
Inaudible Sound as a Covert Channel in Mobile Devices

Luke Deshotels
North Carolina State University

alecdeshotels@gmail.com

Abstract
Mobile devices can be protected by a variety of infor-
mation flow control systems. These systems can pre-
vent Trojans from leaking secrets over network connec-
tions. As mobile devices become more secure, attackers
will begin to use unconventional methods for exfiltrating
data.

We propose two sound-based covert channels, ultra-
sonic and isolated sound. Speakers on mobile devices
can produce frequencies too high for most humans to
hear. This ultrasonic sound can be received by a micro-
phone on the same device or on another device. We im-
plemented an ultrasonic modem for Android and found
that it could send signals up to 100 feet away. We also
determined that this attack is practical with the transmit-
ter inside of a pocket. Android devices with vibrators
can produce short vibrations which create isolated sound.
These vibrations can be detected by the accelerometer,
but they are not loud enough for humans to hear. If per-
formed while the user is not holding the device, the vi-
brations will not be noticed.

Both covert channels can stealthily bypass many in-
formation flow control mechanisms. We propose sev-
eral simple solutions to these vulnerabilities. In order to
guarantee information flow control, sound-based chan-
nels must be regulated.

1 Introduction

Users trust mobile devices with an unprecedented
amount of sensitive information. Financial creden-
tials, private photographs, location data, correspondence
records, and more can be found on a smartphone. This
collection of sensitive data has attracted the attention of
government agencies, criminals, and other sophisticated
attackers.

In order to protect user privacy, several security mech-
anisms have been proposed that enforce information flow

policies and restrict network usage. However, many of
these do not consider inaudible sound as a method for
data exfiltration. This paper focuses on the case where
users have taken steps to secure their data, but attackers
are willing to use unconventional means to extract it.

1.1 Inaudible Sound
Sound can be defined as vibrations in matter. We usually
perceive sound as vibrations in air. These vibrations are
made up of waves with measurable frequencies.

Humans with ideal hearing can perceive sound fre-
quencies within the range of 20hz to 20khz. However,
sensitivity to high frequencies declines rapidly with age
as shown in Figure 1. Most humans over 18 years of
age cannot hear frequencies above 17khz [4]. Ultrasonic
sounds are those frequencies too high for humans to hear.

A significant amount of inaudible frequencies can be
produced by mobile device speakers. The small speakers
on such devices are better at creating high frequencies,
so this paper will focus on ultrasonic sound. These in-
audible frequencies can also be detected by microphones.
Therefore, machines can communicate with sound fre-
quencies that most humans cannot hear.

Hanspatch and Goetz [9] presented methods for by-
passing security with ultrasonic sounds. They imple-
mented their experiments on laptop computers. Our pa-
per is intended to present and evaluate proofs of concept
for mobile devices such as smartphones and tablets. It
also discusses abuses and solutions specific to mobile
devices. They did not work with vibrators which are pri-
marily available on mobile devices. They also did not
test transmissions through fabric.

The vibrator on many Android devices can produce
vibrations that can be felt, but not heard. This is per-
formed by activating the vibrator for a very short amount
of time. The vibrations produced can be detected by the
accelerometer or microphone of the same device.

These vibrations are still considered sound although



Figure 1: Chart showing hearing ranges by age group.
It also references a ring tone used by teenagers to avoid
detection by adults in schools [4].

they primarily occur in the device instead of in the air.
Some of the vibrations are transferred to the air, but the
amplitude is too low for humans to hear them. Therefore,
sound produced in this way is also inaudible.

Subramanian et al. [15] explore methods for using
non-radio signals for malicious communication in wire-
less sensor networks. Sound and seismic waves are con-
sidered among these methods. However, their implemen-
tations are not stealthy and were implemented on wire-
less sensors. They do not measure the proximity required
for transmitting messages via sound. Our paper evaluates
the use of inaudible sound to stealthily bypass informa-
tion flow control on mobile devices. We determine the
maximum range at which our implementation can send
messages, and we also discuss the implications of this
technology for mobile devices.

1.2 Bypassed Security Mechanisms

We will reference the security mechanisms of Android
because of its open source nature and the tools available
to extend Android security.

