach was driven home when, in order to create
an event noting the creation or modification of a memory
region (Linux vm area struct), we simply had to in-
troduce a new packet subtype by reusing a few unused
bits in our packet meta-data.

4.1 Workflow Example
To illustrate Cage’s workflow, we use the instruction

mov rax, [rbx+0x60014c]

as an example. The memory location 0x60014c, a con-
stant in the .data section, has the page table entry shown
in Figure 3. Bit 9 in the page table entry is set indi-
cating that this is a Cage page. The user/supervisor bit

5It could easily be transmitted out to the network at this point.

5



struct memevent_packet {
unsigned long src;
unsigned long dest;
unsigned int src_dest_pte;
unsigned char rwx;
unsigned char instruction[15];
unsigned int pid;
unsigned int uid;
unsigned long data;

}

Figure 2: Structure of Memory Event Packet.

63 62. . . 52 51. . . 12 10. . . 9 8. . . 3 2 1 0
XD label physical frame xx 1 status 0 0 1

11111111111 address bits

Figure 3: PTE Contents for the Running Example.

Figure 4: Running Example Event Viewed in Wireshark.

is cleared. This results in a user access to a supervisor
page which generates a page fault. Once we have the
page fault we recognize that it is due to a Cage page
by the unique combination of PTE bits. Once in our
Cage code we first run our BPF filter over this memory
event. If there is no filter or if the memory event matches
the filter we create a memory event packet. This packet
is then sent to the network using the process described
above. We then set the user/supervisor bit in the page
table entry, place the processor in single step mode and
return from the page fault handler. The execution of the
instruction mov rax, [rbx+0x60014c] completes
normally, and the beginning of the next instruction re-
sults in a debug trap. Here we clear the user/supervisor
bit, take the processor out of single step mode and flush
the single entry corresponding to the page table entry
for the address 0x60014c out of the TLB. The result-
ing packet generated from this instruction can be seen
in Figure 4. Note that if the text segment containing the
instruction were also caged, then two events would be
seen: one for the instruction’s page, then one for the data
page.

5 Evaluation

In this section, we discuss some of the testing we have
performed with Cage to learn about its behavior. We also
discuss some possible applications of this type of mech-
anism.

5.1 Testing

We ran Cage on a variety of platforms and combinations
of VMs on both Intel and AMD. The purpose of this was
validation and to see how fragile these kind of kernel
modifications might be in the presence of virtualization
or emulation.

5.2 Entropy Extraction

Cage produces a lot of data. One straightforward ap-
plication of this kind of memory interception is leaking
data. Even relatively simple applications produce large
amounts of memory events: ‘whoami’ produces 288306
packets in 0.287 seconds; ‘true’ produces 3807 packets
in 0.034 seconds.

We ran both ssh and sshd under Cage’s observation
(the entire process address space was caged) to see on
average how much data would be exported. Figure 7 and
Figure 8 represent the average of 10 runs each for 90

6



Architecture Virtual Machine Host System Guest System Dropped/Missing Packets Other Issues
Intel N/A Centos 6.5 N/A No No

Virtual Box 4.2.16 Mac OSX Centos 6.5 Yes No
Centos 6.5 Centos 6.5 Yes No

Virtual Box 4.3.8 Centos 6.5 Centos 6.5 N/A Trace/Breakpoint Trap
VmWare Fusion 5.0.0 Mac OSX Centos 6.5 No No
Parallels Max OSX Centos 6.5 No No
Xen (full-virt and para-virt) Centos 6.5 Centos 6.4 N/A Trace/Breakpoint Trap
QEMU Centos 6.5 Centos 6.5 No No

Figure 5: Cage Running on Intel Hardware.

Architecture Virtual Machine Host System Guest System Dropped/Missing Packets Other Issues
AMD N/A Centos 6.5 N/A No No

Virtual Box 4.2.16 Kubuntu 12.04 Centos 6.5 No No
Centos 6.5 Centos 6.5 No No

Virtual Box 4.3.8 Centos 6.5 Centos 6.5 No No
VmWare Workstation Kubuntu 12.04 Centos 6.5 No No
Xen (full-virt and para-virt) Centos 6.5 Centos 6.5 N/A Trace/Breakpoint Trap
QEMU Centos 6.5 Centos 6.5 No No

Figure 6: Cage Running on AMD Hardware.

