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Message from the Program Co-Chairs

As Program Co-Chairs, we are pleased to welcome you to NSDI ’13. This year’s conference presents the best work in 
the area of networked systems. Our technical program contains papers spanning leading-edge topics ranging from 
wireless networking to big data and data center networking.

We received 170 paper submissions, close to the high-water mark of 175 submissions in 2010. Following the lead 
of some recent conferences, we allowed an unlimited number of pages of references, in addition to 12 pages for all 
other content. All submissions that met the formatting and basic quality standards were reviewed by the Program 
Committee, and in a small number of cases we used external reviewers to complement the expertise of the PC. Our 
review process included two full rounds of reviews, extensive online discussions after each round, and face-to-face 
discussion at the Program Committee meeting itself. During the first round of reviewing, all papers received three 
reviews. We then selected 84 papers for a second round of three reviews, of which 9 received additional reviews in 
a third round. Overall, we gathered 775 reviews[a], with an average load of 25.8 reviews per PC member. (An ad-
ditional 6 papers, for which both co-chairs had conflicts, were reviewed outside our system, and we lack statistics 
for these papers.) 

We selected 64 papers for consideration at the PC meeting. 28 of the 30 PC members attended the meeting at HP 
Labs on December 3, 2012, and the other two members, who were unable to travel, attended by telephone. At the 
meeting, the PC accepted 38 papers, including one for which both chairs were conflicted. (Neither chair was an 
author of an accepted paper.) We strongly encouraged the PC members to accept a larger number of papers than in 
the past, based on our wish not to exclude any good papers merely for reasons of space, and on our belief that the 
review process can skew towards excessive negativity. We also encouraged the PC to prefer the risk of mistakenly 
accepting papers rather than mistakenly rejecting them, in a few cases where the PC members could not agree. 

Because of the special role that conferences play in our field, all accepted papers were shepherded by a Program 
Committee member. 13 papers were granted extra pages to address reviewers’ comments, based on the approval of 
their shepherds. We also asked the shepherds to write short “public summaries” of the accepted papers, in order to 
provide some context for readers, and to explain the PC’s view of the significance of the papers. 

We are grateful to everyone whose hard work made this conference possible. Most of all, we are indebted to all of 
the authors who submitted their work to this conference. We thank the Program Committee for their dedication, 
timeliness, and hard work in reviewing papers and participating in the extensive discussions at the PC meeting, as 
well as for their efforts in the shepherding process. We also thank our external reviewers for lending their expertise 
on short notice. We thank Matt Caesar for acting as Poster/Demo Program Chair, and his Poster/Demo Program 
Committee members for their work. We also thank Richard Mortier for chairing the subcommittee to choose award-
winning papers. We extend special thanks to Jessica Cheung and Alesha Cater for their help in organizing the 
logistics of the PC meeting at HP Labs, and HP Labs for funding the meals during the meeting. 

We are grateful to the conference sponsors for their support and to the USENIX staff for handling the confer-
ence logistics, marketing, and proceedings publication; as always, it is a pleasure to work with them. We relied 
 heavily on the HotCRP reviewing software, and we thank Eddie Kohler for his continuing willingness to support 
and embellish it. We thank Geoff Voelker for the Banal format checker, which reduced our load in enforcing 
format compliance. Finally, we thank the NSDI ’13 attendees and future readers of these papers: in the end, it is 
your participation in our field and interest in the work that makes NSDI, and our community, a success. 

Nick Feamster, Georgia Tech 
Jeff Mogul, HP Labs 
NSDI ’13 Program Co-Chairs
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Composing Software-Defined Networks

Christopher Monsanto∗, Joshua Reich∗, Nate Foster†, Jennifer Rexford∗, David Walker∗
∗Princeton †Cornell

Abstract
Managing a network requires support for multiple con-
current tasks, from routing and traffic monitoring, to ac-
cess control and server load balancing. Software-Defined
Networking (SDN) allows applications to realize these
tasks directly, by installing packet-processing rules on
switches. However, today’s SDN platforms provide lim-
ited support for creating modular applications. This pa-
per introduces new abstractions for building applications
out of multiple, independent modules that jointly man-
age network traffic. First, we define composition opera-
tors and a library of policies for forwarding and querying
traffic. Our parallel composition operator allows multi-
ple policies to operate on the same set of packets, while a
novel sequential composition operator allows one policy
to process packets after another. Second, we enable each
policy to operate on an abstract topology that implic-
itly constrains what the module can see and do. Finally,
we define a new abstract packet model that allows pro-
grammers to extend packets with virtual fields that may
be used to associate packets with high-level meta-data.
We realize these abstractions in Pyretic, an imperative,
domain-specific language embedded in Python.

1 Introduction
Software-Defined Networking (SDN) can greatly sim-
plify network management by offering programmers
network-wide visibility and direct control over the un-
derlying switches from a logically-centralized controller.
However, existing controller platforms [7, 12, 19, 2,
3, 24, 21] offer a “northbound” API that forces pro-
grammers to reason manually, in unstructured and ad
hoc ways, about low-level dependencies between dif-
ferent parts of their code. An application that per-
forms multiple tasks (e.g., routing, monitoring, access
control, and server load balancing) must ensure that
packet-processing rules installed to perform one task do
not override the functionality of another. This results
in monolithic applications where the logic for different

tasks is inexorably intertwined, making the software dif-
ficult to write, test, debug, and reuse.

Modularity is the key to managing complexity in any
software system, and SDNs are no exception. Previous
research has tackled an important special case, where
each application controls its own slice—a disjoint por-
tion of traffic, over which the tenant or application mod-
ule has (the illusion of) complete visibility and con-
trol [21, 8]. In addition to traffic isolation, such a plat-
form may also support subdivision of network resources
(e.g., link bandwidth, rule-table space, and controller
CPU and memory) to prevent one module from affect-
ing the performance of another. However, previous work
does not address how to build a single application out
of multiple, independent, reusable network policies that
affect the processing of the same traffic.

Composition operators. Many applications require
the same traffic to be processed in multiple ways. For
instance, an application may route traffic based on the
destination IP address, while monitoring the traffic by
source address. Or, the application may apply an access-
control policy to drop unwanted traffic, before routing
the remaining traffic by destination address. Ideally, the
programmer would construct a sophisticated application
out of multiple modules that each partially specify the
handling of the traffic. Conceptually, modules that need
to process the same traffic could run in parallel or in se-
ries. In our previous work on Frenetic [6, 14], we in-
troduced parallel composition, which gives each module
(e.g., routing and monitoring) the illusion of operating on
its own copy of each packet. This paper introduces a new
kind of composition—sequential composition—that al-
lows one module to act on the packets already processed
by another module (e.g., routing after access control).

Topology abstraction. Programmers also need ways
to limit each module’s sphere of influence. Rather than
have a programming platform with one (implicit) global
network, we introduce network objects, which allow
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Monitor
srcip=5.6.7.8→ count

Route
dstip=10.0.0.1→ fwd(1)

dstip=10.0.0.2→ fwd(2)

Load-balance
srcip=0*,dstip=1.2.3.4→ dstip=10.0.0.1

srcip=1*,dstip=1.2.3.4→ dstip=10.0.0.2

Compiled Prioritized Rule Set for “Monitor | Route”
srcip=5.6.7.8,dstip=10.0.0.1 → count,fwd(1)
srcip=5.6.7.8,dstip=10.0.0.2 → count,fwd(2)
srcip=5.6.7.8→ count

dstip=10.0.0.1→ fwd(1)

dstip=10.0.0.2→ fwd(2)

Compiled Prioritized Rule Set for “Load-balance >> Route”
srcip=0*,dstip=1.2.3.4→ dstip=10.0.0.1,fwd(1)
srcip=1*,dstip=1.2.3.4→ dstip=10.0.0.2,fwd(2)

Figure 1: Parallel and Sequential Composition.

each module to operate on its own abstract view of the
network. Programmers can define network objects that
naturally constrain what a module can see (information
hiding) and do (protection), extending previous work on
topology abstraction techniques [4, 17, 10, 25].

The Pyretic Language and System. Pyretic is a new
language and system that enables programmers to spec-
ify network policies at a high level of abstraction, com-
pose them together in a variety of ways, and execute
them on abstract network topologies. Running Pyretic
programs efficiently relies on having a run-time system
that performs composition and topology mapping to gen-
erate rules to install in the switches. Our initial proto-
type, built on top of POX [19], is a simple interpreter
that handles each packet at the controller. While suffi-
cient to execute and test Pyretic programs, it does not
provide realistic performance. In our ongoing work, we
are extending our run-time system to proactively gener-
ate and install OpenFlow rules, building on our previous
research [14].

The next section presents a top-down overview of
Pyretic’s composition operators and topology abstraction
mechanisms. The following two sections then explain
each in detail, building a complete picture of Pyretic
from the bottom up. Section 3 presents the Pyretic lan-
guage, including an abstract packet model that conveys
information between modules, and a library for defining
and composing policies. Section 4 introduces network
objects, which allow each module to apply a policy over
its own abstract topology, and describes how our run-
time system executes Pyretic programs. To evaluate the
language, Section 5 presents example applications run-
ning on our Pyretic prototype. After reviewing related
work in Section 6, we conclude in Section 7.

2 Abstractions for Modular Programming
Building modular SDN applications requires support for
composition of multiple independent modules that each
partially specify how traffic should be handled. The par-
allel and sequential composition operators (Section 2.1)
offer simple, yet powerful, ways to combine policies
generated by different modules. Network objects (Sec-

tion 2.2) allow policies to operate on abstract locations
that map—through one or more levels of indirection—to
ones in the physical network.

2.1 Parallel and Sequential Composition Operators

Parallel and sequential composition are two central
mechanisms for specifying the relationship between
packet-processing policies. Figure 1 illustrates these ab-
stractions through two examples in which policies are
specified via prioritized lists of OpenFlow-like rules.
Each rule includes a pattern (field=value) that matches
on bits in the packet header (e.g., source and destina-
tion MAC addresses, IP addresses, and TCP/UDP port
numbers), and simple actions the switch should perform
(e.g., drop, flood, forward out a port, rewrite a header
field, or count1 matching packets). When a packet ar-
rives, the switch (call it s) identifies the first matching
rule and performs the associated actions. Note that one
may easily think of such a list of rules as a function: The
function input is a packet at a particular inport on s and
the function output is a multiset of zero or more pack-
ets on various outports of s (zero output packets if the
matching rule drops the input packet; one output if it for-
wards the input; and one or more if it floods). We call a
packet together with its location a located packet.

Parallel Composition (|): Parallel composition gives
the illusion of multiple policies operating concurrently
on separate copies of the same packets [6, 14]. Given two
policy functions f and g operating on a located packet
p, parallel composition computes the multiset union of
f (p) and g(p)—that is, every located packet produced by
either policy. For example, suppose a programmer writes
one module to monitor traffic by source IP address, and
another to route traffic by destination IP address. The
monitoring module (Figure 1, top-left) comprises a sim-
ple policy that consists of a single rule applying the count
action to packets matching source IP address 5.6.7.8.
The routing module (Figure 1, top-middle) consists of
two rules, each matching on a destination IP address and
forwarding packets out the specified port. Each module

1The OpenFlow API does not have an explicit count action; in-
stead, every rule includes byte and packet counters. We consider
count as an explicit action for ease of exposition.
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generates its policy independently, with the programmer
using the “|” operator to specify that both the route and
monitor functions should be performed simultaneously.
These can be mechanically compiled into a single joint
ruleset (Figure 1, bottom-left) [14].

Sequential Composition (>>): Sequential composi-
tion gives the illusion of one module operating on the
packets produced by another. Given two policy func-
tions f and g operating on a located packet p, sequen-
tial composition applies g to each of the located pack-
ets produced by f (p), to produce a new set of located
packets. For example, suppose a programmer writes
one module to load balance traffic destined to a pub-
lic IP address 1.2.3.4, over multiple server replicas at
private addresses 10.0.0.1 and 10.0.0.2, respectively,
and another to route traffic based on the chosen destina-
tion server. The load-balancing module splits traffic des-
tined to the public IP between the replicas based on the
client IP address. Traffic sent by clients with an IP ad-
dress whose highest-order bit is 0 go to the first server,
while remaining traffic goes to the second server. As
shown in Figure 1 (top-right), the load balancer performs
a rewriting action to modify the destination address to
correspond to the chosen server replica, without actually
changing the packet’s location. This load balancer can
be composed sequentially with the routing policy intro-
duced earlier. Here the programmer uses the “>>” opera-
tor to specify that load balancing should be performed
first, followed by routing. Again, these may be me-
chanically compiled into a single joint ruleset (Figure 1,
bottom-right).

2.2 Topology Abstraction With Network Objects

Modular programming requires a way to constrain what
each module can see (information hiding) and do (pro-
tection). Network objects offer both information hiding
and protection, while offering the familiar abstraction of
a network topology to each module. A network object
consists of an abstract topology, as well as a policy func-
tion applied to the abstract topology. For example, the
abstract topology could be a subgraph of the real topol-
ogy, one big virtual switch spanning the entire physical
network, or anything in between. The abstract topology
may consist of a mix of physical and virtual switches,
and may have multiple levels of nesting on top of the one
real network. To illustrate how topology abstraction may
help in creating modular SDN applications we look at
two examples: a “many-to-one” mapping in which sev-
eral physical switches are made to appear as one virtual
switch and a “one-to-many” mapping in which one phys-
ical switch is presented as several virtual switches.

Many-to-one. While MAC-learning is an effective
way to learn the locations of hosts in a network, the

Figure 2: Many physical switches to one virtual.

need to compute spanning trees makes Ethernet proto-
cols unattractive in large networks. Instead, a program-
mer could combine MAC-learning at the edge of the net-
work with shortest-path routing (for unicast traffic) and
multicast trees (for broadcast and flooding traffic) in the
network interior [18, 23]. Topology abstraction provides
a simple way to realize this functionality, as shown in
Figure 2. The MAC-learning module sees the network
as one big switch V, with one port for each edge link
in the underlying physical network (dotted lines). The
module can run the conventional MAC-learning program
to learn where hosts are located. When a previously-
unknown host sends a packet, the module associates the
source address with the input port, allowing the module
to direct future traffic destined to this address out that
port. When switch V receives a packet destined to an un-
known address, the module floods the packet; otherwise,
the switch forwards the traffic to the known output port.

The “switching fabric” of switch V is implemented by
the switching-fabric module, which sees the entire physi-
cal network. the switching-fabric module performs rout-
ing from one edge link to another (e.g., from the ingress
port at switch A to the egress port at switch B), This re-
quires some coordination between the two modules, so
the MAC-learner can specify the chosen output port(s),
and the switching-fabric module can direct traffic on a
path to the egress port(s).

As a general way to support coordination, we intro-
duce an abstract packet model, incorporating the con-
cept of virtual packet headers that a module can push,
pop, and inspect, just like the actions OpenFlow sup-
ports on real packet-header fields like VLAN tags and
MPLS labels. When the MAC-learning module directs
traffic from an input port to an output port, the switching-
fabric module sees traffic with a virtual packet header
indicating the corresponding ingress and egress ports in
its view of the network. A run-time system can perform
the necessary mappings between the two abstract topolo-
gies, and generate the appropriate rules to forward traffic
from the ingress port to the appropriate egress port(s). In
practice, a run-time system may represent virtual packet-
header fields using VLAN tags or MPLS labels, and in-
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Figure 3: One physical switch to many virtual.

stall rules that push, pop, and inspect these fields.

One-to-many. Enterprise networks often consist of
several Ethernet islands interconnected by gateway
routers to an IP core, as shown in Figure 3. To imple-
ment this behavior, an SDN programmer would have to
write a single, monolithic program that handles network
events differently depending on the role the switch is
playing in the network. This program would implement
MAC-learning and flooding to unknown destinations for
switches within Ethernet islands, shortest-path routing
on IP prefixes for switches in the IP core, and gateway
logic for devices connecting an island to the core. The
gateway logic would be complicated, as the switch would
need to act simultaneously as MAC-learner, IP router,
and MAC-rewriting repeater and ARP server.

A better alternative would be to implement the Eth-
ernet islands, IP core, and gateway routers using sepa-
rate modules operating on a subset of the topology, as
shown in Figure 3. This design would allow the gateway
router to be decomposed into three virtual devices: one
in the Ethernet island (E), another in the IP core (I), and
a third interconnecting the other two (F). Likewise, its
logic could be decomposed into three orthogonal pieces:
a MAC-rewriting repeater that responds to ARP queries
for its gateway address (on F), an Ethernet switch (on E),
and an IP router (on I). The programmer would write
these modules separately and rely on a run-time system
to combine them into a single program.

For example, suppose a host in the Ethernet LAN
sends a packet to a destination reachable via the IP core.
In the Ethernet LAN, this packet has a destination MAC
address of the gateway. The Ethernet module would gen-
erate a rule in switch E that matches traffic destined to the
gateway’s MAC address and forwards out E’s right port.
The gateway module would generate a rule in switch F

that matches packets from F’s left port destined to the
gateway’s MAC address and, after rewriting MAC head-
ers appropriately, forwards out F’s right port. The IP core
module would generate rules in switch I that match pack-
ets based on the destination IP address to forward traffic
to the next hop along a path to the destination. A run-
time system can combine these three sets of rules to gen-
erate the rules for the physical gateway switch G. Switch

Conventional SDN Pyretic
Packet Fixed OF fields Extensible stacks of values
Policy Prioritized OF rules Functions of located packets
Network One concrete network Network object hierarchies

Table 1: Pyretic abstraction in three dimensions

G would match traffic entering on its left two ports based
on the gateway’s destination MAC address and the des-
tination IP address to forward via one of the two right
ports, as chosen by the IP core module.

3 The Pyretic Programming Language
Any SDN platform needs a model of data packets, for-
warding policies, and the network that applies these
policies—as summarized in Table 1. Compared to con-
ventional platforms [7, 12, 2, 3, 19], our Pyretic language
raises the level of abstraction by introducing an abstract
packet model (Section 3.1), an algebra of high-level poli-
cies (Section 3.2), and network objects (Section 4).

3.1 Abstract Packet Model

The heart of the Pyretic programming model is a new, ex-
tensible packet model. Conceptually, each packet flow-
ing through the network is a dictionary that maps field
names to values. These fields include entries for (1)
the packet location (either physical or virtual), (2) stan-
dard OpenFlow headers (e.g., source IP, destination IP,
source port, etc.), and (3) custom data. The custom
data is housed in virtual fields and is not limited to sim-
ple bit strings—a virtual field can represent an arbitrary
data structure. Consequently, this representation pro-
vides a general way to associate high-level information
with packets and enable coordination between modules.

In addition to extending the width of a packet by in-
cluding virtual fields, we also extend its height by al-
lowing every field (including non-virtual ones) to hold a
stack of values instead of a single bitstring. These stacks
allow Pyretic to present the illusion of a packet travelling
through multiple levels of abstract networks. For exam-
ple, to “lift” a packet onto a virtual switch, the run-time
system pushes the location of the virtual switch onto the
packet. Having done so, that virtual switch name sits on
top of the concrete switch name. When a packet leaves
a virtual switch, the run-time system pops a field off the
appropriate stack. In the example in Figure 2, this en-
ables the MAC-learning module to select an egress port
on virtual switch V without knowing about the existence
of switches A, B, and C underneath.

Expanding on the example in Figure 2, consider a
packet p entering the network at physical switch A and
physical input port 3. We can represent p as:
{switch: A, inport: 3, vswitch: V, ... }

Pushing virtual switch name V on to the switch field of p
produces a new packet with V on top of A:
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{switch: [V, A], inport: 3, ... }

The push above hides the identity of the physical switch
A and reveals only the identity of the virtual switch V to
observers that only examine top-most stack values. This
mechanism allows Pyretic applications to hide the con-
crete network and replace it with a new abstract one.

Thus far, we have experimented primarily with the
abstraction of location information: switches and ports.
However, there is nothing special about those fields. We
can virtualize IP addresses, MAC addresses or any other
information in a packet, if an application demands it.
Programs must maintain the invariant that the standard
OpenFlow header fields do not contain the empty stack;
packets with an empty stack in such a field will not be
properly realized as a standard OpenFlow packet.

Ideally, OpenFlow switches would support our ex-
tended packet model directly, but they do not. Our run-
time system is responsible for bridging the gap between
the abstract model and the OpenFlow-supported pack-
ets that traverse the network. It does so by generating a
unique identifier that corresponds to a unique set of non-
OpenFlow-compliant portions of the packet (i.e., all vir-
tual fields and everything but the top of the stack in an
OpenFlow-compliant field). This identifier is stored in
spare bits in the packet.2 Our run-time system manages a
table that stores the mapping between unique ids and ex-
tended data. Hence, programmers do not need to manage
this mapping themselves and can instead work in terms
of high-level abstractions.

3.2 High-Level Policy Functions

Pyretic contains a sublanguage for specifying static (i.e.,
unchanging) policies. A static policy is a “snapshot” of
a network’s global forwarding behavior, represented as
an abstract function from a located packet to a multiset
of located packets. The output multiset may be empty;
if so, the policy has effectively dropped the input packet.
The output multiset may contain a single packet at a new
location (e.g., unicast)—typically, though not always, an
output port on the other side of the switch. Finally, the
output multiset may contain several packets (e.g., mul-
ticast or broadcast). Of course, one cannot build many
useful network applications with just a single static, un-
changing policy. To do so, one must use a series of static
policies (i.e., a dynamic policy).

3.2.1 Static Policy Functions

We first describe the details of the static policy lan-
guage, which we call NetCore.3 NetCore contains sev-
eral distinct elements including actions (the basic packet-

2Any source of spare bits (e.g., MPLS labels) could be used. Our
current implementation uses the VLAN field.

3This variant of NetCore is an extension and generalization of a
language with the same name, described in our earlier work [14].

Primitive Actions:
A ::= drop | passthrough | fwd(port) | flood |

push(h=v) | pop(h) | move(h1=h2)
Predicates:
P ::= all_packets | no_packets | match(h=v) |

ingress | egress | P & P | (P | P) | ~P

Query Policies:
Q ::= packets(limit,[h]) | counts(every,[h])
Policies:
C ::= A | Q | P[C] | (C | C) |C >> C | if_(P,C,C)

Figure 4: Summary of static NetCore syntax.

processing primitives), predicates (which are used to se-
lect certain subsets of packets), query policies (which are
used to observe packets traversing the network), and fi-
nally policy combinators, which are used to mix primi-
tive actions, predicates, and queries together to craft so-
phisticated policies from simple components. Figure 4
summarizes the syntax of the key elements of NetCore.

Primitive actions. Primitive actions are the central
building blocks of Pyretic policies; an action receives a
located packet as input and returns a set of located pack-
ets as a result. The simplest is the drop action, which pro-
duces the empty set. The passthrough action produces
the singleton set {p} where p is the input packet. Hence
passthrough acts much like an identity function—it does
not even move the packet from its input port. Perhaps
surprisingly, passthrough is quite useful in conjunction
with other policies and policy combinators. On input
packet p, the fwd(port) action produces the singleton
set containing the packet relocated to outport port on the
same switch as a result. The flood action sends packets
along a minimum spanning tree, excepting the incoming
interface4. When viewed as a function, flood receives
any packet located at an inport on switch s and produces
an output set with one copy of the packet at each outport
on s that belongs to a minimum spanning tree for the
network (maintained by the run-time system). The last
three actions, push, pop, and move, each yield a singleton
set as their output: push(h=v) pushes value v on to field
h; pop(h) pops a value off of field h; and move(h1=h2)

pops the top value on field h2 and pushes it on to h1.

Predicates. Predicates are essential for defining poli-
cies (or parts of policies) that act only on a subset of
packets traversing the network. More specifically, given
an input packet p, the policy P[C], applies the policy
function C to p if p satisfies the predicate P. If p does
not satisfy P then the empty set is returned. (In other
words, the packet is dropped.) Predicates include all_-

packets and no_packets, which match all or no pack-
ets, respectively; ingress and egress which, respec-
tively, match any packets entering or exiting the net-

4The same definition used by Openflow for its flood action.
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work; and match(h=v), matching all packets for which
value v is the top value on the stack at field h. Com-
plex predicates are constructed using basic conjunc-
tion (&), disjunction (|), and negation (~) operators.
The form match(h1=v1,h2=v2) is an abbreviation for
match(h1=v1) & match(h2=v2).

As an example, the policy flood, on its own, will
broadcast every single packet that reaches any inport of
any switch anywhere in the network. On the other hand,
the policy

match(switch=s1,inport=2,srcip=’1.2.3.4’) [flood]

only broadcasts those packets reaching switch s1,
inport 2 with source IP address 1.2.3.4. All other
packets are dropped.

Policies. Primitive actions A are policies, as are re-
stricted policies P[C]. NetCore also contains several ad-
ditional ways of constructing policies.

As discussed in Section 2, sequential composition is
used to build packet-processing pipelines from simpler
components. Semantically, we define sequential compo-
sition C1 >> C2 as the function C3 such that:

C3(packet) = C2(p1) ∪ . . . ∪ C2(pn)

when {p1,. . .,pn} = C1(packet)

In other words, we apply C1 to the input, generating a set
of packets (p1,..., pn) and then apply C2 to each of those
results, taking their union as the final result.

As an example, consider the following policy, which
modifies the destination IP of any incoming packet to
10.0.0.1 and forwards the modified packet out port 3.

pop(dstip) >> push(dstip=’10.0.0.1’) >> fwd(3)

Indeed, the modification idiom is common enough that
we define an abbreviation for it:

modify(h=v) = pop(h) >> push(h=v)

As a more elaborate example, consider a complex pol-
icy P2, designed for forwarding traffic using a set of tags
(staff, student, guest) stored in a virtual field named
USERCLASS. Now, suppose we would like to apply the pol-
icy for staff to a particular subset of the traffic arriving
on network. To do so, we may write a policy P1 to select
and tag the relevant traffic. To use P1 and P2 in combina-
tion, we exploit sequential composition: P1 >> P2. Such
a program is quite modular: if a programmer wanted to
change the forwarding component, she would change P2,
while if she wanted to change the set of packets labeled
staff, she would change P1.

Parallel composition is an alternative and orthogonal
form of composition to sequential composition. The par-
allel composition P3 | P4 behaves as if P3 and P4 were
executed on every packet simultaneously. In other words,
given an input packet p, (P3 | P4)(p) returns the set of
packets P3(p) U P4(p).

Continuing our example, if a programmer wanted to
apply the policy P3 | P4 to packets arriving at switch s1

and a different policy P6 to packets arriving at s2, she
could construct the following composite policy P7.

P5 = P3 | P4

P6 = ...

P7 = match(switch=s1)[P5] | match(switch=s2)[P6]

After recognizing a security threat from source IP ad-
dress, say address 1.2.3.4, the programmer might go
one step further creating policy P8 that restricts P7 to
applying only to traffic from other addresses (implicitly
dropping traffic from 1.2.3.4).
P8 = ~match(srcip=’1.2.3.4’)[P7]

The policy if_ is a convenience conditional policy.
For example, if the current packet satisfies P, then

if_(P, drop, passthrough)

drops that packet while leaving all others untouched (al-
lowing a subsequent policy in a pipeline of sequential
compositions to process it). Conditional policies are a
derived form that can be encoded using parallel compo-
sition, restriction, and negation.

Queries. The last kind of policy we support is a query
policy (Q). Intuitively, a query is an abstract policy that
directs information from the physical network to the con-
troller platform. When viewed as a function, a query re-
ceives located packets as arguments and produces new
located packets as results like any other policy. How-
ever, the resulting located packets do not find themselves
at some physical port on some physical switch in the net-
work. Instead, these packets are diverted to a data struc-
ture resident on the controller called a “bucket”.

NetCore contains two queries: counts and packets,
which, abstractly, direct packets to two different types
of buckets, a packet_bucket and a counting_bucket,
respectively. Applications register listeners (i.e., call-
backs) with buckets; these callbacks are invoked to pro-
cess the information contained in the bucket. Semanti-
cally, the two query policies differ only in terms of the
information each bucket reveals to its listeners.

The packet_bucket, as its name suggests, passes
entire packets to its listeners. For example,
packets(limit,[’srcip’]) invokes its listeners on
up to limit packets for each source IP address. The
two most common values for limit are None and 1,
with None indicating the bucket should process an
unlimited number of packets. More generally, a list
of headers is allowed: the bucket associated with
packets(1,[h1,...,hk]) invokes each listener on at
most 1 packet for each distinct record of values in fields
h1 through hk.

The counting_bucket supplies its listeners with
aggregate packet statistics, not the packets them-
selves. Hence, it may be implemented using Open-
Flow counters in switch hardware. The policy
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from pyretic.lib import *

def main():

return flood

Figure 5: A complete program: hub.py.

counts(every,[’srcip’]) creates a bucket that calls
its listeners every every seconds and provides each lis-
tener with a dictionary mapping source IP addresses
to the cumulative number of packets containing that
source IP address received by the bucket. As above,
counting policies may be generalized to discriminate
between packets on the basis of multiple headers:
counts(every,[h1,...,hk]).

A query policy Q may be used in conjunction with any
other policy we define. For example, if we wish to an-
alyze traffic generated from IP address 1.2.3.4 using Q,
we may simply construct the following.

match(srcip=’1.2.3.4’) [Q]

If we wanted to both forward and monitor a certain sub-
set of packets, we use parallel composition as before:

match(srcip=’1.2.3.4’) [Q | fwd(3)]

3.2.2 From Static Policies to Dynamic Applications

After defining a static policy, the programmer may use
that policy within a Pyretic application. Figure 5 presents
the simplest possible, yet complete, Pyretic application.
It imports the Pyretic library, which includes definitions
of all primitive actions (such as flood, drop, etc.), pol-
icy operators and query functions, as well as the run-time
system. The program itself is trivial: main does nothing
but return the flood policy. A Pyretic program such as
this one is executed by starting up a modified version of
the POX run-time system [19]. POX reads the Pyretic
script and executes main. Although we use POX for low-
level message processing, our use of POX is not essen-
tial. A Pyretic-like language could be built on top of any
low-level controller.

Monitoring. Figure 6 presents a second simple ap-
plication, designed to monitor and print packets from
source IP 1.2.3.4 to the terminal. In this figure, the
dpi function first creates a new packet-monitoring pol-
icy named q. Next, it registers the printer listener with
the query q using q’s when method. This listener will be
called each time a packet arrives at the packet_bucket

to which q forwards. Finally, the dpi function constructs
and returns a policy that embeds the query within it. The
main function uses dpi and further composes it with a
routing policy (the simple flood).

MAC-learning. Figure 7 presents an MAC-learning
module that illustrates how to construct a dynamic pol-
icy. It is designed assuming that network hosts do not

def printer(pkt):

print pkt

def dpi():

q = packets(None,[])

q.when(printer)

return match(srcip=’1.2.3.4’)[q]

def main():

return dpi() | flood

Figure 6: Deep packet inspection.

def learn(self):

def update(pkt):

self.P =

if_(match(dstmac=pkt[’srcmac’],

switch=pkt[’switch’]),

fwd(pkt[’inport’]),

self.P)

q = packets(1,[’srcmac’,’switch’])

q.when(update)

self.P = flood | q

def main():

return dynamic(learn)()

Figure 7: MAC-learning switch.

move. It initially operates by flooding all packets it re-
ceives. For each switch, when a packet with a new source
MAC address (say, MAC address M) appears at one of its
input ports (say, inport I), it concludes that M must live off
I. Consequently, it refines its forwarding behavior so that
packets with destination MAC address M are no longer
flooded, but instead forwarded only out of port I.

Examining a few of the details of Figure 7, we see
that the last line of the learn function is the line that ini-
tializes the policy—it starts out flooding all packets and
using q to listen for packets with new source MAC ad-
dresses. The listener for query is the function update,
which receives packets with new source MACs as an ar-
gument. That listener updates the dynamic policy with
a conditional policy that tests future packets to see if
their destination MAC is equal to the current packet’s
source MAC. If so, it forwards the packet out the inport
on which the current packet resides. If not, it invokes the
existing policy self.P. In this way, over time, the pol-
icy is extended again and again until the locations of all
hosts have been learned.

The last line of Figure 7 uses the function dynamic to
wrap up learn and produce a new dynamic policy class,
whose constructor it then calls to produce a operational
dynamic policy instance.

Load balancer. As a final example in this section, we
show how to construct a simple dynamic server load bal-

7



8 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

ancer. Doing so illustrates a common Pyretic program-
ming paradigm: One may develop dynamic applications
by constructing parameterized static policies, listening
for network events, and then repeatedly recomputing the
static policy using different parameters as the network
environment changes. The example also illustrates the
process of building up a somewhat more complex policy
by defining a collection of ordinary Python functions that
compute simple, independent components of the policy,
which are subsequently composed together.

Figure 8 presents the code, which spreads requests for
a single public-facing IP address over multiple back-end
servers. The first three functions in the figure collabo-
rate to construct a static load balancer. In the first func-
tion (subs), variable c is the client IP address prefix, p is
the service’s public-facing IP address, and r is the spe-
cific replica chosen. This function rewrites any packet
whose source IP address matches c and destination IP
address is p so the destination IP address is r, and vice
versa. All other packets are left unmodified. The next
function, rewrite, iterates subs over a dictionary d map-
ping IP prefixes to server replicas. To simplify this code,
we have overloaded sequential composition (>>) so that
it can be applied to a list of policies (placing each ele-
ment of the list in sequence). Hence, intuitively, rewrite
sends each packet through a pipeline of tests and when
the test succeeds, the packet is transformed. The third
function, static_lb invokes rewrite with a function
balance (definition omitted from the figure) that parti-
tions possible clients and assigns them to replicas, using
a lists of server replicas R and a dictionary H containing a
history of traffic statistics.

Now, to build a dynamic load balancer that changes
the mapping from clients to server replicas over time,
consider lb. This dynamic balancer issues a query q

that computes a dictionary mapping source IP addresses
to packet counts every minute (60 seconds). Each time
the query returns a new stats value, the policy invokes
rebalance, which updates the history H and recomputes
a new load balancing policy using static_lb.

4 Network Objects
The policy language described in the preceding section
provides programmers with flexible constructs that make
it easy to build sophisticated network applications out
of simple, independent components. However, it suffers
from a significant limitation: programmers must spec-
ify policies in terms of the underlying physical topology.
This hinders code reuse since policies written for one
topology typically cannot be used with other topologies.

To address this limitation, Pyretic also provides net-
work objects (or simply networks), which allow pro-
grammers to abstract away details of the physical topol-
ogy and write policies in terms of abstracted views of

def subs(c,r,p):

c_to_p = match(srcip=c,dstip=p)

r_to_c = match(srcip=r,dstip=c)

return c_to_p[modify(dstip=r)] |

r_to_c[modify(srcip=p)] |

(~r_to_c & ~c_to_p)[passthrough]

def rewrite(d,p):

return (>>)([subs(c,r,p) for c,r in d])

def static_lb(p,R,H):

return rewrite(balance(R,H),p)

def lb(self,p,R,H):

def rebalance(stats):

H = H.update(stats)

self.P = static_lb(p,R,H)

q = counts(60,[’srcip’])

q.when(rebalance)

self.P = static_lb(p,R,H) | match(dstip=p)[q])

Figure 8: Dynamic load balancer (excerpts).

that network—providing an important form of modular-
ity. We do this by allowing a new derived network to
be built on top of an already existing underlying network
(and, as implied by this terminology, Pyretic program-
mers may layer one derived network atop another).

Each network object has three key elements: a topol-
ogy, a policy, and, for derived networks, a mapping. The
topology object is simply a graph with switches as nodes
and links as edges. The policy specifies the intended be-
havior of the network object with respect to that topol-
ogy. The mapping comprises functions establishing an
association between elements of the derived topology
and those of its underlying topology.

The base network object represents the physical net-
work. The Pyretic run-time system implements a dis-
covery protocol that learns the physical topology using
a combination of OpenFlow events and simple packet
probes. The run-time system ultimately resolves all de-
rived network policies into a single policy that can be
applied to the base network.

A derived network object’s mapping comprises the
following functions:
• A function to map changes to the underlying topology

up to changes on the derived topology, and
• A function to map policies written against the derived

topology down to a semantically equivalent policy ex-
pressed only in terms of the underlying topology.

Pyretic provides several constructs for implementing
these functions automatically. In most situations, the
programmer simply specifies the mapping between ele-
ments of the topologies, along with a function for calcu-
lating forwarding paths through the underlying topology,
and Pyretic calculates correct implementations automati-
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Figure 9: Derived “big switch” topology.

cally. The next few paragraphs describe these features in
detail. For concreteness, we consider a running example
where the derived network contains a single “big switch”
as shown in Figure 9.

Transforming Topologies. The first step involved in
implementing the “big switch” is to specify the relation-
ship between elements of the underlying topology and
elements of the derived topology. In this case, because
the derived topology only contains a single switch, the
association between underlying and derived topology el-
ements can be computed automatically. To represent this
association, we will use a dictionary that maps switch-
port pairs (vswitch,vport) in the derived network to
switch-port pairs (switch,port) in the underlying net-
work. The following Python function computes a dictio-
nary that relates ports on the switch in the derived net-
work to ports at the perimeter of the underlying network:

def bfs_vmap(topo):

vswitch = 1

vport = 1

for (switch, port) in topo.egress_locations:

vmap[(vswitch, vport)] = (switch, port)

vport += 1

return vmap

Using this dictionary, it is straightforward to build the
graph representing the derived topology—it consists of
a single switch with the ports specified in the domain
of the dictionary. Likewise, it is straightforward to map
changes to the underlying topology up to changes for the
derived topology. Pyretic provides code to implement
these functions automatically from the vmap dictionary.

Transforming Policies. The next step involved in im-
plementing the “big switch” is to transform policies writ-
ten for the derived network into policies for the underly-
ing network. This turns out to be significantly more chal-
lenging because it involves implementing a policy writ-
ten against one topology, using the switches and links
provided in a completely different topology. However,
Pyretic’s abstract packet model and support for sequen-
tial composition allow the transformation to be expressed
in a clean and elegant way.

The transformation uses three auxiliary policies:5

• Ingress Policy: “lifts” packets in the underlying net-
work up into the derived network by pushing appro-

5As before, Pyretic can automatically generate these from a vmap.

def virtualize(ingress_policy,

egress_policy,

fabric_policy,

derived_policy):

return if_(~match(vswitch=None),

(ingress_policy >>

move(switch=vswitch,

inport=vinport) >>

derived_policy >>

move(vswitch=switch,

vinport=inport,

voutport=outport)),

passthrough) >>

fabric_policy >>

egress_policy

Figure 10: Virtualization transformation.

priate switch and port identifiers onto the stack of val-
ues maintained in Pyretic’s abstract packet model.

• Egress policy: “lowers” packets from the derived net-
work to the underlying network by popping the switch
and port identifier from the stack of values maintained
in Pyretic’s abstract packet model.

• Fabric policy: implements forwarding between adja-
cent ports in the derived network using the switches
and links in the underlying topology. In general, cal-
culating this policy involves computing a graph algo-
rithm on the underlying topology.

With these auxiliary policies, the policy transforma-
tion can be expressed by composing several policies in
sequence: ingress policy, derived policy, fabric policy,
and egress policy. Figure 10 defines a general function
virtualize that implements this transformation.

Example. To illustrate ingress, egress, and fabric poli-
cies, consider a specific physical topology consisting of
two switches S1 and S2, each with an outward-facing port
and connected to each other by a link as shown in Fig-
ure 9. The policy running on the derived switch encodes
the behavior of a repeater hub, as shown in Figure 5. The
ingress policy is as follows:

ingress_policy =

( match(switch=S1, inport=1)

[push(vswitch=V, vinport=1)]

| match(switch=S2, inport=1)

[push(vswitch=V, vinport=2)])

It simply pushes the derived switch V and inport onto the
corresponding “virtual” header stacks. The egress policy
is symmetric:

egress_policy = match(vswitch=V)

[if_(match(switch=S1, voutport=1)

| match(switch=S2, voutport=2),

pop(vswitch, vinport, voutport),

passthrough)]

It pops the derived switch, inport, and outport from the
appropriate virtual header stacks if the switch is labeled

9
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with derived switch V, and otherwise passes the packet
through unmodified. The fabric policy forwards pack-
ets labeled with derived switch V along the (unique) path
between S1 and S2:

fabric_policy = match(vswitch=V)[

( match(switch=S1, voutport=1)[fwd(1)]

| match(switch=S1, voutport=2)[fwd(2)]

| match(switch=S2, voutport=1)[fwd(2)]

| match(switch=S2, voutport=2)[fwd(1)])]

To illustrate these definitions, consider processing of a
packet with the following headers.

{ switch:S1, inport:1, ... }

Recall that Pyretic’s packet model treats the location of
the packet as a header field. The first step of processing
checks whether the packet has already entered the de-
rived network, by testing for the presence of the vswitch

header field. In this case, the packet does not contain
this field so we treat it as being located at the ingress
port of the derived switch and take the first branch of the
conditional in Figure 10. Next, we evaluate ingress_-

policy which, by the first disjunct, pushes the headers
vswitch=V and vinport=1 onto the packet, yielding a
packet with the following headers:

{ switch:S1, inport:1,

vswitch:V, vinport:1, ... }

Next we move the vswitch and vinport headers to
switch and inport, and evaluate the policy written
against the derived network (here simply flood). Flood-
ing the packet on the derived network, generates a packet
on outport 2 in this case:

{ switch:[V, S1], inport:[1, 1],

outport:2, ...}

We then move the switch, inport, and outport headers
to the corresponding virtual header stacks, which has the
effect of restoring the original switch and inport headers,

{ switch:S1, inport:1,

vswitch:V, vinport:1, voutport:2 }

and evaluate the fabric policy, which forwards the packet
out port 2 of switch S1. Finally, the egress policy passes
the packet through unmodified and the underlying topol-
ogy transfers the packet to port 2 on switch S2:

{ switch:S2, inport:2,

vswitch:V, vinport:1, voutport:2 }

This completes the first step of processing on the physi-
cal network. In the second step of processing, the packet
already has virtual switch, inport, and outport labels.
Hence, we do not calculate virtual headers as before and
instead skip straight to the fabric policy, which forwards
the packet out port 1 of S2. Now the packet does satisfy
the condition stated in the egress policy, so it pops the
virtual headers and forwards the packet out to its actual
destination.

5 Example Pyretic Applications
To experiment with the Pyretic design, we have imple-
mented a collection of applications. Table 2 lists a se-
lection of these examples, highlighting the key features
of Pyretic utilized, where the examples are discussed
in the paper, and corresponding file names in the refer-
ence implementation [1]. Most terms in the features col-
umn should be familiar from prior sections. The term
“novel primitives” simply refers to basic, but novel, fea-
tures of Pyretic such as passthrough policies. Due to
space constraints, we have omitted discussion of certain
advanced Pyretic features that are needed to implement
some applications including traffic generation, topology-
aware predicates, dynamic nesting, and recursion. Sec-
tion 5.1 elaborates on some of the additional applications
found in our reference implementation and the key fea-
tures they use. Section 5.2 concludes by presenting a
“kitchen sink” example that utilizes all of Pyretic’s fea-
tures to write a truly modular application in just a few
lines of code.

5.1 Pyretic Example Suite

ARP. The ARP application demonstrates how a Pyretic
program can inject new packets into the network, and
thereby respond to ARP traffic on behalf of hosts.

Firewalls. The firewall applications construct stateless
(static) and stateful (dynamic) firewalls. These applica-
tions are similar in nature to the load balancer described
in Section 3.2.2, but go a step further by demonstrat-
ing an advanced technique we call dynamic nesting in
which one dynamic policy includes another dynamic pol-
icy within it. These firewalls also exploit topology-aware
predicates such as ingress (which identifies packets at
the network ingress) and egress (which identifies pack-
ets at the network egress).

Gateway. The gateway example implements the pic-
ture in Figure 3. The physical topology consists of three
parts: an Ethernet island (switches 2, 3, and 4), a gate-
way router (switch 1), and an IP core (switches 5, 6,
and 7). The gateway router is responsible for running
several different pieces of logic. It is difficult to reuse
standard components when all modules must share the
same physical switch, so we abstract switch 1 to three
switches (1000, 1001, 1002)—running MAC-learning,
gateway logic, and IP routing, respectively. Unlike previ-
ous examples, the ports and links connecting these three
switches are completely virtual—that is they map to no
physical port, even indirectly. We encapsulate these com-
ponents into a network object named GatewayVirt that
performs the mechanical work of copying the base ob-
ject and modifying it accordingly.

To a first approximation, here is how each of the virtu-
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Examples Pyretic Features Used Section File
Hub static policy 3.2.2 hub.py

MAC-Learning dynamic policy; queries; parallel comp. 3.2.2 mac_learner.py

Monitoring static policy; queries; parallel comp. 3.2.2 monitor.py

Load Balancers static policy; queries; parallel & sequential comp.; novel primitives 3.2.2 load_balancer.py

Firewalls dynamic policy; queries; parallel & sequential comp.; - firewall.py

novel primitives; topology-aware predicates; dynamic nesting
ARP static policy; queries; parallel comp.; traffic generation - arp.py

Big Switch static policy; topology abstraction; virtual headers; parallel comp.; novel primitives 4 bfs.py

Spanning Tree static policy; topology abstraction; virtual headers; parallel comp.; novel primitives - spanning_tree.py

Gateway static policy; topology abstraction; virtual headers; recursion; - gateway.py

parallel & sequential comp.; novel primitives
Kitchen Sink dynamic policy; topology abstraction; virtual headers; parallel comp.; 5.2 kitchen_sink.py

novel primitives; topology-aware predicates; dynamic nesting

Table 2: Selected Pyretic examples.

alization components are implemented:6

• Ingress policy: Incoming packets to the physical gate-
way switch from the Ethernet side are tagged with
vswitch=1000 (and the appropriate vinport), and in-
coming packets to the physical gateway switch from
the IP side are tagged with vswitch=1002 (and the ap-
propriate vinport).

• Fabric policy: For switches 1000-1002, the fabric pol-
icy modifies the packet’s virtual headers, effectively
“moving” the packet one-step through the chain of
switches. When moving the packet to a virtual port,
the fabric policy recursively applies the entire policy
(including ingress, fabric, and egress policies). The
recursion halts when the packet is moved to a non-
completely virtual port, at which time the packet is
forwarded out of the corresponding physical port.

• Egress policy: As virtual links span at most one phys-
ical link, we strip the virtual headers after each for-
warding action on the base network.

5.2 Putting it All Together

We conclude with an example application addressing
the motivating “many-to-one” scenario discussed in Sec-
tion 2.2 and shown in Figure 3. We implement the func-
tionality of the Ethernet island by handling ARP traffic
using the corresponding module from Table 2 and all
other traffic with the familiar MAC-learning module.

eth = if_(ARP,dynamic(arp)(),dynamic(learn)())

We take the load balancer from Section 3.2.2 and com-
bine it with a dynamic firewall from the examples ta-
ble. This firewall is written in terms of white-listed traf-
fic from client IPs to public addresses, creating another
interesting twist— easily solved using Pyretic’s opera-
tors. Specifically, the correct processing order of load
balancer and firewall turns out to be direction-dependent.
The firewall must be applied before load balancing for

6See the reference implementation [1] for further details.

incoming traffic from clients—as the firewall must con-
sider the original IP addresses, which are no longer be
available after the load balancer rewrites the destination
address that of a replica. In the other direction, the load
balancer must first restore the original IP address before
the firewall is applied to packets returning to the client.

fwlb = if_(from_client, afw >> alb, alb >> afw)

Finally, we complete our IP core by taking this com-
bined load balancer/firewall and sequentially composing
it with a module that implements shortest-path routing to
the appropriate egress port—by running MAC-learning
on a shortest path big switch!

ip = fwlb >> virtualize(dynamic(learn)(),

BFS(ip_core) )

The final component is our gateway logic itself. The
gateway handles ARP traffic, rewrites source and des-
tination MAC addresses (since these change on subnet
transitions), and forwards out the appropriate port.

gw = if_(ARP,dynamic(arp)(),

rewrite_macs(all_macs) >>

( eth_to_ip[fwd(2)] |

ip_to_eth[fwd(1)] ))

We can then combine each of these policies, restricted to
the appropriate set of switches, in parallel and run on the
virtualized gateway topology discussed previously.

virtualize(in_(ethernet)[ eth ] |

in_(gateway)[ gw ] |

in_(ip_core)[ ip ],

GatewayVirt(Recurse(self))

The virtualize transformation from Section 4 generates
the ultimate policy that is executed on the base network.

6 Related Work
In recent years, SDN has emerged as an active area of re-
search. There are now a number of innovative controller
platforms based on the OpenFlow API [13] that make
it possible to manage the behavior of a network using
general-purpose programs [7, 12, 19, 2, 3, 24, 21]. Early
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controller platforms such as NOX [7] offered a low-level
programming interface based on the OpenFlow API it-
self; recent controllers provide additional features such
as composition, isolation, and virtualization. We briefly
review related work in each of these areas.

Composition. Pyretic’s parallel and sequential compo-
sition operators resemble earlier work on the Click mod-
ular router [11]. However, rather than targeting mul-
tiple packet-processing modules within a single soft-
ware router, Pyretic focuses on composing the control
logic that affects the handling of traffic on an entire
network of OpenFlow switches. Other controller plat-
forms with some support for composition include Mae-
stro [3], which allows programmers to write applica-
tions in terms of user-defined views of network state, and
FRESCO [22], which provides a high-level language for
defining security policies. Pyretic is distinguished from
these systems in modeling policies as mathematical func-
tions on packets, and in providing direct support for pol-
icy composition. In particular, unlike previous systems,
Pyretic’s composition operators do not require program-
mers to resolve conflicts by hand.