Android applications are regulated by a permission

system that enforces the principle of least privilege. At
install time, users are presented with a list of danger-
ous permissions the application requires to function cor-
rectly. These permissions include network access, access
to message history, access to contacts, etc. If the user is
willing to trust the application with these permissions,
they allow the installation to continue. If not, the instal-
lation is aborted. Unfortunately, access to the speakers,
vibrator, and accelerometer are not considered dangerous
actions and do not require explicit permissions.

Several third party security extensions have been pro-
posed for Android. Many of them do not prevent sensi-
tive data from being exfiltrated as sound.

Kirin [8] allows users to set custom policies that pre-
vent dangerous combinations of permissions. However,
as noted previously, these attacks do not require any sig-
nificant permissions.

TaintDroid [7] tracks sensitive data as it moves within
and out of Android devices. TaintDroid can prevent se-
crets from being exported over network connections, but
it does not prevent secrets from being broadcast as sound.

MockDroid [6] provides false data when sensitive data
is requested by an application. It can also make an appli-
cation believe that network access is unavailable. How-
ever, an application may be trusted with real data in or-
der to obtain functionality. It can then export the data as
sound instead of using the network.

1.3 Comparison to Bluetooth

The attacks performed with ultrasonic sound are similar
to those performed with Bluetooth devices because they
are both alternatives to conventional internet connections
(WiFi, 4G, etc.). Therefore, it is worth noting differences
between the two mediums. Bluetooth has a significantly
more developed and secure infrastructure than sound on
mobile devices. For example, Bluetooth access is listed
as a dangerous permission on Android that users must
explicitly allow. Bluetooth also utilizes a pairing pro-
cess so that the user must explicitly allow his device to
be paired with another Bluetooth enabled machine. Ul-
trasonic sound does not require a permission and can
emit sounds to anything that can hear them regardless
of a pairing process. In the context of this paper, the
absence of security for sound makes it more interesting
than Bluetooth as a network alternative.

1.4 Contributions

This work provides the following contributions.

• The identification of inaudible sound as a covert
channel that allows applications to bypass existing
security measures.



• A proof of concept implementation of an ultrasonic
modem to covertly exfiltrate data on Android de-
vices.

• Evaluation of the performance of this proof of con-
cept including data on its range, bitrate, and ability
to transmit through fabric.

• Discussion of the potential abuses of and solutions
to the problem of inaudible sound on mobile de-
vices.

The remainder of this paper proceeds as follows. Sec-
tion 2 presents methods for abusing inaudible sound and
preventing detection. Section 3 describes the design of
our implementation and experiments. Section 4 evalu-
ates our experiment results. Section 5 discusses obser-
vations, assumptions, and future work. Section 6 dis-
cusses solutions to the problem of inaudible sound as a
covert channel. Section 7 describes related work. Sec-
tion 8 concludes. Section 9 acknowledges non-authors
that contributed directly to this work. Section 10 dis-
cusses the availability of our implementation.

2 Abuses of Sound-Based Channels

Data exfiltration can be performed with inaudible sound
in at least two ways. Assume in each case that applica-
tion A is trusted with secret data but has been secured
such that it cannot exfiltrate this data over a network.
This can be achieved with several information flow tools
or simply by restricting the privileges of the application.

2.1 Intra-Device Communication
The first method is intra-device communication between
applications that would otherwise be separated. Applica-
tion A can not communicate directly with application B
because A has secret data. Application B has network ac-
cess and other privileges, but is never trusted with sensi-
tive data. Application A can transmit the secret as sound
and have the colluding application B on the same device
receive the message with the microphone. Alternatively,
A could use the vibrator to emit inaudible pulses and
have B receive the message with the accelerometer. Ap-
plication B can now access the data and transmit it over
the network.

In using the vibrator, there is a moderate risk of de-
tection. If the user is holding the device or is carrying
it in a pocket, they may feel the vibrations and become
suspicious.

It would be ideal to utilize the vibrator while the user
is asleep and away from the device. Malware can assume
the user is sleeping if the following conditions are met.
First, the device is charging. Second, the accelerometer

has not recorded any movement for the past hour. Third,
the time is between midnight and 5 AM. These condi-
tions could be optimized, and there may be other useful
observations to utilize.