Table 1

sshd ssh selaing@csc.cpsc.ucalgary.ca

1 5 10 15 30 60 90 1 5 10 15 30 60 90

trial 1 429845 1323750 1815251 1682522 1796040 1428046 1889036 383383 1994542 3317505 2503641 1714516 2788725 2536230

trial 2 223643 1327874 1415734 1854099 1829706 1831600 1870217 186948 1941724 2771019 1919354 2852082 2852356 2535842

trial 3 402791 1761928 1732899 1821113 1313645 1825381 1339602 371184 1697835 2493886 2087454 2537249 1957259 2852176

trial 4 232171 1794443 1432174 1347210 1830465 1400550 1832980 177974 1904886 2501831 2807017 2501334 2532795 2787739

trial 5 207028 1695277 1830605 1413787 1802909 1324118 1845893 379144 1905997 2401134 2808784 2505396 2829785 2565767

trial 6 417690 1811834 1861428 1321847 1309091 1405049 1850302 382716 1901266 2493585 2807145 2695726 2826154 2819066

trial 7 231684 1840460 1816867 1839711 1794573 1413305 1367898 188281 1914878 2414492 2562128 2542083 2852178 2845426

trial 8 229161 1718828 1829722 1337921 1826141 1269675 1868232 385399 1803272 1919075 1930499 2544132 2849894 2825609

trial 9 426164 1713352 1353586 1820109 1705397 1343011 1383589 383915 1747600 2366140 2810766 2844880 2758474 2716896

trial 10 428949 1759089 1845829 1367273 1430978 1427541 1834436 180422 1717814 2781354 2809708 2815080 2858592 2819588

Average 322912.6 1674683.5 1693409.5 1580559.2 1663894.5 1466827.6 1708218.5 301936.6 1852981.4 2546002.1 2504649.6 2555247.8 2710621.2 2730433.9

Std Dev 103993.682589323189346.704158301205842.396602217240645.300311383221098.328012297197289.017077991238574.833278436102129.515046337103009.644063284360913.071972386381775.37402195328648.231310825282161.113663335132945.362140033

Average MB 2.4636276245117212.776821136474612.919689178466812.058709716796912.69450759887711.191006469726613.03267288208012.3035934448242214.13712615966819.42445449829119.108959960937519.494993591308620.680398559570320.8315574645996

Std Dev MB 0.793408833231531.444600709215551.570452854936351.835977938166681.686846374605541.505195747970521.820181528308380.7791863635737390.7859012150824272.753548217562762.912714950728992.507387018667792.152718457514461.01429261886622

ssh selaing@csc.cpsc.ucalgary.ca

Av
er

ag
e 

M
B

0

5.5

11

16.5

22

Time (seconds)
1 5 10 15 30 60 90

sshd

Av
er

ag
e 

M
B

0

3.5

7

10.5

14

Time (seconds)
1 5 10 15 30 60 90

Figure 7: Cage on the ssh client.

seconds. The vertical axis displays the average amount
of data (in MB) extracted by Cage.

We sampled the programs ssh and sshd. This was
done at 100% caging. The graphs represent the average
amount of MB of data exported from the program over
time in seconds. Both graphs follow the same kind of
curve. The amount of data levels off because there is no
input to these applications after the initial startup phase.
The startup phase would include checking the keys and
passwords and other sensitive data that is probably in the
data that is a good target for leaking somewhere. This
data is based on the total number of packets that the in-
terface saw, not the number of packets that Wireshark
captured.

These kind of graphs show that a non-trivial portion
of data is touched in the startup phase of an application.

Table 1

sshd ssh selaing@csc.cpsc.ucalgary.ca

1 5 10 15 30 60 90 1 5 10 15 30 60 90

trial 1 429845 1323750 1815251 1682522 1796040 1428046 1889036 383383 1994542 3317505 2503641 1714516 2788725 2536230

trial 2 223643 1327874 1415734 1854099 1829706 1831600 1870217 186948 1941724 2771019 1919354 2852082 2852356 2535842

trial 3 402791 1761928 1732899 1821113 1313645 1825381 1339602 371184 1697835 2493886 2087454 2537249 1957259 2852176

trial 4 232171 1794443 1432174 1347210 1830465 1400550 1832980 177974 1904886 2501831 2807017 2501334 2532795 2787739

trial 5 207028 1695277 1830605 1413787 1802909 1324118 1845893 379144 1905997 2401134 2808784 2505396 2829785 2565767