Isolation. To support multiple applications executing
simultaneously in a single network, several controllers
now support network “slices”. Each slice may execute a
different program while the controller provides isolation.
One popular such controller is FlowVisor [21], a hyper-
visor that enforces strict traffic isolation between the con-
trollers running on top of it, and also manages provision-
ing of shared resources such as bandwidth and the con-
troller itself. Another recent proposal uses an extension
to the NetCore compiler to provide traffic isolation by
construction [8]. Finally, controllers that support the cre-
ation of virtual networks typically provide a form of iso-
lation [16]. Pyretic’s composition operators—in partic-
ular, sequential composition—make it straightforward to
implement network slices. In addition, unlike controllers
that only provide strict slicing, Pyretic can also be used
to decompose a single application into different modules
that affect the same traffic.

Network Objects. Pyretic’s network objects general-
ize the global network views provided in other SDN con-
trollers, such as NOX [7], ONIX [12], and POX [19]. In
these systems, the network view (or network informa-
tion base) represents the global topology as an annotated
graph that can be configured and queried. Some sys-
tems go a step further and allow programmers to define a
mapping between a representation of the physical topol-
ogy and a simplified representation of the network. For
example, the “big switch” abstraction [16, 4, 5, 20] can
greatly simplify the logic of applications such as access
control and virtual machine migration. Pyretic’s network
objects can be used to implement a wide range of abstract

topologies. Moreover, as described in Section 4, sequen-
tial composition and virtual headers provide a simple and
elegant mechanism for building derived network objects
that implement a variety of abstract topologies. This
mechanism is inspired by a technique for implementing
virtual networks originally proposed by Casado et al. [4].

Programming Languages. This paper is part of a
growing line of research on applying programming-
language techniques to SDN [9, 24, 15, 6, 14]. Our
early work on Frenetic [6, 14] introduced a functional
language supporting parallel composition and SQL-like
queries. This work goes further, by introducing an ab-
stract packet model, sequential composition operator,
and topology abstraction using network objects, as well
as a new imperative implementation in Python. Taken
together, these features facilitate “programming in the
large” by enabling programmers to develop SDN appli-
cations in a modular way.

7 Conclusion
We believe the right level of abstraction for program-
mers is not a low-level interface to the data-plane hard-
ware, but instead a higher-level language for writing and
composing modules. Pyretic is a new language that al-
lows SDN programmers to build large, sophisticated con-
troller applications out of small, self-contained modules.
It provides the programmatic tools that enable network
programmers, operators, and administrators to master the
complexities of their domain.
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Abstract

Networks are complex and prone to bugs. Existing tools
that check network configuration files and the data-plane
state operate offline at timescales of seconds to hours,
and cannot detect or prevent bugs as they arise.

Is it possible to check network-wide invariants in real
time, as the network state evolves? The key challenge
here is to achieve extremely low latency during the
checks so that network performance is not affected. In
this paper, we present a design, VeriFlow, which achieves
this goal. VeriFlow is a layer between a software-
defined networking controller and network devices that
checks for network-wide invariant violations dynami-
cally as each forwarding rule is inserted, modified or
deleted. VeriFlow supports analysis over multiple header
fields, and an API for checking custom invariants. Based
on a prototype implementation integrated with the NOX
OpenFlow controller, and driven by a Mininet OpenFlow
network and Route Views trace data, we find that Veri-
Flow can perform rigorous checking within hundreds of
microseconds per rule insertion or deletion.

1 Introduction

Packet forwarding in modern networks is a complex pro-
cess, involving codependent functions running on hun-
dreds or thousands of devices, such as routers, switches,
and firewalls from different vendors. As a result, a sub-
stantial amount of effort is required to ensure networks’
correctness, security and fault tolerance. However, faults
in the network state arise commonly in practice, in-
cluding loops, suboptimal routing, black holes and ac-
cess control violations that make services unavailable or
prone to attacks (e.g., DDoS attacks). Software-Defined
Networking (SDN) promises to ease the development of
network applications through logically-centralized net-
work programmability via an open interface to the data
plane, but bugs are likely to remain problematic since the

complexity of software will increase. Moreover, SDN al-
lows multiple applications or even multiple users to pro-
gram the same physical network simultaneously, poten-
tially resulting in conflicting rules that alter the intended
behavior of one or more applications [25].

One solution is to rigorously check network software
or configuration for bugs prior to deployment. Symbolic
execution [12] can catch bugs through exploration of all
possible code paths, but is usually not tractable for large
software. Analysis of configuration files [13, 28] is use-
ful, but cannot find bugs in router software, and must be
designed for specific configuration languages and control
protocols. Moreover, using these approaches, an opera-
tor who wants to ensure the network’s correctness must
have access to the software and configuration, which may
be inconvenient in an SDN network where controllers
can be operated by other parties [25]. Another approach
is to statically analyze snapshots of the network-wide
data-plane state [9, 10, 17, 19, 27]. However, these pre-
vious approaches operate offline, and thus only find bugs
after they happen.

This paper studies the question, Is it possible to check
network-wide correctness in real time as the network
evolves? If we can check each change to forwarding be-
havior before it takes effect, we can raise alarms imme-
diately, and even prevent bugs by blocking changes that
violate important invariants. For example, we could pro-
hibit changes that violate access control policies or cause
forwarding loops.

However, existing techniques for checking networks
are inadequate for this purpose as they operate on
timescales of seconds to hours [10, 17, 19]. 1 Delay-
ing updates for processing can harm consistency of net-
work state, and increase reaction time of protocols with
real-time requirements such as routing and fast failover;
and processing a continuous stream of updates in a large

1The average run time of reachability tests in [17] is 13 seconds,
and it takes a few hundred seconds to perform reachability checks in
Anteater [19].
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network could introduce scaling challenges. Hence, we
need some way to perform verification at very high
speeds, i.e., within milliseconds. Moreover, checking
network-wide properties requires obtaining a view of
network-wide state.

We present a design, VeriFlow, which demonstrates
that the goal of real-time verification of network-wide
invariants is achievable. VeriFlow leverages software-
defined networking (SDN) to obtain a picture of the net-
work as it evolves by sitting as a layer between the SDN
controller and the forwarding devices, and checks va-
lidity of invariants as each rule is inserted, modified or
deleted. However, SDN alone does not make the prob-
lem easy. In order to ensure real-time response, Veri-
Flow introduces novel incremental algorithms to search
for potential violation of key network invariants — for
example, availability of a path to the destination, absence
of forwarding loops, enforcement of access control poli-
cies, or isolation between virtual networks.

Our prototype implementation supports both Open-
Flow [21] version 1.1.0 and IP forwarding rules, with the
exception that the current implementation does not sup-
port actions that modify packet headers. We microbench-
marked VeriFlow using a stream of updates from a simu-
lated IP network, constructed with Rocketfuel [7] topol-
ogy data and real BGP traces [8]. We also evaluated its
overhead relative to the NOX controller [14] in an emu-
lated OpenFlow network using Mininet [3]. We find that
VeriFlow is able to verify network-wide invariants within
hundreds of microseconds as new rules are introduced
into the network. VeriFlow’s verification phase has little
impact on network performance and inflates TCP con-
nection setup latency by a manageable amount, around
15.5% on average.

We give an overview of data plane verification and
SDN (§ 2) before presenting VeriFlow’s design (§ 3), im-
plementation (§ 4), and evaluation (§ 5). We then discuss
future (§ 6) and related work (§ 7), and conclude (§ 8).

2 Overview of Approach

VeriFlow adopts the approach of data plane verifica-
tion. As argued in [19], verifying network correctness
in the data plane offers several advantages over verifying
higher-level code such as configuration files. First, it is
closely tied to the network’s actual behavior, so that it
can catch bugs that other tools miss. For example, con-
figuration analysis [13, 28] cannot find bugs that occur
in router software. Second, since data-plane state has
relatively simple formats and semantics that are com-
mon across many higher-layer protocols and implemen-
tations, it simplifies rigorous analysis of a network.

Early data plane verification algorithms were devel-
oped in [27], and systems include FlowChecker [9],

Anteater [19], and Header Space Analysis [17]. The lat-
ter two systems were applied to operational networks and
uncovered multiple real-world bugs, validating the data
plane analysis approach. However, as noted previously,
these are offline rather than real-time systems.

VeriFlow performs real-time data plane verification in
the context of software defined networks (SDNs). An
SDN comprises, at a high level, (1) a standardized and
open interface to read and write the data plane of net-
work devices such as switches and routers; (2) a con-
troller, a logically centralized device that can run custom
code and is responsible for transmitting commands (for-
warding rules) to network devices.

SDNs are a good match for data plane verification.
First, a standardized data plane interface such as Open-
Flow [6] simplifies unified analysis across all network
devices. Second, SDNs ease real-time data plane ver-
ification since the stream of updates to the network is
observable at the controller.

SDN thus simplifies VeriFlow’s design. Moreover, we
believe SDNs can benefit significantly from VeriFlow’s
data plane verification layer: the network operator can
verify that the network’s forwarding behavior is correct,
without needing to inspect (or trust) relatively complex
controller code, which may be developed by parties out-
side the network operator’s control.

3 Design of VeriFlow

Checking network-wide invariants in the presence of
complex forwarding elements can be a hard problem. For
example, packet filters alone make reachability checks
NP-Complete [19]. Aiming to perform these checks in
real-time is therefore challenging. Our design tackles
this problem as follows. First, we monitor all the network
update events in a live network as they are generated by
network control applications, the devices, or the network
operator. Second, we confine our verification activities
to only those parts of the network whose actions may be
influenced by a new update. Third, rather than check-
ing invariants with a general-purpose tool such as a SAT
or BDD solver as in [10, 19] (which are generally too
slow), we use a custom algorithm. We now discuss each
of these design decisions in detail.

VeriFlow’s first job is to track every forwarding-state
change event. For example, in an SDN such as Open-
Flow [21], a centralized controller issues forwarding
rules to the network devices to handle flows initiated by
users. VeriFlow must intercept all these rules and ver-
ify them before they reach the network. To achieve this
goal, VeriFlow is implemented as a shim layer between
the controller and the network, and monitors all commu-
nication in either direction.

2
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For every rule insertion/deletion message, VeriFlow
must verify the effect of the rule on the network at very
high speed. VeriFlow cannot leverage techniques used by
past work [9,17,19], because these operate at timescales
of seconds to hours. Unlike previous solutions, we do
not want to check the entire network on each change.
We solve this problem in three steps. First, using the
new rule and any overlapping existing rules, we slice the
network into a set of equivalence classes (ECs) of pack-
ets (§ 3.1). Each EC is a set of packets that experience
the same forwarding actions throughout the network. In-
tuitively, each change to the network will typically only
affect a very small number of ECs (see § 5.1). There-
fore, we find the set of ECs whose operation could be al-
tered by a rule, and verify network invariants only within
those classes. Second, VeriFlow builds individual for-
warding graphs for every modified EC, representing the
network’s forwarding behavior (§ 3.2). Third, VeriFlow
traverses these graphs (or runs custom user-defined code)
to determine the status of one or more invariants (§ 3.3).
The following subsections describe these steps in detail.
Figure 1 shows the placement and operations of VeriFlow
in an SDN.

Figure 1: VeriFlow sits between the SDN applications
and devices to intercept and check every rule entering
the network.

3.1 Slicing the network into equivalence
classes

One way to verify network properties is to prepare a
model of the entire network using its current data-plane
state, and run queries on this model [9, 19]. However,
checking the entire network’s state every time a new flow
rule is inserted is wasteful, and fails to provide real-time
response. Instead, we note that most forwarding rule
changes affect only a small subset of all possible pack-

ets. For example, inserting a longest-prefix-match rule
for the destination IP field will only affect forwarding
for packets destined to that prefix. In order to confine
our verification activities to only the affected set of pack-
ets, we slice the network into a set of equivalence classes
(ECs) based on the new rule and the existing rules that
overlap with the new rule. An equivalence class is de-
fined as follows.

Definition (Equivalence Class): An equivalence class
(EC) is a set P of packets such that for any p1, p2 ∈ P and
any network device R, the forwarding action is identical
for p1 and p2 at R.

Separating the entire packet space into individual ECs
allows VeriFlow to pinpoint the affected set of packets if
a problem is discovered while verifying a newly inserted
forwarding rule.

Let us look at an example. Consider an OpenFlow
switch with two rules matching packets with destination
IP address prefixes 11.1.0.0/16 and 12.1.0.0/16, respec-
tively. If a new rule matching destination IP address pre-
fix 11.0.0.0/8 is added, it may affect packets belonging
to the 11.1.0.0/16 range depending on the rules’ priority
values [6] (the longer prefix may not have higher prior-
ity). However, the new rule will not affect packets out-
side the range 11.0.0.0/8, such as 12.1.0.0/16. Therefore,
VeriFlow will only consider the new rule (11.0.0.0/8) and
the existing overlapping rule (11.1.0.0/16) while analyz-
ing network properties. These two overlapping rules pro-
duce three ECs (represented using the lower and upper
bound range values of the destination IP address field):
11.0.0.0 to 11.0.255.255, 11.1.0.0 to 11.1.255.255, and
11.2.255.255 to 11.255.255.255.

VeriFlow needs an efficient data structure to quickly
store new network rules, find overlapping rules, and
compute the affected ECs. For this we utilize a multi-
dimensional prefix tree (trie) inspired by traditional
packet classification algorithms [26].

A trie is an ordered tree data structure that stores an
associative array. In our case, the trie associates the set
of packets matched by a forwarding rule with the for-
warding rule itself. Each level in the trie corresponds
to a specific bit in a forwarding rule (equivalently, a bit
in the packet header). Each node in our trie has three
branches, corresponding to three possible values that the
rule can match: 0, 1, and * (wildcard). The trie can be
seen as a composition of several sub-tries or dimensions,
each corresponding to a packet header field. We main-
tain a sub-trie in our multi-dimensional trie for each of
the mandatory match and packet header fields supported
by OpenFlow 1.1.0.2 (Note that an optimization in our
implementation uses a condensed set of fields in the trie;

2(DL SRC, DL DST, NW SRC, NW DST, IN PORT, DL VLAN,
DL VLAN PCP, DL TYPE, NW TOS, NW PROTO, TP SRC,
TP DST, MPLS LABEL and MPLS TC).
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see § 4.2.) For example, the sub-trie representing the
IPv4 destination corresponds to 32 levels in the trie. One
of the sub-tries (DL SRC in our design) appears at the
top, the next field’s sub-tries are attached to the leaves
of the first, and so on (Figure 2). A path from the trie’s
root to a leaf of one of the bottommost sub-tries thus rep-
resents the set of packets that a rule matches. Each leaf
stores the rules that match that set of packets, and the
devices at which they are located (Figure 2).

Figure 2: VeriFlow’s core algorithmic process.

When a new forwarding rule is generated by the ap-
plication, we perform a lookup in our trie, by traversing
it dimension by dimension to find all the rules that inter-
sect the new rule. At each dimension, we narrow down
the search area by only traversing those branches that fall
within the range of the new rule using the field value
of that particular dimension. The lookup procedure re-
sults in the selection of a set of leaves of the bottommost
dimension, each with a set of forwarding rules. These
rules collectively define a set of packets (in particular,
their corresponding forwarding rules) that could be af-
fected by the incoming forwarding rule. This set may
span multiple ECs. We next compute the individual ECs
as illustrated in Figure 2. For each field, we find a set
of disjoint ranges (lower and upper bound) such that no
rule splits one of the ranges. An EC is then defined by
a particular choice of one of the ranges for each of the
fields. This is not necessarily a minimal set of ECs; for
example, ECs 2 and 4 in Figure 2 could have been com-
bined into a single EC. However, this method performs
well in practice.

3.2 Modeling forwarding state with for-
warding graphs

For each EC computed in the previous step, VeriFlow
generates a forwarding graph. Each such graph is a
representation of how packets within an EC will be for-

warded through the network. In the graph, a node repre-
sents an EC at a particular network device, and a directed
edge represents a forwarding decision for a particular
(EC, device) pair. Specifically, an edge X → Y indicates
that according to the forwarding table at node X , packets
within this EC are forwarded to Y . To build the graph
for each EC, we traverse our trie a second time to find
the devices and rules that match packets from that EC.
The second traversal is needed to find all those rules that
were not necessary to compute the affected ECs in the
first traversal, yet can still influence their forwarding be-
havior. For example, for a new rule with 10.0.0.0/8 spec-
ified as the destination prefix, an existing 0.0.0.0/0 rule
will not contribute to the generation of the affected ECs,
but may influence their forwarding behavior depending
on its priority. Given the range values of different fields
of an EC, looking up matching rules from the trie struc-
ture can be performed very quickly. Here, VeriFlow only
has to traverse those branches of the trie having rules that
can match packets of that particular EC.

3.3 Running queries

Above, we described how VeriFlow models the behav-
ior of the network using forwarding graphs, building for-
warding graphs only for those equivalence classes (ECs)
whose behavior may have changed. Next, we answer
queries (check invariants) using this model.

VeriFlow maintains a list of invariants to be checked.
When ECs have been modified, VeriFlow checks each
(invariant, modified EC) pair. An invariant is specified
as a verification function that takes as input the forward-
ing graph for a specific EC, performs arbitrary computa-
tion, and can trigger resulting actions. VeriFlow exposes
an API (Application Programming Interface), the imple-
mentation of which is described in § 4.3, so that new in-
variants can be written and plugged in.

Up to a certain level of detail, the forwarding graph is
an exact representation of the forwarding behavior of the
network. Therefore, invariant modules can check a large
diversity of conditions concerning network behavior. For
example:

• Basic reachability: The verification function tra-
verses the directed edges in the forwarding graph
(using depth-first search in our implementation) to
determine whether packets will be delivered to the
destination address specified in the rule.

• Loop-freeness: The verification function traverses
the given EC’s forwarding graph to check that it
does not contain a loop.

• Consistency: Given two (pre-specified) routers
R1,R2 that are intended to have identical forward-
ing operations, the verification function traverses
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the forwarding graph starting at R1 and R2 to test
whether the fate of packets is the same in both cases.
(Any difference may indicate a bug.)

Further examples include detecting “black holes”
where packets are dropped, ensuring isolation of mul-
tiple VLANs, verifying access control policies, checking
whether a new rule conflicts with an existing rule, check-
ing whether an EC changes its next hop due to the in-
sertion/deletion of a rule, ensuring that packets always
traverse a firewall, and so on.

There are two key limitations on what invariants can
be feasibly implemented. First, VeriFlow’s forwarding
graph construct must include the necessary information.
Our current implementation of VeriFlow does not, for
example, incorporate information on buffer sizes that
would be necessary for certain performance invariants.
(There is not, however, any fundamental reason that Veri-
Flow could not be augmented with such metadata.) Sec-
ond, the invariant check must be implementable in the in-
cremental manner described above where only the mod-
ified ECs are considered at each step.

If a verification function finds a violated invariant, it
can choose to trigger further actions within VeriFlow.
Two obvious actions are dropping the rule that was being
inserted into the network, or installing the rule but gener-
ating an alarm for the operator. For example, the operator
could choose to drop rules that cause a security violation
(such as packets leaking onto a protected VLAN), but
only generate an alarm for a black hole. Since verifi-
cation functions are arbitrary code, they may take other
actions as well, such as maintaining statistics (e.g., rate
of forwarding behavior change) or writing logs.

3.4 Dealing with high verification time

VeriFlow achieves real-time response by confining its
verification activities within those parts of the network
that are affected when a new forwarding rule is installed.
In general, the effectiveness of this approach will be de-
termined by numerous factors, such as the complexity of
verification functions, the size of the network, the num-
ber of rules in the network, the number of unique ECs
covered by a new rule, the number of header fields used
to match packets by a new rule, and so on.

However, perhaps the most important factor summa-
rizing verification time is the number of ECs modified.
As our later experiments will show, VeriFlow’s verifica-
tion time is roughly linear in this number. In other words,
VeriFlow has difficulty verifying invariants in real-time
when large swaths of the network’s forwarding behavior
are altered in one operation.

When such disruptive events occur, VeriFlow may
need to let new rules be installed in the network with-

out waiting for verification, and run the verification pro-
cess in parallel. We lose the ability to block problematic
rules before they enter the network, but we note several
mitigating facts. First, the most prominent example of
a disruptive event affecting many ECs is a link failure,
in which case VeriFlow anyway cannot block the modi-
fication from entering the network. Second, upon (even-
tually) detecting a problem, VeriFlow can still raise an
alarm and remove the problematic rule(s) from the net-
work. Third, the fact that the number of affected ECs is
large may itself be worthy of an immediate alarm even
before invariants are checked for each EC. Finally, our
experiments with realistic forwarding rule update traces
(§ 5) show that disruptive events (i.e., events affecting
large number of ECs) are rare: in the vast majority of
cases (around 99%), the number of affected ECs is small
(less than 10).

4 Implementation

We describe three key aspects of our implementation:
our shim layer to intercept network events (§ 4.1), an op-
timization to accelerate verification (§ 4.2), and our API
for custom invariants (§ 4.3).

4.1 Making deployment transparent

In order to ease the deployment of VeriFlow in net-
works with OpenFlow-enabled devices, and to use Veri-
Flow with unmodified OpenFlow applications, we need
a mechanism to make VeriFlow transparent so that these
existing OpenFlow entities may remain unaware of the
presence of VeriFlow. We built two versions of VeriFlow.
One is a proxy process [25] that sits between the con-
troller and the network, and is therefore independent of
the particular controller. The second version is integrated
with the NOX OpenFlow controller [14] to improve per-
formance; our performance evaluation is of this version.
We expect one could similarly integrate VeriFlow with
other controllers, such as Floodlight [2], Beacon [1] and
Maestro [11], without significant trouble.

We built our implementation within NOX version
0.9.1 (full beta single-thread version). We integrated
VeriFlow within NOX, enabling it to run as a transpar-
ent rule verifier sitting between the OpenFlow applica-
tions implemented using NOX’s API, and the switches
and routers in the network. SDN applications running
on NOX use the NOX API to manipulate the forwarding
state of the network, resulting in OFPT FLOW MOD
(flow table modification) and other OpenFlow messages
generated by NOX. We modified NOX to intercept these
messages, and redirect them to our VeriFlow module.
This ensures that all messages are intercepted by Veri-
Flow before they are dispatched to the network. Veri-
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Flow then processes and checks the forwarding rules
contained in these messages for correctness, and can
block problematic flow rules.

To integrate the VeriFlow module, we extend two
parts of NOX. First, within the core of NOX, the
send openflow command() interface is responsible for
adding (relaying) flow rules from OpenFlow applica-
tions to the switches. At the lower layers of NOX,
handle flow removed() handles events that remove rules
from switches, due to rule timeouts or commands sent
by applications. Our implementation intercepts all mes-
sages sent to these two function calls, and redirects them
to VeriFlow. To reduce memory usage and improve run-
ning time, we pass these messages via shallow copy.

There are five types of flow table modification
messages that can be generated by OpenFlow ap-
plications: OFPFC ADD, OFPFC MODIFY STRICT,
OFPFC DELETE STRICT, OFPFC MODIFY and OF-
PFC DELETE. These rules differ in terms of whether
they add, modify or delete a rule from the flow table. The
strict versions match all the fields bit by bit, whereas the
non-strict versions allow wildcards. Our implementation
handles all these message types appropriately.

4.2 Optimizing the verification process

We use an optimization technique that exploits the way
certain match and packet header fields are handled in the
OpenFlow 1.1.0 specification. 10 out of 14 fields in this
specification do not support arbitrary wildcards.3 One
can only specify an exact value or the special ANY (wild-
card) value in these fields. We do not use separate di-
mensions in our trie to represent these fields, because
we do not need to find multiple overlapping ranges for
them. Therefore, we only maintain the trie structure for
the other four fields (DL SRC, DL DST, NW SRC and
NW DST). Due to this change, we generate the set of af-
fected equivalence classes (ECs) in three steps. First, we
use the trie structure to look for network-wide overlap-
ping rules, and find the set of affected packets determined
by the four fields that are represented by the trie. Each in-
dividual packet set we get from this step is actually a set
of ECs that can be distinguished by the other 10 fields.
Second, for each of these packet sets, we extract all the
rules that can match packets of that particular class from
the location/device of the newly inserted rule. We lin-
early go through all these rules to find non-overlapping
range values for the rest of the fields that are not main-
tained in the trie structure. Thus, each packet set found in
the first step breaks into multiple finer packet sets span-
ning all the 14 mandatory OpenFlow match and packet
header fields. Note that in this step we only consider

3IN PORT, DL VLAN, DL VLAN PCP, DL TYPE, NW TOS,
NW PROTO, TP SRC, TP DST, MPLS LABEL and MPLS TC.

the rules present at the device of the newly inserted rule.
Therefore, in the final step, as we traverse the forward-
ing graphs, we may encounter finer rules at other devices
that will generate new packet sets with finer granularity.
We handle them by maintaining sets of excluded packets
as described in the next paragraph.

Each forwarding graph that we generate using our trie
structure represents the forwarding state of a group of
packet sets that can be distinguished using the 10 fields
that do not support arbitrary wildcards. Therefore, while
traversing the forwarding graphs, we only work on those
rules that overlap with the newly inserted rule on these 10
fields. As we move from node to node while traversing
these graphs, we keep track of the ECs that have been
served by finer rules and are no longer present in the
primary packet set that was generated in the first place.
For example, in a device, a subset of a packet set may
be served by a finer rule having higher priority than a
coarser rule that serves the rest of that packet set. We
handle this by maintaining a set of excluded packets for
each forwarding action. Therefore, whenever we reach a
node that answers a query (e.g., found a loop or reached
a destination), the primary packet set minus the set of ex-
cluded packets gives the set of packets that experiences
the result of the query.

4.3 API to write general queries

We expose a set of functions that can be used to write
general queries in C++. Below is a list of these functions
along with the required parameters.

GetAffectedEquivalenceClasses: Given a new rule, this
function computes the set of affected ECs, and returns
them. It also returns a set of sub-tries from the last di-
mension of our trie structure. Each sub-trie holds the
rules that can match packets belonging to one of the af-
fected ECs. This information can be used to build the
forwarding graphs of those ECs. This function takes the
following parameters.
- Rule: A newly inserted rule.
- Returns: Affected ECs.
- Returns: Sub-tries representing the last dimension, and
holding rules that can match packets of the affected ECs.

GetForwardingGraph: This function generates and re-
turns the forwarding graph for a particular EC. It takes
the following parameters.
- EquivalenceClass: An EC whose forwarding graph will
be computed.
- TrieSet: Sub-tries representing the last dimension, and
holding rules that match the EC supplied as the first ar-
gument.
- Returns: Corresponding forwarding graph.

ProcessCurrentHop: This function allows the user to
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traverse a forwarding graph in a custom manner. Given
a location and EC, it returns the corresponding next hop.
It handles the generation of multiple finer packet sets by
computing excluded packet sets that need to be main-
tained because of our optimization strategy (§ 4.2). Due
to this optimization, this function returns a set of (next
hop, excluded packet set) tuples — effectively, an an-
notated directed edge in the forwarding graph. With re-
peated calls to this function across nodes in the forward-
ing graphs, custom invariant-checking modules can tra-
verse the forwarding graph and perform arbitrary compu-
tation on its structure. This function takes the following
parameters.
- ForwardingGraph: The forwarding graph of an EC.
- Location: The current location of the EC.
- Returns: (Next hop, excluded packet set) tuples.

Let us look at an example that shows how this API
can be used in practice. A network operator may want to
ensure that packets belonging to a certain set always pass
through a firewall device. This invariant can be violated
during addition/deletion of rules, or during link up/down
events. To check this invariant, the network operator can
extend VeriFlow using the above API to incorporate a
custom query algorithm that generates an alarm when the
packet set under scrutiny bypasses the firewall device.
In fact, the network operator can implement any query
that can be answered using the information present in the
forwarding graphs.

5 Evaluation

In this section, we present a performance evaluation of
our VeriFlow implementation. As VeriFlow intercepts
every rule insertion message whenever it is issued by an
SDN controller, it is crucial to complete the verification
process in real time so that network performance is not
affected, and to ensure scalability of the controller. We
evaluated the overhead of VeriFlow’s operations with the
help of two experiments. In the first experiment (§ 5.1),
our goal is to microbenchmark different phases of Veri-
Flow’s operations and observe their contribution to the
overall running time. The goal of the second experiment
(§ 5.2) is to assess the impact of VeriFlow on TCP con-
nection setup latency and throughput as perceived by end
users of an SDN.

In all of our experiments, we used our basic reachabil-
ity algorithms to test for loops and black holes for every
flow modification message that was sent to the network.
All of our experiments were performed on a Dell Opti-
plex 9010 machine with an Intel Core i7 3770 CPU with
4 physical cores and 8 threads at 3.4 GHz, and 32 GB of
RAM, running 64 bit Ubuntu Linux 11.10.

5.1 Per-update processing time

In this experiment, we simulated a network consisting
of 172 routers following a Rocketfuel [7] topology (AS
1755), and replayed BGP (Border Gateway Protocol)
RIB (Routing Information Base) and update traces col-
lected from the Route Views Project [8]. We built an
OSPF (Open Shortest Path First) simulator to compute
the IGP (Interior Gateway Protocol) path cost between
every pair of routers in the network. A BGP RIB snap-
shot consisting of 5 million entries was used to initialize
the routers’ FIB (Forwarding Information Base) tables.
Only the FIBs of the border routers were initialized in
this phase. We randomly mapped Route Views peers to
border routers in our network, and then replayed RIB and
update traces so that they originate according to this map-
ping. We replayed a BGP update trace containing 90,000
updates to trigger dynamic changes in the network. Upon
receiving an update from the neighboring AS, each bor-
der router sends the update to all the other routers in the
network. Using standard BGP polices, each router up-
dates its RIB using the information present in the update,
and updates its FIB based on BGP AS path length and
IGP path cost. We fed all the FIB changes into VeriFlow
to measure the time VeriFlow takes to complete its indi-
vidual steps described in § 3. We recorded the run time to
process each change individually. Note that in this first
set of experiments, only the destination IP address is used
to forward packets. Therefore, only this one field con-
tributes to the generation of equivalence classes (ECs).
We initialize the other fields with ANY (wildcards).

The results from this experiment are shown in Fig-
ure 3(a). VeriFlow is able to verify most of the updates
within 1 millisecond (ms), with mean verification time
of 0.38ms. Moreover, of this time, the query phase takes
only 0.01ms on an average, demonstrating the value of
reducing the query problem to a simple graph traversal
for each EC. Therefore, VeriFlow would be able to run
multiple queries of interest to the network operator (e.g.,
black hole detection, isolation of multiple VLANs, etc.)
within a millisecond time budget.

We found that the number of ECs that are affected by a
new rule strongly influences verification time. The scat-
ter plot of Figure 3(b) shows one data point for each ob-
served number of modified ECs (showing the mean ver-
ification time across all rules, which modified that num-
ber of ECs). The largest number of ECs affected by a
single rule was 574; the largest verification latency was
159.2ms due to an update affecting 511 ECs. However,
in this experiment, we found that for most updates the
number of affected ECs is small. 94.5% of the updates
only affected a single EC, and 99.1% affected less than
10 ECs. Therefore, only a small fraction of rules (0.9%)
affected large numbers of ECs. This can be observed by
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Figure 3: Per-update processing times: (a) Microbenchmark results, using the Route Views trace. Total verification
time of VeriFlow remained below 1ms for 97.8% of the updates. (b) Scatter plot showing the influence of number of
equivalence classes on verification time. (c) Results from multi-field packet filter experiment using the Route Views
trace. As more fields are used in forwarding rules, the running time of VeriFlow increases. The average verification
latency is not significantly influenced as we increase the number of filters present in the network. (d) Results from the
conflict detection test. VeriFlow is fast enough to compute all the conflicting rules within hundreds of microseconds
for 99% of the updates.

looking at the long tail of Figure 3(a).

In the above experiment, we assumed that the network
topology remains unchanged, i.e., there are no link or
node failures. In case of a link failure or node failure
(which can be thought of as failure of multiple links con-
nected to the failed node), the packets that were using
that link or node will experience changes in their for-
warding behavior. When this happens, VeriFlow’s job
is to verify the fate of those affected packets. In order
to evaluate VeriFlow’s performance in this scenario, we
used the above topology and traces to run a new experi-
ment. In this experiment, we fed both the BGP RIB trace
and update trace to the network. Then we removed each
of the packet-carrying links (381 in total) of the network
one by one (restoring a removed link before removing
the next), and computed the number of affected ECs and
the running time of VeriFlow to verify the behavior of
those classes. We found that most of the link removals
affected a large number of ECs. 254 out of 381 links af-
fected more that 1,000 ECs. The mean verification time

to verify a link failure event was 1.15 seconds, with a
maximum of 4.05 seconds. We can deal with such cases
by processing the forwarding graphs of different ECs in
parallel on multi-core processors. This is possible be-
cause the forwarding graphs do not depend on each other,
or on any shared data structure. However, as link or node
failures cannot be avoided once they happen, this may
not be a serious issue for network operators.

In order to evaluate VeriFlow’s performance in the
presence of more fields, we changed the input data set to
add packet filters that will selectively drop packets after
matching them against multiple fields. We randomly se-
lected a subset of the existing RIB rules currently present
in the network, and inserted packet filter rules by spec-
ifying values in some of the other fields that were not
present in the original trace. We ran this experiment
with two sets of fields. In the first set we used TP SRC
and TP DST in addition to NW DST (3 fields in total),
which was already present in the trace. For each ran-
domly selected RIB rule, we set random values to those
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two fields (TP SRC and TP DST), and set its priority
higher than the original rule. The remaining 11 fields
are set to ANY. While replaying the updates, all the 14
fields except NW DST are set to ANY.

In the second set we used NW SRC, IN PORT,
DL VLAN, TP SRC and TP DST in addition to
NW DST (6 fields in total). For each randomly selected
RIB rule, we set random values to IN PORT, DL VLAN,
TP SRC and TP DST, a random /16 value in NW SRC,
and set the priority higher than the original rule. The
remaining 8 fields are set to ANY. While replaying the
updates, all the 14 fields except NW SRC and NW DST
are set to ANY. In the updates, the NW SRC is set to a
random /12 value and the NW DST is the original value
present in the trace. We ran this experiment multiple
times varying the percentage of RIB rules that are used
to generate random filter rules with higher priority.

Figure 3(c) shows the results of this experiment. Ver-
ification time is heavily affected by the number of fields
used to classify packets. This happens because as we use
more fields to classify packets at finer granularities, more
unique ECs are generated, and hence more forwarding
graphs need to be verified. We also note from Figure 3(c)
that VeriFlow’s overall performance is not affected much
by the number of filters that we install into the network.

In all our experiments thus far, we kept a fixed order of
packet header fields in our trie structure. We started with
DL SRC (DS), followed by DL DST (DD), NW SRC
(NS) and NW DST (ND). In order to evaluate the per-
formance of VeriFlow with different field orderings, we
re-ran the above packet filter experiment with reordered
fields. In all the runs we used random values for the
NW SRC field and used the NW DST values present in
the Route Views traces. All the other fields were set to
ANY. We installed random packet filter rules for 10% of
the BGP RIB entries. As our dataset only specified val-
ues for the NW SRC and NW DST fields, there were a
total of 12 different orderings of the aforementioned 4
fields. Table 1 shows the results from this experiment.

Table 1: Effect of different field orderings on total run-
ning time of VeriFlow.

Order Time (ms) Order Time (ms)

DS-DD-NS-ND 1.001 DS-DD-ND-NS 0.090
DS-NS-DD-ND 1.057 DS-ND-DD-NS 0.096
NS-DS-DD-ND 1.144 ND-DS-DD-NS 0.101
NS-DS-ND-DD 1.213 ND-DS-NS-DD 0.103
NS-ND-DS-DD 1.254 ND-NS-DS-DD 0.15
DS-NS-ND-DD 1.116 DS-ND-NS-DD 0.098

From Table 1, we can see that changing the field or-
der in the trie structure greatly influences the running
time of VeriFlow. Putting the NW DST field ahead of
NW SRC reduced the running time by an order of mag-

nitude (from around 1ms to around 0.1ms). This hap-
pens because a particular field order may produce fewer
unique ECs compared to other field orderings for the
same rule. However, it is difficult to come up with a sin-
gle field order that works best in all scenarios, because
it is highly dependent on the type of rules present in a
particular network. Changing the field order in the trie
structure dynamically and efficiently as the network state
evolves would be an interesting area for future work.

Checking non-reachability invariants: Most of our
discussion thus far focused on checking invariants as-
sociated with the inter-reachability of network devices.
To evaluate the generality of our tool, we implemented
two more invariants using our API that were not directly
related to reachability: conflict detection (whether the
newly inserted rule violates isolation of flow tables be-
tween network slices, accomplished by checking the out-
put of the EC search phase), and k-monitoring (ensuring
that all paths in the network traverse one of several de-
ployed monitoring points, done by augmenting the for-
warding graph traversal process). We found that the over-
head of these checks was minimal. For the conflict de-
tection query, we ran the above filtering experiment using
the 6-field set with 10% and 20% newly inserted random
rules. However, this time instead of checking the reacha-
bility of the affected ECs as each update is replayed, we
only computed the set of rules that overlap/conflict with
the newly inserted rule. The results from this experiment
are shown in Figure 3(d).

From this figure, we can see that conflicting rule
checking can be done quickly, taking only 0.305ms on
average. (The step in the CDF is due to the fact that
some withdrawal rules did not overlap with any existing
rule.)

For the k-monitoring query experiment, we used a
snapshot of the Stanford backbone network data-plane
state that was used in [17]. This network consists of 16
routers, where 14 of these are internal routers and the
other 2 are gateway routers used to access the outside
network. The snapshot contains 7,213 FIB table entries
in total. In this experiment, we used VeriFlow to test
whether all the ECs currently present in the network pass
through one of the two gateway routers of the network.
We observed that at each location the average latency
to perform this check for all the ECs is around 68.06ms
with a maximum of 75.39ms.

5.2 Effect on network performance

In order to evaluate the effect of VeriFlow’s operations
on user-perceived TCP connection setup latency and the
network throughput, we emulated an OpenFlow network
consisting of 172 switches following the aforementioned
Rocketfuel topology using Mininet [3]. Mininet creates
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Figure 4: Effect on network performance: (a) TCP connection setup throughput, and (b) Throughput of flow modifi-
cation (Flow Mod) messages, with and without VeriFlow. For different loads, VeriFlow imposes minimal overhead.
(c) Effect of the number of packet header fields on VeriFlow’s verification speed. As we increase the number of fields,
overhead of VeriFlow increases gradually.

a software-defined network (SDN) with multiple nodes
on a single machine. We connected one host to ev-
ery switch in this emulated network. We ran the NOX
OpenFlow controller along with an application that pro-
vides the functionality of a learning switch. It allows
a host to reach any other host in the network by in-
stalling flow rules in the switches using flow modification
(Flow Mod) messages. We implemented a simple TCP
server program and a simple TCP client program to drive
the experiment. The server program accepts TCP con-
nections from clients and closes the connection immedi-
ately. The client program consists of two threads. The
primary thread continuously sends connect requests to a
random server using a non-blocking socket. To vary the
intensity of the workload, our TCP client program gener-
ates connections periodically with a parameterized sleep
interval (S). The primary thread at each client sleeps for
a random interval between 0 to S seconds (at microsec-
ond granularity) before initiating the connection request,
and iterating. The secondary thread at each client uses
the select function to look for connections that are ready
for transmission or experienced an error. A user supplied
polling interval (P) is used to control the rate at which the
select call will return. We set P inversely proportional to
the S value to avoid busy waiting and to allow the other
processes (e.g., Open vSwitch [5]) to get a good share of
the CPU. We ran the server program at each of the 172
hosts, and configured the client programs at all the hosts
to continually connect to the server of random hosts (ex-
cluding itself) over a particular duration (at least 10 min-
utes). In the switch application, we set the rule eviction
idle timeout to 1 second and hard timeout to 5 seconds.

We ran this experiment first with NOX alone, and then
with NOX and VeriFlow. We used the same seed in all
the random number generators to ensure similar loads in
both the runs. We also varied the S value to monitor the
performance of VeriFlow under a range of network loads.

Figure 4(a) shows the number of TCP connections
that were successfully completed per second for differ-

ent workloads both with and without VeriFlow. From
this figure, we can see that in all the cases VeriFlow im-
poses negligible overhead on the TCP connection setup
throughput in our emulated OpenFlow network. The
largest reduction in throughput that we observed in our
experiments was only 0.74%.

Figure 4(b) shows the number of flow modification
(Flow Mod) messages that were processed and sent to
the network per second for different workloads both with
and without VeriFlow. From this figure, again we can
see that in all the cases VeriFlow imposes minimal over-
head on the flow modification message throughput. The
largest reduction in throughput that we observed in our
experiments was only 12.8%. This reduction in through-
put is caused by the additional processing time required
to verify the flow modification messages before they are
sent to the network.

In order to assess the impact of VeriFlow on end-to-
end TCP connection setup latency, we ran this exper-
iment with S set to 30 seconds. We found that in the
presence of VeriFlow, the average TCP connection setup
latency increases by 15.5% (45.58ms without VeriFlow
versus 52.63ms with VeriFlow). As setting up a TCP
connection between two hosts in our emulated 172 host
OpenFlow network requires installing flow rules into
more than one switch, the verification performed by Veri-
Flow after receiving each flow rule from the controller
inflates the end-to-end connection setup latency to some
extent.

Lastly, we ran this experiment after modifying Veri-
Flow to work with different numbers of OpenFlow
packet header fields. Clearly, if we restrict the number of
fields during the verification process, there will be less
work for VeriFlow, resulting in faster verification time.
In this experiment, we gradually increased the number
of OpenFlow packet header fields that were used during
the verification process (from 1 to 14). VeriFlow sim-
ply ignored the excluded fields, and it reduced the num-
ber of dimensions in our trie structure. We set S to 10
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seconds and ran each run for 10 minutes. During the
runs, we measured the verification latency experienced
by each flow modification message generated by NOX,
and computed their average at each run.

Figure 4(c) shows the results from this experiment.
Here, we see that with the increase in the number of
packet header fields, the verification overhead of Veri-
Flow increases gradually but always remains low enough
to ensure real-time response. The 5 fields that con-
tributed most in the verification overhead are DL SRC,
DL DST, NW SRC, NW DST and DL TYPE. This hap-
pened because these 5 fields had different values at dif-
ferent flow rules, and contributed most in the generation
of multiple ECs. The other fields were mostly wildcards,
and did not generate additional ECs.

Comparison with related work: Finally, we com-
pared performance of our technique with two pieces of
related work: the Hassel tool presented in [17] (provided
to us by the authors), and a BDD-based analysis tool
that we implemented from scratch following the strat-
egy presented in [10] (the original code was not avail-
able to us). The authors of [17] provided two copies of
their tool, one in Python and one in C, and we evalu-
ated using the better-performing C version. While we
note these works solve different problems from our work
(e.g., HSA performs static verification, and does it be-
tween port pairs), we present these results to put Veri-
Flow’s performance in context. First, we ran Hassel over
the snapshot of the Stanford backbone network data-
plane state that was used in [17]. We found that Has-
sel’s average time to check reachability between a pair
of ports (effectively exploring all ECs for that source-
destination pair) was 578.62ms, with a maximum of 6.24
seconds. In comparison, VeriFlow took only 68.06ms on
average (with a maximum of 75.39ms) to test the reach-
ability of all the ECs currently present at a single node
in the network. Next, in the BDD-based approach, we
used the NuSMV [4] model checker to build a BDD us-
ing a new rule and the overlapping existing rules, and
used CTL (Computation Tree Logic) to run reachability
queries [10]. Here, we used the Rocketfuel topology and
Route Views traces that we used in our earlier experi-
ments. We found that this approach is quite slow and
does not provide real-time response while inserting and
checking new forwarding rules. Checking an update took
335.71ms on an average with a maximum of 67.16 sec-
onds.

6 Discussion and Future Work

Deciding when to check: VeriFlow may not know
when an invariant violation is a true problem rather than
an intermediate state during which the violation is con-

sidered acceptable by the operator. For example, in an
SDN, applications can install rules into a set of switches
to build an end-to-end path from a source host to a des-
tination host. However, as VeriFlow is unaware of appli-
cation semantics, it may not be able to determine these
rule set boundaries. This may cause VeriFlow to report
the presence of temporary black holes while process-
ing a set of rules one by one. One possible solution is
for the SDN application to tell VeriFlow when to check.
Moreover, VeriFlow may be used with consistent update
mechanisms [20,24], where there are well-defined stages
during which the network state is consistent and can be
checked.

Handling packet transformations: We can extend our
design to handle rules that perform packet transforma-
tion such as Network Address Translation. A transfor-
mation rule has two parts – the match part determines
the set of packets that will undergo the transformation,
and the transformation part represents the set of pack-
ets into which the matched packets will get transformed.
We can handle this case by generating additional equiva-
lence classes and their corresponding forwarding graphs,
to address the changes in packet header due to the trans-
formations. In the worst case, if we have transformations
at every hop (e.g., in an MPLS network), then we may
need to traverse our trie structure multiple times to build
an end-to-end path of a particular packet set. We leave a
full design and implementation to future work.

Multiple controllers: VeriFlow assumes it has a com-
plete view of the network to be checked. In a multi-
controller scenario, obtaining this view in real time
would be difficult. Checking network-wide invariants in
real time with multiple controllers is a challenging prob-
lem for the future.

7 Related Work

Recent work on debugging general networks and SDNs
focuses on detecting network anomalies [10, 19], check-
ing OpenFlow applications [12], ensuring data-plane
consistency [20, 24], and allowing multiple applications
to run side-by-side in a non-conflicting manner [22, 23,
25]. However, unlike VeriFlow, none of the existing so-
lutions provides real-time verification of network-wide
invariants as the network experiences dynamic changes.

Checking OpenFlow applications: Several tools have
been proposed to find bugs in OpenFlow applications and
to allow multiple applications run on the same physical
network in a non-conflicting manner. NICE [12] per-
forms symbolic execution of OpenFlow applications and
applies model checking to explore the state space of an
entire OpenFlow network. Unlike VeriFlow, NICE is a
proactive approach that tries to figure out invalid system
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states by using a simplified OpenFlow switch model. It
is not designed to check network properties in real time.
FlowVisor [25] allows multiple OpenFlow applications
to run side-by-side on the same physical infrastructure
without affecting each others’ actions or performance.
Unlike VeriFlow, FlowVisor does not verify the rules that
applications send to the switches, and does not look for
violations of key network invariants.

In [22], the authors presented two algorithms to de-
tect conflicting rules in a virtualized OpenFlow network.
In another work [23], Porras et al. extended the NOX
OpenFlow controller with a live rule conflict detection
engine called FortNOX. Unlike VeriFlow, both of these
works only detect conflicting rules, and do not verify the
forwarding behavior of the affected packets. Therefore,
VeriFlow is capable of providing more useful informa-
tion compared to these previous works.

Ensuring data-plane consistency: Static analysis tech-
niques using data-plane information suffer from the chal-
lenge of working on a consistent view of the network’s
forwarding state. Although this issue is less severe in
SDNs due to their centralized controlling mechanism, in-
consistencies in data-plane information may cause tran-
sient faults in the network that go undetected during the
analysis phase. Reitblatt et al. [24] proposed a technique
that uses an idea similar to the one proposed in [15].
By tagging each rule by a version number, this tech-
nique ensures that switches forward packets using a con-
sistent view of the network. This same problem has
been addressed in [20] using a different approach. While
these works aim to tackle transient inconsistencies in an
SDN, VeriFlow tries to detect both transient and long-
term anomalies as the network state evolves. Therefore,
using these above mechanisms along with VeriFlow will
ensure that whenever VeriFlow allows a set of rules to
reach the switches, they will forward packets without any
transient and long-term anomalies.

Checking network invariants: The router configura-
tion checker (rcc) [13] checks configuration files to de-
tect faults that may cause undesired behavior in the net-
work. However, rcc cannot detect faults that only man-
ifest themselves in the data plane (e.g., bugs in router
software and inconsistencies between the control plane
and the data plane; see [19] for examples).

Anteater [19] uses data-plane information of a net-
work, and checks for violations of key network invari-
ants (absence of routing loops and black holes). Anteater
converts the data-plane information into boolean ex-
pressions, translates network invariants into instances of
boolean satisfiability (SAT) problems, and checks the
resultant SAT formulas using a SAT solver. Although
Anteater can detect violations of network invariants, it
is static in nature, and does not scale well to dynamic
changes in the network (taking up to hundreds of seconds

to check a single invariant). Header Space Analysis [17]
is a system with goals similar to Anteater, and is also not
real time.

Concurrent with our work, NetPlumber [16] is a tool
based on Header Space Analysis (HSA) that is capable
of checking network policies in real time. NetPlumber
uses HSA in an incremental manner to ensure real-time
response. Unlike VeriFlow, which allows users to write
their own custom query procedures, NetPlumber pro-
vides a policy language for network operators to specify
network policies that need to be checked.