2.2 Inter-Device Communication
Second, an agent may compromise a targeted subject’s
mobile device with a Trojan horse to perform an inter-
device attack. However, the subject has secured his de-
vice, such that the Trojan cannot exfiltrate data over the
network. Instead of using the network, the Trojan can
broadcast the data as ultrasonic sound for the attacker
to record. The recording device could be carried by the
attacker or hidden in areas where the subject normally
spends time. Resourceful attackers also have access to
long distance listening equipment such as laser micro-
phones.

The same attack can be applied at a large scale with
a popular application A and a network of recording de-
vices. Assume a large corporation or government agency
wanted to track security conscious users. This organi-
zation could distribute applications that are pre-installed
on mobile devices and impossible to uninstall. Such ap-
plications are very common and are referred to as bloat-
ware. Users can enhance their privacy with security ex-
tensions, but sound based attacks could bypass these.
This large organization could also control a wide network
of recording devices at various building entrances. These
recording devices can pick up sensitive data from users
as they pass by and leak data as ultrasonic sound.

3 Design

We implemented proofs of concept for both isolated
sound and ultrasonic sound. The isolated sound imple-
mentation is fairly crude but serves its purpose. The ul-
trasonic sound implementation is tested to determine the
attack’s practical limits.

3.1 Isolated Sound Experiment
We used two Android devices running third party apps to
demonstrate that a device could produce isolated sound.
The transmitter was a Samsung Galaxy S4 running the
Vibration loop [5] application. The receiver was a
Google Nexus 7 (2013 edition) running the Accelerome-
ter Monitor [1] application.

The transmitter was set to vibrate for 1 millisecond,
wait 500 milliseconds, and then repeat the pattern. The
transmitter was placed on top of the receiver. The re-
ceiver displayed the accelerometer data with the Ac-
celerometer Monitor application. The transmitter began
the defined vibration pattern.



Figure 2: Photo of our isolated sound proof of concept

We took the photo shown in Figure 2. The hills
and valleys shown in the photo demonstrate that the
accelerometer is detecting significant changes. These
changes could be used to encode sensitive data and share
it between applications that should not be allowed to
communicate. We could not hear the vibrations being
produced unless we held our ears less than one foot from
the transmitter.

While this proof of concept uses multiple devices, it
is intended to provide evidence for an intra-device trans-
mission. If this attack works for two touching devices, it
is likely to work with a vibrator and accelerometer in the
same device.

3.2 Ultrasonic Sound Experiment

We implemented an ultrasonic modem on Android de-
vices to test its practical limits for inter-device commu-
nication. The transmitter uses frequency shift keying
(FSK) to transmit digital data, and the receiver decodes
the FSK message to obtain the digital data. This tech-
nique was tested to determine its maximum bitrate and
distance while remaining stealthy. We also experimented
to determine the feasibility of this attack from within a
pocket.

3.2.1 Materials

FSK functions by encoding binary 1’s and 0’s as two
different frequencies. Each frequency must be predeter-
mined. Our experiments use 18khz as the low frequency
and 19khz as the high frequency. These 1’s and 0’s may
be referred to as bits or symbols. If the receiver senses
a high tone, it receives a 1. If it receives a low tone, it
receives a 0. FSK also uses a set amount of time for each
symbol to maintain synchronization and detect repeats
of the same symbol. An illustration describing FSK is
presented in Figure 3.

The frequencies 18khz and 19khz were chosen for var-
ious reasons. Lower frequencies should be able to travel

Figure 3: Example of a digital signal represented as ana-
log waves in frequency shift keying. [3].

farther while maintaining their integrity. These frequen-
cies were still too high for the author and experimenters
to hear. Hanspatch and Goetz [9] used a frequency of
18,600 Hz. We found that error rates were significantly
higher when we used 19khz and 20khz. This is likely
due to hardware limitations.