trial 6 417690 1811834 1861428 1321847 1309091 1405049 1850302 382716 1901266 2493585 2807145 2695726 2826154 2819066

trial 7 231684 1840460 1816867 1839711 1794573 1413305 1367898 188281 1914878 2414492 2562128 2542083 2852178 2845426

trial 8 229161 1718828 1829722 1337921 1826141 1269675 1868232 385399 1803272 1919075 1930499 2544132 2849894 2825609

trial 9 426164 1713352 1353586 1820109 1705397 1343011 1383589 383915 1747600 2366140 2810766 2844880 2758474 2716896

trial 10 428949 1759089 1845829 1367273 1430978 1427541 1834436 180422 1717814 2781354 2809708 2815080 2858592 2819588

Average 322912.6 1674683.5 1693409.5 1580559.2 1663894.5 1466827.6 1708218.5 301936.6 1852981.4 2546002.1 2504649.6 2555247.8 2710621.2 2730433.9

Std Dev 103993.682589323189346.704158301205842.396602217240645.300311383221098.328012297197289.017077991238574.833278436102129.515046337103009.644063284360913.071972386381775.37402195328648.231310825282161.113663335132945.362140033

Average MB 2.4636276245117212.776821136474612.919689178466812.058709716796912.69450759887711.191006469726613.03267288208012.3035934448242214.13712615966819.42445449829119.108959960937519.494993591308620.680398559570320.8315574645996

Std Dev MB 0.793408833231531.444600709215551.570452854936351.835977938166681.686846374605541.505195747970521.820181528308380.7791863635737390.7859012150824272.753548217562762.912714950728992.507387018667792.152718457514461.01429261886622

ssh selaing@csc.cpsc.ucalgary.ca

Av
er

ag
e 

M
B

0

5.5

11

16.5

22

Time (seconds)
1 5 10 15 30 60 90

sshd

Av
er

ag
e 

M
B

0

3.5

7

10.5

14

Time (seconds)
1 5 10 15 30 60 90

Figure 8: Cage on the sshd server.

Relatively small amounts of new data are touched after
the program has reached a certain point in execution (for
sshd, likely the point where it sits in the accept() loop,
and for ssh, the point where it has finished establishing
the connection and remote shell and is waiting for user
input). This plateau indicates that the programs have
reached a particular stage in execution, and subsequent
analysis can take it as a signal to begin analyzing the
follow on execution or to start capturing in earnest (this
bursty behavior can threaten to overwhelm buffers or ini-
tial data collection).

6 BPF Filtering

To explore some of our ideas related to filtering (both as
a solution to performance (i.e., dealing with large bursts

7



of events) and as a means of demonstrating the utility of
analysis using a packet filtering language), we have im-
plemented BPF-based filtering early on in Cage’s work-
flow in the page fault handler. As the actual BPF pro-
grams themselves can appear inscrutable, we defer those
to Appendix A and instead use BPF pseudocode in this
section (the appendix maps the syntax back to each figure
below).

It is important to point out that our work in this sec-
tion is in support of the philosophical point from the in-
troduction that “...the system [Cage] as a whole is an ar-
gument for a principled engineering approach to model-
ing extracted data”; the use of BPF for processing (and
modifying) streams of memory events is a design alter-
native to the practice of inserting arbitrary C or x86 code
into dynamic memory analysis. This kind of pattern has
many precedents: consider the use of SystemTap built
on top of kprobes. While inserting raw C or x86 pro-
vides a great deal of control, it also entails some risk (the
inserted code may be buggy or hard to maintain). In con-
trast, BPF offers a still–powerful interface for analysis,
but avoids some of the risks of inserting arbitrary com-
putation into the instrumented memory event sequence.
The gains in stability and reliability offer some justifi-
cation for the utility of this approach in offensive opera-
tions.

6.1 Extensions and Implementation of BPF

BPF is used to filter memory events before packet cre-
ation occurs. It operates on each memory event and con-
trols the creation of the memory event packets. This al-
lows the ability to control the packets that are produced
so that only packets for the relevant memory events, as
decided by the BPF filter, are generated. In implement-
ing this functionality we have had to extend BPF in two
ways. First, we have added in a new BPF instruction.
This instruction allows the ability to load information re-
lating to a memory event into a BPF filter. In particu-
lar this gives us the ability to load the current effective
address, the current instruction pointer, and the current
value in rax. This was done so that BPF filters can be cre-
ated which compare these values to a given constant or
range of values, either effective addresses or instruction
pointers, and emit packets whose memory events match.
Adding in the ability to load the current value in rax al-
lowed us to capture the return value of a function call.
The usefulness of this became apparent when we wanted
to capture the address returned by a call to malloc() and
recover the packets that involved this buffer – the com-
piler could optimize the code such that the buffer address

was never written to memory and was thus not viewable
as a memory event.