ConfigChecker [10] and FlowChecker [9] convert net-
work rules (configuration and forwarding rules respec-
tively) into boolean expressions in order to check net-
work invariants. They use Binary Decision Diagram
(BDD) to model the network state, and run queries us-
ing Computation Tree Logic (CTL). VeriFlow uses graph
search techniques to verify network-wide invariants, and
handles dynamic changes in real time. Moreover, unlike
previous solutions, VeriFlow can prevent problems from
hitting the forwarding plane, whereas FlowChecker find
problems after they occur and (potentially) cause dam-
age. ConfigChecker, like rcc, cannot detect problems that
only affect the data plane.

An early version of VeriFlow was presented in [18] but
only supported checking for a single header field with
a basic reachability invariant, had comparatively high
overhead, and had a limited evaluation.

8 Conclusion

In this paper, we presented VeriFlow, a network debug-
ging tool to find faulty rules issued by SDN applica-
tions, and optionally prevent them from reaching the net-
work and causing anomalous network behavior. Veri-
Flow leverages a set of efficient algorithms to check rule
modification events in real time before they are sent to
the live network. To the best of our knowledge, VeriFlow
is the first tool that can verify network-wide invariants in
a live network in real time. With the help of experiments
using a real world network topology, real world traces,
and an emulated OpenFlow network, we found that Veri-
Flow is capable of processing forwarding table updates
in real time.
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Abstract

Most network management tasks in software-defined

networks (SDN) involve two stages: measurement and

control. While many efforts have been focused on net-

work control APIs for SDN, little attention goes into

measurement. The key challenge of designing a new

measurement API is to strike a careful balance between

generality (supporting a wide variety of measurement

tasks) and efficiency (enabling high link speed and low

cost). We propose a software defined traffic measure-

ment architecture OpenSketch, which separates the mea-

surement data plane from the control plane. In the

data plane, OpenSketch provides a simple three-stage

pipeline (hashing, filtering, and counting), which can be

implemented with commodity switch components and

support many measurement tasks. In the control plane,

OpenSketch provides a measurement library that auto-

matically configures the pipeline and allocates resources

for different measurement tasks. Our evaluations of real-

world packet traces, our prototype on NetFPGA, and

the implementation of five measurement tasks on top of

OpenSketch, demonstrate that OpenSketch is general, ef-

ficient and easily programmable.

1 Introduction

Recent advances in software-defined networking (SDN)

have significantly improved network management. Net-

work management involves two important stages: (1)

measuring the network in real time (e.g., identifying traf-

fic anomalies or large traffic aggregates) and then (2)

adjusting the control of the network accordingly (e.g.,

routing, access control, and rate limiting). While there

have been many efforts on designing the right APIs for

network control (e.g., OpenFlow [29], ForCES [1], rule-

based forwarding [33], etc.), little thought has gone into

designing the right APIs for measurement. Since con-

trol and measurement are two important halves of net-

work management, it is important to design and build

a new software-defined measurement architecture. The

key challenge is to strike a careful balance between gen-

erality (supporting a wide variety of measurement tasks)

and efficiency (enabling high link speed and low cost).

Flow-based measurements such as NetFlow [2] and

sFlow [42] provide generic support for different mea-

surement tasks, but consume too resources (e.g., CPU,

memory, bandwidth) [28, 18, 19]. For example, to iden-

tify the big flows whose byte volumes are above a thresh-

old (i.e., heavy hitter detection which is important for

traffic engineering in data centers [6]), NetFlow collects

flow-level counts for sampled packets in the data plane.

A high sampling rate would lead to too many counters,

while a lower sampling rate may miss flows. While there

are many NetFlow improvements for specific measure-

ment tasks (e.g., [48, 19]), a different measurement task

may need to focus on small flows (e.g., anomaly detec-

tion) and thus requiring another way of changing Net-

Flow. Instead, we should provide more customized and

dynamic measurement data collection defined by the soft-

ware written by operators based on the measurement re-

quirements; and provide guarantees on the measurement

accuracy.

As an alternative, many sketch-based streaming algo-

rithms have been proposed in the theoretical research

community [7, 12, 46, 8, 20, 47], which provide efficient

measurement support for individual management tasks.

However, these algorithms are not deployed in practice

because of their lack of generality: Each of these algo-

rithms answers just one question or produces just one

statistic (e.g., the unique number of destinations), so it

is too expensive for vendors to build new hardware to

support each function. For example, the Space-Saving

heavy hitter detection algorithm [8] maintains a hash ta-

ble of items and counts, and requires customized opera-

tions such as keeping a pointer to the item with minimum

counts and replacing the minimum-count entry with a

new item, if the item does not have an entry. Such al-
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gorithms require not only a customized switch chip (or

network processor) to implement, but also are hard to

change for a better solution in the future. Instead, we

should design a simple, efficient data plane that is easy

to implement with commodity switch components, while

leaving those customized data analysis to the software

part in the controller.

Inspired by OpenFlow which enables simple and effi-

cient control of switches by separating control and data

functions, we design and implement a new software-

defined traffic measurement architecture OpenSketch.

OpenSketch provides a generic and efficient measure-

ment solution, by separating the measurement control

and data plane functions (Figure 1). Like OpenFlow,

OpenSketch keeps the data plane simple to implement

and flexible to configure, while enabling flexible and

easy programming for different measurement tasks at the

controller. OpenSketch’s measurement support, together

with OpenFlow-like control support, can form a com-

plete measure and control loop for software-defined net-

working. We expect that OpenSketch will foster more

network management solutions using measurement data

and theoretical innovations in measurement algorithms.

We made two major contributions in OpenSketch:

First, OpenSketch redesigns the measurement APIs

at switches to be both generic and efficient. Unlike

flow-based measurement, OpenSketch allows more cus-

tomized and thus more efficient data collection with re-

spect to choosing which flow to measure (using both

hashing and wildcard rules), which data to measure

(more than just byte/packet counters, such as the average

flow size), and how to store the measurement data (more

compact data structures rather than simple five tuples

plus per-flow counters). We design a three-stage data

plane pipeline that supports many measurement tasks

with simple configurations, operates at high link speed

with limited memory, and works with commodity hard-

ware components.

Second, OpenSketch makes measurement program-

ming easier at the controllers by freeing operators from

understanding the complex switch implementations and

parameter tuning in diverse sketches. We build a mea-

surement library which automatically configures the data

plane pipeline for different sketches and allocates the

switch memory across tasks to maximize accuracy. The

OpenSketch measurement library also makes it easier

for operators to apply new theoretical research results

of sketches and streaming algorithms upon commodity

switch components.

We compare OpenSketch with NetFlow and stream-

ing algorithms using packet traces from CAIDA [41],

and show that OpenSketch provides a good accuracy-

memory tradeoff. We build an OpenSketch data plane

Figure 1: Software defined traffic measurement

prototype on NetFPGA, which shows no additional over-

head on switch data plane. Both OpenSketch data and

control plane codes are publicly available [5].

Although OpenSketch is sketch-based, it can support

a wide variety of measurement tasks because different

sketches already support tasks including counting a set

of flows, measuring various traffic statistics, and identi-

fying specific flows. In order to make OpenSketch sim-

ple enough to implement with commodity hardware and

operate at line rate, OpenSketch does not support all the

traffic measurement tasks. For example, the OpenSketch

data plane does not provide complex data structures (e.g,

binary search tree used in some sketches [9]) or directly

support all measurement algorithms (e.g., flow size dis-

tribution). Instead, we rely on the software in the con-

troller to implement these complex data structures and

algorithms using simpler sketches in the data plane.

With our OpenSketch platform, we implement five

measurement tasks (e.g., heavy hitter detection, flow size

distribution calculation) using the measurement library

with 15-170 lines of code.

2 Background on Sketches

Sketches are compact data structures used in streaming

algorithms to store summary information about the state

of packets. Compared to flow-based counters, sketches

have two key properties:

(1) Low memory usage: The size of summary informa-

tion (sketch outputs) is significantly smaller than the in-

put size. For example, the bitmap [21] is a simple sketch

that maintains an array of bits to count the number of

unique elements (e.g., IP source addresses). We hash

each item in a stream of elements to one of the b bits

in the bitmap and set the bit to 1. The number of unique

elements can be estimated by b× ln(b/z) where z is the

number of unset bits. Another example is the Count-Min

sketch, which maintains a two dimensional array A of

counters with width w and depth k. Each entry in the ar-

ray is initially zero. For each element x, we perform the k

pair-wise independent hash functions and increment the

counts at A[i,hi(x)](i = 1..k). To get the frequency for

an element x, we just perform the same k hash functions,

2
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get k counters from the Count-Min sketch, and report the

minimum counter among them.

(2) Provable tradeoffs of memory and accuracy:

Sketches often provide a provable tradeoff between

memory and accuracy, though the definition of accuracy

depends on the actual sketch function. For a bitmap of b

bits, the error in the estimated count n̂ compared to the

real value n is SD(n̂/n)≈
√

eρ −ρ − 1/(ρ
√

b), where ρ
is the average number of flows that hash to a bit [21]. In

the Count-Min sketch, the relative error in terms of total

count is εcm = e× t×Hcm/Ccm, where Hcm is the number

of hash functions and the e is Euler’s constant, t is the

number of bytes per counter, and Ccm is its total memory

in bytes. Note that the bound is for the worst-case traf-

fic and thus independent of the traffic characteristics. If

we have a better understanding of the traffic then we can

have a tighter bound for the memory-accuracy tradeoff.

For example, for the Count-Min sketch, if we can esti-

mate the distribution skew of the elements in the stream

(e.g., a Zipfian parameter of α), we can have a tighter es-

timation of the error rate (e× t ×Hcm/Ccm)
max(1,α) [14].

Example measurement solutions built on sketches:

Sketches can be used for many measurement tasks such

as heavy hitters detection [8], traffic change detec-

tion [36], flow size distribution estimation [27], global

iceberg detection [25], and fine-grained delay measure-

ment [35]. For example, to count the number of unique

sources accessing a web server via port 80, we can sim-

ply filter the traffic based on port 80 and then use a

bitmap to count the number of unique source addresses.

Another example is heavy hitter detection [8], which

is important for traffic engineering in data centers [6].

Heavy hitters are those large flows that consume more

than a fraction T of the link capacity during a time inter-

val. To identify heavy hitters, we first use a Count-Min

sketch to maintain the counts for each flow. Then, we

identify potential flows that hashed to heavy counters in

a reversible sketch [36], and verify their actual count us-

ing the Count-Min sketch.1

3 OpenSketch Data Plane

In this section, we first describe the design of Open-

Sketch data plane. We want to be generic and support

various measurement tasks but we also want to be effi-

cient and save switch memory (TCAM, SRAM) and use

only a few simple hash functions. Next, we discuss how

to implement such a data plane with commodity switch

1To insert an element in the reversible sketch, we perform multi-

ple modular hash functions on the same key, and increment counters at

multiple places. To get the original key, we reverse the modular hash

values of the heavy bins, intersect them to get a small set of poten-

tial keys. We discuss the technical details of implementing and using

reversible sketch in our technical report [44].

hardware at line rate. Finally, we use several example

sketches to show how to configure the simple data plane

to meet different requirements.

3.1 Generic and efficient data plane

A measurement data plane consists of two functions:

picking the packets to measure and storing/exporting the

measurement data. OpenSketch allows more customized

and efficient ways to pick which packets and which data

to measure by leveraging a combination of hashing and

wildcard rules. OpenSketch also allows more flexible

collection of measurement data by breaking the tight

bindings between flows and counters. It reduces the

amount of data to store and export using more compact

data structures.

Picking the packets to measure: OpenSketch shows

that a combination of hashing and classification can sup-

port a wide variety of ways of picking which packets to

measure. Hashes can be used to provide a compact sum-

mary of the set of flows to measure. For example, to

count the traffic to a set of servers, we can use hashing

to provide a compact representation of the set of servers

(e.g., Bloom filter). To count the number of redundant

packets with the same content, we can hash on the packet

body into a short fingerprint rather than store and com-

pare the entire packet body every time. Hashes also en-

able a provable accuracy and memory tradeoff.

Classification is also useful for focusing on some spe-

cific flows. For example, a cloud operator may need to

identify the popular flows from a specific tenant or iden-

tify the DDoS attack targets within a list of web servers.

Therefore, we need a classification stage to measure dif-

ferent flows with different number of counters or with

different levels of accuracy. For example, if there is

too much traffic from the IP address 192.168.1.1, we

can filter out packets from 192.168.1.1/32 i.e. use one

counter to count traffic from the specific IP and another

to count remaining traffic of interest from the subnet

192.168.1.0/24. For classifying flows, we can specify

wildcard rules that match packets on flow fields and al-

low some bits in the flow fields to be “don’t care”. For

example, the rule can match packets on source IP prefix

192.168.1.0/24, where the lower 8 bits are “don’t care”

bits.

Storing and exporting the data: OpenSketch uses a

small table with complex indexing. Each entry in the

table only contains the counters without the flow fields.

These counters can be associated with different entities

like a microflow, a wildcard flow, or even a hash value.

In this way, OpenSketch allows more flexible data collec-

tion with much less memory than traditional flow-based

3
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Figure 2: OpenSketch switch data plane

tables. Moreover, OpenSketch can easily export the table

to the controller with small bandwidth overhead.

To get such flexibility and memory saving, Open-

Sketch requires more complex indexing using the hash-

ing and classification modules. Fortunately, these

complex indexes are easy to calculate using commod-

ity switch components. For those measurement tasks

that need to identify specific flows, the controller can

maintain the mappings between counters and flows for

classification-based indexing, or reverse engineer the

flows from the hash values for hash-based indexing (e.g.,

using reversible hashing [36]).

OpenSketch data plane: OpenSketch data plane has

three stages: a hashing stage to reduce the measurement

data, a classification stage to select flows, and a count-

ing stage to accumulate traffic statistics (Figure 2). We

use the bitmap as an example to show how the data plane

works. Suppose we use the bitmap to count the number

of unique source IP addresses to a given destination sub-

net (say 192.168.1.0/24): First, the hashing stage picks

the packet source field and calculates a single hash func-

tion. Next, the classification stage picks the packet des-

tination field and filters all the packets matching the rule

(dst : 192.168.1.0/24→ 1). Each rule has an index field,

which can be used to calculate the counter location in the

counting stage. For example, those packets in the sub-

net get the index “1”, which means counting; the other

packets get the default index “-1” and are not counted.

Finally, the counting input function calculates the index

of the bit to be updated using the hash value of the source

field. The corresponding position in the counting table

for the bitmap is marked as 1.

3.2 Build on existing switch components

OpenSketch data plane can be easily implemented with

commodity switch components:

A few simple hash functions: OpenSketch relies on

hashing to pick the right packets to measure with prov-

able memory and accuracy tradeoffs. However, sketches

may need a different number of hash functions or dif-

ferent types of hash functions, and may operate on dif-

ferent packet fields. For example, the Count-Min sketch

requires k (e.g., 3) pairwise independent hash functions.

On the other hand bitmaps [43] and the PCSA sketch [22]

require a truly random hash function (i.e. each item is

hashed uniformly on its range and completely indepen-

dently of others).

Fortunately, our experiences of implementing vari-

ous sketches show that 4-8 three-wise or five-wise in-

dependent hash functions are enough for many measure-

ment requirements, and can be implemented efficiently

in hardware [34, 39]. Moreover, simple hash functions

can make use of the entropy in the traffic to approximate

even truly random hash functions well [31].

We can also reduce the number of hash functions by

allowing multiple sketches to share the same set of hash

functions.

A few TCAM entries for classification: Classifica-

tion can be easily implemented with high-speed memory

TCAMs (Ternary Content-Addressable Memory), which

already exist in today’s switches to store ACLs (Access

Control Lists). TCAMs can match packets with multiple

rules in parallel and perform actions based on the rule

with the highest priority. Each rule contains the match-

ing fields (including 0’s, 1’s, and“don’t care” bits) and

actions (such as incrementing a counter and pointing to a

SRAM address).

TCAMs are expensive and power hungry, and thus

only have a limited number of entries in most switches

(e.g., at most thousands of entries [16]). Since Open-

Sketch leverages a combination of hashing and classifi-

cation to select packets, it does not maintain individual

flow entries in the TCAM and thus significantly reduces

the number of TCAM entries to support most measure-

ment tasks. In addition to simple wildcard matching on
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packet fields, we allow TCAM entries to match on hash

values and leverage the “don’t care” bits to perform other

operations such as set checking. We will show our de-

tailed design for supporting different sketches in the next

subsection.

Flexible counters in SRAM: We store all the counters

in the SRAM, because SRAMs are much cheaper, more

energy-efficient, and thus larger than TCAMs. Leverag-

ing the provable memory-accuracy tradeoffs in sketches,

we can make sure that the sketches always fit in the

switch SRAM independent of the traffic pattern.

However, different sketches require different numbers

and sizes of counters: the bitmap contains an array of

0’s and 1’s, while the Count-Min sketch [13] contains

several counters for a single packet. We introduce a list

of logical tables in the SRAM (e.g., in Figure 2 we show

three logical tables of different colors). These tables can

represent different counters in the same sketch (e.g., k

tables for the Count-Min Sketch) or different sketches

in the same SRAM. Since all the counters stored in the

SRAM can be easily accessed by their addresses, we use

a single physical address space to identify the counters

in all the logical tables. Based on the table id and the

relative counter position in the table, we can easily locate

the counter position in the SRAM. On those SRAMs that

have 6-8 read/write ports [17], these counters can even

be updated at the same time.

3.3 Supporting diverse sketches

OpenSketch data plane can support a wide variety of

sketches by leveraging a smart combination of hashing,

classification, and counting. Here we only discuss a few

sketches, for which an implementation in OpenSketch

is not obvious. We show more sketch examples such

as hash tables, Count-Min sketches, and wildcard filters

in [44]. The goal of this subsection is not to show the

detailed tricks of implementing a specific sketch, but to

show the power of the simple OpenSketch data plane in

implementing many complex sketches.

Bit checking operations: Many sketches require more

complex bit checking operations than simply comparing

the packet fields to a pre-defined rule. For example, the

Bloom filter, which is used to filter packets based on a

predefined set, requires checking if k positions are 1 or

not (based on k hash values calculated from the packets).

The DFAs (Deterministic Finite Automaton) [10, 38] and

regular expressions [30], which are often used for net-

work intrusion detection, require converting one packet

state to another.

To implement such sketches in OpenSketch data

plane, we can leverage the hashes and the wildcard bits

in TCAMs. For example, to check if a packet’s source

port belongs to a predefined set of source ports with

Bloom filters, we first calculate the Bloom filter array B

of 0’s and 1’s (e.g., 0001101101) of the pre-defined set.

Next, we calculate the k hash functions on each incom-

ing packet’s source port and generate the packet’s array P

(e.g., 0001000001). Now we need to check if all the 1’s

positions in P are also 1’s in B. Although such complex

bit checking is not supported by TCAM, we can match P

with B∗, where B∗ replaces all the 1’s in B with ∗ (e.g.,

B∗ =000**0**0*) [23]. Then we can match P against

B∗. The 0 in B∗ correspond to bits that were not set by

any packet in B. If P has a 1 where B∗ has a 0, then we

can conclude that P is not in B. But if P matches the

TCAM entry B∗, there is a chance that P is in B, and we

say the packet matches the Bloom filter.

Picking packets with a given probability: Many

sketches require picking packets with different probabili-

ties. For example, the PCSA sketch (Probabilistic Count-

ing with Stochastic Averaging) [22] provides a way to

count the number of unique values of a header field(s)

The basic idea is to sample packets into different bins

with power-of-two ratios (e.g., 1/2, 1/4, ...1/2n). If

there’s a packet that falls in the bin i, then that means

there are at least 2i different values. Other streaming al-

gorithms may require sampling packets at a given rate

(not necessarily power-of-two) to reduce the measure-

ment overhead.

To support this probabilistic packet selection using

only simple uniform hash functions in OpenSketch, we

choose to combine these hashes with a few TCAM en-

tries. For example, to implement power of two probabil-

ities, we first calculate the hash value for a packet field

using the uniform hash function. Next, we compare the

hash value with TCAM rules such as R1 : 0 ∗∗∗ ...→ 1;

R2 : 10 ∗ ∗...→ 2; R3 : 110 ∗ ...→ 3; etc. There is a 1/2

chance that a hash value matches rule R1, 1/4 for R2, an

so on. We can further combine these rules to implement

other more complex probabilities.

Picking packets with different granularity: Many

streaming algorithms (such as flow size distribu-

tion [27], counting distinct destinations with the multi-

resolution bitmap [21], and latency tracking with arbi-

trary loss [26]) often make tradeoffs between flow space

coverage and accuracy. If they cover a smaller flow

space, they can devote more counters to more accurately

measure the covered space, but the measurement result is

less representative for the entire flow space. If they cover

a larger flow space, the result is more representative but

less accurate. Therefore, many algorithms require dif-

ferent levels of coverage in the flow space. For exam-

ple, the algorithm to measure flow-size distribution [27]

hashes on the packets and maps the hash value to differ-

ent sizes of ranges ([0,1/2],[1/2, 3/4]), ...) and measures
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the flow sizes within these ranges. The multi-resolution

bitmap [21] uses a similar idea to count the number of

unique elements in each range. However, all these algo-

rithms assume customized hardware.

Instead, we design a new multi-resolution classifier

that can be easily implemented with TCAM and used in

different measurement programs. The multi-resolution

classifier uses lg(n) TCAM entries to represent differ-

ent ranges in the flow space, where n is the range of

the flowspace: R1 : 0 ∗ ∗ ∗ ... → 1; R2 : 10 ∗ ∗... → 2;

R3 : 110 ∗ ... → 3; etc. Operators simply need to glue

the multi-resolution classifier before their other measure-

ment modules to increase the accuracy of their measure-

ments with a good flow space coverage.

4 OpenSketch Controller

With OpenSketch providing a simple and efficient data

plane, operators can easily program measurement algo-

rithms and even invent new measurement algorithms by

gluing different sketches together. The OpenSketch con-

troller provides a sketch library with two key compo-

nents: A sketch manager that automatically configures

the sketches with the best memory-accuracy tradeoff;

and a resource allocator that divides switch memory re-

sources across measurement tasks.

4.1 Programming measurement tasks

Although OpenSketch is sketch-based, it can support a

wide variety of measurement tasks because: (1) There

are already many sketches for tasks ranging from count-

ing a set of flows, measuring various traffic statistics, to

identifying specific flows. (2) Even when some traffic

characteristics are not directly supported by sketches, we

can still install simpler sketches and implement the com-

plex data analysis part in software in the controller.

As shown in Table 1, we have implemented several

measurement programs by simply gluing building blocks

together. The algorithms to measure flow size distribu-

tion and to count traffic leverage different sketches (e.g.,

multi-classifier sketches and Bloom filters) to pick the

right packets to measure. The heavy hitter detection

and superspreader/DDoS detection algorithms leverage

Count-Min sketches and k-ary sketches to count specific

traffic characteristics. Although there are no sketches

that directly measure traffic changes or flow size distri-

bution, we can still rely on sketches to get basic counters

(e.g., flow size counters) and leave it to the controller to

analyze these counters (e.g., calculate the distribution).

We take the superspreader/DDoS detection as an ex-

ample to show how to use OpenSketch to implement a

measurement task. Superspreaders are those hosts that

send packets to more than k unique destinations during a

time interval. The goal of superspreader detection is to

detect the sources that send traffic to more than k distinct

destinations, and ensure that the algorithm does not re-

port the sources with ≤ k/b destinations, with high prob-

ability ≥ 1−δ [40]. The streaming algorithm for detect-

ing superspreaders [40] samples source-destination pairs

and inserts them into a hash table, which requires a cus-

tomized ASIC to implement in the data plane.

Combining Count-Min sketch and bitmap. Given the

building blocks in the OpenSketch measurement library,

we implement this superspreader algorithm using a com-

bination of the bitmap, Count-Min sketch, and reversible

sketch. Ideally, we would like to use a sketch to count

the number of unique destinations for each source. How-

ever, the Count-Min sketch can only count the number of

packets (not unique destinations) for each source, while

the bitmap can only provide a single count of the total

number of unique destinations but not individual coun-

ters for each source. Therefore, we combine the Count-

Min sketch and the bitmap to count the number of unique

destinations that each source sends: We replace the nor-

mal counters in Count-Min sketch with bitmaps to count

the unique number of destinations instead of the number

of packets. Since the superspreaders algorithm requires

us to report a source if the number of retained destina-

tions is more than r, we need a bitmap that can count

up to around r destinations. Similarly, we combine re-

versible sketches with bitmaps to track the superspreader

sources.

Sampling source-destination pairs to reduce memory

usage: One problem of simply using the sketches is

that the trace can still have a large number destinations,

leading to large memory requirement to get a reasonable

accuracy. To reduce memory usage, we choose to sample

and measure only a few source-destination pairs. Similar

to the streaming algorithm [40], we sample the packet at

rate c/k, and report all source IPs that have more than

r destinations, where c and r are defined as a constant,

given b and δ as shown in Figure 2 in [40]. For example,

when we set b = 2 and δ = 0.2, we get r = 33 and c =
44.83.

Although we use the same sampling solution as the

work in [40], there are three key differences: (1) We

use Count-Min sketches instead of hash tables, which

reduces memory usage with a slightly higher error rate.

Count-Min sketches are especially beneficial when there

are only a few heavy sources (contacting many destina-

tions) and many light sources (contacting a few desti-

nations), because there are fewer collisions between the

heavy and light sources. (2) the work in [40] uses 32

bits to store destination IPs for each pair of source and

destination while the bitmap stores only O(r) bits totally.

If we set a threshold r = 33, we only need a bitmap of
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Measurement Tasks Definitions Building Blocks

Heavy Hitters [13]

Identify large flows that consume more than a

fraction T of the link capacity during a time in-

terval

Count-Min sketch to count volume of flows, re-

versible sketch to identify flows in Count-Min with

heavy counts

Superspreader/DDoS

A k-superspreader is a host that contacts more

than k unique destinations during a time inter-

val. A DDoS victim is a host that is contacted

by more than k unique sources.

Count-Min sketch to estimate counts for different

sources, bitmap to count distinct destinations for

each Count-Min sketch counter, reversible sketch

to identify sources in Count-Min sketch with heavy

distinct counts

Traffic changes

detection [36]

Identify flows whose absolute contribution to

traffic changes are the most over two consecu-

tive time intervals

k-ary sketch and reversible sketches for consecu-

tive intervals to identify heavy changes

Flow size dist. [27]

Indicate the portion of flows with a particular

flow size

multi-resolution classifier to index into hash table

at right granularity; hash table to count volume of

flows mapped to it

Count traffic
Count the distinct number of source addresses

who send traffic to a set of destinations

Bloom filter to maintain the set of destinations;

PCSA to maintain distinct count of sources

Table 1: Implementing measurement tasks using the OpenSketch library

for (index in rev sketch.bins) {
count = distinct count.get count(index, rev sketch)}

flow array = rev sketch.get heavy keys(counts, r)

for (flow in flow array) {
index list = count min.get index(flow)

count list = distinct count.get count(index list, count min)

if (all count in count list > r) output key}

Figure 3: The querying function in superspreader detection

149 bits to store all pairs of sources and destinations for

each Count-Min counter. (3) It is hard to implement

the original streaming algorithm [40] with commodity

switch components. This is because the algorithm re-

quires customized actions on the hash table (e.g., looking

up the src-dst pair in the hash table, inserting a new entry

if it cannot find one and discarding the packet otherwise,

removing entries if the hash table is full, etc.).

Querying in the control plane. Figure 3 shows the data

analysis part of the superspreader detection program. We

first look at the reversible sketch to identify the sources

with counts more than r using the distinct counts from

the bitmaps and compile a list of heavy bins. The re-

versible sketch “reverse-hashes” these bins to identify

potential superspreader sources. The reversible sketch

uses modular hash functions and doesn’t provide any ac-

curacy guarantees for the sources. So we next query the

Count-Min sketch to verify the counts of the candidate

sources. If the count is above the threshold r, then we

report the source as a superspreader.

Although we have shown several examples that oper-

ators can easily program in OpenSketch, there are still

many open questions on how to provide full language

support for many other measurement programs. We

leave this for future work.

4.2 Automatic config. with sketch manager

Picking the right configurations in the measurement data

plane is notoriously difficult, because it depends on the

available resources at switches, the accuracy require-

ments of the measurement tasks, and the traffic distri-

bution. To address these challenges, OpenSketch builds

a sketch manager: The sketch manager automatically

picks the right sketch to use given the measurement re-

quirements and configures the sketches for the best accu-

racy given the provable memory-accuracy tradeoffs of in-

dividual sketches and the relations across sketches. Fur-

thermore, the sketch manager may automatically install

new sketches in the data plane to learn traffic statistics to

better configure the sketches.

We take the superspreader problem as an example:

Picking the right sketch for a function. Given the

provable tradeoffs between error rate and memory size,

the sketch manager automatically picks the right sketch

if there are multiple sketches providing the same func-

tions. In superspreader detection, given memory size

m bits and the threshold r, there are two common data

structures for distinct counters: the PCSA whose error

rate is 0.78
√

⌈logr⌉/m, and the bitmap whose error rate

is
√

(er/m − r/m−1)/(r2
/m). The operator can simply

use “distinct counter” as the virtual sketch in his pro-

gram. The sketch manager can automatically pick the

right sketch of distinct counters to materialize the virtual

sketch. For example, if there are m= 149 bits for distinct

counters and r = 33, the error rate is 14.5% for PCSA,

and 6% for bitmap. Therefore, the manager picks bitmap

for the superspreader problem.

Allocating resources across sketches. In Open-

Sketch, operators can simply configure the sketches re-

quired for their programs without detailed configura-

tions. The sketch manager can automatically allocate
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resources across sketches within the measurement pro-

gram, given the memory-error tradeoffs of individual

sketches. For the superspreader example, the man-

ager automatically formulates the following optimization

problem: configuring the sketch parameters (the number

of bits in each bitmap m, the number of hash functions H,

and the number of counters for each hash function M in

the Count-Min sketch), to minimize the error rate of the

superspreader detection, given the total memory size Css,

the threshold r, the sampling ratio c/k, and the estimated

number of distinct src-dst pairs N.

Min εss = (εbmr+ εcm ×N × c/k)/r (1)

s.t. εbm =

√

(er/m − r/m− 1)/(r2
/m) (2)

εcm = e(1+ εbm)/Mcm (3)

Css = HcmMcm m ≤Ctotal (4)

m f illup ≤ m ≤ mmax (5)

Eq.(1) describes the goal of the optimization prob-

lem, which is to minimize the error rate of the combina-

tion of Count-Min Sketch and bitmap, which is at most

(εbmr+εcm×N×c/k)/r for counts< r as proved in [24].

Eq.(2) and Eq.(3) define the error rate of the bitmap

and the Count-Min sketch. Eq.(4) describes the mem-

ory constraints: The combination of Count-Min sketch

and bitmap should take less memory than that available

at the switch. Eq.(5) bounds the number of bits m used

in bitmap. As suggested in [43], we set mf illup to be the

minimum m such that m ≥ 5
√

er/m − r/m− 1, which is

the minimum size to guarantee the bitmap doesn’t fill up

with high probability. We also set mmax = 10r, which is

large enough so that the relative error is less than 1% for

distinct counts up to r = 100.

Note that we do not consider the reversible sketches

in the optimization. This is because the reversible sketch

usually has a fixed size of 5 hash tables each with 4096

(distinct) counters as suggested by [36]. In our evalua-

tions with real packet traces we found that for δ = 0.2, 2

reversible sketches of 98-bit bitmaps (a total of 0.5 MB)

was often large enough to not miss any sampled super-

spreaders (thus the false negative rate is caused by sam-

pling, same as the streaming algorithm). In addition, the

false positives of reversible sketches are not important

because we always check with Count-Min sketch which

provides more accurate counts.

We can easily solve the optimization problem to con-

figure sketches automatically. Suppose we want to find

k = 200 superspreaders with b = 2 and a probability of

at most δ = 0.2 false positives and negatives. We set

the sampling rate at c/k = 44.83/200 and report sources

with at least r = 33 distinct destinations retained. Sup-

pose the the maximum number of distinct source desti-

nation pairs on the link is N = 400,000, and we have

1900KB available for the combination of Count-Min

sketch and bitmap. Then solving the optimization prob-

lem, we find that we can minimize the error when the

bitmap has m = 46 bits, the CM has 3 hash functions and

109,226 counters per hash function.

Installing new sketches to learn traffic statistics. As

shown above, some memory-accuracy tradeoffs require

understandings of traffic characteristics to have a more

accurate configurations of the sketches. For example, in

the superspreader example, we need to have an estima-

tion of the maximum number of source-destination pairs

N. In this case, OpenSketch requires operators to given

a rough estimation based on experiences (e.g., operators

can simply give n2 for a network of n nodes.)

The sketch manager can then automatically install new

sketches to help understand such traffic characteristics.

For example, to count the unique pairs of source and des-

tination, the manager installs a new distinct counter and

periodically checks its value. If the difference between

the counting result and the original estimation is above a

pre-defined threshold, then the manager re-optimizes the

resource allocation problem.

Though we described the sketch manager in the con-

text of finding superspreaders, functions like picking

the right sketch and allocating resources across sketches

(which don’t interact in complex ways) can easily be au-

tomated for other measurement tasks too.

4.3 Resource allocation across tasks

When OpenSketch supports multiple measurement tasks

simultaneously, it is important to optimize the accuracy

of the measurement tasks given the limited resources in

the data plane (e.g., the number of hashing modules, the

TCAM and SRAM sizes). Therefore, we build a re-

source allocator in OpenSketch which automatically al-

locates resources across measurement tasks. Operators

simply need to specify the relative importance of accu-

racy among the tasks. For example, to allocate resources

across heavy hitter and superspreader detection, operator

can simply specify a weight β ∈ [0,1]. β = 1 means op-

erators care most about heavy hitter detection and β = 0

means the other way.

The challenge is to allocate resources across tasks

without considering the detailed implementation of each

task. We propose to modularize the resource allocation

problem using optimization decomposition. The basic

idea is to introduce a price λ to indicate the relative re-

source usage and then leave it to each task to optimize

their own accuracy based on the resource allocation.

For example, operators may want to detect heavy

hitters using a Count-Min sketch and to detect super-

spreaders using a combination of Count-Min sketch and

8
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bitmaps simultaneously. We first formulate the main al-

location problem: Given the total switch SRAM mem-

ory Ctotal , the resource allocator allocates the memory

across the two measurement tasks (Eq. (7)) to minimize

the weighted error (Eq. (6)). For Superspreaders, the

error rate εss and space used by the building blocks Css

are as described in 1-4. For heavy hitters the error rate

is εhh = e/Mhh
cm and the space used is Chh = Hhh

cm ×Mhh
cm,

where Hhh
cm is the number of hash functions and Mhh

cm is

the number of counters per hash.

Min εall = (1−β )εss +βεhh (6)

s.t. Css +Chh ≤Ctotal (7)

given β ,Ctotal

Next, we solve the resource allocation problem in a

modularized way by first converting the problem into its

dual problem:

Max min((1−β )εss+λ (Css −Cmax/2))

+min(βεhh +λ (Chh −Cmax/2)) (8)

s.t. λ ≥ 0

We can then easily decompose the dual problem into

two sub-problems corresponding to the two tasks super-

spreader and heavy hitter detection (The two sub prob-

lems are omitted for brevity). Iteratively, the master

problem sets a price λ for the space used the two tasks.

Each task minimizes its objective at the given price,

and the master problem updates its price according to

how much extra space was used by the tasks (using the

subgradient method). When the price eventually con-

verges to the optimal value, we get the resource alloca-

tion across the two tasks and the parameter configura-

tions for each task.2

In general, the optimization decomposition technique

allows the resource allocator to allocate space efficiently

between two tasks without any knowledge of how they’re

implemented, it only needs to know their relative impor-

tance to the operator.

5 Prototype Implementation

Figure 4 shows the key components in our prototype: In

the data plane, we implemented the three-stage pipeline

(hashing, classification, and counting) on NetFPGA; in

the control plane, we implemented the OpenSketch li-

brary which includes a list of sketches, the sketch man-

ager, and the resource allocator.

2Note that such optimization decomposition only works for convex

functions. But the superspreader problem is not convex in terms of

number of counters Mss
cm and the bitmap size m. We work around this

by iterate the size of bitmap from mfillup to mmax, and thus make the

problem convex with a fixed m.

Figure 4: OpenSketch Architecture

Data plane: We implement a OpenSketch switch proto-

type on NetFPGA to understand its efficiency and com-

plexity in real hardware deployment. We insert our mea-

surement modules into the reference switch pipeline, in-

cluding Header Parser, Hashing, Wildcard Lookup, and

SRAM Counter. Since we simply pull packet head-

ers to collect the statistics without changing the packet

bus, there is no effect on packet forwarding latency and

throughput. As a packet enters, the Header Parser pulls

the related fields from the packet header, which are then

hashed by hash functions in parallel. We then pass the

packet header and hash values to the Wildcard Lookup,

where we implement wildcard rule matching in paral-

lel. For each matched rule, we update the corresponding

counters in the SRAM Counter. We use the entire 4.5

MB on-board SRAM to store the counters. To answer the

OpenSketch queries from the controller, we implement a

userspace software to query these counters via IOCTL

calls, which then collects all the counters through PCI

interface.

Controller: We implement seven sketches in c++ in

the controller, including bitmap, PCSA sketch, hash ta-

ble, multi-resolution classifier, bloom filter, count-min

sketch, and reversible sketch. Each sketch has two func-

tions for the measurement programs to use: configure to

specify the packet fields, the memory constraint, and the

number of hash functions to use and query to periodically

get the statistics. We also implement the sketch manager

to configure these sketches and the resource allocator to

divide resources across measurement tasks.

The measurement program in the controller can peri-

odically query the sketches about the statistics (e.g., the

distinct counts from bitmap, the flows from reversible

sketches). According to the received statistics, the mea-

surement programs may install new sketches or change

the accuracy requirements accordingly. The sketches au-

tomatically queries the data plane to get the counters

in order to generate the right statistics to the measure-

ment program. Each time after reporting the counters,

the OpenSketch data plane resets the counters as zero in

order to monitor the traffic statistics at the next measure-

ment interval. The history statistics are maintained in the

controller and written to the disk if necessary.
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Figure 5: Heavy hitter detection with OpenSketch, NetFlow, and space-saving streaming algorithm

6 Evaluation

To evaluate the balance between generality and effi-

ciency, we use packet-trace driven simulations to com-

pare OpenSketch with NetFlow and other streaming al-

gorithms for several measurement tasks using CAIDA

packet traces. To evaluate the feasibility of implement-

ing OpenSketch with commodity switch components, we

run stress tests with our OpenSketch prototype. Both our

simulator and prototype are available at [5].

6.1 Data plane generality and efficiency

Evaluation setup We build a trace-driven simulator of

an OpenSketch implementation of heavy hitters and su-

perspreaders, and compare it to NetFlow with packet

sampling, and a superspreader streaming algorithm [40].

We use a one-hour packet trace collected at a backbone

link of a Tier-1 ISP in San Jose, CA, at 12pm on Sept.

17, 2009 [41]. We collect the counters at the end of ev-

ery measurement interval and reset the counters to mea-

sure the next interval. We configure the parameters in

our evaluation based on recommended values from lit-

erature [20, 37]. We set the measurement interval as 5

seconds and run for 120 measurement intervals to ensure

the metrics converge.

OpenSketch provides a better memory-accuracy

tradeoff than NetFlow. Since both OpenSketch and

NetFlow provide general support for diverse measure-

ment tasks, a natural question arises: which one works

better? We compare the two using the heavy hitter detec-

tion problem because NetFlow, which uses packet sam-

pling, can easily catch large flows and is expected to

work well.

We set the threshold T as 0.5% of the link capacity

to find a few large senders in the traffic with a heavy-

tail distribution. The sketch-based heavy hitter algorithm

uses two building blocks: the Count-Min sketch and the

reversible sketch, which are described in [44]. These

sketches are automatically configured by the sketch man-

ager. We conservatively assume each counter (in both

sketches) uses 4 Bytes, though in practice for counting up

to N = 2 million packets, a counter needs only lg(N) <
3 bytes. For NetFlow with packet sampling, the operator

can set the sampling rate according to how much mem-

ory is available at the router. We conservatively assume

that NetFlow uses 32 Bytes per flow entry (as in [20])

and count the actual number of flow entries used by Net-

Flow.

Figure 5 (a) shows the false positives and false neg-

atives for identifying heavy hitters. OpenSketch has no

false-negatives with 85KB memory, and no false posi-

tives when the switch has 600KB memory. In contrast,

NetFlow needs 724KB memory to achieve 3% false pos-

itives and 3% false negatives. Figure 5 (b) compares the

error rate in estimating the volume of detected heavy hit-

ters. Like in [20], we define the error rate as the relative

error (the average error of each heavy hitter’s volume)

divided by the size of the threshold for fair comparison.

We can see that with 600KB memory, the error rate for

OpenSketch is 0.04%, which is far less than NetFlow.

OpenSketch achieves comparable accuracy to the

streaming algorithms, while providing general-

ity. Although OpenSketch supports most sketch-based

streaming algorithms, it does not support those streaming

algorithms that require complex actions in the data plane.

We compare our OpenSketch-based algorithm with these

streaming algorithms to understand the tradeoff between

accuracy and generality.

Heavy hitter detection: We first compare the two the-

oretical bounds of OpenSketch-based heavy hitter al-

gorithm and the space-saving streaming algorithm pro-

posed in [8].3 Figure 5 (c) shows that to achieve the same

0.5% error rate, OpenSketch requires 1354KB memory

while the streaming algorithm only takes 160KB. How-

ever, OpenSketch can further improve its accuracy when

it understands the traffic skew (i.e., the Zipfian parameter

α in Sec 2) from either operators or by installing a hash

table (similar to the flow size distribution problem in Ta-

ble 1). For example, if OpenSketch knows that the skew

3This is the error with 95% confidence.
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parameter is α = 1.4, it only needs to configure 142KB

memory, which is less than the streaming algorithm.

Superspreader detection: We also compare the accuracy

of OpenSketch with the one-level superspreader detec-

tion algorithm [40] in Figure 6.4 We set k = 200, b = 2,

and δ = 0.05. We conservatively assume it takes 8 Bytes

to store each src-dst pair in a hash table and 6 Bytes to

store each source-counts pair in a second hash table The

total space used by the two hash tables for the sampled

source destination pairs is the memory size (assuming no

hash conflicts).

The streaming algorithm requires an average of 1MB

memory to achieve a false positive rate of 0.1% and a

false negative rate of 0.3%. For OpenSketch, we use the

arrows to show the pairs of false positives (+) and false

negatives (X) with different size combination of Count-

Min sketches and bitmaps calculated by our sketch man-

ager. With the same 1MB memory, OpenSketch achieves

0.9% false positive rate and 0.3% false negative rate.

Note that there are only 29 superspreaders on average

during each measurement interval and thus the differ-

ences between OpenSketch and the streaming is only 1

superspreader at some intervals. OpenSketch can reach

the same false positive and false negative rate as the

streaming algorithm when it has 2.4MB memory.

Many measurement tasks can be implemented on top

of OpenSketch platform with simple controller code

and limited data plane resources: We have imple-

mented five measurement tasks on top of OpenSketch

(Table 2). The implementation is simple because we only

configure existing building blocks and analyze the col-

lected data to report the results. The configuration part

takes about 10-25 lines of code and the analysis part

takes at most 150 lines of code.

We also show the amount of data plane resources we

need for each measurement task according to simulations

and theoretical analysis. We only need 4-10 hash func-

tions, less than 30 TCAM entries, and tens of megabytes

SRAM to support most measurement tasks. For ex-

ample, the flow size distribution task needs 3 TCAM en-

tries for its multi-resolution classifier to index into one of

three hash tables each of which covers a fraction ( 1
2
,

1
4
,

1
8
)

of the flowspace. We can glue the building blocks to-

gether to count traffic in different ways. For example, we

can count how many distinct senders contact a set of 200

destination address using a PCSA sketch and a Bloom

Filter. We need 10 TCAM entries to store the destina-

tions, each entry corresponds to a Bloom Filter for 20

addresses. For packets that pass the filter, PCSA counts

4The paper [40] also proposes a two-level detection algorithm that

only works better than one-level algorithm when there are lots of

sources contacting only a few destinations. OpenSketch can also in-

troduce another sampling layer as the two-level algorithm to further

improve its accuracy.

the distinct senders (up to ∼ 217) using 17 TCAM entries

and 1KB of SRAM.

Resource allocation across measurement tasks: Fig-

ure 7 shows how OpenSketch allocates memory re-

sources for two measurement tasks: heavy hitter and su-

perspreader detection with different weight β , given the

total memory size 4MB. With a lower β , we devote more

resources to superspreaders to ensure its low error rate5.

When we increase the β to 1 (heavy hitters have higher

weights), heavy hitter detection gets more memory re-

sources and thus higher accuracy.

6.2 Prototype evaluation

OpenSketch has no effect on data plane through-

put: We deploy our NetFPGA based prototype into

a Dell inspiron 530 machine (2 CPU cores and 2 GB

DRAM). We connect 4 servers to the 4 Ethernet ports

on NetFPGA. We first measure the throughput of Open-

Sketch switch. We set TCP flows across all four 1GE

ports on NetFPGA. The OpenSketch prototype switch

can achieve full 1GE throughput among four ports with

different packet sizes (64, 512, and 1500 Bytes) without

any packet losses. This is because the OpenSketch data

plane pipeline does not interrupt the forwarding pipeline

in the original switch, and the delay of each measurement

pipeline component is smaller than packet incoming rate

even for the 64Byte packets. As a result, the packets do

not need to stay in the queue for measurement process-

ing.

OpenSketch measurement performance is not af-

fected by multiple hash functions, multiple wildcard

rules, but is limited by counter updates. We setup

a TCP flow between two servers across NetFPGA, and

measure the processing delay of collecting statistics from

single packet. We vary the number of hash functions

from 1 to 8, and set the number of wildcard rules from

32 to 1024, respectively. The average delay is always 104

ns across all settings. This is because both hash functions

and wildcard rules are implemented in parallel in hard-

ware. However, the delay is affected by the number of

counters we update for each packet. When we update

5 counters per packet in SRAM (which is the maximum

number of updates a sketch may need), the processing

delay increases to 200ns. This is because our SRAM can

only be read and written sequentially. The performance

can be improved with when fabrication of 6 to 8 read

ports for an on-chip Random Access Memory is attain-

able with today’s embedded memory technology [17].

5Note that here we are considering the error rate for superspreader

counters. A 10-20% error rate is enough to ensure low false posi-

tive/negative rates.
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Figure 7: Resource allocation across Heavy hitters and Superspreaders (a) Error rate

(b) Memory allocation
Meas. Tasks Error (%) Hash func TCAM entries SRAM size Conf LOC Ana. LOC

Heavy Hitters 0.05 3 for CountMin 0 94KB-600KB 20 25

10 5 for rev. sketch (89KB for rev.)

Superspreaders/ 0, 0 3 for CountMin,1 for bitmap 0 0.9MB-1.5MB 25 30

DDoS 0.2, 0.2 5 for rev. sketch (0.5MB for rev.)

Detect traffic changes 0.1-1 5 for 5-ary sketch, 0 3.2MB-32MB 20 25

> 0.5% of total changes 5 for rev. sketch (82KB for rev.)

Flow size dist 1̃-2 1 3 300KB-7.5MB 20 150

for 100K-2.5M flows

Count traffic from≤100K 0.1-1 1 for PCSA, 17 for PCSA, 1KB for PCSA 10 5

src to a set of 200 dst 8 for Bloom Filter 10-16 for B.F.

Table 2: Implementing measurement tasks in OpenSketch (The numbers for the first two are based on our simulations. The numbers for

the later three tasks are based on theoretical analysis in [36, 27, 23, 22]. The error rate is defined as: the relative error for heavy hitters, the false

positive and false negative percentages for superspreaders, the relative error for traffic change detection, the weighted mean relative difference in

simulation [27] for flow size distribution, and the overall false positive probability of the Bloom Filter for counting traffic (the distinct counter is

configured for 10% relative error.))

7 Related Work

Programmable measurement architectures: In ad-

dition to NetFlow, there are other works that share our

goal of building a configurable or programmable mea-

surement architecture. ProgME [45] allows operators to

specify flowsets and the switches count the packets in

these flowsets. Gigascope [15] is a programmable packet

monitor that supports queries on packet streams and au-

tomatically splits queries between the data plane and the

control plane. In contrast, OpenSketch chooses sketches

as the basis of the measurement architecture. Therefore,

OpenSketch provides more compact data structures to

store statistics with a provable memory-accuracy trade-

off, while supporting a wide range of measurement tasks.

The paper [37] extends NetFlow by using two sam-

pling primitives (flow sampling and sample-and-hold) as

the minimalist measurement support in switches, inde-

pendent of the measurement tasks. Operators can only

passively process the collected data for their measure-

ment tasks. Other companies [3] build new hardware to

provide more line-speed counters at switches. In con-

trast, OpenSketch allows operators to proactively con-

figure different sketches and thus can best use the data

plane with guaranteed accuracy for specific measurement

tasks. OpenSketch also allows multiple measurement

tasks to run at the same time.

Other flexible switch architecture: Software defined

networks provide simple APIs at switches and allow the

controller to program the switches based on the APIs.