The transmitter software is a Matlab script that creates
an audio file in .wav format consisting of three parts. The
first is a preliminary tone. This is a consistent tone of a
single frequency which helps the receiver roughly iden-
tify the signal of interest in a larger recording. We used a
preliminary tone consisting of 128 consecutive low fre-
quency (18khz) symbols. The second is a synchroniza-
tion sequence. This is a complex but predefined pattern
of high and low frequency tones. This pattern allows the
receiver to pinpoint exactly where the intended message
begins. The synchronization pattern was also 128 sym-
bols long. The third is the digital data encoded as a series
of high and low frequencies. The digital data is a string
of ASCII characters that have been converted to binary
symbols. The .wav files produced by this script can be
played on arbitrary devices including Android devices.

The receiver software is an Android application that
records arbitrary sounds as an audio file. It then decodes
that audio file into digital data. The receiver has a pri-
ori knowledge of everything but the message contents.
This a priori knowledge includes the frequencies used,
the length of the preliminary tone, the synchronization
pattern, the bitrate, etc. Once the receiver has pinpointed



Figure 4: Example of discontinuity between frequency
shifts. These abrupt changes can cause audible clicks.
[2].

the message contents in the audio file, it can decode it as
binary bits based on the high and low signals detected.
This binary sequence is then converted into ASCII char-
acters and displayed on the Android device screen.

The .wav files were produced on a PC and exported
to be played on a single Nexus 7 (2013). The receiver
application was installed on 3 different Nexus 7 (2013)
devices.

3.2.2 Optimizations

We also implemented some redundancy in the receiver to
make the process more robust. Each audio file recorded
is decoded 10 times with a slightly different starting point
for each. The starting point is always a point before the
preliminary tone begins. Different starting points can af-
fect the decoder’s ability to correctly identify the begin-
ning of the message contents. This optimization causes
the decoding process to require more time and energy,
but it does not affect the transmission cost.

Our second optimization addresses the problem of au-
dible clicks during phase shifts. Each symbol is repre-
sented as a cosine wave, but the waves do not connect
seamlessly. When transitioning between symbols, there
may be an abrupt change in the wave’s phase. This is
illustrated in Figure 4 and is manifest in the speakers as
an audible click. Hanspatch and Goetz [9] also noted
this phenomenon. We were able to mitigate this issue by
gradually reducing the amplitude at the beginning and
end of each symbol. This caused the clicks to become so
quiet that they are inaudible.

3.2.3 Calculating Error Rates

The multiple decoding optimization made calculating er-
ror rates non-trivial. Some decoding attempts were sig-
nificantly more accurate than others and a method for pri-
oritizing them was necessary. We addressed this problem
by using a predetermined sequence weaved into the mes-
sage. A comparison to this predetermined sequence was
used to determine the value of each decoding attempt.

The bit error rate is determined for the decoding attempt
with the highest value.

The message we transmitted is the following character
string.

0@1,2^3^4l5Q6n7C8f9W

The numbers 0 through 9 are expected at every other
character position. The other characters were randomly
chosen and constitute the data we wish to transmit. For
example, the message “strawberry” would be encoded as
the following string.

0s1t2r3a4w5b6e7r8r9y

This “strawberry” example will be used for the remain-
der of this subsection for simplicity. Note that the actual
experiments used the previously listed random ASCII se-
quence.

The number of correct, expected characters in each de-
coding attempt is calculated to select the most valuable
result. The expected characters are then removed from
the chosen string leaving the arbitrary data. In our ex-
ample, this could be the message “strawberry” or a result
containing bit errors. Let us assume the message “ttraw-
berry” was produced after removing the expected char-
acters.

This received message is then converted into its binary
ASCII representation and compared to the intended mes-
sage’s binary representation. Comparing the binary code
for “strawberry” and “ttrawberry” yields a difference of
three bits. These three bit errors out of a possible 80 bits
yields a bit error rate of 3.75%.

3.2.4 Bitrate Experiment

We experimented to determine the maximum bitrate our
implementation could support at a minimal distance. The
minimal distance was obtained by placing two devices
back to back without cases.

Once the two devices were in position, the receiver
was set to record, and the transmitter played the encoded
.wav file. After the file finished playing, the receiver was
set to decode. Once the receiver finished decoding, it
displayed its results to the screen.