Our new BPF instruction also gives us the ability to
load in the values of pieces of state that we have stored
such as the current number of events matching the BPF
filter expression, and the stored effective address. This
allows us the limited ability to store state across runs of
the BPF filter, which are different memory events. This
allows us greater flexibility in the types of BPF filters we
can write. The second way in which we have extended
BPF is to allow it to handle 64-bit values. The implemen-
tation of BPF in the Linux kernel is only able to 32-bit
values. We modified this to allow the filtering function
in the Linux kernel to handle the 64-bit values of the ef-
fective address and instruction pointer.

6.2 Filter Types
Currently we have implemented five different types of
BPF filters; at present they are contained in a kernel mod-
ule. Each of these filters is supported by code within
Cage that allow it to either store state under certain con-
ditions or retrieve state through use of our specialized
load function.

6.2.1 Temporal Filtering

The purpose of this filter is to induce a type of rate limit-
ing on the number of memory event packets that are gen-
erated. There are three different types of this filter. One
that watches for only read accesses, one that watches for
only write accesses and one that watches for either read
or write accesses. This can be used to only produce a
packet every nth event. For example, if we know that
the nth write to an array is important we can ignore the
first n-1 events. This filter watches for memory events
that fall into a specified range of addresses. If the mem-
ory event falls within this range, the filter loads the cur-
rent number of memory events that have been seen that
fall within that range. If this stored value is equal to the
number of events we are waiting for then a memory event
packet is created. This filter is supported by code in Cage
that maintains a piece of state storing how many events
of this type have already occurred. Each time the spec-
ified number of events is reached, the stored number of
events is set to zero. Figure 9 shows the logic of this BPF
filter.

6.2.2 Overwriting Data at an Effective Address

The purpose of this filter is to overwrite the data con-
tained at a specific effective address with a different spec-

8



L1: A = current effective address
L2: (A == begin_address) ? goto L3 : goto L10
L3: (A > end_address) ? goto L10 : goto L4
L4: A = A - end_address
L5: (A > end_address) ? goto L7: goto L6
L6: (A == end_address) ? goto L7: goto L10
L7: A = current number of events
L8: (A == num) ? goto L9 : goto L11
L9: return 1
L10: return 0
L11: return -1

Figure 9: Temporal filter. This filter will emit a memory
event packet for every nth packet as specified by num
provided that memory event falls into a specific range
of addresses specified by begin address and end address.
Note: There is no functionality within BPF for jumping
if A is less than some value.

L1: A = current effective address
L2: (A == address) ? goto L3 : goto L4
L3: return num
L4: return 0

Figure 10: Data-overwriting filter. This filter will over-
write the data stored at the effective address specified by
address with the value num.

ified value. This can be used to change the contents of
the memory of a program at runtime. This filter watches
for a memory event corresponding to a specific effective
address. When this effective address is accessed during
program execution the filter returns the value we wish
to overwrite the data with. This is supported by code in
Cage that watches for a non-zero return from the filter.
Cage then takes the value returned by the filter and over-
writes the data contained at the current effective address
with this value. Figure 10 shows an example of the logic
of this BPF filter.

6.2.3 Overwriting an Instruction

The purpose of this filter is to overwrite an instruction
at a specific instruction pointer with a different specified
instruction. This can be used to modify the executing in-
struction of a program at runtime. The new instruction
must be the same size as the old instruction to prevent
overwriting the next instruction. Overwriting an instruc-
tion in this way has the side effect of modifying the bi-
nary so that each subsequent run of the binary executes
the new instruction. This filter watches for a memory
event corresponding to a fetch of a particular instruc-

tion specified by the given instruction pointer. When
this memory event occurs the filter returns the number
of bytes contained in the new instruction. This is the
number of bytes that will be written to the location of the
current instruction pointer. The new instruction is passed
to Cage through a filter structure that contains the BPF
instructions along with the type of BPF filter we are ex-
ecuting. This is supported with code in Cage that recog-
nizes the non-zero return value from the filter and over-
writes the instruction contained at the current instruction
pointer with the new instruction. This overwriting occurs
during the memory event corresponding to the fetch of
the instruction. Figure 10 shows an example of the logic
of this BPF filter with the exception that we load the in-
struction pointer in the first step instead of the effective
address.