PLUG [11] provides flexible lookup modules for deploy-

ing routing protocols. OpenSketch shares the same goal

of separating the data plane which processes packets,

from the control plane that configures how to process the

packets. However, existing proposals for software de-

fined networks are not a good fit for measurement tasks.

Recent work [16, 32] has recognized the problems of

supporting different measurement tasks in OpenFlow [4],

such as limited on-chip memory and large communica-

tion overhead between the controller and switches. In-

stead of incremental improvements on OpenFlow, we de-

sign a new software defined traffic measurement archi-

tecture that provides general and efficient measurement

support at switches.

8 Conclusion

Like OpenFlow, which enables a simple, efficient way

to control switches by separating the data and control

plane, OpenSketch enables a simple and efficient way

to collect measurement data. It uses data-plane mea-

surement primitives based on commodity switches, and

a flexible control plane so that operators can easily im-

plement variable measurement algorithms. OpenSketch

makes sketches more practical by bridging the gap be-

tween theoretical research in streaming algorithms and

practical measurement requirements and constraints of

switches, and makes sketches more flexible in support-

ing various measurement tasks.

12
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Abstract

System power models are important for power manage-
ment and optimization on smartphones. However, existing
approaches for power modeling have several limitations.
Some require external power meters, which is not con-
venient for people to use. Other approaches either rely
on the battery current sensing capability, which is not
available on many smartphones, or take a long time to
generate the power model. To overcome these limitations,
we propose a new way of generating power models from
battery voltage dynamics, called V-edge. V-edge is self-
constructive and does not require current-sensing. Most
importantly, it is fast in model building. Our implemen-
tation supports both component level power models and
per-application energy accounting. Evaluation results us-
ing various benchmarks and applications show that the
V-edge approach achieves high power modeling accuracy,
and is two orders of magnitude faster than existing self-
modeling approaches requiring no current-sensing.

1 Introduction

Energy consumption is a paramount concern in all battery-
powered mobile devices, including smartphones. Power
modeling is a key technology and an effective way to un-
derstand the power consumption of applications running
on mobile devices. Thus, it has attracted much research
effort. With a power model, users can identify the power-
hungry applications and better manage battery life of their
smartphone [1]. Developers are able to profile, and conse-
quently optimize, the energy consumption of their mobile
applications [2].

Existing approaches for power modeling have several
limitations. First, an accurate power model heavily de-
pends on individual smartphone’s hardware/software con-
figuration, battery age, and device usage [3]. Most exist-
ing work [4, 5, 6, 7, 8, 9] relies on external power mea-
surement equipment to generate accurate models. This is
labor-intensive and requires experts’ knowledge. Since
the power model of individual smartphone is different
and slowly changing [3, 10], it is expensive to apply this
approach to build models tailored to every phone. The
“self-metering” approach [3, 11, 12] has been proposed to
build individualized power models if a smartphone can

read the online voltage and current values from its built-in
battery interface. While most smartphones have voltage-
sensing capabilities, many smartphones today, including
popular models like Nexus S and some Samsung Galaxy
series, do not have the ability to sense current. Therefore,
the previous approach based on current sensing is not
applicable to many smartphones. The State-of-Discharge
(SOD) approach [13] sidesteps this problem by using the
SOD information in battery interface. It does not require
current-sensing but has very long model generation time
(days) due to the very slow changing nature of SOD. This
makes it impossible to have fast power model construc-
tion, which is often required to rebuild power models to
adapt to various changes in hardware and software, the
battery aging, and usage pattern changes (Section 3).

In this paper we propose a new approach for power
modeling, called V-edge, to address the limitations of
existing approaches. V-edge is self-constructive, does
not require current-sensing, and most importantly, is fast
in model building. V-edge is based on the following in-
sight to voltage dynamics on battery-powered devices:
when the discharge current of a battery is changed, the
instant voltage change, caused by the internal resistance,
has a reliable linear relationship with the current change.
Therefore, from the voltage change, we can determine the
change of current and consequently the power information
(see more details in Section 4). The V-edge power model-
ing requires only voltage-sensing and thus works for most
smartphones, and is able to generate power models much
faster than SOD-based approaches.

We have designed and implemented a power modeling
prototype based on V-edge. Our implementation supports
both component-level power models and per-application
energy accounting. Experimental evaluation results, us-
ing various benchmarks and real applications, show that
V-edge is able to generate accurate power models, compa-
rable to the power-meter-based approach. The building
time is much shorter than SOD-based approaches.

To the best of our knowledge, V-edge is the first work
to model smartphone power consumption by leveraging
the regularity of instant battery voltage dynamics. Prior
to our exploration, these instant dynamics are treated as
irregular fluctuations during slow supply voltage dropping
(i.e. SOD decreasing) [13]. Our key contributions are as
follows.
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• We are the first to observe that the current informa-
tion can be inferred from instantaneous changes in a
battery’s voltage. We demonstrate that inferring cur-
rent in such a manner is fast, reliable, and accurate.

• Based on this observation, we propose V-edge to
facilitate the self-constructive power modeling on
most smartphones. V-edge is much faster than the ex-
isting solution, making it efficient to (re)build power
models for timely adapting of hardware and software
configurations with minimum interruption to users.

• We present the design and implementation of the
power modeling system that applies V-edge on pop-
ular smartphones, including power models of major
hardware components and the per-application energy
accounting.

• We evaluate our V-edge-based implementation us-
ing a diverse set of benchmarks and applications.
The results demonstrate that, given the same model,
the error range of the energy estimations of V-edge
is within 4%, on average, compared with those of
power-meter-based approaches. The model gener-
ation is two orders of magnitude faster than SOD-
based approaches.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce how power modeling works as back-
ground. In Section 3, we survey the related work and
motivate V-edge. In Section 4, we describe our observa-
tion on battery voltage dynamics and demonstrate how to
infer current information from voltage readings of battery
interface. We present the V-edge energy measurement
system in Section 5 and the power models in Section 6.
We describe the design and implementation of a system
built upon the V-edge power modeling in Section 7 and
evaluation results in Section 8. We discuss limitations
of V-edge and future work in Section 9 and conclude in
Section 10.

2 Background: Power Modeling

A power model estimates the power consumption of a
system, such as a smartphone, based on more readily
observable system statuses. Typically, the model is gen-
erated through a training phase. A set of well-designed
programs are run to explore various system states in this
phase and corresponding power values are measured at the
same time. Provided system states and their power mea-
surements as inputs, various modeling techniques like
Linear Regression (LR) can derive the relationship be-
tween these two sets of information, i.e., a power model.

It is common to simply take resource utilization as
the system status, such as screen brightness, CPU usage

and so on. As an example of such a utilization-based
power model, consider a system consisting of only a CPU.
To build a power model for this system, one would first
design several training programs generating different CPU
loads. Then one would run each training program and
exploit some measurement tool, like Monsoon Power
Monitor [14], to provide corresponding power value P.

Assuming that power consumption of the CPU has a
linear relationship with CPU utilization, a power model
can be formulated as Pcpu = a ∗Ucpu + b, where a and
b are constant, Ucpu is CPU utilization, and Pcpu is the
estimated power consumption. Here, Ucpu is called a
predicator, as it is used to indicate the power consump-
tion of the CPU. There can be multiple predicators in
a power model. For example, if Dynamic Frequency
Scaling (DFS) is enabled on the CPU, one may use two
predicators, the frequency Fcpu and Ucpu, to estimate the
power consumption. Besides LR, other techniques (e.g.,
non-linear regression) can also be used to build alternative
(often more complicated) power models.

Once a power model is generated, it can be used in a
power estimation phase to predict the power consump-
tion of the system without requiring additional power
measurements. For example, if the CPU utilization of
a program is 25% for a duration of T , the the energy
consumption of this program is Etotal = (a∗25+b)∗T .
More generally, one can monitor and calculate the total
energy consumption of a program with dynamic CPU
usages as Etotal = ∑i Pi

cpu ∗∆T , where Pi
cpu is the i-th mea-

surement of CPU utilization and ∆T is the time interval
of the measurement.

Similar to CPU, a power model can be built for other
hardware components, such as the screen, Wi-Fi, GPS
and so on. After power models of all the components are
generated, a power model of the whole system (e.g., a
smartphone) can be built on top of the component power
models. It is also possible to perform the energy consump-
tion accounting of individual applications or processes,
as we will describe in Section 6.

While a power model can give absolute values of en-
ergy cost, in practice relative values are often more mean-
ingful to end users. It is usually hard for most users to
map absolute energy values (e.g., 10 Joules) to what they
concern, such as what percentage of energy has been con-
sumed by screen or an application. As a result, most
power monitoring tools on smartphones show power con-
sumption information to users in terms of percentages
rather than absolute values [1].

From the above example, we can see that power mea-
surement is the foundation and an essential part of power
modeling. As we will see in Section 3, however, the ways
in which power measurement is currently done introduces
limits to the power modeling’s usability and applicability.
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3 Related Work and Motivation

System power modeling has been an active research topic
and many approaches have been proposed. Based on how
power consumption is measured, existing literature can
be divided into two categories: external metering and self-
metering. Once power consumption is measured, various
training techniques to generate models have been studied.

External metering. Most existing work on smart-
phone power modeling relies on external and expensive
power meter to build power models [4, 5, 6, 7, 8]. Those
approaches are very accurate because a dedicated power
meter can precisely measure power consumption. How-
ever, they are labor-intensive and can be done only in a
lab. Due to hardware and software diversity of smart-
phone, each type of smartphones may have a different
power model. Any new configuration requires rebuilding
the model back in the lab again. Therefore, these in-lab
methods are very inflexible and thus not suitable to use in
the wild across a large number of users.

Recently, BattOr [9] extended the external meter to mo-
bile settings with a lightweight design. Nevertheless, it is
not easy for a layman to operate BattOr because it is not
deployed on smartphones. In fact, more and more smart-
phones use non-replaceable batteries to optimize layout,
so attaching any external equipment on them becomes
difficult and even dangerous to end-users.

Self-metering. Self-metering approaches [3, 11, 13,
12] collect energy information from smartphones’ built-
in battery interfaces to generate power models without
requiring a power meter. The battery interface consists
of battery status registers that the fuel gauge integrated
circuit exposes to smartphone operating systems, includ-
ing voltage, temperature, State-Of-Discharge (SOD), and
sometimes current information. The power can be cal-
culated if both voltage and current are provided by the
battery interface.

However, many smartphones, including popular ones
like the Nexus S and the Samsung Galaxy S2, provide
battery interfaces that are only capable of sensing volt-
ages. This means existing self-metering approaches, ex-
cept [13], are unable to work on a large amount of smart-
phones (the number is still increasing) already in use.

Zhang et al. [13] proposed building power models
based on SOD readings of batteries, which does not re-
quire current-sensing. However, the SOD-based approach
has a very long model generation time and is inaccurate
due to its SOD-based nature. The approach measures the
remaining battery capacity (a number from 0% to 100%)
to estimate the energy consumption. The granularity of
energy measurement is as coarse as 1% of the whole bat-
tery capacity. It not only takes tens of minutes to observe
a change of battery capacity but also introduces large
errors due to the coarse energy granularity.

Motivation of fast power model construction. Fast
power model construction is desirable because there are
many cases requiring model rebuilding. Besides hard-
ware and software changes, rebuilding is also necessary
for changes of software configurations as a simple CPU
policy modification may lead to up to 25% differences
in power estimation [3]. The battery aging problem [10]
also affects power modeling as battery capacity drops sig-
nificantly with battery age. Thus, a power model needs to
be rebuilt after a battery has been used for some time. Fur-
thermore, Dong et al. [3] showed that power models also
depend on device usage and demonstrated that a power
model should be continuously refined based on usage. In
addition, the complexity of modern hardware may require
many training cases to generate accurate power models.
For example, Mittal et al. [2] used 4096 training cases (for
different R, G, B color combinations) to generate a power
model for AMOLED display. If it were to take 15 minutes
to observe a change of SOD (the minimal time used by
Zhang et al. [13]), then it would take the SOD-based ap-
proach more than 1,000 hours to generate a single display
model, making it almost impossible for end-users to build
or rebuild power models on their smartphones.

In addition, the power measuring of a training program
need to be performed in a controlled environment. In fast
power modeling, short measuring time largely reduces
the chance that the user takes the system control back
during the running of a training program. Thus, the fast
power modeling is more robust because of the tolerance
of users’ interruptions. Also, the fast one is more flexible
because it is able to quickly suspend construction after
the completion of a training program and resume later.

Ideally, besides accuracy, a good power model ap-
proach should be self-modeling (i.e., it should not depend
on external power meters), work for most smartphones
(i.e., it should not require current-sensing), and be able to
generate models quickly. As shown in Table 1, no existing
approach can meet all three requirements. This motivates
us to look for a better power modeling approach.

Training techniques for power model construction.
Besides LR, other training techniques can also be used
for power model construction. For example, Dong et
al. [3] used Principal Component Analysis (PCA) to im-
prove the accuracy of a power model by identifying the
most effective predicators. Pathak et al. [4] proposed to
construct power models using system call tracing. They
created Finite State Machines (FSM) for power states of
system calls, thus achieving fine-grained power modeling.
Our work is complementary to those advanced (and more
complicated) model construction techniques. They can
be used on top of our battery voltage dynamics based
power measurement approach. In this paper, we show
that accurate power models can be generated using our
new power measurement approach even though we only
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Table 1: Comparison of power modeling approaches
Self-modeling? Support most phones? Fast model adaptation?

External metering approaches � � �

Self-metering approaches except SOD � � �

SOD approach � � �

Ideal approach � � �

use basic training techniques for model construction.

4 Sensing Current from Battery Voltage
Dynamics

A smartphone is powered by the battery, where supplied
voltage is not constant. The voltage dynamics of the bat-
tery are exploited here to achieve all desired objectives
of the ideal power modeling approach. We show that it
is possible to infer discharging current information from
instantaneous voltage dynamics of a battery. This infer-
ence is reliable enough to be used for power estimation.
We also demonstrate that it is practical to detect instan-
taneous voltage changes by using battery interfaces on
smartphones. Based on this, a new energy measurement
system is introduced in the next section.

4.1 Battery Voltage Dynamics

The left part of Figure 1 shows the equivalent model of
battery electrical circuit [15]. It indicates that at a certain
point in time, the voltage reading V of the battery interface
can be obtained using

V = OCV −Vc −Rb ∗ I

where OCV is the open-circuit voltage determined mainly
by the remaining capacity of battery, Vc is the voltage
drop on the capacitance, Rb is one of the two internal
resistors, and I is the discharge current.

When encountering a notable amount of current change,
OCV and Vc remain roughly the same value in a short time
frame, but the multiplication of Rb and I is sensitive to this
current change. As illustrated in the right part of Figure 1,
we can observe a sharp edge of voltage readings from
the battery interface immediately after the current change.
This is known as internal resistance effect. After the in-
stantaneous change, the voltage then slowly decreases due
to the current discharging on the battery. We define this
instantaneous voltage change, Rb ∗∆I, as V-edge, which
is in volts. Clearly, the value of V-edge has a linearly
proportional relationship with the change of current. If
we measure the V-edge values with the same baseline
current I0 (this can be achieved by starting all the train-
ing programs from the same baseline when generating a

power model), V-edge has a one-to-one mapping with the
current.

Vedge = Rb ∗∆I = Rb ∗ I −Rb ∗ I0

Or,

I =
1

Rb
∗Vedge + I0

Via this relationship, we can quickly determine the
current value given the V-edge. Next we show that this
linear relationship is reliable (Section 4.2) and V-edge can
be detected accurately (Section 4.3). Thus, we can use
V-edge to further estimate the power consumption and
construct power models (Section 5).

4.2 Reliable Relationship between V-edge
and Current

The linear relationship between V-edge and current is
evident in theory, but because it requires a simplifying as-
sumption about the battery, we seek to understand whether
the relationship holds in practice. To this end, we design a
set of test trials that run various tasks with different stable
workloads on the smartphone. Five batteries for a Google
Nexus S phone and three for a Samsung Galaxy Nexus
phone were picked for experiments with consideration
of different aging stages and manufactures 1. We ran all
tests on these batteries and measured their V-edge values
(in µV ) respectively. The corresponding current levels
(in mA) of these tests were obtained on a Monsoon Power
Monitor at a constant voltage level. We then modeled
the relationship between V-edge and current using LR for
each battery.

Table 2 shows the regression results of eight batteries.
The first five batteries are for the Nexus S and the last
three are for the Galaxy Nexus. R2 is the Coefficient of
Determination, a widely used measure of how well the LR
is [16]. We can see that R2 values of these eight fittings
are all above 0.99, indicating very good fitting results.
More concretely, Figure 2 shows how well the regression
fits the data of battery 2, of which the R2 value is smallest.

Those real-world experimental results demonstrate that
the relationship between V-edge and current is indeed
reliable. This provides the foundation of our proposed
fast and accurate power modeling approach.

1new to one-year-old batteries from four manufactures
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Figure 1: Battery voltage dynamics. Left: Equivalent electrical circuit model for batteries. Right: Battery voltage curve
when discharge current is changed. The deep drop of voltage is caused by current increasing on resistor Rb.

Battery Slope α Intercept β R2

1 0.0048 103.4 0.9987
2 0.0054 100.9 0.9945
3 0.0050 103.3 0.9992
4 0.0054 101.8 0.9991
5 0.0054 102.3 0.9985
6 0.0057 158.9 0.9978
7 0.0056 154.5 0.9979
8 0.0051 157.0 0.9976

Table 2: Linear mapping between V-edge and current on
eight batteries of two different smartphones, in the form
of current I = α ∗Vedge + β . R2 is the metric indicating
the goodness of fitting.

4.3 Detecting V-edge

We show in this subsection that V-edge can be easily and
accurately captured by battery interfaces on smartphones.
Figure 3 illustrates the curve of voltage readings from the
battery interface of a Nexus S, when CPU utilization was
increased from idle to 95%. We can see a clear voltage
drop immediately after CPU utilization (thus the current)
was increased. After the instantaneous drop, the voltage
decreases very slowly, even with the high discharging
current of 95% CPU utilization (the slope will be even
gentle if the current draining is smaller). By sampling
voltage values from the battery interface before and after
the instantaneous voltage change, we can calculate the
value of V-edge. Depending on how soon we sample
the voltage value after the instantaneous voltage drop,
the calculation leads to certain error. Table 3 shows the
errors when the sampling happens at different times (i.e.,
sampling delay) after the instantaneous voltage drop.

We can see that the error is zero if the sample is taken
within three seconds of the instantaneous voltage drop.
The error increases when the sampling delay becomes
larger. If the sampling delay is 10 seconds, the error
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Figure 2: Sampling vs. fitting on battery 2.

is 11.76%. Clearly, to reduce error, we should sample
voltage value as soon as possible after the instantaneous
voltage drop.

The battery interface of smartphones typically updates
the voltage value periodically but the updating rate may
vary drastically across different phones. For example,
the Galaxy S2 updates ten times less frequently than the
Nexus S (one update every ten seconds versus one per
second). In the case of a low update rate, we should
align our voltage sampling with the voltage updating. To
achieve this, we employ the following procedure to detect
battery interface parameters - the updating interval and
time.

We first put the smartphone into idle for a time period
longer than its battery interface updating interval (e.g.,
tens of seconds), then (at time t0) we increase CPU uti-
lization to a high level and immediately start sampling
voltage values at a rate of 1Hz. Once we detect a voltage
value change larger than a threshold (i.e., the instanta-
neous voltage drop caused by increased CPU utilization)
at time t1, we put the CPU into idle again and continue to
sample voltage values at 1Hz. When we detect a voltage
value change larger than the threshold again (i.e., the in-
stantaneous voltage increase caused by decreased CPU
utilization) at time t2, we stop sampling. Figure 4 de-
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Table 3: Sampling error of V-edge in different sampling delays
Sampling delay (s) 1 2 3 4 5 6 7 8 9 10
Sampling error (%) 0% 0% 0% 2.94% 5.88% 5.88% 8.82% 11.76% 11.76% 11.76%
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Figure 3: Voltage curve on a Nexus S smartphone when
CPU utilization is increased from idle to 95%. Sampling
rate is 1Hz.
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Figure 4: Estimate the voltage updating interval and time
of battery interface.

scribes this procedure. Then we treat ∆t = t2 − t1 as the
updating interval of the battery interface where t1 and t2
are the times when voltage updates are triggered. With the
sampling rate of 1Hz, the estimation error is within two
seconds. Once we know the updating interval and time of
the battery interface, we can align V-edge detection with
the voltage updating so that the delay of V-edge detec-
tion is limited to two seconds. Thus, we can accurately
measure the value of a V-edge.

The value of a V-edge is decided by the corresponding
current change. If the current change is very small, it is
hard to detect the V-edge. To study how likely we can
detect a V-edge, we conducted a set of tests with different
current changes. Table 4 shows the results. For each
current change, we repeated the test 50 times and report
the probability that the change was detected. We can
see that there is about a 64% chance that the V-edge is
detected along with just a 7.5 mA increment of current

Current increment (mA) Probability (%)
7.5 64%
15 90%

22.5 98%
30 98%

37.5 100%

Table 4: Probability of capturing current changes

value. With a 30 mA change we achieve up to 98% and
100% with 37.5 mA. On a Nexus S smartphones, 37.5
mA can be caused by a small change of only 4% CPU
utilization. To build a power model, we can easily design
training programs with a current change much larger than
37.5mA. We conclude that V-edge is sensitive enough for
component level power modeling.

5 V-edge Energy Measurement System

Once we derive the current information from V-edge, it
is feasible to calculate the power information and fur-
ther generate power models on top of it. Thus, in this
section, we show how to build an alternative energy mea-
surement system based on V-edge that is equivalent to the
traditional energy measurement systems. In traditional
energy measurement systems, the energy cost E of a task
is measured by power P and time T , E = P ∗T . Power
is decided by current I and voltage V , P = I ∗V . For
simplicity, we assume that a task has a constant power
consumption during its execution time. The same analy-
sis below can be easily extended to a task with dynamic
power consumption by dividing the whole execution time
into small time slots with a constant power consumption
and using ∑i (Pi ∗T i) to replace P∗T . That is, the total
energy cost E = ∑i (Pi ∗T i) = ∑i (Ii ∗V i ∗T i), where i
indicates the ith slot.

In our new energy measurement system, we introduce
a new term, the V-edge power Pedge, to replace the tradi-
tional power. The V-edge power is defined as

Pedge = Vedge ∗V

where Vedge is the V-edge at the corresponding voltage
level V and the unit of Pedge is square volts. It does not
matter whether the value of V is the voltage value before
the instant voltage drop or after the instant voltage drop
(see Figure 1) because the difference between the two
voltage values is fixed as Vedge. That is, the two voltage
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values are interchangeable. In our implementation, we
choose the voltage value before the instant voltage drop.

Similarly, we define the V-edge energy as

Eedge = Pedge ∗T = Vedge ∗V ∗T

to replace the traditional energy.
As we show in Section 4.2, V-edge and current have a

linear relationship I = α ∗Vedge +β . Thus, we have

P = I ∗V = (α ∗Vedge +β )∗V

= α ∗Pedge +Pedge0

where Pedge0 is a constant value denoting the baseline
V-edge power. That is, we can calculate the real power
consumption of a task from the V-edge power of the task.
Similarly, we have

E = P∗T = (α ∗Pedge +Pedge0)∗T

= α ∗Eedge +Eedge0

where Eedge0 is the baseline V-edge energy.
During power model generation, we can directly mea-

sure Pedge but not Pedge0 . To calculate Pedge0 , we em-
ploy the following procedure in the power model training
phase. We first design two tasks with constant but dif-
ferent stable workloads. We then run the two tasks to
consume the same amount of energy in terms of percent-
age of battery capacity (e.g., 2% of battery capacity which
can be achieved by reading SOD information provided
by the battery interface). The V-edge power of the two
tasks is P1

edge and P2
edge, their traditional power is P1 and

P2, and their execution time is T 1 and T 2. Without loss
of generality, we assume that T 1 is smaller than T 2. As
the tasks consume the same amount of energy, we have

P1 ∗T 1 = P2 ∗T 2

(α ∗P1
edge +Pedge0)∗T 1 = (α ∗P2

edge +Pedge0)∗T 2

Pedge0 = α ∗Θ

where Θ =
P1

edge∗T 1−P2
edge∗T 2

T 2−T 1 is a known constant value
determined by running the two tasks. Note that here we
only need SOD readings to derive the value of baseline
power, which is done only once. In SOD-based power
modeling approaches, every model training program de-
pends on SOD readings, making the model generation
time unacceptably long as shown in Section 8.

In fact, even the determination of Pedge0 can be skipped
if we are only interested in the energy profile excluding
baseline, as is usually the case for end users and appli-
cation developers. Thus, the V-edge energy system is
a linear transformation of the corresponding traditional
method.

After knowing Pedge0 , in the power estimation phase,
when a set of tasks run together (e.g., multiple compo-
nents or processes), we can obtain energy percentage con-
sumed by each task, even without knowing the value of α .
For simplicity, let us assume that there are only two tasks,
i and j. We can calculate their power percentage from
their V-edge power as follows. The energy consumption
of task i is

Ei = Pi ∗T i = (α ∗Pi
edge +Pedge0)∗T i

= α ∗ (Pi
edge +Θ)∗T i

The calculations of task j are similar to task i, so they
are omitted due to space limitations.

Thus, the energy percentage of task i is

%Ei =
Ei

Ei +E j =
(Pi

edge +Θ)∗T i

Pi
edge ∗T i +P j

edge ∗T j +(T i +T j)∗Θ

In addition, we can also estimate how long the remain-
ing battery will last. If X% of battery has been used by
tasks i and j, we have

X%∗C = Ei +E j

(100−X)%∗C = (Pi +P j)∗T i j
L

where C is the battery capacity and T i j
L is the remaining

time of the battery if we continue to run both task i and
task j at the same time. By solving the above equations,
we can get

T i j
L =

100−X
X

∗
Pi

edge ∗T i +P j
edge ∗T j +(T i +T j)∗Θ

Pi
edge +P j

edge +2∗Θ

If T i = T j = T , we simply have T i j
L = 100−X

X ∗T .
And if we run only task i in the future, the remaining

battery time will be

T i
L =

100−X
X

∗ (1+
P j

edge +Θ

Pi
edge +Θ

)∗T

In summary, the V-edge energy system is able to mea-
sure and estimate the power consumption of a system. In
the following section, we will develop a system based on
V-edge that can address common user concerns such as
how much energy a particular application consumes, or
how long the battery will last if the user continues running
one or more applications.

6 Power Modeling Based on V-edge

We model the power consumption of four major hardware
components of smartphones: CPU, screen, Wi-Fi and
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GPS. The main purpose is to demonstrate the usability of
the V-edge energy measurement system underlying, so
we do not introduce new power models. Instead, we use
existing or modified ones which are simple and able to
capture the main power characteristics of the hardware. In
addition, we describe how to do per-application account-
ing based on generated component-level power models.
Power value is provided in the V-edge power Vedge ∗V .

CPU Model. DFS is available on most CPUs and often
enabled to save power. Thus, for the CPU power model,
we consider both CPU frequency and CPU utilization.
For each possible CPU frequency, we model the power
consumption of the CPU as a linear function of

Pcpu = a∗Ucpu +b

where Ucpu is the CPU utilization.
Screen Model. The power consumption of a screen is

decided not only by the brightness of backlight but also
by the pixel colors. For example, at the same backlight
level of 255, the power consumption of full-screen white
is almost three times that of full-screen red.

Dong et al. [17] used RGB values to create a linear
model of OLED (Organic Light-Emitting Diode) type dis-
plays’ power consumption. However, because this model
is not suitable for AMOLED (Active-Matrix OLED)
types, Mittal et al. [2] proposed another model to also cap-
ture the non-linear properties of AMOLED. However, the
full model requires 4096 colors, leading to high training
overhead. This neutralizes the advantage of self-metering
approaches, timely model adaptation. Therefore, we pro-
vide a simplified yet effective alternative using the func-
tion

Pscreen = f (L)∗ (cr ∗R+ cg ∗G+ cb ∗B)

where Pscreen is the screen power consumption, f (L) is a
quadratic function of the brightness level L, (R, G, B) is
the average RGB value of all pixels, and cr, cg and cb are
the coefficient of R, G, and B.

The goal of this screen model is to reduce the num-
ber of colors tested. Based on the above function, we
derive a preliminary model from only 216 measured RGB
colors (6× 6× 6) by first assuming the linear relation-
ship between the power and RGB color. Obviously, this
preliminary model does not work well on AMOLED. Ad-
ditionally, we measure the power of another 125 samples
uniformly distributed in the RGB color space. Then we
can obtain the power differences of these 125 colors be-
tween measured and modeled values. Because the power
of AMOLED gradually changes among similar colors,
the difference of one in these 125 colors can roughly rep-
resent the average offset between measured and modeled
power values for all colors nearby. Therefore, the final
estimated power value of a RGB color is the calculation

of the above function plus the difference of one of the
125 color samples that is closest to this estimated color.
In this way, the modeling error decreases to a low level,
while a lot of training time is saved.

Note that when we train a screen power model, the
power consumption of training programs will include the
power consumption of the CPU because the CPU cannot
be turned off to run any training program. Thus, we
need to remove the power consumption of the CPU from
the total power consumption of screen training programs.
This is done by generating the CPU power model first and
applying it in training screen power model.

Wi-Fi Model. We employ a simple model that consid-
ers the data throughput of both directions. A linear power
function

Pwi f i = d ∗D+ e

is selected where D is the application data, incoming and
outgoing, through the Wi-Fi interface. Similar to the
screen model, we also remove the power consumption of
the CPU in training the power model of Wi-Fi.

GPS Model. We model the power consumption of GPS
based on the ON/OFF states, following the work [11, 18]:

PGPS = fGPS ∗S

where fGPS is the the power coefficient and S is 1 when
GPS is enabled or 0 otherwise.

Per-application Accounting. Users often want to
know the power consumption of each individual applica-
tion so that they can identify where the energy was spent.
This per-application power accounting can be done on
top of the component-level power models. We can moni-
tor the activities of a process on each component (CPU,
screen, Wi-Fi and GPS) and account corresponding power
consumption as a function of

Pprocess = ∑
i

Pi
cpu +∑

j
P j

screen +∑
k

Pk
wi f i +

1
N ∑

l
Pl

GPS

where i, j, k, l are the ith, jth, kth and lth time when the
process uses CPU, screen, Wi-Fi and GPS, respectively.
N is the total number of processes using GPS at the same
time. Zhang et al. [13] found that the sum of all compo-
nent estimates is sufficient to estimate the whole system
consumption. Thus, we also adopt this assumption. The
power consumption of an application is the sum of the
power consumption of all its processes.

7 System Design and Implementation

We have designed a general V-edge-based architecture,
illustrated in Figure 5, to run on typical smartphone op-
erating systems. In our design, V-edge runs as a system
service in the background, collects data on system re-
source utilization and activities, generates power models
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Figure 5: System architecture based on V-edge.

and uses them for power consumption estimation. It also
provides a tool with a GUI for users to review the power
consumption information of each component and applica-
tion.

Data Collection. The data collection part is designed
to run in the kernel due to two considerations. First, run-
ning in the kernel gives us more flexibility and less latency
compared with the user space. Second, it avoids the ex-
pensive user-kernel mode switching, thus introducing less
system overhead. We collect three types of data: voltage
readings from the battery interface, utilization information
of each hardware component (CPU, screen, Wi-Fi and
GPS), and process execution and switching information.
For Wi-Fi utilization, we capture the data packets trans-
mitted over Wi-Fi by intercepting the network stack. For
process execution and switching information, we hook
the kernel scheduler to collect thread scheduling informa-
tion. We add a new system call to fetch the collected data
from the kernel where power model generation and power
estimation are done. Voltage information is only used in
generating power models, while process information is
only used in estimating per-application power consump-
tion. Hardware utilization information is used for both
power model generation and power estimation.

Power Model Generation. The system, on top of
V-edge, automatically generates component-level power
models for CPU, screen, Wi-Fi, and GPS as formulated
in Section 6. This is done by running a set of training
programs for each component in a controlled way. For ex-
ample, to build the power model of the CPU, we run CPU
training programs with other components in their base-
line power states. All training programs of a component
run from the same initial state to ensure their measured
V-edge values are consistent. For example, each CPU
training program starts when the CPU is idle. The model
generator also aligns runs of training programs with the
voltage updating of the battery interface as we described
in Section 4.3, to reduce errors of the voltage sampling.
The modeling procedure is done without user awareness
when the smartphone is idle and not plugged in. If the user

suddenly interrupts the generation by using the phone, the
procedure can suspend and resume later with little time
penalty, thanks to the short estimation time of V-edge. We
also allow power model updates adaptively or through a
GUI tool described later in this section.

Power Consumption Estimation. Power estimation
is done by tracking hardware resource usage and apply-
ing generated models. When users use their smartphones
as normal, the data collector keeps running in the back-
ground to collect the usage information of each com-
ponent (frequency and utilization percentage for CPU,
brightness level and pixel colors for screen, packet size
and number for Wi-Fi and usage of GPS). Thus, the power
profiler is able to calculate the power consumption of
each component. By tracking process switching, we can
know which process is using the resources at a given
time. Therefore we can associate resources usage and
thus power consumption to the corresponding process, for
per-process and per-application accounting.

Power Profiling GUI Tool. On top of the power pro-
filer, we design a GUI tool to show the percentage of
the energy consumed by each hardware component and
provide a rebuilding option to users.

We have implemented the V-edge-based power model-
ing and monitoring system on the Android platform. Our
implementation in total consists of 2k lines of code for the
core components (data collection, model generation and
power estimation) and 4k+ lines of code for the training
programs.

8 Evaluation

We evaluate our implementation of the V-edge-based sys-
tem by answering the following questions. 1) How fast
can power models be generated? 2) How accurate is
the power estimation using the generated models, both
at component-level and in per-application accounting?
3) How much system overhead does the implementation
introduce in terms of CPU and memory usage?

8.1 Experimental Setup
Devices. We conduct all experiments on a Nexus S smart-
phone running Android 4.0. We use a Monsoon Power
Monitor to measure the actual power consumption of the
experiments as the ground truth and for comparison.

Training programs for model generation. We de-
velop a total of 412 training programs to generate power
models for CPU, screen, Wi-Fi, and GPS. For each CPU
frequency (there are five configurable CPU frequencies
on a Nexus S), we use eight training programs with CPU
usages randomly picked from eleven possible values (idle
to full). Similarly, for the screen we use 347 training
programs with different brightness levels and RGB colors
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of different pixel blocks. For the Wi-Fi, we use 24 train-
ing programs with different packet sizes and transmission
rates. Finally, we use one training program for the GPS
module.

Benchmarks. We design a set of benchmarks to eval-
uate the accuracy of our implementation on component-
level power estimation. For the CPU we use four bench-
marks running for 60 seconds at a CPU frequency of 200
MHz, 400 MHz, 800 MHz and 1000 MHz. For the screen,
we use 15 benchmarks. Each of them displays a different
picture, as shown in Figure 7, for 10 seconds. For Wi-Fi,
we use a benchmark which sends UDP packets with a
randomly selected packet size of 50, 100 or 1000 bytes
and a random packet inter-arrival time from 1 to 50 mil-
liseconds. The total run time of the Wi-Fi benchmark 2

is 60 seconds. For the GPS, we use a benchmark which
uses the location service for 60 seconds.

Applications. We use six real applications to evalu-
ation the accuracy of our implementation on power es-
timation of real world applications. These applications
are Gallery where we use the default photo viewer on
Android to show 20+ photos (randomly taken by the cam-
era on Nexus S) in slide show mode, Browser where we
use the default Android browser to read news on Bing
News, Angry Birds where we play this free version game
with commercials, Video where we watch a homemade
video clip on the default player, Skype where we make a
VoIP call through Wi-Fi, and GPS Status where we run
a popular GPS-heavy app from Google Play [19]. Each
test performs for one minute.

8.2 Model Generation Time
Model generation time is the time period to run all the
training programs and construct power models. It is
mainly decided by how quickly power consumption can
be measured. In the V-edge approach, as shown in Sec-
tion 4.3, we can detect the instant voltage changes and
consequently measure power consumption in several sec-
onds. However, in a SOD-based approach, power mea-
surement time is much longer because it measures power
consumption by observing changes of SOD, at least 15
minutes [13]. Given our 412 training programs, it takes
the V-edge-based system for 1.2 hours in total (including
the stabilization time between the training cases which
can be further optimized) to generate the power models.
However, it would take more than 100 hours for the SOD
approach to generate the same power models. Our pro-
posed approach is two orders of magnitude faster than the
SOD approach.

More importantly, the long model building time of the
SOD-based approach demands multiple rounds of the bat-

2For the experiment purpose, a stable wireless environment is ex-
pected in order to remove the influence of outside factors

tery recharging, thereby requiring the user intervention.
As such, the SOD-based approaches are difficult to auto-
mate. With the short modeling time, our approach can be
easily done without the user involvement. For the sake
of optimization, we can further split the whole procedure
into small pieces and manage to complete them one by
one. Each piece of modeling tasks just takes minutes
of the smartphone idle time and consumes little energy.
Thus, the V-edge-based system is transparent to end users.

8.3 Accuracy

We evaluate the accuracy of the V-edge approach by
comparing its energy consumption estimations with both
ground-truth measurements and estimations from power-
meter-based models. These power-meter-based models
are built by measuring power consumption of training
programs using an external power meter in the model gen-
eration phase. This external-metering approach represents
the highest accuracy that one model can achieve because
its inputs are precise. Note that the energy comparison is
stricter than direct model parameter comparison because
model errors can be magnified.

Accuracy of CPU modeling. Figure 6 shows the en-
ergy consumption of the CPU benchmarks, including the
ground truth and the estimated results of the V-edge ap-
proach and power-meter-based approach. Compared to
ground truth, the errors of the V-edge approach are 1.45%,
7.89%, 9.71% and 4.18% (5.79% on average). The cor-
responding numbers of the power-meter-based approach
are 1.32%, 5.28%, 5.92%, and 1.54% (3.51% on aver-
age). The average difference between our approach and
the power-meter-based approach is only 3.65%.

The stable relationship between CPU usage and power
consumption introduces small errors to both V-edge-based
and power-meter-based approaches.

Accuracy of screen modeling. Figure 7 shows the
results of the screen benchmarks. Compared to ground
truth, the average error of the V-edge approach is 5.77%
(max 15.32%, min 1.22%) and the power-meter-based
approach is 5.55% (max 15.81%, min 0.11%). The av-
erage difference between our approach and power meter
approach is only 3.49%. Note that Figure 7 shows nor-
malized results. The absolute energy consumption of the
pictures are very different, as large as 3.3 times.

Our screen model is one of the most sophisticated
smartphone screen models considered in self-metering
approaches. Nonetheless, our experiments show that it
is of limited accuracy (relatively wide error range). The
reason is that this model relies on a small number of ref-
erence colors to correct initial estimations and provides
final answers. Therefore, if a photo has an average pixel
color similar to one reference, its estimation error is low.
Otherwise, it is a bit high. The model could be optimized,
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Figure 6: Energy consumption of CPU benchmarks. Re-
sults are normalized relative to ground truth values.
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Figure 8: Energy consumption of Wi-Fi and GPS bench-
marks. Results are normalized relative to ground-truth
values.

but it is out of the scope of this paper.
Accuracy of Wi-Fi modeling. Figure 8 shows the

results of the Wi-Fi benchmark. Compared to ground
truth, the error of the V-edge approach is 14% and the
power-meter-based approach is 10.65%. The difference
between two modeling approaches is only 3.75%.

The error of Wi-Fi benchmark is relatively large. This
is because our model is simple and served as the compar-
ison platform of two modeling approaches. More predi-
cators like packet numbers per second may improve the
accuracy of modeling. Additionally, there are more CPU
activities involved in both building and using the Wi-Fi
model, compared with other components. Thus, some
error is contributed from the CPU model.

Accuracy of GPS modeling. Figure 8 also shows the
results of the GPS benchmark. Compared to the ground
truth, the error of the V-edge approach is 10.6% and the
power-meter-based approach is 4.1%. The difference
between our approach and power meter approach is 6.5%.

Accuracy of real applications. Figure 9 shows the

results of the six real applications. Compared to the
ground truth, the errors of the V-edge approach are 19.5%,
8.6%, 0.2%, 1.6%, 14.7% and 15.5% (10% on average).
The corresponding numbers of the power-meter-based
approach are 15.6%, 12.5%, 4.2%, 2%, 18.3% and 12.2%
(10.8% on average). The average difference between our
approach and the power-meter-based approach is only
3.8%.

The accuracy of each component model has an im-
pact on application experiments. For example, the
Wi-Fi estimation errors are accumulated quickly in the
communication-intensive applications like Skype, leading
to the relatively large difference between modeled and
real results. So is the case of GPS Status that has a lot
of interactions with the GPS module. As to estimation
errors of Galley, displayed photos are randomly picked,
so it is possible that many of them have average colors not
similar to any of 125 references. Another reason is that
the average RGB color over all pixels may not be a good
predictor. We will investigate this in future. In addition to
the individual model accuracy, errors are also introduced
by the assumption that the linear combination of all com-
ponent energy consumption is equal to the whole system
consumption. Besides, we do not include power models
for other minor energy consumers such as disk I/O.

Summary. All experimental results show that the ac-
curacy of our approach is very close to the power-meter-
based approach. The total average difference is only 3.7%
for all component-level and application-level power esti-
mations. This demonstrates V-edge’s strength in facilitat-
ing the self-constructive power modeling.

8.4 System Overhead

Our implementation introduces a very small system over-
head in terms of the usage of the CPU and memory. To
evaluate, we measured the system CPU and memory us-
age when V-edge is enabled and disabled for monitoring
system energy consumption. With V-edge enabled, the
smartphone used only 2 MB more memory to run back-
ground V-edge code and store the collect data in memory.
Such a small memory footprint is negligible compared
with the large memory size of 512MB or 1GB on to-
day’s smartphones. We did not observe any noticeable
difference on CPU usage because of its event-driven im-
plementation like the work [4]. Thus, our implementation
is lightweight and introduces low system overhead.

9 Discussions and Future Work

V-edge provides prior power modeling techniques an op-
portunity to work on most smartphones on the market.
Our power modeling system is one simple example that
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Figure 7: Energy consumption of screen benchmarks. Results are normalized relative to ground-truth values.

GALLERY BROWSER ANGRY BIRDS VIDEO SKYPE GPS STATUS
0

0.5

1

1.5

no
rm

al
iz

ed
 e

ne
rg

y 
co

st

 

 

V−edge model meter model ground truth

Figure 9: Energy consumption of applications. Results are normalized relative to ground-truth values.

is built upon V-edge. It is intended to demonstrate the im-
plementation feasibility and exhibit benefits that V-edge
offers. Therefore, we only cover major energy consumers,
such as the CPU and screen. In the future, we plan to
complete our models by adding more components, like a
3G module, in order to create a useful system tool.

Another issue worthy of investigation is the model opti-
mization for self-metering approaches. Usually, the more
accurate estimations are expected, the more predictors a
model need to consider, and thus the more overhead the
building procedure has. For example, if we only use the
backlight level to model the screen like previous work,
83% building time is saved for our whole system. How-
ever, the accuracy is not acceptable. We therefore plan to
study how to select more efficient predictors to balance
this accuracy and overhead trade-off.

In addition, although our implementation is based on
Android platform, the V-edge approach is general enough
and not limited to only the Android platform. We plan to
implement the V-edge-based system on other mainstream
smartphone platforms such as Windows Phone.

10 Conclusions

In this paper, we propose a new approach called V-edge
for fast and self-constructive power modeling on smart-
phones. The V-edge approach is novel because it builds
power models by leveraging the regular patterns of the
voltage dynamics on battery-powered devices. Different
from most existing self-modeling approaches, the V-edge-
based approach does not require current-sensing of battery
interface so that it works for most smartphones on the mar-
ket. We have designed and implemented a V-edge-based
modeling prototype. It performance demonstrates that
V-edge can facilitate fast and accurate power modeling
with low overhead.
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Abstract
The past few years have witnessed an evolutionary

change in the smartphone ecosystem. Smartphones have
gone from closed platforms containing only pre-installed
applications to open platforms hosting a variety of third-
party applications. Unfortunately, this change has also led
to a rapid increase in Abnormal Battery Drain (ABD) prob-
lems that can be caused by software defects or miscon-
figuration. Such issues can drain a fully-charged battery
within a couple of hours, and can potentially affect a sig-
nificant number of users.

This paper presents eDoctor, a practical tool that helps
regular users troubleshoot abnormal battery drain issues
on smartphones. eDoctor leverages the concept of exe-
cution phases to capture an app’s time-varying behavior,
which can then be used to identify an abnormal app. Based
on the result of a diagnosis, eDoctor suggests the most ap-
propriate repair solution to users. To evaluate eDoctor’s
effectiveness, we conducted both in-lab experiments and
a controlled user study with 31 participants and 17 real-
world ABD issues together with 4 injected issues in 19
apps. The experimental results show that eDoctor can suc-
cessfully diagnose 47 out of the 50 use cases while impos-
ing no more than 1.5% of power overhead.

1 Introduction

Smartphones have become pervasive. Canalys re-
ported [12] that 487.7 million smartphones were shipped
in 2011 — marking the first time that smartphone sales
overtook traditional personal computers (including desk-
tops, laptops and tablets).

Configured with more powerful hardware and more
complex software, smartphones consume much more en-
ergy compared to feature phones (low-end cell phones
with limited functionality). Unfortunately, due to limited
energy density and battery size, the improvement pace of
battery technology is much slower compared to Moore’s
Law in the silicon industry [40]. Thus, improving battery
utilization and extending battery life has become one of
the foremost challenges in the smartphone industry.

Fruitful work has been done to reduce energy consump-
tion on smartphones and other general mobile devices,
such as energy measurement [8, 13, 39, 46], modeling and

profiling [18, 36, 46, 52], energy efficient hardware [21,
30], operating systems [7, 10, 15, 29, 42, 49, 50, 51], lo-
cation services [14, 20, 26, 31], displays [5, 17] and net-
working [4, 6, 32, 41, 43]. Previous work has achieved
notable improvements in smartphone battery life, yet the
focus has primarily been on normal usage, i.e., where the
energy used is needed for normal operation.

In this work, we address an under-explored, yet emerg-
ing type of battery problem on smartphones – Abnormal
Battery Drain (ABD).

1.1 Abnormal Battery Drain Issues

ABD refers to abnormally fast draining of a smartphone’s
battery that is not caused by normal resource usage. From
a user’s point of view, the device previously had reason-
able battery life under typical usage, but at some point the
battery unexpectedly started to drain faster than usual. As
a result, whereas users might comfortably and reliably use
their phones for an entire day, with an ABD problem their
batteries might unexpectedly exhaust within hours.

ABD has become a real, emerging problem. When we
randomly sampled 213 real world battery issues from pop-
ular Android forums, we found that 92.4% of them were
revealed to be ABD, while only 7.6% were due to nor-
mal, heavier usage (Section 2). Further, rather than be-
ing isolated cases, many ABD incidents affected a signif-
icant number of users. For instance, the “Facebook for
Android” application (Table 1-a) had a bug that prevented
the phone from entering the sleep mode, thus draining the
battery in as rapidly as 2.5 hours. The estimated number of
its users was more than 12 million at that time [24], among
whom a large portion were likely to have been affected by
this “battery bug”.

The emerging pervasiveness of ABD issues is a collat-
eral consequence of an evolutionary change in the smart-
phone industry. In the last few years, a new ecosystem has
emerged among device manufacturers, system software ar-
chitects, application developers, and wireless service car-
riers. This paradigm shift includes three aspects:

(1) The number of third-party smartphone applications
(or “apps” for short) has grown tremendously (Google
Play: 600,000 apps and 20 billion downloads [47]; App
Store (iOS): 650,000 apps and 30 billion downloads [2]),
however, most app developers are not battery-cautious.
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ID Category App/System Root Cause Resolution

(a) App Bugs Facebook
The 1.3.0 release (Aug. 3rd, 2010) of this app contained a
bug that kept the phone awake.

Downgrade to the previous version.

(b) App Bugs Gallery
The user opened a corrupted picture file in “Gallery”, which
caused the “mediaserver” process to run into an abnormal
state and hog the processor.

Automatically terminate the “medi-
aserver” after the user uses the
“Gallery” app.

(c)
App
Config

WeatherBug
A configuration change made “WeatherBug” check locations
and update weather information more frequently. Heavier us-
age of GPS causes the battery to drain quickly.

Roll back the configuration changes to
less frequent updates.

(d)
App
Config

Android
Browser

The GPS was continually turned on because the browser
was trying to find the location of the user, as requested by
“google.com”.

Go to “google.com” and disable “Al-
low use of device location”.

(e)
System
Bugs

Android
System

A bug in the Wi-Fi device driver on Nexus One caused the
phone to repeatedly enter its suspend state and immediately
wake up, resulting in severe battery drain.

The driver developer has to modify
their code to fix the problem.

(f)
System
Config

Android
System

The user configured the CPU to run at an unnecessarily high
frequency.

Roll back the configuration change.

(g)
Environ-
ment

Android
System

The user’s office building contains several radiology devices,
which interfere with cell signals and thus make the phone
spend more power searching signals.

Turn on Airplane mode when the user
is in the office.

Table 1: Representative ABD examples collected from Android forums.