This experiment was performed in a computer lab.
Some ambient noise may have come from air condition-
ing vents, computer fans, a refrigerator, and researchers
typing.

3.2.5 Distance Experiment

A similar experiment was performed to measure the
maximum distance at which messages could be passed
and accurately decoded. This experiment used a con-
sistent bitrate of 8.61 bits per second, but the distance
between devices was varied.



In this experiment, the devices were placed in cases
that allowed them to be propped up in their tallest orien-
tation. The transmitter’s speaker was turned to face the
screens of the receiving devices. One Nexus 7 was used
to broadcast to three receiving Nexus 7’s.

The frequencies, preliminary tone, synchronization
tone, and message were all the same as in the bitrate
experiment. The sequence of events (record, play tone,
decode, evaluate) was also identical to the bitrate experi-
ments.

This experiment was performed in a large hallway in
a research building. Ambient noise could have been
caused by air conditioning, people walking, and use of
doors.

3.2.6 Transmitter in Pocket Experiment

Mobile devices spend a significant amount of time in
pockets. Therefore, leaking data via ultrasonic sound is
much more practical if the signals can pass through fab-
ric.

In order to test these conditions, we placed the trans-
mitter inside the leg of a pair of denim jeans during trans-
mission. This experiment took place at a distance of 20
feet and under the same conditions as the distance exper-
iments.

4 Evaluation

The results obtained by our experiments suggest that
transmitting messages with ultrasonic sound on mobile
devices is very practical. The bitrates and distances ob-
served allow for several interesting abuses of this covert
channel.

4.1 Bitrate Experiment Results

Our bitrate tests revealed an unexpected limit in our abil-
ity to remain stealthy. The Nexus 7 devices produced
small amounts of noise outside of the desired frequen-
cies. There were also traces of the clicks which we had
reduced by adjusting amplitude during frequency shifts.
Neither of these phenomena were audible during trans-
mission at bit rates below 345 bits per second. However,
at bitrates above 345 bits per second, the clicks and noise
began to form audible tones.

A different Android device using a more sophisticated
implementation may be able to achieve higher bitrates.
In this implementation, we found the effective bitrate
limit of stealthy ultrasonic sound to be 345 bits per sec-
ond.

20 40 60 80 100
0 %

5 %

10 %

15 %

20 %

Distance in Feet

B
it

E
rr

or
R

at
e

Figure 5: Average bit error rates at 20 foot intervals. The
quadratic regression is also plotted.

4.2 Distance Experiment Results
The distance experiment results suggest a decline in
transmission reliability as distance increases. Such a de-
cline is expected. We observed a significant increase in
error rates at 100 feet.

Figure 5 illustrates our experiment results. These er-
ror rates can be overcome with parity schemes, repeated
transmissions, and other solutions. We chose to stop ex-
perimenting at 100 feet, but transmission at greater dis-
tances with the same hardware may also be possible. Our
data formed the following formula when we calculated
the quadratic regression.

errorRate(x) = 0.00271786x2 −0.129543x+3.862

This formula has an adjusted R2 score of 0.950 for the fit
of the data to the regression.

During experimentation, we encountered a limitation
of our character based decoding. Some attempts to de-
code transmissions produced strings too short to evalu-
ate. We suspect that an end of string character was en-
countered which caused the rest of the transmission to be
omitted. Figure 6 plots the rates of occurence of this phe-
nomenon. The chart contains an outlier at 60 feet where
this error did not occur during experiments. Further test-
ing would likely produce a quadratic regression similar
to our bit error rate. This is an implementation specific
phenomena, but we still value these results.

4.3 Pocket Experiment Results
Our results suggest that transmission from within a
pocket is feasible. With the transmitter inside the leg of
a pair of denim jeans, the bit error rate for 20 feet was
1.46%.



20 40 60 80 100
0 %

10 %

20 %

30 %

40 %

50 %

Distance in Feet

Fa
ilu

re
s

to
D

ec
od

e

Figure 6: Occurrence rate of failures to decode due to
end of string character. The quadratic regression is also
plotted.

This error rate is lower than the rate we measured
without the denim barrier. We suspect that at higher
bitrates and greater distances, the barrier would have a
more significant effect. However, these results suggest
that an infected phone in a pocket can reliably leak data
to a receiver at least 20 feet away.