6.2.4 Viewing a Buffer Allocated at Runtime

The purpose of this filter is to view all the memory events
corresponding to a specific buffer that has been allocated
at runtime. In this instance we cannot know the effective
address to search for ahead of time. This filter gives us
the ability to locate a dynamically allocated data struc-
ture of interest and recover all the memory events from
the point of its creation on. This filter relies on the in-
put of a specific instruction pointer. The value contained
in rax at this instruction must be the address of a buffer.
This filter watches for the memory event corresponding
to the execution of a specific instruction pointer. When
this memory event occurs, the value contained in rax at
this time is loaded into the BPF filter and this value is
returned. Supporting code in Cage then recognizes this
return value and stores the returned value in a piece of
state. The rest of the filter is executed any time the cur-
rent instruction pointer does not match the specified in-
struction pointer. This part of the filter loads the stored
rax value and checks to see if the current effective ad-
dress is within the range of the stored rax value plus a
specified value which is the length of the buffer to search
for. If it is within this range then the memory event cor-
responds to the buffer we are looking at and a packet is
emitted. Figure 11 shows an example of the logic of this
BPF filter.

6.2.5 Capturing the Buffers In A Program

The purpose of this filter is to produce memory event
packets corresponding to every buffer in a program that
gets accessed sequentially. There are two types of this
filter, one that looks for successive reads from a buffer
and one that looks for successive writes to a buffer. This

9



L1: A = current instruction pointer
L2: (A == address) ? goto L3 : goto L5
L3: A = current value of rax
L4: return A
L5: A = stored value of rax
L6: X = A
L7: A = current effective address
L8: (A >= X) ? goto L9 : goto L15
L9: A = X
L10: A = A + num
L11: X = A
L12: A = current effective address
L13: (A > X) ? goto L15 : goto L14
L14: return 1
L15: return 0

Figure 11: Viewing memory events for a buffer allocated
at runtime. This filter will produce memory event pack-
ets for every memory event corresponding to a dynami-
cally allocated buffer.

L1: A = stored value of effective address
L2: X = A
L3: A = current value of effective address
L4: A = A - X
L5: (A == 0x8) ? goto L6 : goto L7
L6: return 1
L7: return 0

Figure 12: Filter to find buffers in a program. This fil-
ter will search for sequential read or write accesses to
buffers within a program and emit memory event pack-
ets for these buffers.

filter compares the stored effective address with the cur-
rent effective address and produces a packet if the two
addresses are within eight bytes of each other. Eight
bytes was chosen under the assumption that most sequen-
tial reads and writes to a buffer are optimized to read or
write eight bytes at a time on a 64-bit system. This fil-
ter is supported by code in Cage that updates the value
of the stored effective address each time the filter com-
pletes. Figure 12 shows an example of the logic of this
BPF filter.

7 Future Work

This section discusses some areas for improvement that
could benefit from the feedback of the workshop atten-
dees. Even despite existing guidance and prior work,
implementing this kind of mechanism is not straightfor-
ward. In some sense, this difficulty reinforces our belief

in the need for a super-MMU to support this type of op-
eration. We cover these issues from the mundane and
solved to the weird and unsolved.

7.1 Implementation Issues (Addressed)
We had to add code into our fault handler mechanism to
detect different types of page faults such as a page fault
occurring because of a COW page. We had to detect
these different types of page faults so that we can allow
the normal page fault handler to handle these events be-
fore our code gets to them.

As mentioned, bit 9 in the PTE is the bit we
chose to use to represent a caged PTE because it
was “unused.” However, it is actually used by the
kernel to indicate a “special” PTE. In the function
vm normal page, which returns the struct page
given the vm area struct, an address, and a PTE,
the special mapping is used to indicate that no struct
page should be associated with that PTE. We had to re-
code the function to also check for our flag in the task
struct that indicates whether or not the current pro-
cess is caged. The function vm normal page is called
in many different places (e.g., when a process is termi-
nated and its memory is unmapped).