Smartphone apps used to be primarily made by device
manufacturers, with appropriate training and development
resources. In contrast, smartphone apps are now mostly
developed by third-party or individual developers. They
tend to focus limited resources on app features, on which
purchase decisions are often made, but put less effort on
energy conservation.

(2) The hardware/software configurations and external
environments of smartphones have become diverse, mak-
ing it difficult and expensive to test battery usage under
all circumstances. As a result, many battery-related soft-
ware bugs escape testing, even by professional software
teams, e.g., a bug in Android that affected certain Nexus
One phones, (Table 1-e), and a bug in iOS that caused
a coninuous loop when sychronizing recurring calendar
events [11].

(3) In addition to software defects (e.g., Table 1–a, b,
d and e), ABD issues can also be caused by configuration
changes (e.g., Table 1–c, f) or environmental conditions
(e.g., Table 1–g). In many of such cases, their root causes
are not obvious to ordinary users. Therefore, it would be
beneficial if the smartphone system itself could automati-
cally diagnose ABD issues for users.

1.2 Are Existing Tools Sufficient?

Existing energy profilers, such as Android’s “Battery Us-
age” utility, PowerTutor [52], and Eprof [36, 35], monitor
energy consumption on smartphones. While they provide
some level of assistance to developers or tech-savvy users
in troubleshooting ABD issues, they are insufficient for
broadly addressing ABD issues due to three main reasons:

(1) These tools cannot differentiate normal and abnor-

mal energy consumption. A high energy consuming app
does not necessarily cause ABD. To determine an app is
“normal” or “abnormal”, a user needs to know how much
battery the app is supposed to consume, which is difficult
for typical users, especially since an app’s battery usage
can fluctuate even with normal usage.

(2) The information provided by these tools requires
technical background to understand and take actions on.
Even for tech-savvy users, information form these tools
are not sufficient for identifying the ABD causing event
(e.g., an app upgrade). Knowing causing events is critical
for pinpointing the right root cause and determining the
best resolution.

(3) As mentioned in Section 1.1, sometimes an ABD is-
sue may be caused by the underlying OS, thereby affecting
all apps. In this case, these profiling tools may not be able
to shed much light on the root cause, much less be helpful
to identify a resolution to an ongoing ABD issue.

Apps like JuiceDefender [27] automatically make con-
figuration changes to extend battery life. They help pre-
serve energy during normal usage, but they cannot prevent
or troubleshoot ABD issues.

From a user’s point of view, a highly desirable solu-
tion is to have the smartphone itself troubleshoot ABD is-
sues and suggest solutions with minimum user interven-
tion. Besides helping end users, such systems can also
collect helpful clues for developers to easily debug their
software and fix ABD-related defects in their code.

1.3 Our Contribution

This paper presents eDoctor, a practical tool to help trou-
bleshoot ABD issues on smartphones. eDoctor records re-
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source usage and relevant events, and then uses this infor-
mation to diagnose ABD issues and suggest resolutions.
To be practical, eDoctor meets several objectives, includ-
ing (1) low monitoring overhead (including both perfor-
mance and battery usage), (2) high diagnosis accuracy and
(3) little human involvement.

To identify abnormal app behavior, eDoctor borrows
a concept called “phases” from previous work in the ar-
chitecture community for reducing hardware simulation
time [44, 45]. eDoctor uses phases to capture apps’ time-
varying behaviors. It then identifies suspicious apps that
have significant phase behavior changes. eDoctor also
records events such as app installation and upgrades, con-
figuration changes, etc. It uses this information in combi-
nation with anomaly detection to pinpoint the culprit app
and the causing event, as well as to suggest the best repair
solution.

To evaluate eDoctor, we conducted a controlled user
study and in-lab experiments: (1) User study: we so-
licited 31 Android device users with various configura-
tions and usage patterns. We installed eDoctor and pop-
ular Android apps with real-world ABD issues on their
own smartphones. eDoctor could successfully diagnose 47
out of 50 cases (94%). (2) In-lab experiments: we also
measured the overhead of eDoctor in terms of its energy
consumption, storage consumption and memory footprint.
The results show that eDoctor adds little memory over-
head, and only 1.24 mW of additional power drain (repre-
senting 1.5% of the baseline power draw of an idle phone).

2 Real-world Battery Drain Issues

To understand battery drain issues on smartphones, we
randomly sampled 213 real-world battery drain issues
from three major Android forums: AndroidCentral.com,
AndroidForums.com, and DroidForums.net. To effec-
tively sample the issues from the thousands of battery-
related discussion threads in each forum, we searched a set
of keywords including “battery”, “energy”, “drain”, and
their synonyms, and then randomly picked 213 issues that
were confirmed to be resolved. With the collected issues,
we studied their root cause categories, triggering events
and repair solutions found by users (e.g., removing an app
or adjusting configuration) to get guidelines for eDoctor’s
design.

2.1 Root Cause Categories

We studied the root cause categories and distribution of
the problematic components (Figure 1). We made the fol-
lowing observations.

(1) The majority (92.4%) of the sampled battery life
complaints by users are related to abnormal battery drain,
and only 7.6% are about heavy yet normal battery usage of

Normal Usage 7.6%

Environment
8.2%

Misconfiguration
23.4%

Bugs 53.8%

Others 7.0%

(a) by root cause

Hardware 3.2%

System
Software

39.9%
Apps 47.9%

Others 9.0%

(b) by component

Figure 1: Distribution of 213 real-world battery drain issues
that we randomly sampled. The meaning of Others in each
graph: (a) problems with uncommon root causes such as battery
indicator error; (b) other sources causing battery drains such as
environmental conditions.

some mobile apps. This breakdown indicates that (i) ABD
is an emergent and pervasive problem for smartphones,
and (ii) before trouble-shooting a battery issue, one may
first need to know whether it is indeed caused by some
abnormal problems or if it is simply due to heavy usage
of the device or a particular app. An energy profiler can
give the battery usage of each app, but cannot usually tell
whether the usage is normal or abnormal.

(2) Application issues cause 47.9% of all examined
cases. This observation supports our assertion that app
developers are not energy cautious. About three-quarters
of the app issues have been identified as app bugs and the
remaining are related to configuration. Besides app issues,
other factors such as bugs in the system (22.2%), con-
figuration changes (11.8%) and environmental conditions
(8.2%) can all lead to ABD issues. It would save a user
(even a tech-savvy user) time and effort if a tool can auto-
matically pinpoint the reason for ABD issues and suggest
a repair solution accordingly.

(3) Overusing or misusing certain types of resources
can cause ABD issues. Software bugs and misconfigura-
tion can result in misusing or overusing certain types of
resources, such as GPS, sensors, etc., leading to an ABD
problem. These situations imply that it is beneficial to
monitor and analyze usage on those resources. By doing
so, eDoctor can separate abnormal from normal battery
drains and also suggest detailed repair solutions directly
related those resources.

For many ABD issues, especially those caused by mis-
configuration and system bugs, it is difficult for an energy
profiler to diagnose. For example, enabling background
data transmission may result in high energy consumption
of certain apps that transfer data when running in the back-
ground. Profilers may list these apps as top energy con-
sumer, which mislead users to think they became abnor-
mal and thus remove them.
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Events Cases Appropriate Solution

App Installation 27 Remove app
App Upgrade 11 Revert to the previous version
System Upgrade 28 Wait for new update
Configuration change 15 Adjust configuration
Environmental change 12 Adjust configuration
Others 16 Others
Not remembered 104 -

Table 2: ABD-triggering events and the most appropriate
resolving solutions. “Not remembered” refers to the cases where
users do not remember what they have done that could possibly
cause ABD issues.

2.2 Triggering Events and Resolutions

In general, ABD issues happen only after certain events,
e.g., installing a buggy app, upgrading an existing app
to a buggy version, changing configurations to be more
energy-consuming, entering a weak signal area, etc.
Therefore, knowing such triggering events is critical for
suggesting appropriate repair solutions to users, as shown
in Table 2.

Interestingly, however, in more than 48% of the 213
ABD issues, users did not remember what they had done
previously or what could be the possible ABD-triggering
event. In such cases, manually diagnosing and resolving
the issue becomes difficult. Simply removing a suspicious
app, probably the one reported by energy profiling tools as
a high energy consumer, is not always the most appropri-
ate solution; it can be either overkill or even incorrect.

3 Execution Phases in Smartphone Apps

To identify the problematic app or system for an ABD
issue, it is critical to differentiate abnormal from normal
battery usage. It is natural to immediately focus on the
app that is the top battery consumer as reported by an en-
ergy profiler. Unfortunately, as shown in Figure 2 from
a real case, such approach does not always work because
an app’s rank in the battery consumption report can fluc-
tuate over time. The challenge is that there is no clear dif-
ference between normal and abnormal periods. Thus, en-
ergy profiles and rank are not reliable indicators for trou-
bleshooting ABD issues. Additionally, Figure 2 shows
that changes in battery consumption or rank of an app
are also not accurate indicators for abnormal behaviors for
similar reasons.

To identify abnormal app behaviors, eDoctor borrows
a concept called “phases” from previous work for reduc-
ing hardware simulation time [16, 19, 23, 28, 38, 44, 45].
The previous work has shown that programs execute as a
series of phases, where each phase is very different from
the others while still having a fairly homogeneous behav-
ior between different execution intervals within the same

 

Figure 2: Battery consumption rank of the Android Gallery
app running on a real user’s phone. We recorded the battery
consumption rank of this app reported by the Android “Battery
Usage” utility, once every hour. The first 15 hours is the time
period when the app does not have the battery bug, whereas the
second 15 hours is the period when the bug manifested.

phase. Hardware researchers simulate those representative
phases to evaluate their design instead of the entire execu-
tion [45].

Phase Identification. Inspired by the previous work,
eDoctor uses phases to capture an app’s behavior in terms
of resource usage. The execution of an app is divided into
execution intervals, which are then grouped into phases.
Intervals in the same phase share similar resource usage
patterns. When an app starts to consume energy in an
abnormal way, its behavior usually manifests as new ma-
jor phases that do not appear during normal execution.
Combining such phase information together with relevant
events, such as a configuration change, eDoctor can iden-
tify both the culprit app and triggering event with high ac-
curacy.

Prior hardware simulation work studied architecture re-
lated behaviors (e.g., cache miss ratio), so they captured
phases based on instruction-level information, such as ba-
sic block vector (BBV). However, such fine-grained in-
formation is not suitable for identifying resource usage
phases because it does not directly correlate to resource
usage. Smartphone apps are different from most desktop
or server applications — they are usually relatively sim-
ple and not computationally intensive, but rather I/O in-
tensive, interacting with multiple resources (devices) such
as the display, GPS, various sensors, Wi-Fi, etc. These re-
sources are energy consuming, so mis-using or over-using
these resources leads to ABD issues. Therefore, we can
identify phases by observing how these resources are used
by an app during different execution intervals.

Our first approach starts from a fairly coarse-grain level
by recording only resource types used during each execu-
tion interval. We refer to this method as Resource Type
Vector (RTV). It is based on a simple rationale that differ-
ent execution phases use different resources. For example,
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an email client app uses the network when it receives or
sends emails. But when the user is composing an email,
it uses the processor and display. The RTV scheme uses a
bit vector to capture what resources are used in an execu-
tion interval. Each bit indicates whether a certain resource
type is used in this interval. If two intervals have the same
RTV, they belong to the same phase.

As shown in Figure 3(a) with data collected from the
Facebook app used in a real user’s smartphone, RTV
clearly shows some patterns and phase behaviors: during
different phases, different types of resources are used, and
phases appear multiple times during different intervals. As
the figure shows, the most frequent phase is that only the
CPU is running. In this phase, most of the time the app
is idle. The second most frequent phase has both CPU
and network active, which indicates the app transfers and
processes data.

(a) Phase pattern based on RTV

(b) Phase pattern based on RUV

Figure 3: The phase behavior of the Facebook App in a real
user’s smartphone. In the top part of both figures, the shaded
bars indicate which phase the app is in. In the bottom part of
figure (a), shaded bars indicate the resource is in use. In the bot-
tom part of figure (b), the curves indicate the amount of resource
usage.

Although the RTV scheme is simple, it turns out to be
too coarse-grained. An app may use the same types of re-
sources in two different phases, but their resource usage
rates differ. For example, for an email app, while both
the email updating phase and email reading phase use the
display, CPU and network, the resource usage rates are

different. The former typically has more network traffic.
Therefore, we explored a second scheme — Resource Us-
age Vector (RUV). Each element in a RUV is the amount
of usage of the corresponding resource.

We calculate the usage of a resource by the amount of
the resource normalized by the CPU time. The execution
interval cannot be too small in order to control the mea-
surement overhead, so an app may run for only a frac-
tion of one execution interval. In that case, absolute us-
age numbers cannot precisely represent the usage behav-
ior. CPU time is a good approximation of the amount of
time an app actually runs. Normalizing to CPU time al-
lows us to correlate two intervals that belong to the same
phase, even if the app runs for different amounts of time
in each interval.

If two execution intervals have similar RUVs, they be-
long to the same phase. Similar to previous work [45], we
use the k-means algorithm to cluster intervals into phases.
To find the most suitable k (i.e., the number of clusters to
generate), eDoctor tries different k from 1 to 10 at runtime.
For each k, we evaluate the quality of the clusters by cal-
culating the average inter-cluster distance divided by the
average intra-cluster distance as a score. The higher the
score is, the better the clusters fit the data. Since the best
k is likely to be the largest k it tries, we pick the smallest
k whose score is as high as the 90% of the best score.

Figure 3(b) shows the RUV phase behavior using the
same data. As it shows, RUV captures one more phase
compared to the phases divided by RTV, enabling eDoctor
to further differentiate between low and high network us-
age. More specifically, phase #3 and phase #4 both have
usage of CPU, wakelock and network, but phase #4 has
higher network usage. It provides more fine-grained infor-
mation regarding an application’s phase behavior.

4 eDoctor: Design and Implementation

The objective of eDoctor is to help users diagnose and re-
solve battery drain issues. Even though the information of-
fered by eDoctor can also be used for app developers, our
goal is to help users troubleshoot and/or bypass ABD is-
sues before developers fix their code which as shown may
take months. Therefore, instead of locating root causes
in source code, eDoctor’s diagnosis focuses on identifying
(1) which app causes an ABD issue and (2) which event is
responsible, e.g., the user updated an app to a buggy ver-
sion or made an improper configuration change. Based on
such diagnosis result, eDoctor then suggests appropriate
repair solutions.

There are two major challenges involved in achieving
these objectives. First, it is non-trivial to accurately pin-
point which app and event accounts for the ABD issue.
The causing event may not be the most recent one; in-
stead, it can be followed by many other irrelevant events,
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e.g., the case where the user installed a buggy app and then
made multiple configuration changes. Second, eDoctor it-
self should not incur high battery overhead. It needs to
balance the energy overhead and the amount of informa-
tion needed for accurate diagnosis.

This section presents our design of eDoctor. As an
overview, eDoctor consists of four major components: In-
formation Collector, Data Analyzer, Diagnosis Engine,
and Repair Advisor. The Information Collector runs as
a light weight service to collect resource usage and event
logs. The Data Analyzer performs phase analysis (Sec-
tion 3) on the raw data and stores intermediate results to
facilitate future diagnosis. Off-line analysis is done only
when the phone is idle and connected to external power, in
order to avoid affecting normal usage. When users notice
ABD, they initiate the Diagnosis Engine to find the culprit
app and the causing event. Based on the diagnosis result,
the Repair Advisor provides the most relevant repair sug-
gestions.

eDoctor can be installed as a standalone app. It runs on
most Android phones and it is compatible with all Android
versions since 2.1. A modified Android ROM is optional
to track app-specific configuration changes.

4.1 Information Collector

The Information Collector records three main types of data
in the background: (1) each app’s resource usage, (2) each
app’s energy consumption, and (3) relevant events such as
app installation, configuration, and updates.

Resource usage. eDoctor monitors the following re-
sources for each app: CPU, GPS, sensors (e.g., accelerom-
eter and compass), wakelock (a resource that apps hold to
keep the device on), audio, Wi-Fi, and network. To facili-
tate diagnosis, eDoctor records resource usage in relatively
small time periods (called recording interval). The default
recording interval is five minutes in our implementation.

What resource usage information to store depends on
the phase identification method (Section 3). RTV uses a
bit vector to record whether the resources have been used
in each recording interval. RUV, on the other hand, records
the usage amount of each individual resource, e.g., time in
microseconds, amount of network data in bytes.

In our implementation, eDoctor takes advantage of the
resource usage tracking mechanism in the Android frame-
work. This mechanism keeps a set of data structures in
memory to track resource usage of each app. The resource
usage data are maintained for each individual app, even if
multiple apps run during the same recording interval. The
values recorded are accumulated amounts since the last
time the phone was unplugged from its charger. At the
end of each recording interval, eDoctor reads these val-
ues and calculates the resource usage amounts in the past
recording interval. Figure 4 shows a simplified example of

a resource usage table for an app.
Some resources can be simultaneously accessed by mul-

tiple apps without consuming extra energy. For example,
once a GPS unit is turned on, it gathers location examples,
and it does not consume extra energy if more than one
app requests those examples. eDoctor performs coarse-
grained accounting of such resources; so if N apps ac-
cess such a resource for overlapped T time units, each app
is charged for T time units of resource utilization. Fine-
grained energy profilers like Eprof [35] use a proportional
accounting scheme, such that each app would only be
charged for T/N units of resource utilization. eDoctor’s
uses the coarse-grained schema because its goal is to track
app-specific energy patterns, not overall energy fluctua-
tions of the whole system.

Energy consumption. In addition to resource usage,
eDoctor also records battery consumption of each app in
each recording interval. Energy consumption is used for
two main purposes: (1) to prune apps with small energy
footprints, which are unlikely a cause for ABD, and (2)
to rank suspicious apps according to the consumed energy
of each app. As we use the battery consumption infor-
mation only for such comparative purposes, it is less crit-
ical to have high fidelity measurement. Further, simple
models provide superior performance benefits that are es-
sential to reduce overhead of eDoctor, because it doesn’t
have to track fine-grained information such as energy
state switches. Therefore, we employ an efficient profile-
based energy model instead of expensive state-based en-
ergy models [46, 52].

Each Android device comes with data about power con-
sumption of various hardware components measured by
the manufacture, e.g., the average power consumption of
the processor running at different frequencies and the av-
erage power consumption of the Wi-Fi device being idle or
sending data. eDoctor combines this average power con-
sumption data by the usage data it collects to estimate the
total energy consumption of an app during each recording
interval. This energy model has been used in both industry
(e.g., Android’s “Battery Usage” utility [1]) and academic
research (e.g., ECOSystem [51]).

Events. Events are critical for both diagnosis and re-
pair advisory. eDoctor records two types of events:
(1) configuration changes, and (2) maintenance events
(installation, updates). Such events may be initiated
not only by the users, but also by the underlying sys-
tem automatically. App and system configuration en-
tries and their new values are recorded as key-value
pairs. Since most apps use Android’s facility components
(e.g., SharedPreferences) to manage configurations,
we track app configurations by modifying these common
components. SharedPreferences is a general frame-
work that allows developers to save and retrieve persis-
tent key-value pairs of primitive data types, which is suit-
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able for managing user preferences. We modified the im-
plementation of the SharedPreferences.Editor inter-
face to let it send a broadcast message to eDoctor when-
ever a preference entry is changed. Each message contains
the name of the app, the preference file name, the prefer-
ence key name and its new value. These messages are
identified with a special key and only eDoctor can receive
them, so they are effectively unicast messages to eDoctor.
One drawback of this approach is that if the developers
implement their own mechanisms to manage preferences,
eDoctor cannot track the changes. This is rare, however.

For system-wide configurations, eDoctor records
changes that may affect battery usage, including chang-
ing CPU frequency, changing display brightness, chang-
ing display timeout, toggling Bluetooth connection, tog-
gling GPS receiver, changing network type (2G/3G/4G),
toggling Wi-Fi connection, toggling Airplane mode
(which turns off wireless communications), toggling
the background data setting, upgrading the system,
and switching firmware. eDoctor records these events
by capturing broadcast messages by the Android sys-
tem. For example, when the Wi-Fi connection sta-
tus changes, the system sends a broadcast message,
WIFI STATE CHANGED ACTION.

To protect user privacy, eDoctor stores the above infor-
mation in its app-specific storage that other apps cannot
access. In addition, it does not transfer the information
outside of the phone; all analysis is done locally.

4.2 Data Analyzer

eDoctor’s Data Analyzer is responsible for parsing all re-
source usage data collected by Information Collector, gen-
erating phase information (Section 3) for each app, and
storing it in a per-app phase table. Since such phase anal-
ysis incurs overhead, it is only performed when the phone
is being charged and the user is not interacting with the
phone.

Every time when invoked, the Data Analyzer processes
all the analysis intervals that haven’t been analyzed. In our
implementation, an analysis interval is one charging cycle,
i.e., the time period between two phone charges. For each
analysis interval, eDoctor identifies execution phases by
using either RTV or RUV as explained in Section 3. To
reduce noise and speed up diagnosis, it only records ma-
jor phases – phases that account for more than 5% of the
app’s total execution time during the last analysis interval.
Phases that appear occasionally are likely to be noise.

Each entry in a phase table represents a major phase.
Each major phase is identified by a unique phase signature.
We use phase signatures to determine which phase a given
new resource vector belongs to. For RTV, we use the RTV
vector directly as the phase signature; for RUV, we use the
center and the radius of the corresponding cluster as the
phase signature (refer to Section 3).

For each major phase, the Data Analyzer keeps track of
its birth timestamp, and its number of appearances and en-
ergy consumption during each analysis interval. The birth
timestamp helps diagnosis by indicating how recently a
suspicious phase is first observed. The Diagnosis Engine
also uses this information to correlate suspicious phases
with triggering events (Section 4.3). For the last two vari-
ables (appearance count and energy consumed), only the
most recent K intervals of data are maintained. Clearly, a
large K allows for detection of issues that are introduced
earlier, but it incurs larger storage and computing over-
head and potential mis-diagnosis. We find K = 7 (about
one week in time) strikes a good balance in the trade-off.

Figure 4 illustrates a simplified version of phase analy-
sis. Based on k-means clustering computation (Section 3),
entries with timestamp 5, 10 and 25 belong to the same
phase (Phase #1 in the Phase Table below), because they
have similar normalized usage patterns even though the
absolute values of their entries differ largely. In addition,
the entries at time 15 and 20 belong to the same phase
(Phase #2), as the app only uses CPU for data processing
(in this simplified example, we assume the values in the
other columns for other resources are all zero). The en-
try at time 30 indicates that the app is not running, so it is
not inserted in the Phase Table. The last entry at time 35
is another new phase (Phase #3) where only wakelock is
held for a long time but the app does not use much other
resources. It is the typical symptom when the developer
forgets to release wakelock.

   




   
   
   

   

















 
 
 


 

 
 
 











   
   











    
    















Figure 4: Phase analysis illustration. The resource usage table
shows seven resource usage records collected by using the RUV
method (before normalizing to CPU time).
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4.3 Diagnosis Engine

When users notice ABD issues, they invoke eDoctor’s Di-
agnosis Engine, which pinpoints the culprit app and the
causing event. It analyzes historical phase tables (calcu-
lated by the Data Analyzer, Section 4.2) and event records
(collected by the Information Collector, Section 4.1), and
correlating them to identify the culprits.

Identifying the culprit app and the causing event is not
trivial. As demonstrated in Section 3, energy profile and
rank are not reliable indicators for diagnosing ABD issues.
Some ABD issues are caused by intensive consumption of
certain resources, e.g., GPS or the processor. However,
the mere fact that a resource is used for a long time does
not necessarily indicate abnormal behavior — an app may
simply be designed to run for a long time. In addition, con-
sidering only recent resource usage is insufficient, since
historical baseline data is needed to identify abnormal be-
havior.

eDoctor’s approach is based on a key observation: most
ABD issues involve a new, energy-heavy execution phase
emerging in a particular app. For example, in the Face-
book bug mentioned in Section 1, a new such phase is
characterized by the wakelock being held for a long time
while other resources are used little in the meantime. This
phase rarely exhibited before the buggy upgrade. We re-
fer to such a phase as a suspicious new phase (SN-Phase),
and any app that contains an SN-Phase as a suspicious app.
The diagnosis process has two major steps: (1) identifying
suspicious apps, and then (2) identifying suspicious caus-
ing events.

Step 1: Identifying suspicious apps. eDoctor first prunes
out apps that consume low energy, because they are un-
likely the root cause of noticeable ABD. We only consider
the top apps that, combined, consumed 90% of the en-
ergy. eDoctor then checks whether there is any recent SN-
Phase. Determining whether a phase is energy-heavy or
not is straightforward (e.g., by computing its energy con-
sumption percentile in the app). But how to define new?
Users may not start diagnosis immediately after an ABD
issue happens. In other words, ABD may start well be-
fore the moment of diagnosis. In consideration of this,
Diagnosis Engine uses a progressive strategy to search for
suspicious apps as follows.

Recall that within an app, each major phase’s informa-
tion is recorded for the K most recent analysis intervals
(i.e., charging cycles), which we notate as τ1, τ2, ..., τK ,
where τ1 is the most recent interval and τK is the oldest
interval. The Diagnosis Engine first assumes that the no-
ticed ABD originally happened in τ1. It thus treats those
phases with birth timestamps falling in τ2 to τK as nor-
mal ones where no ABD occurred. It then checks if τ1 has
any new energy-heavy phase appearing compared to the
previous K − 1 intervals. If it does not find any, it then

assumes the ABD started in τ2 (and may continue in τ1),
thus it checks whether any SN-Phase exists in the most
recent two intervals, τ1 and τ2, compared to the previous
K − 2 intervals. The process goes on until it finally iden-
tifies an SN-Phase or it has exhausted all collected data in
the phase table. For apps that are recently installed, they
may not have much information in previous intervals. In
such cases, any phase that consumes a high level of energy
in recent analysis intervals is still considered to be an SN-
Phase (when there is no previous intervals to compare). As
mentioned before, all apps that contain SN-Phases are then
regarded as suspicious apps. Based on our extensive em-
pirical experiments (Section 5), there are usually at most
2–3 suspects after this step.

eDoctor keeps a week of historical data for each app,
for two main reasons. First, if a new phase appears but
the user has been using the app for a week without ob-
serving battery issues, that new phase is likely to be legit-
imate. Second, storing less data helps control the storage
overhead and computation time of the data analysis (Sec-
tion 4.2).

Step 2: Identifying suspicious causing events. For
each suspicious app, the event that immediately precedes
its SN-Phase is considered the most suspicious in caus-
ing the ABD. The Diagnosis Engine finds it by comparing
the timestamp of the SN-Phase and the timestamps in the
event logs.

Finally, the Diagnosis Engine ranks all suspicious apps
based on the total energy consumed in their SN-Phase(s).
For user convenience, eDoctor reports only the top ranked
suspicious app and causing event for repair advisor. Cer-
tainly, it could also report all suspicious apps to experi-
enced users if necessary.

4.4 Repair Advisor

In addition to providing a diagnosis report about the suspi-
cious apps and causing events, eDoctor also suggests the
most suitable repair solutions based on the symptom and
causing events.
Uninstalling or reverting a problematic app to a pre-
vious version. If a recent update contains an ABD issue,
eDoctor suggests to revert the problematic app back to the
previous version or uninstall the app. Unfortunately, An-
droid does not allow reverting apps directly. A tech-savvy
user can revert an app with command line tools if a pre-
vious version is accessible. A better solution is to revert
apps automatically by backing up prior installation pack-
ages. When Android installs an app, it stores the installa-
tion package on the phone temporarily, but it keeps only
the last installed version of the package. If we back up
prior versions, we can allow users to install prior versions.
eDoctor has implemented a prototype and proved the fea-
sibility of this approach.
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Terminating apps after use. If the user wants to keep
using the problematic version of the culprit app, eDoctor
suggests temporary repair solutions in certain scenarios.
One of the most common symptoms of energy bugs is that
an app continues to consume resources even after the user
stops using the app. In this case, eDoctor suggests users to
manually terminate the problematic app every time after
closing it, so it will not run in the background. As this
can be troublesome, a better solution is to have eDoctor
automatically terminate the problematic app.
Reverting configuration changes. If a recent configura-
tion change causes an ABD issue, eDoctor presents users
the identified configuration entry, together with its current
and old values. It relies on the user to revert the config-
uration back to the old setting. User-level apps do not
have permission to directly change configuration values.
However, if implemented in the Android framework, it is
possible to automatically fix configuration issues.

We leave the implementation and evaluation of auto-
matic repair to future work.

5 Evaluation

To assess the effectiveness and performance overhead of
eDoctor, we used real-world ABD issues to conduct both
in-lab experiments and a controlled user study.

5.1 Effectiveness (User Study)

We wanted to evaluate eDoctor on real user phones, where
ABD issues were mixed with normal usage of phones and
apps. Thus, we recruited 31 Android users via campus-
wide mailing lists in two major universities - University
of California at San Diego (USA) and Peking University
(China). These users had 26 different devices with 11 dif-
ferent Android versions and various configurations and us-
age patterns.

A real user study would ask participants to troubleshoot
naturally occurring ABD issues. However, such a study
might take several months and require a large number of
participants to generate sufficient data points. Thus, we
conducted a more controlled experiment. We emulated
real-world scenarios where a user performed an ABD-
triggering event (e.g., installing a buggy app or miscon-
figuring a setting), used the phone for some time, noticed
rapid battery drain, and then started diagnosis. The whole
study took 7–10 days for each participant.

ABD issues were hard to reproduce due to their depen-
dency on specific versions of hardware and software. We
finally reproduced 17 real-world ABD issues. We also
generated 4 synthetic issues by modifying open-source
Android apps (Table 3). We selected only popular apps
that had a significant number of users; these apps also had
heterogeneous patterns of user interactivity and resource

utilization. Thus, we believe that our user study provides
a relatively diverse and realistic sample.

For ABD issues caused by software bugs, we prepared
two versions of a target app: one with a real-world ABD
issue and the other without (i.e., either already fixed or not
yet defective). We took similar steps with ABD-triggering
configuration changes. Next, we randomly assigned each
ABD issue from Table 3 to 1–5 participants, giving us 50
cases in total. In each case, we asked the user to follow
three steps: (1) Use the given app (normal version) for at
least 5 days. Meanwhile, participants should use their own
apps as usual. (2) Switch the app to the defective version,
or change the configuration to the incorrect one. To make
it easy for participants to do this, we designed custom soft-
ware that performed the switch with a single click. (3) Use
the defective app until ABD is apparent, and then invoke
eDoctor to diagnose the problem. In total, we collected
6,274 hours of real-world resource usage data. We used
this data to evaluate eDoctor’s diagnostic effectiveness, as
well as its energy, storage, and memory overhead.

5.1.1 Diagnosis Result

Figure 5 shows eDoctor’s effectiveness. Overall, eDoctor
with RUV accurately diagnosed 47 of the 50 cases (94%
accuracy). eDoctor misdiagnosed three cases. These three
ABD issues were experienced by multiple users. eDoctor
misdiagnosed these issues for some participants, but suc-
cessfully diagnosed the issues for other users.

Figure 5: Diagnosis results. “Overall Case” shows the diag-
nosed cases among all 50 ABD cases. “Resource Overuse” and
“Other” show breakdown of two types of ABD cases.

There were two reasons for misdiagnosis. First, some
ABD issues occurred without an obvious change in the
app’s phase behavior. For example, at initialization time,
one user configured the “Weather Bug” app to frequently
update its weather data. High-frequency updates cause
ABD, but for this user, the “Weather Bug” app started in
the ABD state, so eDoctor could not detect anomalies in
the app’s behavior after the user upgraded to the defective
version. eDoctor misdiagnosed ABD with the “K9Mail”
app for a similar reason.

eDoctor can also misdiagnose ABD if it lacks sufficient
longitudinal data for an ABD-causing app. For exam-
ple, one user ran the non-buggy version of the “Vanilla
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App Name Category Description Downloads Issue Type Issue Description

Anki-Android Education A flash card app 100K+
Bug Resource overuse (Accelerometer)
Config Frequent widget refreshing

BostonBusMap Travel Bus tracking in Boston 50K+
Bug Resource overuse (GPS)
Config Enable continuous updates

Cool Reader∗ Book An eBook reader 1M+ Bug Resource overuse (Wakelock)
Eyes-Free Shell Tools Eyes free access to apps 10K+ Bug Resource overuse (GPS)
Facebook Social Official Facebook app 100M+ Bug Resource overuse (Wakelock)
Gallery Media A 3D gallery app built-in Bug Resource overuse (Accelerometer)
K9Mail Communication An popular email client 1M+ Bug Too many trials
Marine Compass Tools A compass app 100K+ Bug Resource overuse (Magnetic field sensor)
MyTracks Health Route tracking 5M+ Bug Resource overuse (Wakelock and GPS)
Nice Compass Tools A compass app 1K+ Bug Resource overuse (Magnetic field sensor)
NPR News∗ News NPR News client 1M+ Bug Resource overuse (GPS)

OpenGPS Tracker Travel Route tracking 100K+
Bug Resource overuse (GPS)
Config GPS precision

OpenStreetMap Productivity OpenStreetMap viewer 5K+ Bug Resource overuse (GPS)
Replica Island∗ Game An Android game 1M+ Bug Resource overuse (Orientation sensor)
Standup Timer Productivity A timer app 1K+ Bug Resource overuse (Orientation sensor)
Talking Dialer Communication A dialer app 50K+ Bug Resource overuse (Accelerometer)
Vanilla∗ Music A music player 50K+ Bug Resource overuse (Wakelock)
Weather Bug Weather A weather reporter 10M+ Config Frequent update
WHERE Travel Location discovery 1M+ Bug Resource overuse (GPS)

Table 3: Apps and ABD issues used in our experiments. The numbers in the “Downloads” column indicate the number of app
downloads from Google Play, as of May 2012. To save space, we use “K” to present 1,000 and “M” for 1,000,000. “Built-in” means
this app is bundled with some phones. To cover a wider spectrum of resources and usage patterns, we injected four real-world ABD
bugs into apps in popular categories. They are marked with the “∗” symbol. “Resource overuse” indicates a bug that uses a resource
for longer than necessary, e.g., the developer forgets to release a resource after using it or holds a resource for too long.

Player” app for a short amount of time. During this short
time period, the app displayed behaviors that resembled a
wakelock leak (this might have occurred because the user
frequently paused the player). The user soon updated to
the defective version of the player that did have a wake-
lock leak. However, eDoctor did not detect a new phase,
and thus could not flag the application as suspicious. If
eDoctor is deployed to a large number of users, it can learn
an apps phases using many different instances of that app.
eDoctor could then leverage this large data set to identify
even “early onset” ABD issues.

eDoctor is meant to be used as a diagnosis tool instead
of a detection tool. When the user observes a battery drain
and invokes eDoctor, it reports the app that is most likely
to be the root cause. So we focused the evaluation on cor-
rect diagnosis vs. misdiagnosis instead of true positives
vs. false positives.

RTV vs. RUV. As expected, RUV is more accurate than
RTV; the former had an accuracy of 94%, but the latter
only diagnosed 72% of cases correctly. RUV captures
phase characteristics better than RTV, and can detect ab-
normal phases that use the same resources as their nor-
mal counterparts but in abnormal amounts. We also broke
down the 50 cases into two high-level categories: resource
overuse and other cases. RUV performs better than RTV
in both categories. Interestingly, RTV is better at resource
overuse (80.5%) than others (33.3%). The reason is that
resource overuse often involve an app intensively using

only one type of resource.

Figure 6: Energy consumption rank of the culprit app. The
number at the top indicates the number of ABD cases, e.g., in 21
cases the rank is equal to or greater than 4.

Is the culprit app always the biggest energy consumer?
As discussed in Section 1.2, one may wonder if existing
energy profilers can detect ABD simply by identifying the
top energy-consuming apps. Our data explains why this
will not work. As illustrated in Figure 6, only 32% (16)
of the cases have a culprit app that ranked #1 in energy
use. In almost half (21) of the cases, the rank of the cul-
prit app was greater than three. In these cases, the apps
with ABD drained a significant amount of energy; how-
ever, other healthy, concurrently running apps also drew
large amounts of energy (or the user noticed the ABD
before the faulty app could waste a lot of energy). This
demonstrates why existing profiling tools are insufficient
for diagnosing many types of ABD. In addition, users may
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be confused by the top-ranked but healthy apps and make
wrong decisions to uninstall them or stop using them.

How many apps were monitored and how many events
happened? As Figure 7 (a) shows, for at least 60% of
the users, more than 120 apps are installed. The app
counts include pre-installed apps and services that users
were not even aware of. We also found that many energy-
related events happened on the phone during the user study
time period (7–10 days). As Figure 7 (b) shows, 60% of
the users had at least 50 events taking place. As shown,
eDoctor could diagnose culprits among all these events
and monitored apps with high accuracy.

(a) (b)

Figure 7: Distribution of the number of apps and events.

5.1.2 Phase Distribution

To further understand the phase behavior of smartphone
apps, we also examined how many normal phases smart-
phone apps may have. Figure 8 shows the cumulative dis-
tribution of all 1,890 apps that we monitored during the
user study. The most important observation is that, dur-
ing normal execution, most apps have a small number of
major phases. For example, if using RTV (i.e., identify-
ing phases based on resource type), about 80% of the apps
have only 1 major phase in normal use and another 13%
have only 2. If using RUV (i.e., considering resource us-
age amount), apps have more major phases, but 80% of the
apps have at most 4 different phases. Section 3 described
how eDoctor normalizes RUV with respect to CPU time.
Figure 8 depicts the number of phases detected with and
without normalization. As shown, normalization reduces
the number of phases. After normalizing, nearly 75% of
apps have only 1 normal phase.

5.2 Overhead

eDoctor’s Information Collector periodically runs in the
background (by default, once every 5 minutes). In this sec-
tion, we describe eDoctor’s overhead in terms of energy,
storage, and memory.

Battery consumption overhead. We directly measured
eDoctor’s battery consumption on the Nexus One phone.
We used a National Instruments NI USB-6210 DAQ to
measure the voltage and current on the battery and calcu-
late the power consumption of the entire device. As shown

Figure 8: The cumulative distribution of number of phases
across 1,890 apps we monitored on real user phones during
the user study. We only consider the major phases that account
for 80% of the total execution time.

in Figure 9, eDoctor added only 1.5% power overhead to
an idle Nexus One (82.5mW) which had no user interac-
tion but only ran built-in system software with Wi-Fi and
radio signal enabled. eDoctor’s energy overhead should be
even lower—normal user activity will wake the phone up,
allowing eDoctor to “piggyback” on this energy usage and
collect resource statistics in the background. eDoctor’s re-
source collection also has low overhead because eDoctor
leverages Android’s preexisting infrastructure for persis-
tent resource tracking.

Figure 9: eDoctor’s battery consumption overhead for data
collection. Baseline (the first three bars): idle Nexus One phone
with Wi-Fi and radio signal enabled. eDoctor collects all 60 ac-
tive apps’ resource usage on this phone (the fourth bar).

Storage overhead. eDoctor uses storage to collect re-
source utilization data and phase statistics. We measured
this storage overhead by running a phone with eDoctor in-
stalled for 24 hours. eDoctor’s overhead increases with
the number of apps, so we ran experiments with 100, 125,
and 150 installed apps. Table 4 shows that eDoctor con-
sumed at most 3.2 MB per day. By default, eDoctor tracks
one week of information; thus, eDoctor requires at most
22.4 MB of total storage. The storage overhead is even
smaller in reality, because eDoctor does not store resource
data if an app is not running. This is an acceptable over-
head, since modern smartphones contain several gigabytes
of storage space.
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Number of Apps 100 125 150

Data size (24 hours) 1915 KB 2419 KB 2884 KB
Phase information 216 KB 270 KB 324 KB
Total 2131 KB 2689 KB 3208 KB

Table 4: Storage used by eDoctor

Memory Overhead. We used TrepnTM Profiler [3] to
measure eDoctor’s memory overhead. eDoctor’s mem-
ory footprint was only 23.3 – 25.2MB. Memory utiliza-
tion was stable over time because eDoctor only buffers a
small amount of data and periodically stores the data to
persistent storage.

6 Limitations and Discussions

When does eDoctor struggle? eDoctor has poor accu-
racy if the phases related to ABD were also common be-
fore the ABD began. This might happen if an application
was initially started in a broken state (see Section 5.1.1).
eDoctor’s diagnostic accuracy will also suffer if a user
simultaneously installs or reconfigures two apps, one of
which is normal but energy-hungry, and another which
has an ABD bug. In this scenario, eDoctor will regard
both apps as suspect; since eDoctor only reports the high-
est ranked app, misdiagnosis may result. Such a situation
did not arise during our user study, but finding automatic
resolutions for such problems is an area for future work.
Finally, misdiagnosis might also occur if the causal event
occurred so long ago that it no longer resides in eDoctor’s
historical data.

Alternative approaches? While eDoctor leverages phase
behavior to identify abnormal apps, but there are alter-
native approaches. For example, using signal process-
ing techniques, one could detect abnormal energy con-
sumption in the same way that network intrusion detec-
tors identify traffic flows [9]. However, such techniques
often have many false positives. One could also use dy-
namic bug detectors to identify code paths that may lead
to ABD [22][33]. However, they introduce significant
overhead because of the run-time instrumentation, which
makes it hard to deploy directly to users’ smartphones. In
addition, they only work for ABD issues caused by al-
ready known bug patterns. In comparison, eDoctor is light
weight and it can diagnose ABD issues caused by various
types of misconfiguration, bugs and so on.

Is eDoctor limited to Android? Although we imple-
mented eDoctor on Android, its approach is not limited to
any particular platform. We chose Android because of its
openness—we could record resource usage without users
having to jailbreak their phones. We could also modify the
platform to track app-specific configuration changes.

7 Related Work

Energy consumption modeling and measurement.
Carroll et al. [13] measured power consumption of com-
ponents in modern smartphones. Thiagarajan et al. [48]
measured energy used by mobile browsers. Shye et al. [46]
studied how user activities affect battery consumption, and
derived a linear regression based power model. Zhang et
al. [52] presented a power model based on system vari-
ables, e.g., the processor’s frequency, the amount of data
received through the network, and the display brightness.
Recently, Pathak et al. [35, 36] proposed “Eprof”, a tool
that performs fine-grained energy profiling by tracing sys-
tem calls. eDoctor leverages Android’s internal energy us-
age tracker; this tracker has less overhead, but it is suf-
ficiently accurate for eDoctor to effectively rank applica-
tions by their energy usage.

Malware detection by monitoring energy usage. Kim
et al. [25] detects malware that causes sudden battery
drain as a side-effect. Similar to malware detection for
desktops/laptops, this work detects “known” battery-drain
malware by comparing the power signature of each appli-
cation in a smartphone with those known signatures stored
in a malware database. eDoctor focuses on diagnosing
battery-drain caused by unknown software bugs or config-
uration changes that may happen to any smartphone apps.

Energy-efficient smartphone design. Prior work cov-
ers a wide spectrum of system design: processors (Green-
Droid [21]), resource management (ECOSystem [51],
Cinder [42]), file systems (quFiles [49]), page allocation
([29]), I/O interfaces (Co-op I/O [50]), display ([5]), wire-
less networking (PGTP [4], STPM [6], SleepWell [32],
SALSA [41], Bartendr [43]), and high level services (En-
Loc [14], Micro-blog [20], EnTracked [26], A-loc [31]).
These efforts focus on reducing energy usage in normal
circumstances. In comparison, eDoctor troubleshoots ab-
normal battery drain.

Abnormal battery drain studies. Pathak et al. [34] con-
ducted a study on battery issues on Android. Their results
also show that ABD is an emerging problem. Recently,
Pathak et al. [37] studied energy bugs in smartphone apps.
They found many bugs are caused by failing to release
resources and thus preventing a phone from switching to
sleep mode (called “NoSleep” bugs). They also proposed
a detector leveraging a reaching definition data flow anal-
ysis to detect the missed API calls that release resources.
Their work can help developers to detect this specific type
of energy bug in source code. eDoctor is complementary
because (1) eDoctor helps users diagnose ABD issues and
find the appropriate repairs; and (2) eDoctor does not as-
sume that ABD is caused by specific types of bugs. In-
stead, eDoctor can diagnose ABD that arises from a vari-
ety of misconfigurations, bugs and so on.
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8 Conclusions

This paper addresses the emerging abnormal battery drain
(ABD) issue on smartphones. We built a practical tool,
eDoctor, to help users diagnose and repair ABD issues. In
our user study with 21 ABD issues and 31 participants,
eDoctor successfully diagnosed 47 out of 50 cases with
only small battery and storage overhead. We plan to re-
lease eDoctor on Google Play so that it can help real users
while also collecting feedback for further improvement.

Acknowledgments

We greatly appreciate NSDI anonymous reviewers for
their insightful feedback. We especially thank our shep-
herd, Dr. James W. Mickens, for his great effort to help
us improve the paper. We also thank the members in the
OPERA research group and the UCSD System and Net-
working (SysNet) group, and Erik Hinterbichler for their
discussions and paper proof-reading. Last but not the least,
we are grateful to the volunteers who participated our user
study. This research is supported by NSF CNS–0720743
grant, NSF CSR Small 1017784 grant and NSF CSR–
1217408 grant.

References
[1] Android 1.6 Platform Highlights - Battery Usage Indica-

tor. http://developer.android.com/about/versions/android-1.6-
highlights.html.

[2] App Store (iOS). http://en.wikipedia.org/wiki/App Store (iOS).

[3] Trepn TMProfiler. https://developer.qualcomm.com/mobile-
development/development-devices/trepn-profiler.

[4] ANAND, B., SEBASTIAN, J., MING, S., ANANDA, A., CHAN,
M., AND BALAN, R. Pgtp: Power Aware Game Transport Pro-
tocol for Multi-player Mobile Games. In Proceedings of the In-
ternational Conference on Communications and Signal Processing
(2011), ICCSP ’11, pp. 399–404.

[5] ANAND, B., THIRUGNANAM, K., SEBASTIAN, J., KANNAN,
P. G., ANANDA, A. L., CHAN, M. C., AND BALAN, R. K. Adap-
tive Display Power Management for Mobile Games. In Proceed-
ings of the 9th International Conference on Mobile Systems, Appli-
cations, and Services (2011), MobiSys ’11, ACM, pp. 57–70.

[6] ANAND, M., NIGHTINGALE, E. B., AND FLINN, J. Self-tuning
Wireless Network Power Management. In Proceedings of the 9th
Annual International Conference on Mobile Computing and Net-
working (2003), MobiCom ’03, ACM, pp. 176–189.

[7] ANAND, M., NIGHTINGALE, E. B., AND FLINN, J. Ghosts in
the Machine: Interfaces for Better Power Management. In Pro-
ceedings of the 2nd International Conference on Mobile Systems,
Applications, and Services (2004), MobiSys ’04, ACM, pp. 23–35.

[8] BALASUBRAMANIAN, N., BALASUBRAMANIAN, A., AND

VENKATARAMANI, A. Energy Consumption in Mobile Phones:
a Measurement Study and Implications for Network Applications.
In Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference (2009), IMC ’09, ACM, pp. 280–293.

[9] BARFORD, P., KLINE, J., PLONKA, D., AND RON, A. A Signal
Analysis of Network Traffic Anomalies. In Internet Measurement
Workshop (2002), pp. 71–82.

[10] BICKFORD, J., LAGAR-CAVILLA, H. A., VARSHAVSKY, A.,
GANAPATHY, V., AND IFTODE, L. Security Versus Energy Trade-
offs in Host-based Mobile Malware Detection. In Proceedings of
the 9th International Conference on Mobile Systems, Applications,
and Services (2011), MobiSys ’11, ACM, pp. 225–238.

[11] CALIMLIM, A. Apple iOS 6.1 Reportedly Plagued With Battery,
3G and Syncing Issues. http://mashable.com/2013/02/09/ios-6-1-
issues/, February 2013. by Mashable.

[12] CANALYS. Smartphones Overtake Client PCs in 2011.
http://www.canalys.com/newsroom/smart-phones-overtake-
client-pcs-2011, February 2012.

[13] CARROLL, A., AND HEISER, G. An Analysis of Power Consump-
tion in a Smartphone. In Proceedings of the USENIX Annual Tech-
nical Conference (2010), USENIX ATC’10, USENIX Association,
pp. 21–21.

[14] CONSTANDACHE, I., GAONKAR, S., SAYLER, M., CHOUD-
HURY, R., AND COX, L. EnLoc: Energy-efficient Localization for
Mobile Phones. In Proceedings of the 28th Conference on Com-
puter Communications (2009), INFOCOM ’09, IEEE Computer
Society, pp. 2716–2720.

[15] CUERVO, E., BALASUBRAMANIAN, A., CHO, D.-K., WOLMAN,
A., SAROIU, S., CHANDRA, R., AND BAHL, P. MAUI: Making
Smartphones Last Longer with Code Offload. In Proceedings of
the 8th International Conference on Mobile Systems, Applications,
and Services (2010), MobiSys ’10, ACM, pp. 49–62.

[16] DHODAPKAR, A. S., AND SMITH, J. E. Comparing Program
Phase Detection Techniques. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture (2003),
MICRO ’36, IEEE Computer Society, pp. 217–228.