5 Discussion

We were able to make several informal observations dur-
ing our experiments. We also made several inferences
based on our results.

During experimentation we informally monitored bat-
tery use of the tablets. Transmission of the ultrasonic sig-
nal did not seem to use a significant amount of power, but
decoding messages was resource intensive. An infected
device does not need to transmit sound at all times. It
could transmit once every few minutes, or a more sophis-
ticated implementation could probe for a receiver before
transmitting. With our implementation, the receiver must
spend a significant amount of time decoding the trans-
mission it recorded. This leads to more power usage,
but the attacker is free to plug in his listening device af-
ter recording. For an intra-device attack using ultrasonic
sound, power usage of the receiver is more relevant. One
solution for intra-device attacks is to perform the trans-
mission and reception while the phone is charging.

The bit rate we chose for distance experiments, 8.61,
is fairly low, but it is still sufficient for leaking sensitive
data. IDs, social security numbers, credit card numbers,
coordinates of locations visited, passwords, and more
could be leaked in less than one minute. Higher bitrates
are also feasible, but the recording device would require

closer proximity to the transmitter.

5.1 Assumptions

We made the following assumptions as conditions of the
isolated sound attack being stealthy. First, the device is
not on a drum-like object. For example a filing cabinet’s
thin walls and hollow center will amplify the pulses and
make them audible. Second, the device is not touching
the user. In this case the user would be able to feel the
vibrations. Third, the user’s ear is not within 1 foot of the
device. Fourth, the user does not have an animal such as
a dog that could detect and react to faint sounds. Other
similar conditions may exist.

We made the following assumptions as conditions of
the ultrasonic sound attack being stealthy. First, peo-
ple near the device cannot hear 18khz sounds or higher
frequencies. Many humans under 18 years of age and
some exceptional adults can hear these frequencies. Sec-
ond, only the intended frequencies are being produced.
The Nexus 7 devices also produced very faint noise at
frequencies other than 18khz and 19khz. These sounds
were only audible if the experimenters ear was within 6
inches of the device’s speaker. This noise is likely due to
a limitation of the speakers used. We noted that an iPad
Mini with Retina Display did not produce such noise.
Third, the user does not have an animal such as a dog
that could detect and react to ultrasonic sounds. Other
similar conditions may exist.

5.2 Future Work

Researchers could address our assumptions, improve our
experiment process, and implement the proposed solu-
tions.

Two assumptions can be mitigated. First, by using the
highest frequencies available on mobile device speak-
ers (about 20khz) the chances of humans detecting the
sounds are significantly lower. This is assuming the hard-
ware used can produce pure tones at these frequencies.
Our experiments suggested that Nexus 7 tablets were not
suitable for using frequencies above 19khz. Second, de-
vices other than Nexus 7 tablets may be able to produce
the frequencies required without faint noise on other fre-
quencies. Our iPad Mini with Retina Display seemed to
produce high frequency sounds without noise.

The experiment could be improved by using a more
robust, sophisticated transmission protocol. Many tech-
niques exist for wireless communication that could have
been applied to the ultrasonic sound implementation.
Such techniques include phase shift keying, parity check-
ing, and receivers that respond when messages are re-
ceived.



A continuous connection between the device and re-
ceiver may yield a more accurate maximum distance for
ultrasonic communication. This connection could be es-
tablished between both devices at a close proximity. The
space between the devices could be increased until the
connection fails and the distance of this event could be
recorded.

Finally, practical solutions to inaudible sound abuse
should be implemented and distributed. The solutions
we propose may help, or researchers may develop better
ones.

6 Solutions

There are several potential solutions to the ultrasonic
sound problem. First, speakers could be installed that
can only produce those frequencies that most people can
hear. Second, physical filters could be placed over the
speakers that block ultrasonic sounds, but not those with
wider wavelengths. Third, an indicator that the speak-
ers are in use could be displayed to the user. This would
be similar to the lights that often indicate when a cam-
era is currently recording. Fourth, audio files could be
filtered before reaching the speakers to remove any ul-
trasonic frequencies. Fifth, a trusted application could
listen for unusual activity in the range of ultrasonic sound
and warn the user if such activity is detected. Sixth, an
explicit permission to use the speakers could be added
to the Android OS. Seventh, existing security tools could
begin to monitor sound as a channel that is a potential
means of exfiltrating data.