Related work to this approach (namely: kmemcheck
and kmmiotrace) use per-cpu variables to store data
across the single step and into the debug fault handler
(such as the address to be flushed out of the TLB). When
we tried to use per-cpu variables we found that we were
occasionally missing re-caging a page. The hypothesis
was that because the cpu variable is local to one cpu and
we are using multiple cpu’s, the cpu that handled the de-
bug fault was different than the one that handled the page
fault and so we did not have the correct data we needed
to successfully re-cage the page after the page fault. We
stopped using cpu variables and instead embedded the
information in the task struct.

7.2 Implementation Issues (Sidestepped)
Different virtual machines have different reactions to
the mechanism either with missing page faults or a
trace/breakpoint trap on every instruction (other than the
one we are expecting because of single step mode). This
is likely due to the composition of certain VM imple-
mentation tricks with our kernel modifications. The ta-
bles in Figure 5 and Figure 6 list the combination of plat-
forms, architectures, operating systems, and virtual ma-
chines we tested Cage on. The lesson here is that nothing
works perfectly in practice, but targeting this kind of in-
strumentation into the kernel seems like a fairly portable

10



means of deploying it (compared to emulation–based ap-
proaches).

7.3 Implementation Issues (Looming)
Debugging any caged process with gdb does not work.
The mechanism will not work if the process is already
being debugged.

During our attempts to build some automatic vali-
dation (to confirm that the mechanism would work on
certain platform combinations), we encountered issues
“diffing” two packet traces due to unexpected changes in
the data that is at the effective address, even between sub-
sequent runs of unmodified code on the same machine.
These differences have been narrowed down to changes
in the location of the environment variables. The differ-
ences occur when the data at the effective address con-
tains the address of an environment variable. This raises
the larger issue of building a reliable recognizer to model
this kind of data stream language.

An additional problem that exacerbates diffing is the
variability in the number of packets generated between
machines. The number of packets generated on one ma-
chine will change any time the program is prelinked and
across reboots. We found that turning prelinking off as
well as turning ASLR off prevents the number of packets
being generated from changing. The number of packets
is also different between different machines even while
running the same program. This is because there is code
that checks information about the processor in the startup
code of a program, therefore running the same program
on different processors will result in a different number
of packets.

7.4 BPF Improvements
The kernel networking infrastructure can handle the cre-
ation of many more packets than Wireshark can re-
ceive. Programs that are caged at 100% are likely to
rapidly produce large amounts of data, and such data
rates quickly overwhelm dumpcap’s abilities (note that
dumpcap is somewhat of an optional bottleneck at the
very end of a memory event’s journey). This slowdown
can be mitigated by using BPF to limit the number of
packets that Wireshark sees (for example, by narrowing
in on a specific range of heap addresses rather than events
for the entire PAS). The intended use is to create mem-
ory transaction dumps – for now, we view these with
Wireshark, but other GUIs or analysis tools can be de-
veloped later. Our focus is on manipulating and analyz-
ing a memory event stream via the metaphor of network
packet traces.

Table 1

Num Packets 
Generated

100 1000 10000 100000 1000000

% captured 1 25.4 19.6 16.3 16.3 16.2

% captured 2 25.4 9.8 15.8 16.2 16.2

% captured 3 25.4 20.3 15.8 16.2 16.1

% captured 4 52.5 19.1 16.2 16.1 16.8

% captured 5 51.6 15.4 15.3 16.1 16.5

% captured 6 50.8 16.9 16.5 16.0 16.3

% captured 7 31.1 16.6 15.8 16.2 16.4

% captured 8 25.4 16.0 15.7 16.5 17.1

% captured 9 25.4 15.2 16.2 16.1 16.7

% captured 
10

25.4 18.1 15.8 16.2 16.5

Average 33.84 16.7 15.94 16.19 16.48

Std Dev 12.41040781852973.003331483536240.3533962208186280.1370320319406290.311982905514603

Wireshark Capture Performance

Pa
ck

et
s 

C
ap

tu
re

d 
(%

)

0

8.5

17

25.5

34

Packets Generated
100 1000 10000 100000 1000000

Figure 13: Wireshark’s ability to handle high data rates
quickly degrades.

The eventual goal of this type of monitoring is to
scan for and categorize or model memory event pat-
terns related to certain types of bugs (for example, corre-
lated data structure updates [15], integer overflows, use-
after-free, etc.) and then find other candidate instances
of those bugs or flaws. This approach would comple-
ment code-pattern approaches like that of Yamaguchi et
al. [24].