[17] DONG, M., AND ZHONG, L. Chameleon: A Color-adaptive Web
Browser for Mobile OLED Displays. In Proceedings of the 10th In-
ternational Conference on Mobile Systems, Applications, and Ser-
vices (2011), MobiSys ’11, ACM, pp. 85–98.

[18] DONG, M., AND ZHONG, L. Self-constructive High-rate System
Energy Modeling for Battery-powered Mobile Systems. In Pro-
ceedings of the 9th International Conference on Mobile Systems,
Applications, and Services (2011), MobiSys ’11, ACM, pp. 335–
348.

[19] DUESTERWALD, E., CASCAVAL, C., AND DWARKADAS, S.
Characterizing and Predicting Program Behavior and Its Variabil-
ity. In Proceedings of the 12th International Conference on Par-
allel Architectures and Compilation Techniques (2003), PACT ’03,
IEEE Computer Society, pp. 220–231.

[20] GAONKAR, S., LI, J., CHOUDHURY, R. R., COX, L., AND

SCHMIDT, A. Micro-blog: Sharing and querying content through
mobile phones and social participation. In Proceedings of the 6th
International Conference on Mobile Systems, Applications, and
Services (2008), MobiSys ’08, ACM, pp. 174–186.

[21] GOULDING-HOTTA, N., SAMPSON, J., VENKATESH, G., GAR-
CIA, S., AURICCHIO, J., HUANG, P.-C., ARORA, M., NATH, S.,
BHATT, V., BABB, J., SWANSON, S., AND TAYLOR, M. The
GreenDroid Mobile Application Processor: An Architecture for
Silicon’s Dark Future. IEEE Micro 31 (March 2011), 86–95.

[22] HANGAL, S., AND LAM, M. S. Tracking Down Software Bugs
Using Automatic Anomaly Detection. In Proceedings of the 24th
International Conference on Software Engineering (2002), ICSE
’02, ACM, pp. 291–301.

[23] HUANG, M. C., RENAU, J., AND TORRELLAS, J. Positional
Adaptation of Processors: Application to Energy Reduction. In
Proceedings of the 30th Annual International Symposium on Com-
puter Architecture (2003), ISCA ’03, ACM, pp. 157–168.

[24] JUNE, L. Facebook Mobile App Stats Shocker:
104M iPhone Users, 12M Android Users.



70 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

http://www.engadget.com/2010/08/25/facebook-mobile-app-
stats-shocker-104-million-iphone-users-12, August 2010. from
engadget.

[25] KIM, H., SMITH, J., AND SHIN, K. G. Detecting Energy-greedy
Anomalies and Mobile Malware Variants. In Proceedings of the
6th International Conference on Mobile Systems, Applications, and
Services (2008), MobiSys ’08, ACM, pp. 239–252.
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Abstract
With myriad augmented reality, social networking, and
retail shopping applications all on the horizon for the
mobile handheld, a fast and accurate location technology
will become key to a rich user experience. When roam-
ing outdoors, users can usually count on a clear GPS sig-
nal for accurate location, but indoors, GPS often fades,
and so up until recently, mobiles have had to rely mainly
on rather coarse-grained signal strength readings. What
has changed this status quo is the recent trend of dramat-
ically increasing numbers of antennas at the indoor ac-
cess point, mainly to bolster capacity and coverage with
multiple-input, multiple-output (MIMO) techniques. We
thus observe an opportunity to revisit the important prob-
lem of localization with a fresh perspective. This paper
presents the design and experimental evaluation of Ar-
rayTrack, an indoor location system that uses MIMO-
based techniques to track wireless clients at a very fine
granularity in real time, as they roam about a building.
With a combination of FPGA and general purpose com-
puting, we have built a prototype of the ArrayTrack sys-
tem. Our results show that the techniques we propose can
pinpoint 41 clients spread out over an indoor office envi-
ronment to within 23 centimeters median accuracy, with
the system incurring just 100 milliseconds latency, mak-
ing for the first time ubiquitous real-time, fine-grained
location available on the mobile handset.

1 Introduction
The proliferation of mobile computing devices contin-
ues, with handheld smartphones, tablets, and laptops
a part of our everyday lives. Outdoors, these devices
largely enjoy a robust and relatively accurate location
service from Global Positioning System (GPS) satellite
signals, but indoors where GPS signals don’t reach, pro-
viding an accurate location service is quite challenging.

Furthermore, the demand for accurate location infor-
mation is especially acute indoors. While the few meters
of accuracy GPS provides outdoors are more than suffi-
cient for street-level navigation, small differences in lo-
cation have more importance to people and applications
indoors: a few meters of error in estimated location can
place someone in a different office within a building,
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under Grant No. 279976. Jie Xiong is supported by the Google European
Doctoral Fellowship in Wireless Networking.

for example. Location-aware smartphone applications
on the horizon such as augmented reality-based build-
ing navigation, social networking, and retail shopping
demand both a high accuracy and a low response time.
A solution that offers a centimeter-accurate location ser-
vice indoors would enable these and other exciting appli-
cations in mobile and pervasive computing.

Using radio frequency (RF) for location has many
challenges. First, the many objects found indoors near
access points (APs) and mobile clients reflect the en-
ergy of the wireless signal in a phenomenon called mul-
tipath propagation. This forces an unfortunate tradeoff
that most existing RF location-based systems make: ei-
ther model this hard-to-predict pattern of multipath fad-
ing, or leverage expensive hardware that can sample the
wireless signal at a very high rate. Most existing RF
systems choose the former, building maps of multipath
signal strength [2, 3, 34, 43], or estimating coarse differ-
ences using RF propagation models [11, 14], achieving
an average localization accuracy of between 60 cm [43]
and meters: too coarse for the applications at hand.

Systems based on ultrasound and RF sensors such
as Active Badge [35], Bat [36], and Cricket [19] have
achieved accuracy to the level of centimeters, but usually
require dedicated infrastructure to be installed in every
room in a building, an approach that is expensive, time
consuming, and requires maintenance effort.

Recently, however, two new opportunities have arisen
in the design of indoor location systems:

1. WiFi APs are incorporating ever-increasing numbers
of antennas to bolster capacity and coverage with
multiple-input, multiple-output (MIMO) techniques.
In fact, we expect that in the future, the number of
antennas at the access point will increase several-
fold, to meet the demand for MIMO links and spatial
multiplexing [1, 31], which increase overall capacity.
Indeed, the upcoming 802.11ac standard will spec-
ify eight MIMO spatial streams, and 16-antenna APs
have been available since 2010 [41].

2. Meanwhile, WiFi AP density remains high: With our
experimental infrastructure excluded, transmissions
from most locations in our testbed reach seven or
more production network APs, with all but about five
percent of locations reaching five or more such APs.
Furthermore, by leveraging the signal processing that
is possible at the physical layer, an AP can extract in-
formation from a single packet at a lower SNR than
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what is required to receive and decode the packet.
This allows even more ArrayTrack APs to cooperate
to localize clients than would be possible were the
system to operate exclusively at higher layers.

ArrayTrack is an indoor localization system that exploits
the increasing number of antennas at commodity APs to
provide fine-grained location for mobile devices in an in-
door setting. When a client transmits a frame on the air,
multiple ArrayTrack APs overhear the transmission, and
each compute angle-of-arrival (AoA) information from
the clients’ incoming frame. Then, the system aggre-
gates the APs’ AoA data at a central backend server to
estimate the client’s location. While AoA techniques are
already in wide use in radar and acoustics, the challenge
in realizing these techniques indoors is the presence of
strong multipath RF propagation in these environments.
To address this problem, we introduce novel system de-
sign techniques and signal processing algorithms that re-
liably eliminate the effects of multipath, even in the rela-
tively common situations when little or no energy arrives
on the direct path between client and AP.

ArrayTrack advances the state of the art in localization
in three distinct ways:

1. To mitigate the effects of indoor multipath propaga-
tion, ArrayTrack contributes a novel multipath sup-
pression algorithm to effectively remove the reflec-
tion paths between clients and APs.

2. Upon detecting a frame, an ArrayTrack AP quickly
switches between sets of antennas, synthesizing new
AoA information from each. We term this technique
diversity synthesis, and find that it is especially useful
in the case of low AP density.

3. ArrayTrack’s system architecture centers around par-
allel processing in hardware, at APs, and in software,
at the database backend, for fast location estimates.

We implement ArrayTrack on the Rice WARP FPGA
platform and evaluate in a 41-node network deployed
over one floor of a busy office space. Experimental re-
sults in this setting show that using just three APs, Array-
Track can localize clients to a median 57 cm and mean
one meter accuracy. With six APs, ArrayTrack achieves
a median 23 cm and mean 31 cm location accuracy, lo-
calizing 95% of clients to within 90 cm. At the same
time, ArrayTrack is fast, requiring just 100 milliseconds
to produce a location estimate. To our knowledge, these
are the most accurate and responsive location estimates
available to date for an RF-based location system that
does not require infrastructure except a normal density
of nearby WiFi APs. Furthermore, as we experimen-
tally show, ArrayTrack’s performance is robust against
different antenna heights, different antenna orientation,
low SNR and collisions.

Access point
(Hardware radio

platform)

·Angle-of-arrival spectrum computation (§2.3)
·Multipath processing algorithms (§2.4)
·Maximum likelihood position estimation (§2.5)

ArrayTrack server

Packet detection (§2.1), 
diversity synthesis (§2.2)

Antenna
array

Circular buffer

8

(Number of access points)

1

AntSel

Figure 1: ArrayTrack’s high-level design for eight radio front-ends, di-
vided into functionality at each ArrayTrack access point and centralized
server functionality. For clarity, we omit transmit path functionality of
the access point.

In the next section, we detail ArrayTrack’s design. An
implementation discussion (§3) and performance evalu-
ation (§4) then follow. We discuss related work in Sec-
tion 5, and Section 7 concludes.

2 Design
We describe ArrayTrack’s design as information flows
through the system, from the physical antenna array,
through the AP hardware, and on to the central Array-
Track server, as summarized in Figure 1. First, Array-
Track leverages techniques to detect packets at very low
signal strength, so that many access points can overhear a
single transmission (§2.1). Next, at each AP, ArrayTrack
uses many antennas (§2.2) to generate an AoA spectrum:
an estimate of likelihood versus bearing (§2.3), and can-
cels some of the effects of multipath propagation (§2.4).
Finally, the system combines these estimates to estimate
location (§2.5), further eliminating multipath’s effects.

2.1 Packet detection and buffer management
To compute an AoA spectrum for a client, the AP only
need overhear a small number of frames (between one
and three, for reasons that will become clear in Sec-
tion 2.4) from that client. For ArrayTrack’s purposes, the
contents of the frame are immaterial, so our system can
process control frames such as acknowledgments, and
even frames encrypted at the link layer.

The physical-layer preamble of an 801.11 frame con-
tains known short and long training symbols, as shown in
Figure 2. We use a modified version of Schmidl-Cox [25]
detection to detect an incoming frame’s short training
symbols. Once the detection block senses a frame, it
activates the diversity synthesis mechanism described in
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s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 S0 S1G

3.2 μs 3.2 μs800 ns

Figure 2: The 802.11 OFDM preamble consists of ten identical, re-
peated short training symbols (denoted s0 . . . s9), followed by a guard
interval (denoted G), ending with two identical, repeated long training
symbols (denoted S0 and S1).

the next section and stores the samples of the incoming
frame into a circular buffer, one logical buffer entry per
frame detected.

Since it does not require even a partial packet decode,
our system can process any part of the packet, which is
helpful in the event of collisions in a carrier-sense mul-
tiple access network (§4.3.5). Our system detects the
preamble of the packet and records a small part of it. In
principle, one time domain packet sample would provide
enough information for the AoA spectrum computation
described in Section 2.3. However, to average out the ef-
fects of noise, we use 10 samples (we justify this choice
in Section 4.3.3). Since a commodity WiFi AP samples
at 40 Msamples/second, this implies that we need to pro-
cess just 250 nanoseconds of a packet’s samples, under
1.5% of an WiFi preamble’s 16 μs duration.

2.2 Diversity synthesis
Upon detecting a packet, most commodity APs switch
between pairs of antennas selecting the antenna from
each pair with the strongest signal, a technique called
diversity selection. This well-known and widely imple-
mented technique improves performance in the presence
of destructive multipath fading at one of the antennas,
and can be found in the newest 802.11n MIMO access
points today. It also has the advantage of not increasing
the number of radios required, thus saving cost at the AP.

ArrayTrack seamlessly incorporates diversity selec-
tion into its design, synthesizing independent AoA data
from both antennas of the diversity pair. We term this
technique diversity synthesis.

Referring to Figure 1, once the packet detection block
has indicated the start of a packet, control logic stores
the samples corresponding to the preamble’s long train-
ing symbol S0 (Figure 2) from the upper set of antennas
into the first half of a circular buffer entry. Next, the con-
trol logic toggles the AntSel (for antenna select) line in
Figure 1, switching to the lower set of antennas for the
duration of the second long training symbol S1.1 Since S1
and S2 are identical and each 3.2 μs long, they fall well
within the coherence time2 of the indoor wireless chan-

1We use the long training symbols because our hardware radio plat-
form has a 500 ns switching time during which the received signal is
highly distorted and unusable.

2The time span over which the channel can be considered stationary.
Coherence time is mainly a function of the RF carrier frequency and
speed of motion of the transmitter, receiver, and any nearby objects.

0 -0.3 -0.6 -0.3 0

Relative power (dB)

Figure 3: The AoA spectrum of a client’s received signal at a multi-
antenna access point estimates the incoming signal’s power as a func-
tion of its angle of arrival.

nel, and so we can treat the information obtained from
each set of antennas as if the two sets were obtained si-
multaneously from different radios at the AP.

2.3 AoA spectrum generation
Especially in indoor wireless channels, RF signals re-
flect off objects in the environment, resulting in mul-
tiple copies of the signal arriving at the access point:
this phenomenon is known as multipath propagation. An
AoA spectrum of a client’s received signal at a multi-
antenna AP is an estimate of the incoming signal’s power
as a function of angle of arrival, as shown in Figure 3.
Since strong multipath propagation is present indoors,
the direct-path signal may be significantly weaker than
the reflected-path signals, or may even be undetectable.
In these situations, the highest peak on the AoA spec-
trum would correspond to a reflected path instead of the
direct path to the client. This makes indoor localization
using AoA spectra alone highly inaccurate, necessitating
the remaining steps in ArrayTrack’s processing chain.

2.3.1 Phased-array primer
In order to explain how we generate AoA spectra, we
now present a brief primer on phased arrays. While their
technology is well established, we focus on indoor appli-
cations, highlighting the resulting complexities.

For clarity of exposition, we first describe how an AP
can compute angle of arrival information in free space
(i.e., in the absence of multipath reflections), and then
generalize the principles to handle multipath wireless
propagation. The key to computing a wireless signal’s
angle of arrival is to analyze received phase at the AP,
a quantity that progresses linearly from zero to 2π ev-
ery RF wavelength λ along the path from client to access
point, as shown in Figure 4 (left).

This means that when the client sends a signal, the AP
receives it with a phase determined by the path length d
from the client. Phase is particularly easy to measure at
the physical layer, because software-defined and hard-
ware radios represent the phase of the wireless signal
graphically using an in-phase-quadrature (I-Q) plot, as
shown in Figure 4 (right), where angle measured from
the I axis indicates phase. Using the I-Q plot, we see that
a distance d adds a phase of 2πd/λ as shown by the angle
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Figure 4: Principle of operation for ArrayTrack’s AoA spectrum com-
putation phase. (Left:) The phase of the signal goes through a 2π
cycle every radio wavelength λ, and the distance differential between
the client and successive antennas on the access point is related to the
client’s bearing on the access point. (Right:) The complex representa-
tion of the sent signal at the client (filled dot) and received signals at
the access point (crosses) reflects this relationship.

measured from the I axis to the cross labeled x1 (repre-
senting the signal received at antenna one). Since there is
a λ/2 separation between the two antennas, the distance
along a path arriving at bearing θ is a fraction of a wave-
length greater to the second antenna than it is to the first,
that fraction depending on θ. Assuming d � λ/2, the
added distance is 1

2λ sin θ.

These facts suggest a particularly simple way to com-
pute θ at a two-antenna access point in the absence of
multipath: measure x1 and x2 directly, compute the phase
of each (∠x1 and ∠x2), then solve for θ as

θ = arcsin
�∠x2 − ∠x1

π

�
(1)

Generalizing to multiple antennas. In indoor multi-
path environments, Equation 1 quickly breaks down, be-
cause multiple paths’ signals sum in the I-Q plot. How-
ever, adding multiple, say M, antennas can help. The best
known algorithms are based on eigenstructure analysis of
an M×M correlation matrix Rxx in which the entry at the
lth column and mth row is the mean correlation between
the lth and mth antennas’ signals.

Suppose D signals s1(t), . . . , sD(t) arrive from bear-
ings θ1, . . . , θD at M > D antennas, and that xj(t) is the
received signal at jth antenna element at time t. Recall-
ing the relationship between measured phase differences
and AP bearing discussed above, we use the array steer-
ing vector a(θ) to characterize how much added phase
(relative to the first antenna) we see at each of the other
antennas, as a function of the incoming signal’s bearing.
For a linear array,

a(θ) = exp
�−j2πd

λ

�
⎡
⎢⎢⎢⎢⎢⎣

1
exp(−jπλ cos θ)

exp (−j2πλ cos θ)
...

exp (−j(M − 1)πλ cos θ)

⎤
⎥⎥⎥⎥⎥⎦

(2)

x1

x2

x3

a(θ1)

a(θ2)

Signal 
e-vector e1

Signal e-vector e2

Noise
e-vector e3

Signal subspace

a(θ) continuum

Figure 5: In this three-antenna example, the two incoming signals
(at bearings θ1 and θ2 respectively) lie in a three-dimensional space.
Eigenvector analysis identifies the two-dimensional signal subspace
shown, and MUSIC traces along the array steering vector continuum
measuring the distance to the signal subspace. Figure adapted from
Schmidt [26].

So we can express what the AP hears as

x(t) =

A� �� �
[a(θ1) a(θ2) · · · a(θD)]

⎡
⎢⎢⎢⎣

s1(t)
s2(t)

...
sD(t)

⎤
⎥⎥⎥⎦+ n(k), (3)

where n(k) is noise with zero mean and σ2
n variance. This

means that we can express Rxx as

Rxx = E[xx∗]
= E [(As + n) (s∗A∗ + n∗)]
= AE [ss∗]A∗ + E [nn∗]

= ARssA∗ + σ2
nI (4)

where Rss = E [ss∗] is the source correlation matrix.
The array correlation matrix Rxx has M eigenvalues

λ1, . . . ,λM associated respectively with M eigenvectors
E = [e1 e2 · · · eM]. If the noise is weaker than the in-
coming signals, then when the eigenvalues are sorted in
non-decreasing order, the smallest M − D correspond to
the noise while the next D correspond to the D incoming
signals. The D value depends on how many eigenvalues
are considered big enough to be signals. We choose D
value as how many eigenvalues are larger than a thresh-
old that is a fraction of the largest eigenvalue. Based on
this process, the corresponding eigenvectors in E can be
classified as noise or signal:

E =

⎡
⎣

EN� �� �
e1 . . . eM−D

ES� �� �
eM−D+1 . . . eM

⎤
⎦ (5)

we refer to EN as the noise subspace and ES as the signal
subspace.

The MUSIC AoA spectrum [26] inverts the distance
between a point moving along the array steering vector
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x1 x2 x3 x4 x5 x6 x7 x8

Figure 6: Spatial smoothing an eight-antenna array x1, . . . , x8 to a vir-
tual six-element array (number of groups NG = 3).
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Figure 7: Varying the amount of spatial smoothing on AoA spectra.

continuum and ES, as shown in Figure 5:

P(θ) =
1

a(θ)ENE∗
Na(θ)

(6)

This yields sharp peaks in P(θ) at the signals’ AoA.

2.3.2 Spatial smoothing for multipath distortion

Implementing MUSIC as-is, however, yields highly dis-
torted AoA spectra, for the following reason. When the
incoming signals are phase-synchronized with each other
(as results from multipath) MUSIC perceives the distinct
incoming signals as one superposed signal, resulting in
false peaks in P(θ). We therefore adopt spatial smooth-
ing [28], averaging incoming signals across NG groups of
antennas to reduce this correlation. For example, spatial
smoothing over NG = 3 six-antenna groups on an eight-
antenna array generating signals x1, . . . , x8 would output
six signals ẋ1, . . . , ẋ6 where ẋi =

1
3 (xi + xi+1 + xi+2) for

1 ≤ i ≤ 6, as shown in Figure 6.
How should we choose NG? Figure 7 shows a mi-

crobenchmark computing MUSIC AoA spectra for a
client near and in the line of sight of the AP (so the direct-
path bearing dominates P(θ)) both with and without spa-
tial smoothing. As NG increases, the effective number of
antennas decreases, and so spatial smoothing can elimi-
nate smaller peaks that may correspond to the direct path.
On the other hand, as NG increases, the overall noise in
the AoA spectrum decreases, and some peaks may be
narrowed, possibly increasing accuracy. Based on this
microbenchmark and experience generating AoA spectra
indoors from a number of different clients in our testbed,
we find that a good compromise is to set NG = 2, and we
use this in the performance evaluation in Section 4.

Scenario Frequency
Direct path same; reflection paths changed 71%
Direct path same; reflection paths same 18%
Direct path changed; reflection paths changed 8%
Direct path changed; reflection paths same 3%

Table 1: Peak stability microbenchmark measuring the frequency of
the direct and reflection-path peaks changing due to slight movement.

2.3.3 Array geometry weighting
Information from the linear array we use in our sys-
tem is not equally reliable as a function of θ, because
of the asymmetric physical geometry of the array. Con-
sequently, after computing a spatially-smoothed MUSIC
AoA spectrum, the ArrayTrack multiplies it by a win-
dowing function W(θ), the purpose of which is to weight
information from the AoA spectrum in proportion to the
confidence that we have in the data. With a linear array,
we multiply P(θ) by

W (θ) =

{
1, if 15◦ < |θ| < 165◦

sin θ, otherwise.
(7)

2.3.4 Array symmetry removal
Although a linear antenna array can determine bearing,
it cannot determine which side of the array the signal is
arriving from. This means that the AoA spectrum is es-
sentially a 180◦ spectrum mirrored to 360◦. When there
are many APs cooperating to determine location, this is
not a problem, but when there are few APs, accuracy suf-
fers. To address this, we employ the diversity synthesis
scheme described in Section 2.2 to have a ninth antenna
not in the same row as the other eight included. Using
the ninth antenna, we calculate the total power on each
side, and remove the half with less power, resulting in a
true 360◦ AoA spectrum.

2.4 Multipath suppression
While the spatial smoothing algorithms described above
(§2.3.2) reduce multipath-induced distortion of the AoA
spectrum to yield an accurate spectrum, they don’t iden-
tify the direct path, leaving multipath reflections free to
reduce system accuracy. The multipath suppression al-
gorithm we present here has the goal of removing or re-
ducing peaks in the AoA spectrum not associated with
the direct path from AP to client.

ArrayTrack’s multipath suppression algorithm lever-
ages changes in the wireless channel that occur when the
transmitter or objections in the vicinity move by group-
ing together AoA spectra from multiple frames, if avail-
able. Our method is motivated by the following observa-
tion: when there are small movements of the transmitter,
the receiver, or objects between the two, the direct-path
peak on the AoA spectrum is usually stable while the
reflection-path peaks usually change significantly, and
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Algorithm (Multipath suppression)
1. Group two to three AoA spectra from frames spaced

closer than 100 ms in time; if no such grouping ex-
ists for a spectrum, then output that spectrum to the
synthesis step (§2.5).

2. Arbitrarily choose one AoA spectrum as the primary,
and remove peaks from the primary not paired with
peaks on other AoA spectra.

3. Output the primary to the synthesis step (§2.5).
Figure 8: ArrayTrack’s multipath suppression algorithm.

-1 -0.5  0  0.5  1

Primary

0 -0.3 -0.6 -0.3 0

Figure 9: ArrayTrack’s multipath suppression algorithm operating on
two example AoA spectra (left) and the output AoA spectrum (right).

these slight movements happen frequently in real life
when we hold a mobile handset making calls, for exam-
ple.

We run a microbenchmark at 100 randomly chosen lo-
cations in our testbed (see Figure 12, p. 7), generating
AoA spectra at each position selected and another posi-
tion five centimeters away. If the corresponding bearing
peaks of the two spectra are within five degrees, we mark
that bearing as unchanged. If the variation is more than
five degrees or the peak vanishes, we mark it changed.

The results are shown in Table 1. Most of the time,
the direct-path peak is unchanged while the reflection-
path peaks are changed. This motivates the algorithm
shown in Figure 8. Note that for those scenarios in
which both the direct-path and reflection-path peaks are
unchanged, we keep all of them without any deleterious
consequences. Also, observe that the microbenchmark
above only captures two packets. This leaves room for
even further improvement if we capture multiple packets
during the course of the mobile’s movement. The only
scenario which induces failure in the multipath suppres-
sion algorithm is when the reflection-path peaks remain
unchanged while the direct-path peak is changed. How-
ever, as shown above, the chances of this happening are
small. We show and example of the algorithm’s opera-
tion in Figure 9.

2.5 AoA spectra synthesis
In this step, ArrayTrack combines the AoA spectra of
several APs into a final location estimate. Suppose
N APs generate AoA spectra P1(θ), . . . , PN(θ) as pro-
cessed by the previous steps, and we wish to compute
the likelihood of the client being located at position x
as shown in Figure 3. ArrayTrack computes the bearing
of x to AP i, θi, by trigonometry, and then estimates the

x

θ2

θ1AP 1

AP 2

Figure 10: ArrayTrack combines information from multiple APs into
a likelihood of the client being at location x by considering all AoA
spectra at their respective bearings (θ1, θ2) to x.

Figure 11: Left: the ArrayTrack prototype AP is composed of two
WARP radios, while a cable-connected USRP2 software-defined radio
(not shown) calibrates the array. Right: The AP mounted on a cart,
showing its antenna array.

likelihood of the client being at location x, L(x), as

L(x) =
N∏

i=1

Pi (θi) . (8)

With Equation 8 we search for the most likely location
of the client by forming a 10 centimeter by 10 centimeter
grid, and evaluating L(x) at each point in the grid. We
then use hill climbing on the three positions with highest
L(x) in the grid using the gradient defined by Equation 8
to refine our location estimate.

3 Implementation
The prototype ArrayTrack AP, shown in Figure 11, uses
two Rice WARP FPGA-based wireless radios. Each
WARP is equipped with four radio front ends and four
omnidirectional antennas. We utilize the digital I/O pins
on one of the WARP boards to output a time synchroniza-
tion pulse on a wire connected between the two WARPs,
so that the second WARP board can record and buffer the
same time-indexed samples as the first. The WARPs run
a custom FPGA hardware design architected with Xilinx
System Generator for DSP that implements all the func-
tionality described in Section 2.

We place the 16 antennas3 attached to the WARP ra-
dios in a rectangular geometry (Figure 11, right). Anten-
nas are spaced at a half wavelength distance (6.13 cm) to
yield maximum AoA spectrum resolution. This also hap-
pens to yield maximum MIMO wireless capacity, and so
is the arrangement preferred in commodity APs.

AP phase calibration. Equipping the AP with multi-
ple antennas is necessary for ArrayTrack, but does not

3The two WAPPs have a total of eight radio boards, each with two
ports. ArrayTrack is able to switch ports as described in §2.2 and record
the two long training symbols with different antennas. So with two
WARPs, the maximum number of antennas we can utilize is 16.
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suffice to calculate angle of arrival as described in the
preceding section. Each radio receiver incorporates a
2.4 GHz oscillator whose purpose is to convert the in-
coming radio frequency signal to its representation in I-Q
space shown, for example, in Figure 4 (p. 4). An unde-
sirable consequence of this downconversion step is that it
introduces an unknown phase offset to the resulting sig-
nal, rendering AoA inoperable. This is permissible for
MIMO, but not for our application, because this man-
ifests as an unknown phase added to the constellation
points in Figure 4. Our solution is to calibrate the array
with a USRP2 generating a continuous wave tone, mea-
suring each phase offset directly. Because small man-
ufacturing imperfections exist for SMA splitters and ca-
bles labelled the same length, we propose a one-time (run
only once for a particular set of hardware) calibration
scheme to handle these equipment imperfections.

The signal from the USRP2 goes through splitters and
cables (we called them external paths) before reaching
WARP radios. The phase offset Phoff we want to
measure is the internal phase difference Phin2 − Phin1.
Running calibration once, we obtain the following offset:

Phoff 1 = (Phex2 + Phin2)− (Phex1 + Phin1) (9)

Because of equipment imperfections, Phex2 is slightly
different from Phex1 so Phoff 1 is not equal to Phoff . We
exchange the external paths and run calibration again:

Phoff 2 = (Phex1 + Phin2)− (Phex2 + Phin1) (10)

Combing the above two equations, we obtain Phoff and
the phase difference caused by equipment imperfections:

(Phoff 2 + Phoff 1)/2 = Phoff (11)

(Phoff 2 − Phoff 1)/2 = Phex1 − Phex2 (12)

Subtracting the measured phase offsets from the in-
coming signals over the air then cancels the unknown
phase difference, and AoA becomes possible.

Testbed clients. The clients we use in our experiments
are Soekris boxes equipped with Atheros 802.11g radios
operating in the 2.4 GHz band.

4 Evaluation
To show how well ArrayTrack performs in real indoor
environment, we present experimental results from the
testbed described in Section 3. First we present the accu-
racy level ArrayTrack achieves in the challenging indoor
office environment and explore the effects of number of
antennas and number of APs on the performance of Ar-
rayTrack. After that, we demonstrate that ArrayTrack is
robust against different transmitter/receiver heights and
different antenna orientations between clients and APs.
Finally we examine the latency introduced by Array-
Track, which is a critical factor for a real-time system.

1

23

4

5

6

Figure 12: Testbed environment: Soekris clients are marked as small
dots, and the AP locations are labelled “1”–“6”.

Experimental methodology. We place prototype APs
at the locations marked “1”–“6” in our testbed floorplan,
shown in Figure 12. The layout shows the basic struc-
ture of the office but does not include the numerous cu-
bicle walls also present. We place the 41 clients roughly
uniformly over the floorplan, covering areas both near
to, and far away from the AP. We put some clients near
metal, wood, glass and plastic walls to make our experi-
ments more comprehensive. We also place some clients
behind concrete pillars in our office so that the direct path
between the AP and client is blocked, making the situa-
tion more challenging.

To measure ground truth in the location experiments
presented in this section, we used scaled architectural
drawings of our building combined with measurements
taken from a Fluke 416D laser distance measurement de-
vice, which has an accuracy of 1.5 mm over 60 m.

Due to budget constraints, we used one WARP AP,
moving it between the different locations marked on the
map in Figure 12 and receiving new packets to emulate
many APs receiving a transmission simultaneously. This
setup does not favor our evaluation of ArrayTrack.

4.1 Static localization accuracy
We first evaluate how accurately AoA pseudospectrum
computation without array geometry weighting and re-
flection path removing localizes clients. This represents
the performance ArrayTrack would obtain in a static en-
vironment without any client movement, or movement
nearby. The curves labeled three APs, four APs, five
APs, and six APs in Figure 13 show raw location error
computed with Equation 8 across all different AP com-
binations and all 41 clients. We see that the general trend
is that average error decreases with an increasing number
of APs. The median error varies from 75 cm for three
APs to 26 cm for six APs. The average error varies from
317 cm for three APs to 38 cm for six APs. We show a
heatmap combination example in Figure 14 with increas-
ing number of APs.

7
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One AP Two APs Three APs Four APs Five APs Six APs

Figure 14: Heatmaps showing the location likelihood of a client with differing numbers of APs computing its location. We denote the ground truth
location of the client in each by a small dot in each heatmap.
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Figure 13: Cumulative distribution of location error from unoptimized
raw AoA spectra data across clients using measurements taken at all
combinations of three, four, five, and six APs.

4.2 Semi-static localization accuracy
We now evaluate ArrayTrack using data that incorpo-
rates small (less than 5 cm) movements of the clients,
with two more such location samples per client. This is
representative of human movement even when station-
ary, due to small inadvertent movements, and covers all
cases where there is even more movement up to walking
speed. In Figure 15, we show that ArrayTrack improves
the accuracy level greatly, especially when the number
of APs is small. Our system improves mean accuracy
level from 38 cm to 31 cm for six APs (a 20% improve-
ment). We measure 90%, 95% and 98% of clients to be
within 80 cm, 90 cm and 102 cm respectively of their
actual positions. This improvement is mainly due to the
array geometry weighting, which removes the relatively
inaccurate parts of the spectrum approaching 0 degrees
or 180 degree (close to the line of the antenna array).

When there are only three APs, ArrayTrack improves
the mean accuracy level from 317 cm to 107 cm, which
is around a 200% improvement. The intuition behind
this large performance improvement is the effective re-
moval of the false positive locations caused by multipath
reflections and redundant symmetrical bearings. When
the number of APs is big such as five or six, heatmap
combination inherently reinforces the true location and
removes false positive locations. However, when the
number of APs is small, this reinforcement is not always
strong and sometimes the array symmetry causes false
positive locations, which greatly degrades the localiza-
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Figure 15: Cumulative distribution of location error across clients for
three, four, five and six APs with ArrayTrack.

tion performance. In these cases, we enable the array
symmetry removal scheme described in Section 2.3.4 to
significantly enhance accuracy. By using this technique,
ArrayTrack can achieve a median 57 cm accuracy lev-
els with only three APs, good enough for many indoor
applications.

4.2.1 Varying number of AP antennas
We now show how ArrayTrack performs with differing
number of antennas at APs. In general, with more an-
tennas at each AP, we can achieve a more accurate AoA
spectrum and capture a higher number of reflection-path
bearings, which accordingly increases localization ac-
curacy, as Figure 16 shows. Because we apply spatial
smoothing on top of the MUSIC algorithm, the effective
number of antennas is actually reduced and so we are not
able to capture all the arriving signals when the number
of antennas is small. The mean accuracy level is 138 cm
for four antennas, 60 cm for six antennas and 31 cm for
eight antennas. It’s interesting to note that the improve-
ment gap between four and six antennas is bigger than
that between six to eight antennas. In a strong multipath
indoor environment like our office, the direct path signal
is not always the strongest. However, the direct path sig-
nal is among the three biggest signals most of the time.
We show how the direct path peak changes in Figure 17.
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Figure 16: CDF plot of location error for four, six and eight antennas
with ArrayTrack.
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Figure 17: The AoA spectra for 3 clients in a line with AP.

We keep the client on the some line with AP while block
it with more pillars. Even when it’s blocked by two pil-
lars, the direct path signal is still among the top three
biggest, although not the strongest. With five virtual an-
tennas, after spatial smoothing, we are able to avoid los-
ing the direct path signals as sometimes happens when
we only use four antennas. The accuracy level improve-
ment from six to eight antennas is due to the more accu-
rate AoA spectrum obtained. With an increasing number
of antennas, there will be some point when increasing
the number of antennas does not improve accuracy any
more as the dominant factor will be the calibration, an-
tenna imperfection, noise, correct alignment of antennas,
and even the human measurement errors introduced with
laser meters in the experiments. We expect that an an-
tenna array with six antennas (30.5 cm long) or eight an-
tennas (43 cm long) is quite reasonable.

4.3 Robustness
Robustness to varying client height, orientation, low
SNR, and collisions is an important characteristic for Ar-
rayTrack to achieve. We investigate ArrayTrack’s accu-
racy under these adverse conditions in this section.

As ArrayTrack works works on any part of the packet.
We choose the preamble of the packet to work with Ar-
rayTrack. Preamble part is transmitted at the base rate
and what’s more, complex conjugate with the known

1 10 20 100
0

0.2

0.4

0.6

0.8

1

Location error (cm)

C
D

F

Different antenna orientations
Different antenna heights
Original

Figure 18: CDF plot of ArrayTrack’s location error for different an-
tenna height, different orientation and baseline results, with eight an-
tennas and six APs.

training symbol generate peaks which is very easy to be
detected even at low SNR.

4.3.1 Height of mobile clients
In reality, most mobiles rest on a table or are held in the
hand, so they are often located around 1–1.5 meters off
the ground. APs are usually located on the wall near
the ceiling, typically 2.5 to 3 meters high. We seek to
study whether this height difference between clients and
APs will cause significant errors in our system’s accu-
racy. The mathematical analysis in §2.3 is based on the
assumption that clients and APs are at the same height. In
Appendix A we show that a 1.5 meter height difference
introduces just 1%–4% error when the distance between
the client and AP varies between five and 10 meters. In
our experiments, our AP is placed on top of a cart for
easy movement with the antennas positioned 1.5 meters
above the floor. To emulate a 1.5-meter height difference
between AP and clients, we put the clients on the ground
at exactly the same location and generate the localiza-
tion errors with ArrayTrack to compare with the results
obtained when they are more or less on the same height
with the AP.4

The experimental results shown in Figure 18 demon-
strate the preceding. Median location error is slightly
increased from 23 cm to 26 cm when the AP uses eight
antennas. One factor involved is that it is unlikely for a
client to be close to all APs, as the APs are separated in
space rather than being placed close to each other. One
advantage of our system is the independence of each AP
from the others, i.e., when we have multiple APs, even if
one of them is generating inaccurate results, the rest will
not be affected and will mitigate the negative effects of
the inaccurate AP by reinforcing the correct location.

4Note that this low height does not favor our experimental results
as lower AP positions are susceptible to even more clutter from objects
than an AP mounted high on the well near the ceiling.
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Figure 19: The effect of number of data samples on AoA spectrum.

In future work, we are planning to extend the Array-
Track system to three dimensions by using a vertically-
oriented antenna array in conjunction with the exiting
horizontally-oriented array. This will allow the system to
estimate elevation directly, and largely avoid this source
of error entirely.

4.3.2 Mobile orientation
Users carry mobile phones in their hands at constantly-
changing orientations, so we study the effect of different
antenna orientations on ArrayTrack. Keeping the trans-
mission power the same on the client side, we rotate the
clients’ antenna orientations perpendicular to the APs’
antennas. The results in Figure 18 show that the accuracy
level we achieve suffers slightly compared with the orig-
inal results, median location error increasing from 23 cm
to 50 cm. By way of explanation, we find that the re-
ceived power at the APs is smaller with the changed an-
tenna orientation, because of the different polarization.
With linearly polarized antennas, a misalignment of po-
larization of 45 degrees will degrade the signal up to 3 dB
and a misaligned of 90 degrees causes an attenuation of
20 dB or more. By using circularly-polarized antennas at
the AP, this issue can be mitigated.

4.3.3 Number of preamble samples
To show that ArrayTrack works well with very small
number of samples, we present testbed results in Figure
19. Each subplot is composed of 30 AoA spectra from
30 different packets recorded from the same client in a
short period of time. We use different number of sam-
ples to generate our AoA pseudospectra. As WARPLab
samples 40 MHz per second, one sample takes only
0.025 us. We can see that when the number of sam-
ples increased to 5, the AoA spectrum is already quite
stable which demonstrate ArrayTrack has the potential
to responds extremely fast. We employ 10 samples in
our experiments and for a 100 ms refreshing interval, the
overhead introduced by ArrayTrack traffic is as little as:
(10 samples)(32 bits/sample)(8 radios)

100 ms = 0.0256 Mbps.

4.3.4 Low signal to noise ratio (SNR)

We show the signal to noise ratio (SNR) effect on the per-
formance of ArrayTrack in this section. Because Array-
Track does not need to decode any packet content, all the
short and long training symbols can be used for packets
detection, which performs very well compared with the
original Schmidl-Cox packet detection algorithm. With
all the 10 short training symbols used, we are able to de-
tect packets at SNR as low as -10 dB.

It’s clear that low SNR is not affecting our packet de-
tection at all. Then we want to see whether this low
SNR affect our AoA performance. We keep the client
at the same position untouched and keep decreasing the
transmission power of the client to see how AoA spectra
change. The results are shown in Figure 4.3.4. It can be
seen clearly that when the SNR becomes very low below
0 dB, the spectrum is not sharp any more and very large
side lobe appears on the spectrum generated. This will
definitely affect our localization performance. However,
we also find that as long as the SNR is not below 0 dB,
ArrayTrack works pretty well.

4.3.5 Packet collisions

When there are two simultaneous transmissions which
causes collision, ArrayTrack still works well as long as
the preambles of the two packets are not overlapping.

For collision between two packets of 1000 bytes each,
the chance of preamble colliding is 0.6%. We show that
as long as the training symbols are not overlapping, we
are able to obtain AoA information for both of them us-
ing a form of successive interference cancellation. We
detect the first colliding packet and generate an AoA
spectrum. Then we detect the second colliding packet
and generate its AoA spectrum. However, the second
AoA spectrum is composed of bearing information for
both packets. So we remove the AoA peaks of the first
packet from the second AoA spectrum, thus successfully
obtaining the AoA information for the second packet.

4.4 System latency
System latency is important for the real-time applications
we envision ArrayTrack will enable, such as augmented
reality. Figure 21 summarizes the latency our system in-
curs, starting from the beginning of a frame’s preamble
as it is received by the ArrayTrack APs. As discussed
previously (§4.3.3), ArrayTrack only requires 10 sam-
ples from the preamble in order to function. We therefore
have the opportunity to begin transferring and processing
the AoA information while the remainder of the pream-
ble and the body of the packet is still on the air, as shown
in the figure. System latency is comprised of the follow-
ing pieces:
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Figure 20: AoA spectra become less sharp and more side peaks when the SNR becomes small.
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Figure 21: A summary of the end-to-end latency that the ArrayTrack
system incurs in determining location.

1. T: the air time of a frame. This varies between ap-
proximately 222 μs for a 1500 byte frame at 54 Mbit/s
to 12 ms for the same size frame at 1 Mbit/s.

2. Td: the preamble detection time. For the 10 short
and two long training symbols in the preamble, this
is 16 μs.

3. Tl: WARP-PC latency to transfer samples. We esti-
mate this to be approximately 30 milliseconds, noting
that this can be significantly reduced with better bus
connectivity such as PCI Express on platforms such
as the Sora [32].

4. Tt: WARP-PC serialization time to transfer samples.

5. Tp, the time to process all recorded samples.

Tt is determined by the number of samples transferred
from the WARPs to the PC and the transmission speed
of the Ethernet connection. The Ethernet link speed
between the WARP and PC is 100 Mbit/s. However,
due to the very simple IP stack currently implemented
on WARP, added overheads mean that the maximum
throughput that can be achieved is about 1 Mbit/s. This
yields Tt =

(10 samples)(32 bits/sample)(8 radios)
1 Mbit/s = 2.56 ms.

Tp depends on how the MUSIC algorithm is imple-
mented and the computational capability of the Array-
Track server. For an eight-antenna array, the MUSIC al-
gorithm involves eigenvalue decomposition and matrix
multiplications of linear dimension eight. Because of the
small size of these matrices, this process is not the limit-
ing factor in the server-side computations. In the synthe-
sis step (§2.5) we apply a hill climbing algorithm to find
the maximum in the heatmap computed from the AoA
spectra. For our current Matlab implementation with an
Intel Xeon 2.80 GHz CPU and 4 GB of RAM, the aver-
age processing time is 100 ms with a variance of 3 ms
for the synthesis step.

Therefore, the total latency that ArrayTrack adds start-
ing from the end of the packet (excluding bus latency) is
Tl = Td + Tt + Tp − T ≈ 100 ms.

5 Related Work
The present paper is based on the ideas sketched in a
previous workshop paper [39], but contributes novel di-
versity synthesis (§2.2) and multipath suppression (§2.4)
design techniques and algorithms, as well as providing
the first full performance evaluation of our system.

ArrayTrack owes its research vision to early indoor
location service systems that propose dedicated infras-
tructure Active Badge [35] equips mobiles with infrared
transmitters and buildings with many infrared receivers.
The Bat System [36] uses a matrix of RF-ultrasound
receivers, each hard-coded with location, deployed on
the ceiling indoors. Cricket [19] equips buildings with
combined RF/ultrasound beacons while mobiles carry
RF/ultrasound receivers.

Some recent work including CSITE [13] and Pin-
Loc [27] has explored using the OFDM subcarrier chan-
nel measurements as unique signatures for security and
localization. This requires a large amount of wardriving,
and the accuracy is limited to around one meter, while
ArrayTrack achieves finer accuracy and eliminates any
calibration beforehand.

The most widely used RF information is received sig-
nal strength (RSS), usually measured in units of whole
decibels. While readily available from commodity WiFi
hardware at this granularity, the resulting RSS measure-
ments are very coarse compared to direct physical-layer
samples, and so incur an amount of quantization error,
especially when few readings are present.

Map-building approaches. There are two main lines
of work using RSS; the first, pioneered by RADAR [2, 3]
builds “maps” of signal strength to one or more ac-
cess points, achieving an accuracy on the order of me-
ters [23, 30]. Later systems such as Horus [43] use prob-
abilistic techniques to improve localization accuracy to
an average of 0.6 meters when an average of six access
points are within range of every location in the wireless
LAN coverage area, but require large amounts of calibra-
tion. While some work has attempted to reduce the cal-
ibration overhead [12], mapping generally requires sig-
nificant calibration effort. Other map-based work has
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proposed using overheard GSM signals from nearby tow-
ers [34], or dense deployments of desktop clients [4].
Recently, Zee [21] has proposed using crowd-sourced
measurements in order to perform the calibration step,
resulting in an end-to-end median localization error of
three meters when Zee’s crowd-sourced data is fed into
Horus. In contrast to these map-based techniques, Ar-
rayTrack achieves better accuracy with few APs, and re-
quires no calibration of any kind beforehand, essential
if there are not enough people nearby to crowd-source
measurements before the RF environment changes.

Model-based approaches. The second line of work
using RSS are techniques based on mathematical models.
Some of these proposals use RF propagation models [22]
to predict distance away from an access point based on
signal strength readings. By triangulating and extrapo-
lating using signal strength models, TIX [11] achieves
an accuracy of 5.4 meters indoors. Lim et al. [14] use
a singular value decomposition method combined with
RF propagation models to create a signal strength map
(overlapping with map-based approaches). They achieve
a localization error of about three meters indoors. EZ [8]
is a system that uses sporadic GPS fixes on mobiles to
bootstrap the localization of many clients indoors. EZ
solves these constraints using a genetic algorithm, result-
ing in a median localization error of between 2–7 meters
indoors, without the need for calibration.

Other model-based proposals augment RF propaga-
tion models with Bayesian probabilistic models to cap-
ture the relationships between different nodes in the net-
work [16], and develop conditions for a set of nodes to
be localizable [42]. Still other model-based proposals are
targeted towards ad hoc mesh networks [6, 20, 24].

Prior work in AoA. Wong et al. [37] investigate the
use of AoA and channel impulse response measurements
for localization. While they have demonstrated posi-
tive results at a very high SNR (60 dB), typical wire-
less LANs operate at significantly lower SNRs, and the
authors stop short of describing a complete system de-
sign of how the ideas would integrate with a functioning
wireless LAN as ArrayTrack does. Niculescu et al. [17]
simulate AoA-based localization in an ad hoc mesh net-
work. AoA has also been proposed in CDMA mobile
cellular systems [40], in particular as a hybrid approach
between TDoA and AoA [9, 38], and also in concert with
interference cancellation and ToA [33].

Much other work in AoA uses the technology to solve
similar but materially different problems. Geo-fencing
[29] utilizes directional antennas and a frame coding ap-
proach to control APs’ indoor coverage boundary. Pat-
wari et al. [18] propose a system that uses the channel
impulse response and channel estimates of probe tones to

detect when a device has moved, but do not address loca-
tion. Faria and Cheriton [10] and others [5, 15] have pro-
posed using AoA for location-based security and behav-
ioral fingerprinting in wireless networks. Chen et al. [7]
investigate post hoc calibration for commercial off-the-
shelf antenna arrays to enable AoA determination, but
do not investigate localization indoors.

6 Discussion
How does ArrayTrack deal with NLOS?
The NLOS encountered in our experiments can be cate-
gorized into two different scenarios:
• S1: Direct path signal is not the strongest but exists.
• S2: Direct path signal is totally blocked.
S1 does not affect ArrayTrack as the spectra synthesis

method strengthens the true location in nature.
For S2, one blocked direct path degrades the perfor-

mance of ArrayTrack slightly but not much. It’s not very
likely the client’s direct paths to all the APs are blocked.

Linear versus circular array arrangement?
Most commonly seen commercial APs have their
antennas placed in linear arrangement. As circular array
resolves 360 degrees while linear resolves 180 degrees,
twice the number of antennas is needed for circular array
to achieve the same level of resolution accuracy while
linear array has the problem of symmetry ambiguity
addressed with synthesis of multiple APs. We plan to
consider other array arrangements in our future work.

7 Conclusion
We have presented ArrayTrack, an indoor location sys-
tem that uses angle-of-arrival techniques to locate wire-
less clients indoors to a level of accuracy previously only
attainable with expensive dedicated hardware infrastruc-
ture. ArrayTrack combines best of breed algorithms for
AoA based direction estimation and spatial smoothing
with novel algorithms for suppressing the non-line of
sight reflections that occur frequently indoors and syn-
thesizing information from many antennas at the AP.