There are also solutions to isolated sound attacks that
use the vibrator. First, the minimum time to use the vi-
brator could be increased from 1 millisecond to a more
audible amount of time. Second, explicit permissions to
use the vibrator and accelerometer could be added to the
Android OS. Third, the sensitivity of the accelerometer
could be reduced so that it cannot detect inaudible vibra-
tions. Fourth, a log of vibrator use might reveal unusual
activity upon inspection. Fifth, existing security tools
could begin to monitor the vibrator as a channel that is a
potential means of exfiltrating data.

7 Related Work

We have identified three major topics related to this arti-
cle. These topics are sensory malware, sound-based ma-
chine communication, and information flow control on
Android.

Sensory Malware The sound-based attacks we have
proposed could be utilized by sensory malware. Sensory
malware is any software that abuses the sensors of the
infected device.

PlaceRaider [16] uses the device camera to create
a three-dimensional view of the victim’s surroundings.
This three-dimensional view is created by combining
multiple photographs that were taken stealthily by the
malware. This view enhances the attacker’s ability to ex-
tract sensitive data from the victim’s surroundings.

TapPrints [10] determines the user’s keystrokes by us-
ing accelerometer data. Each key being tapped causes a
slightly different offset of the device’s position depend-
ing on the keyboard layout. These patterns can be used
to turn the accelerometer into a key logger.

Soundcomber [14] stealthily records and exfiltrates
sensitive audio data. This data is recorded when the user
speaks during a sensitive phone call. The data can then
be exfiltrated through several covert channels that they
describe.

Analog to Digital Communication A review of this
field is beyond the scope of this paper. Instead, we will
list those works most related to our implementation.

Usselman [17] patented frequency shift keying in
1949. Frequency shift keying may not be the most ef-
fective method for analog to digital modulation, but it is
relatively simple. Therefore, it was an excellent choice
for our proof of concept implementation.

Sound is significantly more effective than radio waves
in underwater communication. Therefore, audio is the
normal method of marine communication. Otnes et al.
[13] present a survey of digital underwater communica-
tion techniques. These techniques may be useful to im-
plement as future work to improve our implementation.

Information Flow Control on Android As men-
tioned in the introduction, there are several information
flow control tools for Android.

Aquifer [11] prevents users from accidentally leaking
files through network connections. It is limited to acci-
dental disclosures and does not prevent malicious infor-
mation leaks.

Heuser et al. [12] present Android Security Modules
(ASM). ASM is a framework to make the creation of se-
curity enhancements for Android more efficient. They
also list and describe 15 existing Android security exten-
sions. Many of these tools are information flow control
enforcers.

8 Conclusion

The production of this article has led the authors to three
conclusions.

First, our experiment results suggest that data exfiltra-
tion via sound on mobile devices is a practical attack.
The ranges supported by our implementation are more
than sufficient for an attacker to stealthily record from
an infected device. The maximum bitrates we recorded



are also sufficient for sharing images and documents in
intra-device attacks.

Second, sound will become a more attractive channel
for data exfiltration as network security increases. Users
are steadily becoming aware of the value of their sen-
sitive data and the security risks of using a mobile de-
vice. This trend and frameworks for security tools on An-
droid will make security enhancements even more com-
mon. Attackers may need to use unconventional methods
for exfiltration as network connections are more closely
monitored.

Third, many of the sensors and actuators on mobile
devices are grossly underestimated in terms of their im-
pact on security. No explicit permission is required to ac-
cess the accelerometer despite the many potential ways
to abuse it. The same can be said for the speakers and
vibrator. These features are also underestimated by ex-
isting information flow control systems. These systems
do not consider them to be useful sources or sinks for
sensitive information.