8 Conclusion

While some might contend that monitoring memory
events is not inherently offensive, we suggest that pro-
gram behavior analysis is the essential root of many of-
fensive and defensive activities. This paper is part of
a broader argument [6] that “offensive” does not mean
unprincipled or ad hoc. The Cage system is aimed at
demonstrating how a consistent model of memory inter-
ception can impose some structure on the task of analyz-
ing a target address space.

Unfortunately, the recognition and extraction of
streams of memory events is quite useful, but often
poorly supported in the OS and ISA. We see most ex-
isting work that leverages page tables and the TLB as
an argument for better hardware support for memory and
data-centric processing. Being able to efficiently aggre-
gate events and extract state would be useful to both of-
fense and defense. In keeping with the theme of WOOT,
it is precisely the variety of creative abuses of existing
memory management circuitry that argue for a more sane
and powerful hardware support for memory introspec-
tion on commodity architectures.

11



Acknowledgments

This work was funded in part by grants from the Natural
Sciences and Engineering Research Council of Canada.
We appreciate the guidance and advice of our paper shep-
herd, Julien Vanegue — the paper has undergone signif-
icant improvement due to his help. We owe thanks to
Darcy Grant for some technical advice and support.

References

[1] Radare: The Reverse Engineering Framework.
Project website. http://radare.org/.

[2] J. Bangert, S. Bratus, R. Shapiro, M. Locasto,
J. Reeves, S. W. Smith, and A. Shubina. ELF-
bac: Using the Loader Format for Intent-Level Se-
mantics and Fine-Grained Protection. In Dart-
mouth College Computer Science Technical Report
TR2013-727, July 2013.

[3] Julian Bangert, Sergey Bratus, Rebecca Shapiro,
and Sean W. Smith. The page-fault weird ma-
chine: Lessons in instruction-less computation. In
Presented as part of the 7th USENIX Workshop
on Offensive Technologies, Berkeley, CA, 2013.
USENIX.

[4] Bochs. http://bochs.sourceforge.net,
2004.

[5] S. Bratus, M. Locasto, and B. Schulte. SegSlice:
Towards a New Class of Secure Programming
Primitives for Trustworthy Platforms. In Interna-
tional Conference on Trust and Trustworthy Com-
puting (TRUST 10), pages 228–245, 2010.

[6] Sergey Bratus, Julian Bangert, Alexandar
Gabrovsky, Anna Shubina, Michael E. Lo-
casto, and Daniel Bilar. “Weird Machine” Patterns.
In Clive Blackwell and Hong Zhu, editors, Cyber-
patterns, pages 157–171. Springer International
Publishing, 2014.

[7] Sergey Bratus, Michael E. Locasto, Ashwin Ra-
maswamy, and Sean W. Smith. VM-based Security
Overkill: A Lament for Applied Systems Security
Research. In Proceedings of the 2010 Workshop on
New Security Paradigms, NSPW ’10, pages 51–60,
New York, NY, USA, 2010. ACM.

[8] Derek Bruening, Timothy Garnett, and Saman
Amarasinghe. An infrastructure for adaptive dy-
namic optimization. In Proceedings of the Inter-

national Symposium on Code Generation and Op-
timization, pages 265–275, 2003.

[9] E. Duesterwald and S. P. Amarsinghe. On the Run
– Building Dynamic Program Modifiers for Opti-
mization, Introspection, and Security. In Confer-
ence on Programming Language Design and Im-
plementation (PLDI), 2002.

[10] Bryan Ford and Russ Cox. Vx32: Lightweight
User-level Sandboxing on the x86. In USENIX
2008 Annual Technical Conference on Annual
Technical Conference, ATC’08, pages 293–306,
Berkeley, CA, USA, 2008. USENIX Association.

[11] halfdead. Mistifying the debugger, ultimate stealth-
iness. In Phrack 65:8, 2008.

[12] Intel Corporation. Intel R© 64 and IA-32 Archi-
tectures Software Developer’s Manual. Number
325462-046US. March 2013.

[13] M. Jurczyk and G. Coldwind. Identifying and ex-
ploiting Windows kernel race conditions via mem-
ory access patterns. White paper, presentation at
SyScan 2013, 2013.

[14] Samuel T. King, George W. Dunlap, and Peter M.
Chen. Debugging Operating Systems with Time-
traveling Virtual Machines. In Proceedings of the
Annual Conference on USENIX Annual Technical
Conference, ATEC ’05, pages 1–1, Berkeley, CA,
USA, 2005. USENIX Association.