A AP-Client Height Difference
Suppose the AP is distance h above the client; we com-
pute the resulting percentage error. AoA relies on the
distance difference d1 − d2 between the client and the
two AP antennas in a pair. Given an added height, this
difference becomes:

d�
1 − d�

2 =
d1

cosφ
− d2

cosφ
(13)

where cosφ = h/d. The percentage error is then
(d′

1−d′
2)−(d1−d2)
d1−d2

= (cosφ)−1 − 1. For h = 1.5 meters
and d = 5 meters, this is 4% error; for h = 1.5 meters
and d = 10 meters, this is 1% error.

12



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 83

References

[1] E. Aryafar, N. Anand, T. Salonidis, and E. Knight-
ly. Design and experimental evaluation of multi-
user beamforming in wireless LANs. In Proc. of
ACM MobiCom, 2010.

[2] P. Bahl and V. Padmanabhan. RADAR: An in-
building RF-based user location and tracking sys-
tem. In Proc. of IEEE Infocom, pages 775–784,
2000.

[3] P. Bahl, V. Padmanabhan, and A. Balachandran.
Enhancements to the RADAR location tracking
system. Technical Report MSR-TR-2000-12, Mi-
crosoft Research, Feb. 2000.

[4] P. Bahl, J. Padhye, L. Ravindranath, M. Singh,
A. Wolman, and B. Zill. DAIR: A framework for
managing enterprise wireless networks using desk-
top infrastructure. In Proc. of ACM HotNets, 2005.

[5] S. Bratus, C. Cornelius, D. Kotz, and D. Pee-
bles. Active behavioral fingerprinting of wireless
devices. In Proc. of ACM WiSec, pages 56–61, Mar.
2008.

[6] S. Capkun, M. Hamdi, and J. Hubaux. GPS-free
positioning in mobile ad-hoc networks. In Proc. of
Hawaii Int’l Conference on System Sciences, 2001.

[7] H. Chen, T. Lin, H. Kung, and Y. Gwon. Determin-
ing RF angle of arrival using COTS antenna arrays:
a field evaluation. In Proc. of the MILCOM Conf.,
2012.

[8] K. Chintalapudi, A. Iyer, and V. Padmanabhan. In-
door localization without the pain. In Proc. of ACM
MobiCom, 2010.

[9] L. Cong and W. Zhuang. Hybrid TDoA/AoA mo-
bile user location for wideband CDMA cellular sys-
tems. IEEE Trans. on Wireless Communications, 1
(3):439–447, 2002.

[10] D. Faria and D. Cheriton. No long-term secrets:
Location based security in overprovisioned wire-
less lans. In Proc. of the ACM HotNets Workshop,
2004.

[11] Y. Gwon and R. Jain. Error characteristics and
calibration-free techniques for wireless LAN-based
location estimation. In ACM MobiWac, 2004.

[12] A. Haeberlen, E. Flannery, A. Ladd, A. Rudys,
D. Wallach, and L. Kavraki. Practical robust local-
ization over large-scale 802.11 wireless networks.
In Proc. of ACM MobiCom, 2004.

[13] Z. Jiang, J. Zhao, X. Li, J. Han, and W. Xi. Re-
jecting the Attack: Source Authentication for Wi-
Fi Management Frames using CSI Information. In
Proc. of IEEE Infocom, 2013.

[14] H. Lim, C. Kung, J. Hou, and H. Luo. Zero con-
figuration robust indoor localization: Theory and
experimentation. In Proc. of IEEE Infocom, 2006.

[15] D. C. Loh, C. Y. Cho, C. P. Tan, and R. S. Lee.
Identifying unique devices through wireless finger-
printing. In Proc. of the ACM WiSec Conf., pages
46–55, Mar. 2008.

[16] D. Madigan, E. Einahrawy, R. Martin, W. Ju, P. Kr-
ishnan, and A. Krishnakumar. Bayesian indoor po-
sitioning systems. In Proc. of IEEE Infocom, 2005.

[17] D. Niculescu and B. Nath. Ad-hoc positioning sys-
tem (APS) using AoA. In Proc. of IEEE Infocom,
2003.

[18] N. Patwari and S. Kasera. Robust location distinc-
tion using temporal link signatures. In Proc. of the
ACM MobiCom Conf., pages 111–122, Sept. 2007.

[19] N. Priyantha, A. Chakraborty, and H. Balakrishnan.
The Cricket location-support system. In Proc. of
the ACM MobiCom Conf., pages 32–43, Aug. 2000.

[20] N. Priyantha, H. Balakrishnan, E. Demaine, and
S. Teller. Mobile-assisted localization in wireless
sensor networks. In Proc. of IEEE Infocom, 2005.

[21] A. Rai, K. Chintalapudi, V. Padmanabhan, and
R. Sen. Zee: Zero-effort crowdsourcing for indoor
localization. In Proc. of ACM MobiCom, 2012.

[22] T. S. Rappaport. Wireless Communications: Princi-
ples and Practice. Prentice-Hall, 2nd edition, 2002.

[23] T. Roos, P. Myllymaki, and H. Tirri. A probabilistic
approach to WLAN user location estimation. Inter-
national J. of Wireless Information Networks, 9(3),
2002.

[24] A. Savvides, C. Han, and M. Srivastava. Fine-
grained localization in ad-hoc networks of sensors.
In Proc. of ACM MobiCom, 2001.

[25] T. Schmidl and D. Cox. Robust Frequency and
Timing Synchroniation for OFDM. IEEE Trans. on
Communications, 45(12):1613–1621, Dec. 1997.

[26] R. Schmidt. Multiple emitter location and signal
parameter estimation. IEEE Trans. on Antennas and
Propagation, AP-34(3):276–280, Mar. 1986.

[27] S. Sen, B. Radunovic, R. Choudhury, and T. Minka.
Spot localization using phy layer information. In
Proceedings of ACM MOBISYS, 2012.

[28] T.-J. Shan, M. Wax, and T. Kailath. On spatial
smoothing for direction-of-arrival estimation of co-
herent signals. IEEE Trans. on Acoustics, Speech,
and Sig. Proc., ASSP-33(4):806–811, Aug. 1985.

[29] A. Sheth, S. Seshan, and D. Wetherall. Geo-
fencing: Confining Wi-Fi Coverage to Physical
Boundaries. In Proceedings of the 7th International
Conference on Pervasive Computing, 2009.

[30] A. Smailagic, D. Siewiorek, J. Anhalt, D. Kogan,
and Y. Wang. Location sensing and privacy in a
context aware computing environment. In Perva-
sive Computing, 2001.

[31] K. Tan, H. Liu, J. Fang, W. Wang, J. Zhang,

13



84 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

M. Chen, and G. Voelker. SAM: Enabling practical
spatial multiple access in wireless LAN. In Proc.
of ACM MobiCom, 2009.

[32] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang,
Y. Zhang, H. Wu, W. Wang, and G. Voelker. Sora:
High performance software radio using general
purpose multi-core processors. In Proc. of the NSDI
Conf., Apr. 2009.

[33] A. Tarighat, N. Khajehnouri, and A. Sayed. Im-
proved wireless location accuracy using antenna ar-
rays and interference cancellation. 4, 2003.

[34] A. Varshavsky, E. Lara, J. Hightower, A. LaMarca,
and V. Otsason. GSM indoor localization. In Per-
vasive and Mobile Computing, 2007.

[35] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The
active badge location system. ACM Trans. on Infor-
mation Systems, 10(1):91–102, Jan. 1992.

[36] A. Ward, A. Jones, and A. Hopper. A new loca-
tion technique for the active office. IEEE Personal
Communications, 4(5):42–47, Oct. 1997.

[37] C. Wong, R. Klukas, and G. Messier. Using WLAN

infrastructure for angle-of-arrival indoor user loca-
tion. In Proc. of the IEEE VTC Conf., pages 1–5,
Sept. 2008.

[38] Y. Xie, Y. Wang, P. Zhu, and X. You. Grid-
search-based hybrd ToA/AoA location techniques
for NLOS environments. IEEE Comms. Letters, 13
(4):254–256, 2009.

[39] J. Xiong and K. Jamieson. Towards fine-grained
radio-based indoor location. In Proc. of ACM Hot-
Mobile, 2012.

[40] L. Xiong. A selective model to suppress nlos sig-
nals in angle-of-arrival (AoA) location esimation.
In Proc. of the IEEE PIMRC, 1998.

[41] xirrus. Xirrus Corp. (http://www.xirrus.com).
[42] Z. Yang, Y. Liu, and X. Li. Beyond trilateration:

On the localizability of wireless ad-hoc networks.
In Proc. of IEEE Infocom, 2009.

[43] M. Youssef and A. Agrawala. The Horus WLAN
location determination system. In Proc. of ACM
MobiSys, 2005.

14



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 85

Walkie-Markie: Indoor Pathway Mapping Made Easy

Guobin Shen,† Zhuo Chen,‡ Peichao Zhang,‡ Thomas Moscibroda,† Yongguang Zhang†

Microsoft Research Asia, Beijing, China
†{jackysh, moscitho, ygz}@microsoft.com, ‡{czxxdd, starforever00}@gmail.com

Abstract

We present Walkie-Markie – an indoor pathway map-
ping system that can automatically reconstruct internal
pathway maps of buildings without any a-priori knowl-
edge about the building, such as the floor plan or access
point locations. Central to Walkie-Markie is a novel ex-
ploitation of the WiFi infrastructure to define landmark-
s (WiFi-Marks) to fuse crowdsourced user trajectories
obtained from inertial sensors on users’ mobile phones.
WiFi-Marks are special pathway locations at which the
trend of the received WiFi signal strength changes from
increasing to decreasing when moving along the path-
way. By embedding these WiFi-Marks in a 2D plane us-
ing a newly devised algorithm and connecting them with
calibrated user trajectories, Walkie-Markie is able to in-
fer pathway maps with high accuracy. Our experiments
demonstrate that Walkie-Markie is able to reconstruc-
t a high-quality pathway map for a real office-building
floor after only 5-6 rounds of walks, with accuracy grad-
ually improving as more user data becomes available.
The maximum discrepancy between the inferred path-
way map and the real one is within 3m and 2.8m for the
anchor nodes and path segments, respectively.

1 Introduction

Accurate and inexpensive indoor localization is one of
the holy grails of mobile computing, as it is the key to en-
abling indoor location-based services. Despite very sig-
nificant research effort, relatively little has actually been
deployed at scale. One reason is that a common and crit-
ical assumption of existing approaches – the availabil-
ity of a suitable localization map – is hard to fulfill in
practice. For instance, WiFi triangulation or fingerprint-
ing based approaches for indoor localization rely on a
priori AP position information, or a signal strength map
to function properly [4, 13, 24]. Such maps are typical-
ly constructed via dedicated, often labor-intensive, data-

gathering processes that map radio signals onto an indoor
map that geographically reflects the physical layout of
the building. Several recent efforts aimed at alleviating
the pain of radio map construction require knowledge of
the real floor plans [26,38]. Similarly, tracking based lo-
calization also requires accurate indoor maps (e.g., floor
plans or pathway maps) to constrain the drifting of in-
ertia sensors [36, 37]. Such indoor maps are difficult to
obtain in general, as they may belong to different own-
ers, may be outdated, and many legacy buildings simply
do not have them at all.

In this paper, we try to fundamentally rethink the as-
sumption and ask the question: can we build an indoor
map without any prior knowledge about the building? In
particular, we are interested in building pathway map-
s because they provide a natural framework for localiz-
ing users and points of interest (POIs) as people usually
move along pathways and indoor POIs are connected vi-
a pathways. A pathway map can also serve as the basis
for other maps specific to other localization approaches,
or can be used as a building block to construct seman-
tically richer maps for users, for example through auto-
matic location detection (e.g., [3]) or crowdsourced user
annotation. Finally, we seek a technology that allows to
obtain such pathway maps at scale, say for millions of
buildings across the world, including shopping malls and
office buildings.

We address these problems in Walkie-Markie, a sys-
tem that automatically generates indoor pathway maps
from traces contributed by mobile phone users. The sys-
tem uses crowdsourcing to generate the pathway map of
unknown buildings without requiring any a-priori infor-
mation such as floor-plans, any initial measurements or
inspection, and any instrumentation of the building with
specific hardware. The only assumption Walkie-Markie
requires is that there exists a WiFi infrastructure in the
building that is to be mapped. AP locations do not need
to be known; instead APs must merely exist for the sys-
tem to work.

1
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Walkie-Markie is based on two key observations.
First, a modern mobile phone can dead reckon the us-
er’s movement trajectory from its inertial measurement
units (i.e., IMU sensors, including accelerometer, mag-
netometer and gyroscope) [21,26,28,36]. The idea is that
if sufficiently many users walk inside a building and re-
port their trajectories, we can infer the pathway map. The
challenge is that IMU-based tracking is accurate only ini-
tially as it suffers from severe drift: rapid error accumu-
lation over time. Moreover, to generate maps at scale via
crowdsourcing, we must deal with trajectories from dif-
ferent users, who may start their walks from anywhere, at
different stride lengths, varying speed, etc. Second, WiFi
networks have been widely deployed, from office build-
ings to shopping malls. WiFi has been successfully used
by fingerprinting-based localization schemes, and com-
bined WiFi and IMU-tracking solutions have also been
proposed, e.g., [5,11,26,31,38]. However, there are well-
known practical concerns when using WiFi for localiza-
tion: signals fluctuate significantly during different times
of day, different phones can have different receiver gains
(i.e., device diversity) [14,34], and readings also vary de-
pending on how people place their phones e.g., in hand,
in pocket, or in backpack (i.e., usage diversity) [19].

Walkie-Markie consists of mobile clients on users’
mobile phones and a backend service in the cloud. When
participants walk, the client collects the rough trajectory
information (step count, step frequency, and walking di-
rection) as well as periodic WiFi scan results. The back-
end service fuses these possibly partial user traces (w.r.t
the overall internal pathways) and generates the pathway
map.

Central to Walkie-Markie is the WiFi-defined land-
mark (WiFi-Mark), which is a novel way to exploit the
widely-deployed WiFi infrastructure to establish accu-
rate and stable landmarks, which serve to anchor the var-
ious partial trajectories. A WiFi-Mark is defined as a
pathway location at which the trend of received signal
strength (RSS) from a certain AP reverses, i.e., changes
from increasing to decreasing, as the user moves along
the pathway. We show in this paper that such WiFi-
Marks based on the RSS trend (instead of the face RSS
value used in previous works) overcomes the aforemen-
tioned challenges in leveraging WiFi signals and yields
highly stable and easily identifiable landmarks. WiFi-
Marks are determined by the relative physical layout of
the AP and the pathway, and are thus location invariant.
Moreover, a single AP often leads to multiple uniquely
identifiable WiFi-Marks, leading to a higher density of
WiFi-Marks.

WiFi-Marks allow us to overcome two key problem-
s in mapping buildings: i) merging the large volumes
of crowdsourced (partial) trajectories and ii) bounding
the tracking error and drift of IMU sensors. Being

location-invariant, WiFi-Marks yield the common refer-
ence points for fusing snippets of user trajectories. With
more user trajectories, the noise tend to cancel each out,
which leads to more accurate displacement measurement
between WiFi-Marks. Thus, mapping accuracy gradual-
ly improves as more data becomes available. IMU-based
tracking suffers notoriously from rapid error accumula-
tion as distance increases. WiFi-Marks also help with
the drift problem of IMU-based tracking by bounding
the distances between which IMU-based tracking must
be relied upon.

Another ingredient of Walkie-Markie is a novel graph
embedding algorithm, Arturia, that fixes WiFi-Marks to
“known” 2D locations respecting the constraints sug-
gested by the user trajectories. The resulting pathway
map naturally reflects the physical layout. Arturia dif-
fers from existing embedding algorithms in that it uses
measured displacement vectors as opposed to distances
between nodes as input constraints. After WiFi-Marks
are properly placed on the 2D plane, the pathway map
is generated by connecting the embedded WiFi-Marks
with corresponding user trajectories. The obtained path-
way maps can be used by users to localize themselves
by adding the displacement to the position of the last en-
countered WiFi-Mark. The pathway maps can also be
used to generate other localization maps such as radio
maps.

We have implemented Walkie-Markie and evaluated it
in an office building and a shopping mall. Our experi-
mental results show that we can achieve mapping accu-
racy within 3 meters by merging enough user trajecto-
ries (each as short as one minute) equaling to 5-6 rounds
of walking. The mapping accuracy gradually improves
and stabilizes after about 1-2 times more walking time
along the same paths. Additional experiments on local-
ization using pathway as well as radio maps produced
by Walkie-Markie show that the average and 90 per-
centile localization errors are 1.65m and 2.9m, respec-
tively, when using displacement from the last WiFi-Mark
using the pathway map.

2 Problem and Challenges

Problem Statement: Indoor localization results are
meaningful only when associated with corresponding in-
door maps (e.g., pathway maps) that geographically re-
flect the physical layout. However, in this context the
availability of such maps has largely been taken for
granted, often via assumptions. For instance, IMU-based
tracking and localization systems have assumed accu-
rate indoor maps (e.g., floor plans) to constrain drifting;
WiFi-based localization systems further assume a-priori
knowledge about AP positions or a radio signal map
[4,13,24]. While there are many existing works trying to
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reduce the dependency on such a-priori information (AP
locations [6], radio signal map [12, 16, 22, 26, 38]), they
all assume a known internal map of the floor, which are
often not readily available.

In this paper, we remove this assumption and build an
indoor pathway mapping systems without assuming any
prior knowledge of the building. Our goal is to find a so-
lution that works with existing infrastructure, is applica-
ble to commercial mobile phones, and is “crowdsource-
able” so as to scale to a large number of buildings. The
only assumption we make is the mere existence of a WiFi
infrastructure in the buildings to be mapped.

Challenges: Previous work has tried to combine WiFi
signals and IMU sensing data [5,10,11,31]. The problem
with IMU-based technologies is that they can track a us-
er’s trajectory at some accuracy for only a short period of
time, and will drift severely as the walking time increas-
es. This makes it hard to align multiple trajectories, and
trajectories obtained from different users (with differen-
t start points) are even harder to combine into a whole
pathway map. Leveraging WiFi also poses well-known
challenges. Even though WiFi fingerprints are statistical-
ly locality-preserving [16, 24], an AP’s coverage area is
overly large for the desired accuracy of a useful internal
pathway map. Typically, multiple pathways are covered
by a single AP. The AP’s position is also unknown. Fur-
thermore, other challenges common to WiFi-based lo-
calization systems are: i) WiFi signal fluctuations due to
ambient interference, multipath effect, and environmen-
tal dynamics such as the time-of-day effect; ii) device di-
versity with different receiver gains at different phones;
and iii) device usage diversity caused by people placing
their phones differently such as in hand, in pocket, in
purse, or in a backpack. We note that usage diversity is
rarely mentioned in the literature, but is a real impairing
factor.

3 WiFi-defined Landmark

In real life, landmarks are often used to give directions.
No matter how one detours, once a landmark is encoun-
tered, previous errors are reset. Using the same idea, we
can leverage landmarks to constrain the drifting in IMU
tracking, and to align different user trajectories. Howev-
er, the challenge is the find landmarks that are perceiv-
able by mobile phones without human intervention. S-
ince mobile phones can sense the WiFi environment in
the background, we would ideally like to identify land-
marks based on WiFi signal. In this section, we show
that–using the concept of WiFi-Marks–this is indeed pos-
sible in spite of the multitude of challenges mentioned
above.

Figure 1: Illustration of WiFi-Marks, as determined by
the relative physical layout of the AP and the pathways.

3.1 WiFi-Marks: Concept

Previous work on WiFi-based localization has used the
received WiFi signal strength (RSS) directly. It turns out
that this is the root cause of the aforementioned prob-
lems. The key insight is that significantly more stable
landmarks can be obtained from an existing infrastruc-
ture by using WiFi signal strength indirectly: instead of
looking at the face RSS values, we look at the trend of
RSS changes.

Figure 1 illustrates the basic idea. A user is walking
from left to right along a pathway covered by an AP. Ini-
tially we see RSS increase as the user moves closer to-
wards the AP. When the user walks past the point from
which the distance to AP increases, the RSS trend revers-
es. In theory, this RSS trend tipping point (RTTP) should
correspond to a fixed position on the pathway that is clos-
est to the AP in terms of signal propagation.

The key appeal of examining the RSS trend instead
of taking individual RSS readings is that it may solve
the device and usage diversity problems: no matter what
make and model of the phone, what time of the day, and
how the phone is kept with respect to its user, the RTTP
should occur at around the same location. Through de-
tailed experiments, we argue in Section 3.3 that locations
where the RSS trend of a certain AP changes are excel-
lent candidates for landmarks. We call these points WiFi-
defined landmark, or short WiFi-Marks (WM) hereafter.

3.2 WiFi-Marks: Identification

As a landmark, each WiFi-Mark should be uniquely i-
dentifiable. Depending on how the coverage area of an
AP intersects with the pathways, it is possible and in fac-
t quite likely that one AP will generate multiple WiFi-
Marks (see Figure 2). Hence while BSSID (the MAC
address of the AP) can uniquely identify the master AP,
it alone is insufficient to uniquely identify a WiFi-Mark
since there can be multiple pathways under the cover-
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age of the same AP. Therefore, we need to use additional
information to differentiate different WiFi-Marks of the
same master AP.

Figure 2: Possibly multiple WiFi-Marks for the same AP.

In Walkie-Markie, we identify a WiFi-Mark by the fol-
lowing three-tuple:

WM � {BSSID,(D1,D2),N }

where BSSID is the ID of the master AP, D1 and D2 are
the steady walking directions approaching and leaving
the RTTP, respectively. They can be obtained from the
phone’s magnetometer. N is the set of neighboring AP-
s’ information, including their BSSID and the respective
RSS differences to that of the master AP.

The walking direction information (D1,D2) is adopt-
ed to differentiate pathways and turns. For example, Fig-
ure 3 shows the possible RTTPs for AP1, under different
walking patterns. With directions, we can readily dif-
ferentiate RTTP 1, {2,3}, 4, and 5. In addition, the di-
rection can be used to disqualify some erroneous RTTP
detections when the user makes a U-turn (e.g., RTTP 6
and 7). Not identifying such “U-turn RTTPs”, could add
significant noise to the system.

Figure 3: Multiple RTTP possibilities for AP1 under dif-
ferent walking patterns illustrated by arrows.

RTTPs with similar (D1,D2) can arise from parallel
corridors (e.g., RTTP 2 and 3 in Figure 3) or similar

turning styles. To further differentiate such RTTPs, we
leverage neighborhood AP information. In the same ex-
ample, RTTP 2 may see AP2 only and RTTP 3 sees AP3
only. Even if they see the exact same set of APs, there
is still a good chance that the relative RSS values will
be different due to the difference in distance to each AP.
Note that it is important to use the RSS differences to
the master AP’s RSS instead of their real RSS values to
avoid the device diversity problem. From the radio prop-
agation model [1], it can be verified that RSS differences
between multiple APs are not affected by the receiver
gain for a device.

Due to sensing noise, D1, D2, and N of a given WiFi-
Mark can be slightly different each time the WiFi-Mark
is measured. Therefore, we employ a WiFi-Mark cluster-
ing process (see Section 6). There are further unreliable
RTTP detections, such as when a user is not walking s-
traight or steadily (e.g., zigzagging) or when the phone’s
position changes rapidly (e.g. taken out of the pocket).
Our system therefore accepts an RTTP as a WiFi-Mark
only if the IMU sensor indicates a stable walking mo-
tion and no U-turn is detected during the measurement
process.

3.3 WiFi-Marks: Stability

Evaluation Scenarios: The indoor radio environmen-
t is complex and often deviates significantly from ideal
propagation models. To verify the stability of the RTTPs
in practice, we conduct the experiments using different
devices (HTC G7, Moto XT800, and Nexus S), at differ-
ent time of day (morning, afternoon, evening, and mid-
night), and with the phones held at different body posi-
tions (hand, trouser pocket, purse, and backpack). All
of these are important factors affecting RSS. In addition,
we perform experiments in two buildings to demonstrate
the generality of our approach.

We present two sets of experiments. In the first set,
we walk and wait, i.e., wait to ensure a complete scan
of all WiFi channels before walking to a next collection
point. This represents an ideal case. In the second set,
we walk continuously at slow or normal speed without
waiting for WiFi scans to complete. Figure 4 shows the
curves of collected RSS values and the locations of the
detected WiFi-Marks. From the figure, we can see that
the RSS values from different devices are evidently d-
ifferent, and the same is true for the same device at d-
ifferent time of day, or at different body positions. In
contrast, the increasing and decreasing RSS trends are
always easily identifiable, and the WiFi-Mark positions
are not only highly clustered and stable, but also consis-
tent between the two devices. Taking the normal walk-
ing case as an example, the average position deviations
are 1.3m and 2.9m for Moto XT800 and Nexus S, re-
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(a) Walk and wait. (b) Slow walking. (c) Normal walking.

Figure 4: RSS curves for one AP along a corridor using two phones. Blue dotted lines and red solid lines are the raw
and filtered RSS curves (see Section 6). Multiple same type of lines are measurement from different time of day. In
(a), all phones were held in hand. In (b) and (c), Moto was held in hand and Nexus S in trouser pocket.

spectively, while the mean center position offset is only
2.7m between devices. In the ideal case, the deviations
are even better. The reason is that because of the rela-
tively long WiFi scanning time in today’s mobile phone
(usually about 1.5s), the user may have already walked a
few steps during a scan.

Stability Evaluation: We also conduct controlled ex-
periments in larger areas with more pathways, still using
various devices and walking at various speeds and at dif-
ferent times of day. For each different setting we collect
data over 5 rounds and calculate the statistical deviation
in WiFi-Mark position. We note that the peak RSS value
at RTTPs are not all strong, some being as weak as -75
dBm.

Figure 5-(a) shows the cumulative distribution func-
tion (CDF) of the deviations for the different settings.
We can see that for over 90% of WiFi-Marks, the devia-
tions are within 2.5m, and about 70% are within 1.5m in
all cases. We further study whether WiFi-Marks detect-
ed with different settings are consistent, using the cen-
ter offset of WiFi-Mark clusters. Figure 5-(b) shows the
CDF of the center offsets. They are indeed consistent:
over 95% of the offsets are within 2.5m and over 75%
are within 1.5m. These results demonstrate that WiFi-
Marks are stable and robust across various dimensions,
and thus have ideal properties to be landmarks for our
indoor pathway mapping purpose.

4 Walkie-Markie: Overview

With WiFi-Marks, we now have the common reference
points for fusing crowdsourced user trajectories together.
Walkie-Markie consists of a client–an application run-
ning on users’ mobile phones–and the backend service
running in the cloud. The overall architecture is shown
in Figure 6.

A Walkie-Markie client works as follows: a back-
ground motion state detection engine monitors users’

motion states periodically. When the user is detected in
walking state, IMU-based tracking is activated and the
instantaneous walking frequency and direction of each
step is recorded for displacement estimation. At the same
time, WiFi signal scanning is performed opportunistical-
ly. If a WiFi signal is detected and the device has not
associated with an AP, the WiFi-Mark detection process
is activated. Information about the detected WiFi-Marks
and estimated displacements between neighboring WiFi-
Marks are stored, and later sent to the backend service.

The Walkie-Markie backend service listens to WiFi-
Mark updates from all clients. Upon receiving WiFi-
Mark updates, it examines if their master APs are new
or already existing. Updates with new master APs are
recorded and aged to mitigate the impact of transient APs
(e.g., mobile APs). For existing ones that are old enough,
their neighborhood consistency is further checked to en-
sure they are not relocated APs, which would be treat-
ed as new APs. Then a clustering process is executed
to cluster different detections of the same actual WiFi-
Marks. Each cluster is then assigned one coordinate by
the Arturia engine. Finally, with WiFi-Marks positioned
at the right places and user trajectories connecting them,
the backend service can generate the desired pathway
maps.

5 WiFi-Mark Positioning

WiFi-Marks (or landmarks in general) serve their pur-
pose as a reference points only once we can place them
at a known location. For this reason, we need to assign
coordinates to WiFi-Marks, which is a classical node em-
bedding problem in the network coordinate and localiza-
tion literature.

Distance vs Displacement: Previous node embedding
work has unanimously assumed scalar distances (e.g., vi-
a direct distance measurement or the shortest path) be-
tween nodes [9,23,30]. However, in our case, users may
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Figure 5: Statistics on WM positions. Figure 6: Walkie-Markie system architecture.

not always take the shortest path and, in fact, the internal
floor layout may even prevent people from taking short-
est paths (e.g., two nearby WiFi-Marks blocked by a wall
or a locked door). If multiple paths exist, taking differ-
ent paths will lead to different distances. These factors
often lead to severe violations of the triangle inequality,
which lies at the heart of existing embedding algorithm-
s. Consequently, using distances between WiFi-Marks
is insufficient and the displacement vector (i.e., both the
distance and the direction, obtainable from IMU sensors)
between WiFi-Marks has to be used.

Using direction information in addition to distance
is fundamental, because it can largely avoid the “fold-
freedom” problem of the embedding process [25], and
dismiss flip and rotational ambiguities. The only remain-
ing translational ambiguity can be fixed by fixing any an-
chor point with an absolute location (e.g., entrances or
window positions of a building with GPS readings). In
addition, using direction information also requires few-
er measurements: only N unique displacement measure-
ments are required to localize N WiFi-Marks, whereas
3N − 6 unique measurements would be required when
using distances only (in which case the results would still
suffer from flip and rotational ambiguities). Thus, using
displacement vectors enables faster bootstrapping and is
highly desired for a crowdsourcing system.

5.1 Arturia Positioning Algorithm

In our system, a major challenge is the inaccuracy of
IMU-based displacement measurements (e.g., errors in
stride length and/or direction estimation). To compen-
sate these errors, we design a new embedding algorith-
m, Arturia, that handles noisy IMU measurements and
assigns optimal coordinates to WiFi-Marks. Arturia is
based on the spring relaxation concept, where each edge
of the graph is assumed as a spring and the whole graph
forms a spring network.

Building the Graph: An edge (hence, a spring) is
added between two specific WiFi-Mark nodes as long as

there exists a real user trajectory in between. The rest
length of the spring (i.e., the constraint) is the real dis-
placement measurement from user trajectory. Multiple
edges between a pair of nodes are possible if there ex-
ist multiple user trajectories. In this way, we ensure that
more frequently encountered WiFi-Marks will have more
accurate coordinates as compared with the alternative s-
trategy that uses a single average edge.

Realizing the Graph: With the spring network, our
goal is to minimize the overall residual potential ener-
gy E, which is a function of the discrepancy between
the calculated distance (i.e., actual length of the spring)
and the real measurement (i.e., rest length of the spring).
Our solution is to adjust the node’s position as if it were
pushed or pulled by a net force from all connecting
neighboring springs. Arturia works as follows:

Initialization: We may randomly assign all nodes’s
initial coordinates, or simply to the origin. But for up-
dates due to new incoming data, the previous coordinates
are used for faster convergence and better consistency,
i.e., minimal adjustment to the previous graph.

Iteration: At each iteration, adjust the coordinates for
each node according to the compound constraints of the
neighboring nodes. Let p̂i be the current coordinate of
node i. We have �di, j = p̂i − p̂ j as the current displace-
ment vector between node i and a neighboring node j.
Assume there are Ne,i, j real measurement constraints
between node i and j, and let�ri, j,k be the kth constraint.
Then the adjustment vector is calculated as

�εi, j =
Ne,i, j

∑
k=1

(�ri, j,k − �di, j) (1)

The gross adjustment vector �Fi is obtained by summing
up�εi, j over all neighboring nodes, i.e., �Fi =∑ j�εi, j. Then,
node i’s coordinate is updated as p̂i = p̂i +�Fi.

The step size of the adjustment (i.e., |�Fi|) plays a criti-
cal role in the convergence speed: large adjustment steps
may lead to oscillation while small adjustments will con-
verge slowly, as also observed in [9]. To obtain a suitable
step size, we empirically amortize the adjustment vector
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according to Ne,i, the total number of edges to all neigh-
bors of node i. That is, �Fi =

1
Ne,i

∑ j�εi, j.
Termination: For each node i, the local residual po-

tential energy Ei is calculated as Ei = ∑ j |�εi, j|2. System
residual potential energy is then E = ∑i Ei. This value
tends to increase with additional edges of the spring net-
work. To obtain a universally applicable termination cri-
terion, we use the normalized potential energy Ē = E/Ne
with Ne being the total number of constraining edges.
The iteration will terminate when the change of Ē fall-
s below a small pre-determined threshold.

Algorithm Comparison: The spring relaxation con-
cept has previously been adopted, e.g. in [9, 15, 25]. The
major difference is that the local adjustment (i.e., �Fi) in
each iteration has direction information and will always
move closer to the target coordinates in Arturia. This is
not the case in other algorithms where the moving direc-
tion is calculated based on the noisy, intermediate coordi-
nates. Figure 7 illustrates this difference between Arturia
and the Vivaldi [9] algorithm for an intermediate adjust-
ment step to Node 3. We can see that in Arturia, the net
force of the adjustment points directly to Node 3’s target
position, while in Vivaldi it does not. The reason is that
the constraints in Arturia are displacement vectors (e.g.,
�r3,1 and�r3,2) with direction information, while in Vivaldi
they are scalar distances (e.g., |�r3,1| and |�r3,2|).

Figure 7: Illustration of an intermediate adjustment step
of Vivaldi [9] and Arturia.

5.2 Arturia Evaluation

We evaluate Arturia with simulations. We randomly de-
ploy N nodes in a 100×100 square area. For each node,
we build n edges to n random neighboring nodes. For
each edge, the direction is adjusted by a random number
within ±30 degrees, while the distance (i.e., the mag-
nitude of displacement) is randomly adjusted by within
±10 percent. These numbers reflect the real displace-
ment estimation error ranges.

Anti-folding Capability: As mentioned, using direc-
tion helps to avoid “fold-freedom” issues. We demon-
strate this by comparing the snapshots of intermediate
steps of Arturia against those of Vivaldi and AFL (see

Figure 8). We see that after 100 iterations, the nodes are
still heavily folded in Vivaldi. AFL is better than Vivaldi
in shape, but at a wrong scale. For Arturia, the nodes are
almost in correct positions after only 30 iterations.

Ground Truth Vivaldi, K = 100

AFL, K = 100 Arturia, K = 30

Figure 8: Snapshots of node positions at the different
iterations for Vivaldi, AFL and Arturia.

Speed and Accuracy: We study the convergence speed
and the resulting accuracy of different algorithms by
varying the parameters N and n. Each experiment is re-
peated 10 times and average results are reported. Note
that in the simulation, we have used the magnitude of
displacement as the distance for Vivaldi and AFL to en-
sure the obeyance of triangular inequality, i.e., all nodes
are mostly localizable.

The speed is measured as the number of iterations. For
the accuracy metric, we adopt the Global Energy Ratio
(GER) because it captures the global structural proper-
ty [25]. GER is defined as the root-mean-square nor-
malized error value of the node-to-node distances, i.e.,
GER =

√

Σi, j:i< j ε̂2
i j/(N(N −1)/2) where N is the total

node number and ε̂i j = |∆�di j|/|�di j| is the normalized n-
ode distance error.

Table 1 shows the results. We see that the proposed
Arturia algorithm is significantly better than the oth-
er two algorithms in terms of both convergence speed
and accuracy. In general, with higher connectivity, both
speed and accuracy improve for all three algorithms.
This is due to larger damping effects resulting from more
densely interconnected springs. However, even with
dense connectivity, the accuracy of Vivaldi is poor be-
cause of heavy folding. AFL works better by finding
better initial positions. In our target scenario, the node
connectivity cannot go very high since there will rarely
be direct displacement measurements between faraway
WiFi-Marks. This highlights the advantage of Arturia in
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Speed (Iterations) Accuracy (GER)
N n

Viv. AFL Art. Viv. AFL Art.
4 319k 193k 763 .687 .241 .0091

100 6 38k 27k 450 .660 .106 .0072
8 11k 2244 232 .615 .015 .0061

10 6954 971 170 .614 .012 .0056
4 340k 334k 1552 .745 .279 .0068

200 6 42k 19k 706 .736 .060 .0053
8 20k 3299 441 .710 .012 .0049

10 10k 1552 339 .699 .010 .0046

Table 1: Speed and Accuracy comparison of Vivaldi,
AFL, and Arturia. N is the node number and n is the
node connectivity degree.

the context of Walkie-Markie.

6 System Implementation

We have implemented the Walkie-Markie system, with
mobile client on Android phones and backend services
as Web Services. In this section, we detail a few key
components.

WiFi-Mark Detection: In mobile client, the collected
RSS value is first smoothed over a 9-point weight win-
dow in a running fashion to detect WiFi-Marks. The
weight window is empirically set as a triangle function
({0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2}). We tested
other window functions (e.g., cosine, raised cosine) and
found not much difference in detection accuracy. Then,
the trend detection is done by taking derivatives of the s-
moothed RSS curves, i.e., the differences between neigh-
boring points. The consecutive positive and negative s-
pans of the differences are identified and the correspond-
ing walking directions are checked. If there are no U-
turns and the trend change is significant as controlled
via a threshold (e.g., 5 dBm), the point with the peak
(filtered) RSS during the trend transition is selected as a
WiFi-Mark.

Displacement Estimation: Displacement between
WiFi-Marks is estimated from user trajectories by accu-
mulating the displacement of each step. Step displace-
ment carries stride length and walking direction and is
captured by IMU sensors. Many techniques exist for
stride length estimation [17, 29, 32]. We chose a simple
frequency-based model by Cho et al [7]: stride len =
a · f + b with f being the instantaneous step frequen-
cy, and a, b being parameters that can be trained offline.
However, model parameters are specific to a user’s walk-
ing conditions, e.g., parameters trained from wearing s-
port shoes will not work well when wearing high heels.
Improper parameters will lead to large estimation error.

Interestingly, leveraging common WiFi-Marks among
user trajectories, we can avoid the error-prone stride
length estimation and instead rely on simpler and more
robust step counting under regular walking, which can be
easily be done from the regularity of the IMU data. We
first randomly select a user and treat her stride length as
the benchmark unit (BU). We then normalize other user-
s’ stride against hers using partial trajectories between
common WiFi-Marks and obtain a normalization factor
θ . This normalization process is transitive. Ultimately
all users will normalize their traces to the same BU and
obtain their respective θs. Then we obtain the average
normalization factor θ̄ . The product of θ̄ and the BU will
be the real stride length of the “average” user, to which
we can assign the demographic average stride length.

Walking Direction Estimation: We use the magne-
tometer and the gyroscope to obtain the walking direc-
tion and the turning angles, similar to [18, 21]. Unlike
step detection and stride length that is determined on a
per-step basis, the direction of each step needs to be de-
termined by considering those of neighboring steps be-
cause magnetometer readings are sometimes not stable
due to disturbance of local building construction or ap-
pliances, and the gyroscope may drift over time. In our
implementation, we simply discard portions of magne-
tometer data where drastic changes occur, and rely on the
gyroscope to decide whether there is a direction change
in that period. For the portions with stable magnetometer
readings, we use a Kalman Filter to combine the mag-
netometer and the gyroscope readings to tell the user’s
walking directions.

WiFi-Mark Clustering: The backend service receives
many crowdsourced trajectories and WiFi-Mark report-
s. Due to sensing noise and user motion, the same ac-
tual WiFi-Mark may be reported slightly differently in
directions (D1,D2) and neighborhood (N ). We design a
clustering process to detect the same actual WiFi-Mark:
we first classify reported WMs with the same BSSID us-
ing D1 and D2. To accommodate sensing noise, the di-
rections are considered the same if they are within ±20
degrees. For those WMs with same BSSID and similar
directions, a bottom-up hierarchical clustering process as
in [6,24] is applied on the neighborhood set N . Initially,
each WM is one cluster. Then the closest clusters are it-
eratively merged if their inter-cluster distance is smaller
than a pre-determined threshold, which is set to 15 dBm
as recommended in [24].

The inter-cluster distance is the average distance
between all inter-cluster pairs of WMs. The distance
between two WMs is defined over the RSS of the sensed
APs (A ) as follows:

DN( �Ai, �A j) =

√

K

∑
n=1

(ai
n −a j

n)2/K
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where �Ai are the RSS differences (to ensure device indif-
ference) between the master AP and neighboring APs at
WMi, and K is the total number of unique APs detected
at the two WMs. For orphan APs appearing in one WM’s
neighborhood but not the other, the RSS difference is set
to peak RSS of the master AP minus -100 dBm. Finally,
each WiFi-Mark cluster is treated as one node in Arturi-
a and assigned one coordinate. All WiFi-Marks in the
same cluster have the same coordinate.

Pathway Map Generation: With WiFi-Marks and con-
necting user trajectories, we design the following expan-
sion and shrinking procedure to generate the pathway
map systematically. Initially, user trajectories are parti-
tioned into snippets delimited by WiFi-Marks. Snippet-
s with U-turns are filtered out. The remaining trajecto-
ry snippets are calibrated by proportionally adjusting the
length and direction of each step using the WiFi-Marks’
coordinates assigned by Arturia (affine transformation).
For each calibrated trajectory snippet, we first draw it on
a canvas and further expand it to a certain width (i.e.,
from line to shape). Pixels being occupied are weighted
differently according to their distances to the center line:
the closer the pixels, the higher the weight. Due to the
multiplicity of user trajectories, there may exist multiple
snippets connecting the same two WiFi-Marks. Thus,
expanded snippets will overlay together and the weight
of overlapping pixels are summed up. The expansion
process will result in a fat pathway map. A shrinking
process is then applied to prune away those outer pixels
whose weights are less than a threshold. As some WiFi-
Marks may be encountered more frequently than others,
we adapt the threshold as a percentage to the maximum
weight in the local neighborhood. Finally, we remove
isolated pixels and also smooth the edges of the resulting
shrunk pathway map.

Note that the pathway map generated from above
expansion-shrinking process is a bitmap. It is also pos-
sible to generate a vector pathway map as all the turns
can be effectively determined from user trajectories. We
adopt bitmap in this paper for its immediacy in visually
reflecting the quality of users’ trajectories.

Practical Considerations: In our implementation, we
have considered other important issues to build a practi-
cal crowdsourcing system.

Robustness: We have designed two mechanisms to im-
prove the robustness of the system. First, the backend
service implements an enrollment selection mechanis-
m. WiFi-Marks from new master APs are recorded and
will be incorporated into the Arturia positioning engine
only when the AP becomes sufficiently aged. This is
to counter transient WiFi-Marks, e.g., those caused by
mobile APs or WiFi hotspot created on mobile phone

through tethering. Relocated APs are detected via neigh-
borhood (carried in WiFi-Mark reports) consistency and
treated as new APs. Second, to mitigate the impact of
outlying WiFi-Marks, e.g., resulting from transient mo-
bile AP or wrongly detected due to magnetometer mal-
function, we enroll a WiFi-Mark cluster only when it has
a sufficient number of members (e.g., three).

Energy consumption: IMU-sensing consumes little
energy, especially at low sampling rate (e.g., 10Hz in our
case). Our preliminary test shows that 10Hz IMU sens-
ing shortens the depletion time of a fully charged battery
from 18.3 hours to 17.8 hours. We reduce data commu-
nication to the server by performing step detection and
WiFi-Mark detection entirely on the mobile phone. The
final communication data rate is about 1KB every 100
steps. Note that it can be delayed and piggybacked on
other network sessions. The major energy consumption
is from WiFi scanning. To work around, our client trig-
gers WiFi scanning only when the user is walking (de-
tected from low duty cycled IMU sensors), and we task
a user to collect just a few minutes of walking data. As
shown in Section 7, even short trajectories can still be
used to infer pathway maps.

7 Walkie-Markie System Evaluation

7.1 Visual Comparison

Before presenting quantitative evaluation results, we first
visually examine the inferred pathway map with the
ground truth or reference floor plan. This will give us
a general feel for Walkie-Markie’s practicality.

An Office Floor: We first show the study in our office
floor for which we have the groundtruth floor plan. The
internal layout consists of meeting rooms, offices, cubi-
cle areas, and relatively large open areas in the middle.
The experiment floor size is 3,600m2 and the total inter-
nal pathway length is 260m. Figure 9 shows the aligned
user trajectories and the inferred pathway maps under d-
ifferent amounts of user trajectory data. The stars in user
trajectories are the detected WiFi-Marks. As expected,
the quality of the resulting pathway map improves with
more user data. After 50 minutes of random walk, the re-
sulting map is already very close to the real map shown
in the bottom-left figure.

A Shopping Mall Floor: We also study a nearby shop-
ping mall. There is no managed WiFi LANs, but many
isolated WiFi islands deployed by coffee shops or from
POS machines. The floor has an irregular layout and the
internal pathway length is roughly 310m. We walked
about 10 rounds for about 40 minutes with a Nexus S
phone. The results are shown in Figure 10. The first t-
wo figures show the raw IMU-tracked user trajectories

9
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(a) after 20min walk. (b) after 30min walk. (c) after 50min walk. (d) after 100min walk.

Figure 9: Aligned user trajectories and generated pathway maps at different amount of user trajectories.
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(a) normal IMU-tracking (b) with WM alignment (c) Inferred pathway map (d) Picture from flyer.

Figure 10: The picture and generated pathway map for a real shopping mall.

and those aligned with WiFi-Marks. The third figure
shows the inferred pathway map. Unable to obtain a
groundtruth floor plan, we took a picture of an emer-
gency guidance map and highlighted the pathways in the
last figure. We see that the pathway map generated by
Walkie-Markie is visually very close to the real one.

7.2 Quantitative Evaluation
We conduct experiments in our office building, for which
we have the groundtruth floor plan.

Data Collection: We have collected data from seven
users, six male and one female, with heights range from
158cm to 182cm. A stride length model is trained for
each user. We asked them to walk normally and cover
all the path segments in each round, but they could start
anywhere. Three phone models (Nexus S, HTC G7, and
Moto XT800) were used. The phones were held in hand
in front of body, hip-pocket, and also a backpack. In
total, the users walked 30 rounds for about two hours.

In real crowdsourcing scenarios, users may walk on-
ly a portion of all pathways, or we may need to discard
portions with irregular walking, or a user may only want
to be tasked for a short time for consumption of ener-
gy consumption. To simulate these constraints and see if
short trajectories are still useful, we chop the complete
user trajectories into one-minute snippets, and random-
ly select a certain number of such snippets to infer the

map. Results reported below are averaged over 10 such
experiments.

Performance Metrics: To quantify the quality of the in-
ferred pathway map, we use the following metrics.

• Graph Discrepancy Metric (GDM): This metric re-
flects the differences in the relative positioning among
anchor nodes, i.e. singular locations such as crosses
or sharp turns. Like GER, we compare the Euclidean
distances among all node pairs using coordinates from
respective maps.

• Shape Discrepancy Metric (SDM): This metric quan-
tifies differences between the shape of inferred paths
and real ones. Path segments between corresponding
anchor nodes are uniformly sampled to obtain a series
of sample points. The metric is defined as the distance
between corresponding sampling points. Note the in-
ferred map needs to be registered to the real map first
by aligning at some anchor nodes.

Mapping Accuracy: Figures 11-(a) and (b) show the
cumulative distribution (CDF) of GDM from different
amount of trajectory data. We can see that the geometric
layout of all anchors are well preserved with only 2-hour
walking data. The maximum difference in distances be-
tween corresponding node pairs is about 3 meters, and
the 90 percentile difference is around 2 meters. We al-
so observe that the performance improves as more da-
ta becomes available. In addition, an accurate pathway

10
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Figure 11: CDF of GDM.
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Figure 12: CDF of SDM.
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Figure 13: System performance using
step count only.

map can be built from trajectories as short as one-minute
walking, as long as we can obtain sufficiently many of
them.

Comparing the curves with similar walking time (e.g.,
100min vs 26 rounds) in the two subfigures, we can see
that using complete trajectories leads to better perfor-
mance. This is because chopping the walks into snippets
reduces the displacement measurements between WiFi-
Marks. In general, longer trajectories yields better per-
formance.

In measuring SDM, we have different options to align
the inferred map to the real map to fix the only remaining
translational ambiguity. In reality, such alignment can be
automatically performed by leveraging user trajectories
that enter or leave the building. Here, we study the results
by aligning at any outermost anchor point (e.g., Points A,
B, C, D in the bottom-left figure in Figure 9), and also an
optimal alignment at the geometric center of all anchors.
In all experiments below, we have obtained 10 sample
points on each path segment between two neighboring
anchors.

Figure 12-(a) shows the CDF of SDM using 100 one-
minute snippets. We can see that aligning at different
points indeed leads to different performance. Neverthe-
less, the maximum difference among all the five align-
ment trials is small, within 1.3 meters. In the remainder
of the evaluation, we use the optimal alignment. From
Figure 12-(b), we see that the shape of inferred pathways
agrees well with the shape of real ones. When over 50

minutes of walking data is used, the maximum path dis-
crepancy is within 2.8 meters, and the 90 percentile error
is within 1.8 meters.

Step Count Only: We stated above that Walkie-
Markie can avoid error-prone stride length estimation.
To verify this claim, we use only the direction and step
count from the same set of user trajectories. Figure 13
shows the results. Since we do not know the demograph-
ic average step length, we scale the resulting shape to
best fit the ground truth. This gives the upper bound of
system performance. We also simply assign 0.7m as the
demographic average step length and obtain the results.
From the figure we can see that even using step count
only leads to high accuracy maps. Comparing with the
curve using the trained stride length model, we can see
that the 90 percentile GDM is only slightly worse (with-
in 0.4m) and the 90 percentile SDM is actually better by
about 0.4m.