9 Acknowlegements

We would like to thank those that contributed their
knowledge or resources to this paper. Dr. Purush Iyer
acted as my official adviser during the design and im-
plementation of this work. Dr. William Enck provided
advice and four Nexus 7 devices for testing. Mayank
Manjrekar and Santosh Kumar provided us with an FSK
modem for Android which we adapted to use ultrasonic
frequencies. We also added optimizations and evaluation
mechanisms to their implementation. Leia Kagawa and
Feifei Wang both assisted with our experiments.

This work was funded by the United States Army Re-
search Office (ARO) grant number W911NF-14-1-0117.

10 Availability

The source code used in our experiments is
available under the GPL version 2 license at
https://bitbucket.org/ladeshot/ultrasonicfsk.git.

References
[1] Accelerometer monitor - android apps on google play. Web site:

https://play.google.com/store/apps/details?id=com.lul.accelerometer
[Last accessed: 2014-05-04].

[2] frequency modulation - computer definition. Web site:
http://www.moz.ac.at/sem/lehre/lib/ks/lib/fm/frequency-
modulation.html [Last accessed: 2014-05-04].

[3] Frequency-shift keying - wikipedia, the free encyclope-
dia. Web site: http://en.wikipedia.org/wiki/Frequency-
shiftkeying[Lastaccessed : 2014−05−04].

[4] A ring tone meant to fall on deaf ears - new york times. Web site:
http://www.nytimes.com/2006/06/12/technology/12ring.html?r =
2ore f = slogin[Lastaccessed : 2014−05−04].

[5] Vibration loop - android apps on google play. Web site:
https://play.google.com/store/apps/details?id=net.oxdb.Vibration
[Last accessed: 2014-05-04].

[6] BERESFORD, A. R., RICE, A., SKEHIN, N., AND SOHAN,
R. Mockdroid: trading privacy for application functionality on
smartphones. In Proceedings of the 12th workshop on mobile
computing systems and applications (2011), ACM, pp. 49–54.

[7] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smart-
phones. In OSDI (2010), vol. 10, pp. 1–6.

[8] ENCK, W., ONGTANG, M., AND MCDANIEL, P. Mitigating
android software misuse before it happens. Citeseer (2008).

[9] HANSPACH, M., AND GOETZ, M. On covert acoustical mesh
networks in air. Journal of Communications 8, 11 (2013).

[10] MILUZZO, E., VARSHAVSKY, A., BALAKRISHNAN, S., AND
CHOUDHURY, R. R. Tapprints: your finger taps have fin-
gerprints. In Proceedings of the 10th international conference
on Mobile systems, applications, and services (2012), ACM,
pp. 323–336.

[11] NADKARNI, A., AND ENCK, W. Preventing accidental data dis-
closure in modern operating systems. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications secu-
rity (2013), ACM, pp. 1029–1042.

[12] NADKARNI, A., AND ENCK, W. Asm: A programmable in-
terface for extending android security. In Technical Report TUD-
CS-2014-0063 (2014), Intel CRI-SC at TU Darmstadt, North Car-
olina State University, CASED / TU Darmstadt.

[13] OTNES, R., ASTERJADHI, A., CASARI, P., GOETZ, M.,
HUSØY, T., NISSEN, I., RIMSTAD, K., VAN WALREE, P.,
AND ZORZI, M. Underwater acoustic networking techniques.
Springer, 2012.

[14] SCHLEGEL, R., ZHANG, K., ZHOU, X.-Y., INTWALA, M., KA-
PADIA, A., AND WANG, X. Soundcomber: A stealthy and
context-aware sound trojan for smartphones. In NDSS (2011),
vol. 11, pp. 17–33.

[15] SUBRAMANIAN, V., ULUAGAC, S., CAM, H., AND BEYAH,
R. Examining the characteristics and implications of sensor side
channels. In Communications (ICC), 2013 IEEE International
Conference on (2013), IEEE, pp. 2205–2210.

[16] TEMPLEMAN, R., RAHMAN, Z., CRANDALL, D., AND KAPA-
DIA, A. Placeraider: Virtual theft in physical spaces with smart-
phones. arXiv preprint arXiv:1209.5982 (2012).

[17] USSELMAN, G. L. Frequency shift keying, Feb. 8 1949. US
Patent 2,461,456.