[15] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma,
Weihang Jiang, Zhenmin Li, Raluca A. Popa, and
Yuanyuan Zhou. MUVI: Automatically Inferring
Multi-variable Access Correlations and Detecting
Related Semantic and Concurrency Bugs. In Pro-
ceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’07, pages
103–116, New York, NY, USA, 2007. ACM.

[16] Chi-Keung Luk, Robert Cohn, Robert Muth, Har-
ish Patil, Artur Klauser, Geoff Lowney, Steven Wal-
lace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proceedings of Pro-
gramming Language Design and Implementation
(PLDI), June 2005.

[17] Steven McCanne and Van Jacobson. The BSD
Packet Filter: A New Architecture for User-
level Packet Capture. In Proceedings of the
USENIX Winter 1993 Conference Proceedings on

12



USENIX Winter 1993 Conference Proceedings,
USENIX’93, pages 2–2, Berkeley, CA, USA, 1993.
USENIX Association.

[18] Nicholas Nethercote and Julian Seward. Valgrind:
A Program Supervision Framework. In Electronic
Notes in Theoretical Computer Science, volume 89,
2003.

[19] Nick L. Petroni, Timothy Fraser, Jesus Molina, and
William A. Arbaugh. Copilot – a Coprocessor-
based Kernel Runtime Integrity Monitor. In
13th USENIX Security Symposium, pages 179–194,
2004.

[20] Skape. Memalyze: Dynamic Analysis of Mem-
ory Access Behavior in Software. In http:
//uninformed.org/?v=7&a=1&t=sumry ,
2007.

[21] Joe Stewart. OllyBone: Semi-Automatic Unpack-
ing on IA-32. In DEFCON 14, 2006.

[22] PaX Team. PAGEEXEC. In http://pax.
grsecurity.net/docs/pageexec.old.
txt, 2003.

[23] The ERESI team. The ERESI Reverse En-
gineering Software Interface. Project website.
http://www.eresi-project.org/wiki/.

[24] Fabian Yamaguchi, Markus Lottmann, and Konrad
Rieck. Generalized Vulnerability Extrapolation Us-
ing Abstract Syntax Trees. In Proceedings of the
28th Annual Computer Security Applications Con-
ference, ACSAC ’12, pages 359–368, New York,
NY, USA, 2012. ACM.

A Raw BPF Filter Code

Temporal Filter (cf. Figure 9)
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 1)
BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, begin_address,0,7)
BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, end_address,6,0)

BPF_STMT(BPF_ALU+BPF_SUB+BPF_K, end_address)
BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, end_address, 1, 0)
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, 0, 3)
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 2)
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, num, 0, 2)
BPF_STMT(BPF_RET+BPF_K, 1)
BPF_STMT(BPF_RET+BPF_K, 0)
BPF_STMT(BPF_RET+BPF_K, -1)

Data-Overwriting Filter (cf. Figure 10)
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 1)
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, address, 1, 0)
BPF_STMT(BPF_RET+BPF_K, 0)
BPF_STMT(BPF_RET+BPF_K, num)

Instruction-Overwriting Filter (cf. Section 6.2.3)
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 3)
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, address, 1, 0)
BPF_STMT(BPF_RET+BPF_K, 0)
BPF_STMT(BPF_RET+BPF_K, num)

Buffer-Viewing Filter (cf. Figure 11)
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 3)
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, address, 0, 2)
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 6)
BPF_STMT(BPF_RET+BPF_A, 0)
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 5)
BPF_STMT(BPF_MISC+BPF_TAX, 0)
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 1)
BPF_JUMP(BPF_JMP+BPF_JGE+BPF_X, 0, 0, 6)
BPF_STMT(BPF_MISC+BPF_TXA, 0)
BPF_STMT(BPF_ALU+BPF_ADD+BPF_K, num)
BPF_STMT(BPF_MISC+BPF_TAX, 0)
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 1)
BPF_JUMP(BPF_JMP+BPF_JGT+BPF_X, 0, 1, 0)
BPF_STMT(BPF_RET+BPF_K, 1)
BPF_STMT(BPF_RET+BPF_K, 0)

Buffer-Finding Filter (cf. Figure 12)
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 5)
BPF_STMT(BPF_MISC+BPF_TAX, 0)
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 1)
BPF_STMT(BPF_ALU+BPF_SUB+BPF_X, 0)
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x8, 0, 1)
BPF_STMT(BPF_RET+BPF_K, 1)
BPF_STMT(BPF_RET+BPF_K, 0)

13