Impact of AP Density: Our office floor has a relative-
ly dense AP deployment, about 21 APs covering an area
of 3,600m2. It is natural to conjecture that the perfor-
mance of Walkie-Markie may be highly affected by the
AP density. To study this impact, we emulate sparse de-
ployments by randomly blanking out a certain percent-
age of APs, i.e., eliminating all the WiFi-Marks defined
by those APs and their appearances in other WiFi-Mark’s
neighbor AP list.

Figure 14 shows the results with varying percentage

11
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Figure 14: Impact of WiFi AP density. Figure 15: GDM and SDM statistics under different amount of trace data.

of remaining APs. In general, the performance degrades
when the number of AP decreases. But for a dense de-
ployment like our office building, the number of APs is
more than enough for a good result. The result does not
suffer if AP density is reduced to 40%. And even a fur-
ther reduction to 20% degrade the mapping accuracy on-
ly slightly.

System Agility: We are also interested in learning how
agile Walkie-Markie can construct a useful internal path-
way map. System agility reflects the adaptation capabil-
ity to the internal layout changes of a building. It is mea-
sured by the achievable GDM and SDM under different
amount of user trajectories incorporated into the system.
Figure 15 shows that both discrepancy metrics decrease
with more data input, and the system converges quick-
ly: with about 5 to 6 rounds of trajectories (i.e., visits
per path segment), a highly accurate pathway map can
already be inferred.

8 Application to Localization

Radio Map as Side Product: In Walkie-Markie, WiFi
fingerprints are collected when the users walk. When the
internal pathway map is generated, the position of each
user step can be obtained from the calibrated walking tra-
jectory. With reference to the timestamps of WiFi scans
and steps, we can easily interpolate the position of each
WiFi scan. As a result, we can generate a dense WiFi
fingerprint map for free.

Localization: Both the resulting internal pathway map
and the radio map can be used for localization pur-
pose. For the former, we can localize a user by track-
ing the relative displacement since the last WiFi-Mark
encountered, whose position is known. For the latter,
we can apply any WiFi fingerprinting-based method such
as the RADAR localization system [4]. For evaluation,
we walked one round along the pathway in the office
floor. During walking, we ensured every step to be at
boundaries of carpet tiles. Thus fingerprints are col-
lected at half-meter (i.e., the tile size) interval and their

groundtruth positions are also known. We compare the
localization results in Figure 16. We can see that Walkie-
Markie outperforms RADAR, and more interestingly, the
localization error is bounded. Quantitatively, the average
and 90 percentile localization errors are 1.65m and 2.9m
for Walkie-Markie, and 2.3m and 5.2m for RADAR. We
note that the resulting accuracy is comparable with that
reported in Zee [26], and slightly better than that from
LiFS [38].
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Figure 16: Localization results of Walkie-Markie and
RADAR in an office floor, using crowd sourced map.

9 Discussion
Open Area: Our system works well for normal indoor
pathways that are typically narrow (say a few meters),
which helps ensuring regular user motion. For large open
areas, the performance depends on how users walk. If
most users walk along roughly the same path (e.g., from
one entrance to another), Walkie-Markie will still work.
In general, however, the performance may deteriorate as
users may walk arbitrarily, which will cause noisy WiFi-
Mark detection and clustering. For wide pathways, the
inferred map tends to be thinner than the real ones. This
is because we have assumed a point representation of a
WiFi-Mark cluster, and we have also assumed the path-
way to be around 2-meter wide pruning outer pixels in
the shrinking process. We note that WiFi-Mark clusters
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from wider pathway segments tend to be more diverged
than those from thinner ones, we may leverage this fact
to estimate the pathway width.

Multiple Floors: Users may walk across different floors
using either elevators, escalators, and stairs. These mo-
tion states can be discriminated using accelerometer with
advanced detection mechanisms [20,35], and can thus be
excluded in the WiFi-Mark detection. Interestingly, these
functional areas may serve as landmarks as they are sta-
ble and reliably detectable via phone sensors. Thus, they
can also be incorporated into the Walkie-Markie system,
and treated in the same way as WiFi-Marks by the Ar-
turia engine. To discriminate different functional areas
of the same type, we can use the covering WiFi APs.

Dedicated Walking vs Crowdsourcing: While Walkie-
Markie is crowdsourcing-capable, it can also be used by
dedicated or paid war-walkers. Dedicated walkers can
walk longer and better traces, which leads to a higher
efficiency in generating the desired maps (as shown in
Figure 11).

10 Related Work

Although we focus on internal pathway mapping,
Walkie-Markie is essentially a system of simultaneous
localization and mapping (SLAM), which is heavily s-
tudied in the robotics field [33]. SLAM methods typi-
cally rely on visual landmarks or obstacles detected by
camera, sonar or laser range-finders and on accurate
kinematics of robots [2]. FootSLAM [28] uses shoe-
mounted inertial sensors to construct the internal map.
PlaceSLAM [27] further incorporates manually annotat-
ed places. In contrast, Walkie-Markie requires no spe-
cial hardware and uses IMU sensors on commercial mo-
bile phones, and requires no human intervention, which
is necessary for a crowdsourcing system.

Escort [8] navigates users via the map built from other
users’ trajectories and instruments audio beacons to con-
strain IMU-tracking drift. Unloc [35] further explores
various types of natural landmarks detectable from sen-
sor readings, including the landmarks from WiFi net-
works. Their WiFi landmarks are determined as location-
s least similar (with ratio of common APs as the similar-
ity metric) to all other places. Walkie-Markie does not
need to instrument the environment, and uses the RSS
trend to detect WiFi-Marks. This idea makes it robust to
signal fluctuations, device diversity, and usage diversity,
whereas how Unloc handles such practical issues was not
reported. The detection is much simpler. In addition, un-
like Unloc where multiple APs may determine one WiFi
landmark, one AP may determine multiple WiFi-Marks
in Walkie-Markie. Thus, we are able to find significant-
ly more WiFi-Marks (e.g., over 100 WMs in one floor)

than Unloc (e.g., around 10 WiFi landmarks and overal-
l 40 landmarks in one building). One recent work [19]
also exploits the point of maximum RSS, which bears
similarity to WiFi-Mark. However, instead of exploiting
it as a landmark, they use it to switch between two lo-
cation inference modules. A dedicated training stage is
required to obtain the locations of such maximum RSS
points. Walkie-Markie builds the pathway map without
pre-training.

There are several papers that combine WiFi and IMU-
tracking for mapping purpose. WiSLAM [5] seeks to
construct the WiFi radio map and uses the RSS values
to differentiate different paths. WiFi-SLAM [11] uses
a Gaussian process latent variable model to build WiFi
signal strength maps and can achieve topographically-
correct connectivity graphs. SmartSlam [31] employs
inertial tracing, a WiFi observation model and Bayesian
estimation method to construct the floor plan. LiFS [38]
and Zee [26] seek to reduce efforts in generating the
radio map, with the necessary aid of the actual floor
plan. All these work has exploited the WiFi signal in
the same way as other WiFi-based localization methods,
and thus still face the same challenges, namely WiFi sig-
nal fluctuations, device diversity and usage diversity. A-
gain, Walkie-Markie avoid such challenges by using RSS
trend instead of face values.

11 Conclusion

We have presented the design and implementation
of Walkie-Markie – a crowdsourcing-capable pathway
mapping system that leverages ordinary pedestrians with
their sensor-equipped mobile phones and builds indoor
pathway maps without any a-priori knowledge of the
building. We propose WiFi-Marks–defined using the
tipping-point of an RSS trend–to overcome the chal-
lenges common to WiFi-based localization. Its location-
invariant property helps to fuse user trajectories and
make the system crowdsourcing-capable. We also
present an efficient graph embedding algorithm that as-
signs optimal coordinates to the landmarks through a
spring relaxation process based on displacement vectors.
With the located WiFi-Marks and user trajectories, high-
ly accurate pathway maps can be generated systemati-
cally. Our experiments demonstrate the effectiveness of
Walkie-Markie.
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Abstract

Network state may change rapidly in response to
customer demands, load conditions or configuration
changes. But the network must also ensure correctness
conditions such as isolating tenants from each other and
from critical services. Existing policy checkers cannot
verify compliance in real time because of the need to col-
lect “state” from the entire network and the time it takes
to analyze this state. SDNs provide an opportunity in this
respect as they provide a logically centralized view from
which every proposed change can be checked for com-
pliance with policy. But there remains the need for a fast
compliance checker.

Our paper introduces a real time policy checking
tool called NetPlumber based on Header Space Analysis
(HSA) [8]. Unlike HSA, however, NetPlumber incre-
mentally checks for compliance of state changes, using
a novel set of conceptual tools that maintain a depen-
dency graph between rules. While NetPlumber is a natu-
ral fit for SDNs, its abstract intermediate form is concep-
tually applicable to conventional networks as well. We
have tested NetPlumber on Google’s SDN, the Stanford
backbone and Internet 2. With NetPlumber, checking the
compliance of a typical rule update against a single pol-
icy on these networks takes 50-500μs on average.

1 Introduction
Managing a network today manually is both cumber-
some and error-prone. For example, network adminis-
trators must manually login to a switch to add an access-
control rule blocking access to a server. In a recent sur-
vey [15], network administrators reported that configura-
tion errors are very common in their networks.

The problem is that several entities can modify the for-
warding rules: in addition to manual configuration, dis-
tributed protocols (e.g. OSPF, spanning tree, BGP) write
entries into forwarding tables. There is no single location
where all of the state is observable or controllable, leav-
ing network administrators to use ad-hoc tools like ping
and traceroute to indirectly probe the current state of the
forwarding rules.

∗Peyman Kazemian was an intern at Google while doing this work.

Recently, there has been growing interest in automat-
ing network control using software-defined networks
(SDNs). SDN separates the control plane from the for-
warding plane; a well-defined interface such as Open-
Flow [11] lets the control plane write <match, action>
rules to switches. The controller controls the forward-
ing state because it decides which rules to write to the
switches; and it observes the forwarding state because it
was the sole creator. SDNs therefore present an oppor-
tunity to automate the verification of correct forwarding
behavior. This is the premise of recent work on auto-
matic analysis of forwarding state for SDNs [8, 10, 14].
The basic idea is that if we can analyze the forward-
ing state—either as it is written to switches, or after it
has been written—then we can check against a set of in-
variants/policies and catch bugs before or soon after they
take place.

Our paper describes a verification tool called Net-
Plumber for SDNs and conventional networks. In SDNs,
NetPlumber sits in line with the control plane, and ob-
serves state changes (e.g. OpenFlow messages) between
the control plane and the switches (Figure 1). Net-
Plumber checks every event, such as installation of a
new rule, removal of a rule, port or switch up and down
events, against a set of policies and invariants. Upon de-
tecting a violation, it calls a function to alert the user or
block the change. In conventional networks, NetPlumber
can get state change notifications through SNMP traps
or by frequently polling switches. Our evaluations use
a large SDN (Google WAN) and two medium sized IP
networks (Internet2 and the Stanford Network).

NetPlumber can detect simple invariant violations
such as loops and reachability failures. It can also check
more sophisticated policies that reflect the desires of hu-
man operators such as: “Web traffic from A to B should
never pass through waypoints C or D between 9am and
5pm.” Our NetPlumber prototype introduces a new for-
mal language (similar to FML [6]) to express policy
checks, and is fast enough to perform real-time checks
each time a controller adds a new rule. In experiments
with the Stanford backbone, Google’s WAN, and In-
ternet2’s backbone, NetPlumber typically verifies a rule
change in less than 1ms, and a link-up or link-down event
in a few seconds.
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NetPlumber’s speed easily exceeds the requirements
for an enterprise network where configuration state
changes infrequently—say once or twice per day. But in
modern multi-tenant data centers, fast programmatic in-
terfaces to the forwarding plane allow control programs
to rapidly change the network configuration - perhaps
thousands of times per second. For example, we may
move thousands of virtual machines (VMs) to balance
load, with each change requiring a tenant’s virtual net-
work to be reconfigured.

NetPlumber builds on our earlier work on Header
Space Analysis (HSA) [8]. HSA models networks us-
ing a geometric model that is much easier to reason
about than the vendor-specific interfaces on switches
and routers. NetPlumber improves upon HSA in two
ways. First, by running HSA checks incrementally, Net-
Plumber enables real-time checking of updates; this in
turn can prevent bugs from occurring. Second, Net-
Plumber provides a flexible way to express and check
complex policy queries without writing new ad hoc code
for each policy check, as was required by HSA.

The four contributions of this paper are:

1. NetPlumber (section 3): NetPlumber is our real-
time policy checking tool with sub-millisecond av-
erage run time per rule update.

2. Flexible Policy Query Mechanism (section 4):
NetPlumber introduces a flexible way to express
complex policy queries in an extensible, regular-
expression-based language called FlowExp.

3. Distributed NetPlumber (section 5): We show how
to scale NetPlumber to large networks using a dis-
tributed implementation.

4. Evaluation at Scale (section 6): We evaluate Net-
Plumber on three production networks, includ-
ing Google’s global WAN carrying inter-datacenter
traffic.

2 Header Space Analysis
NetPlumber uses HSA [8] as a foundation. HSA
provides a uniform, vendor-independent and protocol-
agnostic model of the network using a geometric model
of packet processing. A header is a point (and a flow is
a region) in a {0, 1}L space, called the header space,
where each bit corresponds to one dimension of this
space and L is an upper bound on header length (in bits).
Networking boxes are modeled using a Switch Transfer
Function T , which transforms a header h received on in-
put port p to a set of packet headers on one or more output
ports: T : (h, p) → {(h1, p1), (h2, p2), ...}.

Each transfer function consists of an ordered set of
rules R. A typical rule consists of a set of physical input
ports, a match wildcard expression, and a set of actions
to be performed on packets that match the wildcard ex-
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Figure 1: Deploying NetPlumber as a policy checker in SDNs.

pression. Examples of actions include: forward to a port,
drop, rewrite, encapsulate, and decapsulate. Network
topology is modeled using a Topology Transfer Function,
Γ. If port psrc is connected to pdst using a link, then Γ
will have a rule that transfers (h, psrc) to (h, pdst).

HSA computes reachability from source A, via
switches X, Y, ... to destination B as follows. First, cre-
ate a header space region at A representing the set of all
possible packets A could send: the all-wildcard flow with
L wildcard bits and covering the entire L-dimensional
space. Next, apply switch X’s transfer function to the
all-wildcard flow to generate a set of regions at its out-
put ports, which in turn are fed to Y ’s switch transfer
function. The process continues until a subset of the
flows that left A reach B. While the headers may have
been transformed in the journey, the original headers sent
by A can be recovered by applying the inverse transfer
function. Despite considerable optimization, the Python-
based implementation called Hassel described in [8] re-
quires tens of seconds to compute reachability.

3 NetPlumber
NetPlumber is much faster than Hassel at update time
because instead of recomputing all the transformations
each time the network changes, it incrementally updates
only the portions of those transfer function results af-
fected by the change. Underneath, NetPlumber still uses
HSA. Thus, it inherits from HSA the ability to verify a
wide range of policies—including reachability between
ports, loop-freedom, and isolation between groups—
while remaining protocol agnostic.

Figure 1 shows NetPlumber checking policies in an
SDN. An agent sits between the control plane and
switches and sends every state update (installation or re-
moval of rules, link up or down events) to NetPlumber
which in turn updates its internal model of the network; if
a violation occurs, NetPlumber performs a user-defined
action such as removing the violating rule or notifying

2
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the administrator.
The heart of NetPlumber is the plumbing graph which

captures all possible paths of flows1 through the network.
Nodes in the graph correspond to the rules in the network
and directed edges represent the next hop dependency of
these rules:

• A rule is an OpenFlow-like <match, action>
tuple where the action can be forward,2

rewrite, encapsulate, decapsulate, etc.
• Rule A has a next hop dependency to rule B if 1)

there is a physical link from rule A’s box to rule B’s
box; and 2) the domain of rule B has an intersection
with range of rule A. The domain of a rule is the set
of headers that match on the rule and the range is
the region created by the action transformation
on the rule’s domain.

Initialization: NetPlumber is initialized by examining
the forwarding tables to build the plumbing graph. Then
it computes reachability by computing the set of pack-
ets from source port s, that can reach destination port d
by injecting an“all-wildcard flow” at s and propagating
it along the edges of the plumbing graph. At each rule
node, the flow is filtered by the match part of the rule
and then transformed by the action part of the rule.
The resulting flow is then propagated along the outgo-
ing edges to the next node. The portion of the flow, if
any, that reaches d is the set of all packets from s that
can reach d. To speed up future calculations, whenever a
rule node transforms a flow, it remembers the flow. This
caching lets NetPlumber quickly update reachability re-
sults every time a rule changes.

Operation: In response to insertion or deletion of
rules in switches, NetPlumber adds or removes nodes and
updates the routing of flows in the plumbing graph. It
also re-runs those policy checks that need to be updated.

3.1 The Plumbing Graph
The nodes of the plumbing graph are the forwarding
rules, and directed edges represent the next-hop depen-
dency of these rules. We call these directed edges pipes
because they represent possible paths for flows. A pipe
from rule a to b has a pipe filter which is the intersec-
tion of the range of a and the domain of b. When a flow
passes through a pipe, it is filtered by the pipe filter. Con-
ceptually the pipe filter represents all packet headers at
the output of rule a that can be processed by b.

A rule node corresponds to a rule in a forwarding ta-
ble in some switch. Forwarding rules have priorities;
when a packet arrives to the switch it is processed by
the highest priority matching rule. Similarly, the plumb-

1In what follows, a flow corresponds to any region of header space.
2A drop rule is a special case of forward rule with empty set of

output ports.

ing graph needs to consider rule priorities when deciding
which rule node will process a flow. For computational
efficiency, each rule node keeps track of higher priority
rules in the same table. It calculates the domain of each
higher priority rule, subtracting it from its own domain.
We refer to this as intra-table dependency of rules.

Figure 2 shows an example network and its corre-
sponding plumbing graph. It consists of 4 switches, each
with one forwarding table. For simplicity, all packet
headers are 8 bits. We will use this example though the
rest of this section.

Let’s briefly review how the plumbing graph of Fig-
ure 2 is created: There is a pipe from rule 1 in table
1 (rule 1.1) to rule 2 in table 2 (rule 2.2) because (a)
ports 2 and 4 are connected and (b) the range of rule 1.1
(1010xxxx) and the domain of rule 2.2 (10xxxxxx) has
a non-empty intersection (pipe filter: 1010xxxx). Simi-
larly there is a pipe from rule 2.2 to rule 4.1 because (a)
ports 5 and 8 are connected and (b) the range of rule 2.2
(111xxxxx) and the domain of rule 4.1 (xxxxx010) has
a non-empty intersection (pipe filter: 111xx010). Also
rule 1.1 has an intra-table influence on rule 1.3 because
their domains and input port sets have a non-empty in-
tersection (intersecting domain: 1010xxxx, port: 1). The
rest of this plumbing graph is created in similar fashion.

3.2 Source and Sink Nodes
NetPlumber converts policy and invariants to equivalent
reachability assertions. To compute reachability, it in-
serts flow from the source port into the plumbing graph
and propagates it towards the destination. This is done
using a “flow generator” or source node. Just like rule
nodes, a source node is connected to the plumbing graph
using directed edges (pipes), but instead of processing
and forwarding flows, it generates flow.

Continuing our example, we compute reachability be-
tween port 1 and 10 in Figure 3 by connecting a source
node, generating the all-wildcard flow, to port 1. We have
also connected a special node called a probe node to port
10. Probe nodes will be discussed in the next section.
The flow generated by the source node first reaches rules
1.1, 1.2 and 1.3. Rule 1.1 and 1.2 are not affected by any
higher priority rules and don’t rewrite flows. Therefore
the input flow is simply forwarded to the pipes connect-
ing them to rule 2.2 (i.e. 1010xxxx and 10001xxx flows
reach rule 2.2). However rule 1.3 has an intra-table de-
pendency to rule 1.1 and 1.2. This means that from the
incoming 10xxxxxx flow, only 10xxxxxx − (1010xxxx
∪ 10001xxx) should be processed by rule 1.3. The re-
mainder has already been processed by higher priority
rules. Rule 1.3 is a simple forward rule and will forward
the flow, unchanged, to rule 3.1. However, when this
flow passes through the pipe filter between rule 1.3 and

3
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match: 1010xxxx
in-port: 1, out-port: 2

match: 10001xxx
in-port: 1, out-port: 2

match: 10xxxxxx
in-port: 1, out-port: 3

Table 1 match: 1011xxxx
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in-port: 4, out-port: 5

match: 10xxxxxx
rw: 111xxxxx

in-port: 4, out-port: 5

Table 2

2
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Figure 2: Plumbing graph of a simple network consisting of 4 switches each with one table. Arrows represent pipes. Pipe filters
are shown on the arrows. Dashed lines indicate intra-table dependency of rules. The intersecting domain and input port is shown
along the dashed lines.
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Figure 3: Finding reachability between S and P. Source node S is generating all-wildcard flow and inserting it into the plumbing
graph. The solid lines show the path of flow from the source to the destination. Flow expressions are shown along the flows.

3.1 (101xxxxx), it shrinks to 101xxxxxx − 1010xxxx.3

The flows which reach rule 2.2 continue propagating
through the plumbing graph until they reach the probe
node (P), as depicted in Figure 3. However the other
flow that has reached rule 3.1 does not propagate any
further as it cannot pass through the pipe connecting rule
3.1 to rule 4.2. This is because the intersection of the
flow (101xxxxxx − 1010xxxx = 1011xxxx) and pipe fil-
ter (1010xxxx) is empty.

Sink Nodes: Sink nodes are the dual of source nodes.
A sink node absorbs flows from the network. Equiva-
lently, a sink node generates “sink flow” which traverses
the plumbing graph in the reverse direction. When reach-
ing a rule node, a sink flow is processed by the inverse
of the rule.4 Reachability can be computed using sink
nodes: if a sink node is placed at the destination port D,
then the sink flow at source port S gives us the set of
packet headers from S that will reach D. Sink nodes do
not increase the expressive power of NetPlumber; they
only simplify or optimize some policy checks (see sec-
tion 4).

3[10xxxxxx − (1010xxxx ∪ 10001xxx)] ∩ 101xxxxx =
101xxxxx − 1010xxxx.

4The inverse of a rule gives us all input flows that can generate a
given flow at the output of that rule [8].

3.3 Probe Nodes
A fourth type of node called a probe node is used to
check policy or invariants. Probe nodes can be attached
to appropriate locations of the plumbing graph, and can
be used to check the path and header of the received
flows for violations of expected behavior. In section 4,
we discuss how to check a policy using a source (sink)
and probe node. As a simple example, if in our toy ex-
ample of Figure 2 the policy is “port 1 and 10 can only
talk using packets matching xxxxx010”, then we place a
source node at port 1 (S), a probe node at port 10 (P ) and
configure P to check whether all flows received from S
match xxxxx010 (Figure 3).

Probe nodes can be of two types: source probe nodes
and sink probe nodes. The former check constraints on
flows generated by source nodes, and the latter check
flows generated by sink nodes. We refer to both as probe
nodes.

3.4 Updating NetPlumber State
As events occur in the network, NetPlumber needs to up-
date its plumbing graph and re-route the flows. There are
6 events that NetPlumber needs to handle:

Adding New Rules: When a new rule is added, Net-
Plumber first creates pipes from the new rule to all po-

4
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tential next hop rules, and from all potential previous
hop rules to the new rule. It also needs to find all intra-
table dependencies between the new rule and other rules
within the same table. In our toy example in Figure 4,
a new rule is added at the 2nd position of table 1. This
creates three new pipes to rules 2.1, 2.2 and the source
node, and one intra-table dependency for rule 1.4.

Next, NetPlumber updates the routing of flows. To
do so, it asks all the previous hop nodes to pass their
flows on the newly created pipes. The propagation of
these flows then continues normally through the plumb-
ing graph. If the new rule has caused any intra-table de-
pendency for lower priority rules, we need to update the
flows passing through those lower priority rules by sub-
tracting their domain intersection from the flow. Back to
the example in Figure 4, after adding the new rule, the
new flows highlighted in bold propagate through the net-
work. Also, the intra-table dependency of the new rule
on rule 1.4 is subtracted from the flow received by rule
1.4. This shrinks the flow to the extent that it cannot pass
through the pipe connecting it to rule 3.1 (empty flow on
the bottom path).

Deleting Rules: Deleting a rule causes all flows which
pass through that rule to be removed from the plumbing
graph. Further, if any lower priority rule has any intra-
table dependency on the deleted rule, the effect should be
added back to those rules. Figure 5 shows the deletion of
rule 1.1 in our toy example. Note that deleting this rule
causes the flow passing through rule 1.3 to propagate all
the way to the probe node, because the influence of the
deleted rule is now added back.

Link Up: Adding a new link to the network may cause
additional pipes to be created in the plumbing graph, be-
cause more rules will now have physical connections be-
tween them (first condition for creating a pipe). The
nodes on the input side of these new pipes must prop-
agate their flows on the new pipes, and then through the
plumbing graph as needed. Usually adding a new link
creates a number of new pipes, making a Link Up event
slower to process than a rule update.

Link Down: When a link goes down, all the pipes cre-
ated on that link are deleted from the plumbing graph,
which in turn removes all the flows that pass through
those pipes.

Adding New Tables: When a new table (or switch)
is discovered, the plumbing graph remains unchanged.
Changes occur only when new rules are added to the new
table.

Deleting Tables: A table is deleted from NetPlumber
by deleting all the rules contained in that table.

3.5 Complexity Analysis
The complexity of NetPlumber for the addition of a sin-
gle rule is O(r + spd), where r is the number of entries

in each table and s is the number of source (sink) nodes
attached to the plumbing graph (which is roughly pro-
portional to the number of policies we want to check), p
is the number of pipes to and from the rule and d is the
diameter of the network.

The run time complexity arises as follows: when a new
rule is added, we need to first find intra-table dependen-
cies. These require intersecting the match portion of
the new rule with the match of all the other rules in the
same table. We also need to create new pipes by do-
ing O(r) intersections of the range of the new rule with
the domain of rules in the neighboring tables (O(r) such
rules).

Next, we need to route flows. Let us use the term pre-
vious nodes to denote the set of rules which have a pipe
to the new rule. First, we need to route the flows at previ-
ous nodes to the new rule. There are O(s) flows on each
of these previous nodes because each source (sink) node
that is connected to NetPlumber can add a flow. We need
to pass these flows through O(p) pipes to route them to
the new rule. This is O(sp) work. With a linear fragmen-
tation5 argument similar to [8], there will be O(s) flows
that will survive this transformation through the pipes 6

(and not O(sp)). The surviving flows will be routed in
the same manner through the plumbing graph, requiring
the same O(sp) work at each node in the routing path.
Since the maximum path length is the diameter d, the
overall run time of this phase is O(spd).

We also need to take care of intra-table dependencies
between this rule and lower priority rules, and subtract
the domain intersection from the flows received by lower
priority rules. This subtraction is done lazily and is there-
fore much faster than flow routing; hence we ignore its
contribution to overall run time.

4 Checking Policies and Invariants
A probe node monitors flows received on a set of ports.
In the plumbing graph, it is attached to the output of all
the rules sending out flows on those ports. Each probe
node is configured with a filter flow expression and a test
flow expression. A flow expression or flowexp for short,
is a regular expression specifying a set of conditions on
the path and the header of the flows. The filter flowexp
constrains the set of flows that should be examined by
the probe node, and the test flowexp is the constraint that

5This assumption states that if we have R flows at the output of
a transfer function, and we apply these flow to the next hop transfer
functions with R rules per transfer function, we will get cR flows at
the output where c << R is a constant. This assumption is based
on the observation that flows are routed end-to-end in networks. They
are usually aggregated, and not randomly fragmented in the core of the
network.

6An alternate way to reach the same conclusion is as follows: the
new rule, after insertion will look like any other rule in the network,
and should on average have O(s) flows.
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Figure 4: Adding rule 1.2 (shaded in green) to table 1. As a result a) 3 pipes are created connecting rule 1.2 to rule 2.1 and 2.2 and
to the source node. b) rule 1.4 will have an intra-table dependency to the new rule (1011xxxx,1). c) The flows highlighted in bold
will be added to the plumbing graph. Also the flow going out of rule 1.4 is updated to empty.
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Figure 5: Deleting rule 1.1 in table 1 causes the flow which passes through it to be removed from the plumbing graph. Also since
the intra-table dependency of rule 1.3 to this rule is removed, the flow passing through 1.3 through the bottom path is updated.

is checked on the matching flows. Probe nodes can be
configured in two modes: existential and universal. A
probe fires when its corresponding predicate is violated.
An existential probe fires if none of the flows examined
by the probe satisfy the test flow expression. By contrast,
a universal probe fires when a single flow is received that
does not satisfy the test constraint. More formally:

(Universal) ∀{f | f ∼ filter} : f ∼ test. All flows
f which satisfy the filter expression, satisfy the test ex-
pression as well.

(Existential) ∃{f | f ∼ filter} : f ∼ test. There
exist a flow f that satisfies both the filter and test expres-
sions.

Using flow expressions described via the flowexp lan-
guage, probe nodes are capable of expressing a wide
range of policies and invariants. Section 4.1 will intro-
duce the flowexp language. Sections 4.2 and 4.3 discuss
techniques for checking for loops, black holes and other
reachability-related policies.

4.1 Flowexp Language
Each flow at any point in the plumbing graph, carries
its complete history: it has a pointer to the correspond-
ing flow at the previous hop (node). By traversing these
pointers backward, we can examine the entire history of
the flow and all the rules that have processed this flow

Constraint → True | False | ! Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint;

PathConstraint → list(Pathlet);
Pathlet → Port Specifier [p ∈ {Pi}]

| Table Specifier [t ∈ {Ti}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.∗]
| Beginning of Path [ˆ]

(Source/Sink node)
| End of Path [$]

(Probe node);
HeaderConstraint → Hreceived ∩ Hconstraint �= φ

| Hreceived ⊂ Hconstraint

| Hreceived == Hconstraint;

Table 1: Flowexp language grammar

along the path. The flow history always begins at the
generating source (or sink) node and ends at the probe
node checking the condition.

Flowexp is a regular expression language designed to
check constraints on the history of flows received by
probe nodes. Table 1 shows the grammar of flowexp in
a standard BNF syntax. Flowexp consists of logical op-
erations (i.e. and, or and not) on constraints enforced on
the Path or Header of flows received on a probe node.

A PathConstraint is used to specify constraints on the
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path taken by a flow. It consists of an ordered list of
pathlets that are checked sequentially on the path of the
flow. For example a flow that originates from source S,
with the path S → A → B → C → P to probe P , will
match on flowexp “ (̂p = A)”, because port A comes
immediately after the source node. It also matches on
“(p = A).(p = C)” because the flow passes through
exactly one intermediate port from A to C.

A HeaderConstraint can check if 1) The received
header has any intersection with a specified header; this
is useful when we want to ensure that some packets of
a specified type can reach the probe. 2) The received
header is a subset of a specific header; this is useful when
we wish to limit the set of headers that can reach the
probe. 3) The received header is exactly equal to a spec-
ified header; this is useful to check whether the packets
received at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler
than) standard regular expression language, any standard
regexp checking technique can be used at probe nodes.

4.2 Checking Loops and Black Holes
As flows are routed through the plumbing graph, each
rule by default (i.e., without adding probe nodes for this
purpose) checks received flows for loops and black holes.
To check for a loop, each rule node examines the flow
history to determine if the flow has passed through the
current table before. If it has, a loop-detected callback
function is invoked7.

Similarly, a black hole is automatically detected when
a flow is received by a non-drop-rule R that cannot pass
through any pipes emanating from R. In this case, a
black-hole-detected callback function is invoked.

4.3 Checking Reachability Policies
In this section, we describe how to express reachability-
related policies and invariants such as the isolation of two
ports, reachability between two ports, reachability via a
middle box and a constraint on the maximum number of
hops in a path. We express and check for such reach-
ability constraints by attaching one or more source (or
sink) nodes and one or more probe nodes in appropriate
locations in the plumbing graph. The probe nodes are
configured to check the appropriate filter and test flow-
exp constraints as shown below.

Basic Reachability Policy: Suppose we wish to en-
sure that a server port S should not be reachable from
guest machine ports {G1, ...Gk}.

Solution using a source probe: Place a source node
that generates a wildcarded flow at each of the guest

7The callback function can optionally check to see if the loop is
infinite or not; an algorithm to check for infinite loops is described
in [8].

ports. Next, place a source probe node on port S and con-
figure it to check for the flow expression: ∀f : f.path ∼
![ ˆ (p ∈ {G1, ...Gk})] - i.e., a universal probe with no
filter constraint and a test constraint that checks that the
source node in the path is not a guest port.

If, instead, the policy requires S to be reachable from
{G1, ...Gk}, we could configure the probe node as fol-
lows: ∃f : f.path ∼ [ ˆ (p ∈ {G1, ...Gk})] . Intuitively,
this states that there exists some flow that can travel from
guest ports to the server S. Note that the server S is not
specified in the flow expression because the flow expres-
sion is placed at S.

Dual Solution using a sink probe: Alternately, we can
put a sink node at port S and a sink probe node in each of
the Gi ports. We also configure the probes with Flowexp
∀f : f.path ∼ [ ˆ (p ∈ {S})].

Reachability via a Waypoint: Next, suppose we wish
to ensure that all traffic from port C to port S must pass
through a “waypoint” node M .

Solution: Put a source node at C that generates a wild-
carded flow and a probe node at S. Configure the probe
node with the flow expression: ∀{f | f.path ∼ [ ˆ (p ∈
{C})]} : f.path ∼ [ ˆ .∗(t = M)]. This is a univer-
sal probe which filters flows that originate from C and
verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure
that no flow from port C to port S should go through
more than 3 switches. This is a policy that was desired
for the Stanford network for which we found violations.
The following specification does the job assuming that
each switch has one table.

Solution: Place a probe at S and a source node at C
as in the previous example. Configure the probe node
with the following constraint: ∀{f | f.path ∼ [ ˆ (p ∈
{C})]} : f.path ∼ [ ˆ .$ | ˆ ..$ | ˆ ...$ ]. The filter
expression ensures that the check is done only for flows
from C, and the test expression only accepts a flow if it
is one, two or three hops away from the source.

Source probes versus Sink probes: Roughly speak-
ing, if a policy is checking something at the destination
regardless of where the traffic comes from, then using
sink probes is more efficient. For example, suppose a
manager wishes to specify that all flows arriving at a
server S pass through waypoint M . Using source probes
would require placing one source probe at every poten-
tial source. This can be computationally expensive as
the run time of NetPlumber grows linearly with number
of source or sink nodes. On the other hand, if the policy
is about checking a condition for a particular source –
such as computer C should be able to communicate with
all other nodes – then using a source probe will be more
efficient. Intuitively, we want to minimize the amount
of flow in the plumbing graph required to check a given
policy, as generating flow is computationally expensive.
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4.4 Policy translator
So far we have described a logical language called flow-
exp which is convenient for analysis and specifying pre-
cisely how flows are routed within the network. Flowexp
is, however, less appropriate as a language for network
managers to express higher level policy. Thus, for higher
level policy specification, we decided to reuse the pol-
icy constructs proposed in the Flow-based Management
Language (FML) [6], a high-level declarative language
for expressing network-wide policies about a variety of
different management tasks. FML essentially allows a
manager to specify predicates about groups of users (e.g.,
faculty, students), and specifies which groups can com-
municate. FML also allows additional predicates on the
types of communication allowed such as the need to pass
through waypoints.

Unfortunately, the current FML implementation is
tightly integrated with an OpenFlow controller, and so
cannot be easily reused in NetPlumber. We worked
around this by encoding a set of constructs inspired by
FML in Prolog. Thus, network administrators can use
Prolog as the frontend language to declare various bind-
ings inspired by FML, such as hosts, usernames, groups
and addresses. Network administrators can also use Pro-
log to specify different policies. For example, the follow-
ing policy describes 1) the guest and server groups,
and 2) a policy: ”Traffic should go through firewall if it
flows from a guest to a server”.

guest(sam).
guest(michael).
server(webserver).
waypoint(HostSrc, HostDst, firewall):-

guest(HostSrc),
server(HostDst).

We have written a translator that converts such high
level policy specifications written in Prolog to 1) the
placement of source nodes, 2) the placement of probe
nodes, and 3) the filter and test expressions for each
probe node. In the example above, the translator gen-
erates two source nodes at Sam and Michael’s ports and
one probe node at the web server’s port. The waypoint
keyword is implemented by flowexp: .*(t=firewall).

The output of the translator is, in fact, a C++ struct
that lists all source, sink, and probe nodes. The source
probes and sink probes are encoded in flowexp syntax
using ASCII text. Finally, NetPlumber translates flowexp
into C++ code that it executes.

Note that because FML is not designed to declare path
constraints that can be expressed in flowexp, we found it
convenient to make the translator extensible. For exam-
ple, two new policy constructs we have built-in beyond
the FML-inspired constructs are “at most N hops” and

Rule Node Duplicated Rule Node Source Node Probe Node

Figure 6: A typical plumbing graph consists of clusters of
highly dependent rules corresponding to FECs in network.
There may be rules whose dependency edges cross clusters.
By replicating those rules, we can create clusters without de-
pendencies and run each cluster as an isolated NetPlumber in-
stance running on a different machine.

“immediately followed by”—but it is easy to add further
constructs.

5 Distributed NetPlumber
NetPlumber is memory-intensive because it maintains
considerable data about every rule and every flow in the
plumbing graph. For very large networks, with millions
of rules and a large number of policy constraints, Net-
Plumber’s memory requirements can exceed that of a
single machine. Further, as shown in section 3.5, the
run time of NetPlumber grows linearly with the size of
the tables. This can be potentially unacceptable for very
large networks.

Thus, a natural approach is to run parallel instances of
NetPlumber, each verifying a subset of the network and
each small enough to fit into the memory of a single ma-
chine. Finally, a collector can be used to gather the check
results from every NetPlumber instance and produce the
final result.

One might expect to parallelize based on switches:
i.e., each NetPlumber instance creates a plumbing graph
for a subset of switches in the network (vertical distribu-
tion). This can address the memory bottleneck, but need
not improve performance, as the NetPlumber instances
can depend on each other. In the worst case, an instance
may not be able to start its job unless the previous in-
stance is done. This technique can also require consider-
able communication between different instances.

A key observation is that in every practical network
we have seen, the plumbing graph looks like Figure 6:
there are clusters of highly dependent rules with very few
dependencies between rules in different clusters. This
is caused by forwarding equivalence classes (FECs) that
are routed end-to-end in the network with possible ag-
gregation. The rules belonging to a forwarding equiv-
alence class have a high degree of dependency among
each other. For example, 10.1.0.0/16 subnet traffic might
be a FEC in a network. There might be rules that further
divide this FEC into smaller subnets (such as 10.1.1.0/24,
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10.1.2.0/24), but there are very few rules outside this
range that has any interaction with rules in this FEC (an
exception is the default 0.0.0.0/0 rule).

Our distributed implementation of NetPlumber is
based on this observation. Each instance of NetPlumber
is responsible for checking a subset of rules that belong
to one cluster (i.e. a FEC). Rules that belong to more
than one cluster will be replicated on all the instances
they interact with (see Figure 6). Probe nodes are repli-
cated on all instances to ensure global verification. The
final probe result is the aggregate of results generated by
all the probes—i.e., all probe nodes should meet their
constraints in order for the constraint to be verified. The
instances do not depend on each other and can run in par-
allel. The final result will be ready after the last instance
is done with its job.

The run time of distributed NetPlumber, running on
n instances for a single rule update, is O(mavg(r/n +
spd/m)) where m is the number of times that rule get
replicated and mavg is the average replication factor for
all rules. This is because on each replica, the size of ta-
bles are O(mavgr/n) and the number of pipes to a rule
that is replicated m times is O(mavgp/m). Note that if
we increase n too much, most rules will be replicated
across many instances (m, mavg → n,) and the addi-
tional parallelism will not add any benefit.

How should we cluster rules? Graph clustering is hard
in general; however for IP networks we generated natural
clusters heuristically as follows. We start by creating two
clusters based on the IP address of the network we are
working with; if the IP address of hosts in the network
belong to subnet 10.1.0.0/16, create two clusters: one
for rules that match this subnet, and one for the rest (i.e.
10.1.0.0/16 and 0.0.0.0/0 - 10.1.0.0/16 subnets). Next,
divide the first cluster into two clusters based on bit 17 of
the destination IP address. If one of the resulting clusters
is much larger than the other, we divide the larger cluster
based on the next bit in IP destination address. If two
clusters are roughly the same size, we divide both clus-
ters further. This process continues until division does
not reduce cluster size further (because of replication) or
the specified number of clusters is reached.

Note that while we introduced the plumbing graph
originally to facilitate incremental computation, the
plumbing graph also allows us to decompose the com-
putation much more effectively than the naive decompo-
sition by physical nodes.

6 Evaluation
In this section we evaluate the performance and func-
tionality of our C++ based implementation8 of Net-
Plumber on 3 real world networks: the Google inter-

8source code available at [5].

Figure 7: Google inter-datacenter WAN network.
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Figure 8: Stanford backbone network.

datacenter WAN, Stanford’s backbone network and the
Internet 2 nationwide network. All the experiments are
run on Ubuntu machines, with 6 cores, hyper-threaded
Intel Xeon processors, a 12MB L2-cache and 12GB of
DRAM.

To feed the snapshot data from these networks into
NetPlumber, we wrote 3 parsers capable of parsing
Cisco IOS, Juniper Junos and OpenFlow dumps in pro-
tobuf [12] format. We used a json-rpc based client to
feed this data into NetPlumber. NetPlumber has the json-
rpc server capability and can receive and process updates
from a remote source.

6.1 Our data set
Google WAN: This is a software-defined network, con-
sisting of OpenFlow switches distributed across the
globe. It connects Google data centers world-wide. Fig-
ure 7 shows the topology of this network. Overall there
are more than 143,000 OpenFlow rules installed in these
switches. Google WAN is one of the largest SDNs de-
ployed today; therefore we stress-test NetPlumber on this
network to evaluate its scalability.

Stanford University Backbone Network. With a
population of over 15,000 students, 2,000 faculty, and
five /16 IPv4 subnets, Stanford represents a mid-size en-
terprise network. There are 14 operational zone (OZ)
Cisco routers connected via 10 Ethernet switches to 2
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Figure 9: CDF of the run time of NetPlumber per update, when
checking the all-pair reachability constraint in Google WAN
with 1-5 instances and in Stanford backbone with a single in-
stance.

#instances: 1 2 3 4 5 8
median (ms) 0.77 0.35 0.23 0.2 0.185 0.180
mean (ms) 5.74 1.81 1.52 1.44 1.39 1.32

Table 2: Average and median run time of distributed Net-
Plumber, checking all-pair connectivity policy on Google
WAN.

backbone Cisco routers that in turn connect Stanford to
the outside world (Figure 8). Overall, the network has
more than 757,000 forwarding entries, 100+ VLANs and
1,500 ACL rules. Data plane configurations are collected
through CLI. Stanford has made the entire configuration
rule set public and it can be found in [5].

Internet2 is a nationwide backbone network with 9
Juniper T1600 routers and 100 Gb/s interfaces, support-
ing over 66,000 institutions in United States. There
are about 100,000 IPv4 forwarding rules. All Internet2
configurations and FIBs of the core routers are publicly
available [7], with the exception of ACL rules, which are
removed for security reasons. We only use the IPv4 net-
work of Internet 2 in this paper.

6.2 All-pair connectivity of Google WAN
As an internal, inter-datacenter WAN for Google, the
main goal of Google WAN is to ensure connectivity be-
tween different data centers at all times. Therefore in
our first experiment, we checked for the all-pair connec-
tivity policy between all 52 leaf nodes (i.e. data center
switches). We began by loading a snapshot of all the
OpenFlow rules of Google WAN — taken at the end of
July 2012 — into NetPlumber. NetPlumber created the
initial plumbing graph in 33.39 seconds (an average per-
rule runtime of 230μs). We then attach one probe and
one source node at each leaf of the network and set up the

probes to look for one flow from each of the sources. If
no probes fire, it means that all data centers are reachable
from each other. The initial all-pair connectivity test took
around 60 seconds. Note that the above run times, are
for the one-time initialization of NetPlumber. Once Net-
Plumber is initialized, it can incrementally update check
results much faster when changes occur. Note that the
all-pair reachability check in Google WAN corresponds
to 522 or more than 2600 pair-wise reachability checks.

Next, we used a second snapshot taken 6 weeks later.
We found the diff of the two snapshots and applied them
to simulate incremental updates. The diff includes both
insertion and deletion of rules. Since we did not have
timing information for the individual updates, we knew
the set of updates in the difference but not the sequence
of updates. So we simulated two different orders. In the
first ordering, we applied all the rule insertions before
the rule deletions. In the second ordering, we applied all
deletions before all insertions.

As expected, the all-pair connectivity policy was
maintained during the first ordering of update events, be-
cause new reachable paths are created before old reach-
able paths are removed. However the second ordering re-
sulted in violations of the all-pair connectivity constraint
during the rule deletion phase. Of course, this does not
mean that the actual Google WAN had reachability prob-
lems because the order we simulated is unlikely to have
been the actual order of updates. At the end of both or-
derings, the all-pair connectivity constraint was met.

NetPlumber was able to check the compliance of each
insertion or deletion rule in an average time of 5.74ms
with a median time of 0.77ms. The average run time
is much higher than the median because there are a few
rules whose insertion and deletion takes a long time
(about 1 second). These are the default forwarding rules
that have a large number of pipes and dependencies
from/to other rules. Inserting and deleting default rules
require significant changes to the plumbing graph and
routing of flows. The solid line in Figure 9 shows the
run time CDF for these updates.

To test the performance of distributed NetPlumber we
repeated the same experiment in distributed mode. We
simulated9 the running of NetPlumber on 2−8 machines
and measured the update times (dashed lines in Figure 9).
Table 2 summarizes the mean and median run times.
This suggests that most of the benefits of distribution is
achieved when the number of instances is 5. This is be-
cause in the plumbing graph of the Google WAN, there
are about 5 groups of FECs whose rules do not influence

9To simulate, we run the the instances in serial on the same ma-
chine and collected the results from each run. For each rule inser-
tion/deletion, we reported the run time as the maximum run time across
all instances, because the overall job will be done only when the last
instance is done.

10



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 109

each other. Trying to put these rules in more than 5 clus-
ters will result in duplication of rules; the added benefit
will be minimal.

6.3 Checking policy in Stanford network
Unlike the Google WAN, there are a number of reach-
ability restrictions enforced in the Stanford network by
different ACLs. Examples of such policies include isola-
tion of machines belonging to a particular research group
from the rest of the network, or limitation on the type of
traffic that can be sent to a server IP address. For ex-
ample, all TCP traffic to the computer science depart-
ment is blocked except for those destined to particular
IP addresses or TCP port numbers. In addition, there is
a global reachability goal that every edge router be able
to communicate to the outside world via the uplink of
a specified router called bbra rtr. Finally, due to the
topology of the network, the network administrators de-
sired that all paths between any two edge ports be no
longer than 3 hops long to minimize network latency.

In this experiment we test all these policies. To do so,
we connect 16 source nodes, one to each router in the
plumbing graph. To test the maximum-3-hop constraint,
we connected 14 probe nodes, one to each OZ router. We
also placed a probe node at a router called yoza rtr to
check reachability policies at the computer science de-
partment. NetPlumber took 0.5 second to create the ini-
tial plumbing graph and 36 seconds to generate the initial
check results. We found no violation of the reachabil-
ity policies of the computer science department. How-
ever NetPlumber did detect a dozen un-optimized routes,
whose paths take 4 hops instead of 3. We also found 10
loops, similar to the ones reported in [8]10.

We then tested the per-update run time of NetPlumber
by randomly selecting 7% of rules in the Stanford net-
work, deleting them and then adding them back. Figure 9
shows the distribution of the per-update run time. Here,
the median runtime is 50μs and the mean is 2.34ms. The
huge difference between the mean and the median is due
to a few outlier default rules which take a long time to
get inserted and deleted into NetPlumber.

6.4 Performance benchmarking
The previous two experiments demonstrated the scalabil-
ity and functionality of NetPlumber when checking ac-
tual policies and invariants of two production networks.
However, the performance of NetPlumber depends on s,
the number of sources in the network which is a direct
consequences of the quantity and type of policies spec-
ified by each network. Thus it seems useful to have a
metric that is per source node and even per policy, so
we can extrapolate how run time will change as we add

10We used the same snapshots.

Network: Google Stanford Internet 2
Run Time mean median mean median mean median

Add Rule (ms) 0.28 0.23 0.2 0.065 0.53 0.52
Add Link (ms) 1510 1370 3020 2120 4760 2320

Table 3: Average and median run time of NetPlumber, for a
single rule and link update, when only one source node is con-
nected to NetPlumber.

more independent policies, each of which require adding
a new source node.11 We provide such a unit run time
benchmark for NetPlumber running on all three data sets:
Google WAN, Stanford and Internet 2.

To obtain this benchmark, we connect a single source
node at one of the edge ports in the plumbing graph of
each of our 3 networks. Then we load NetPlumber with
90% of the rules selected uniformly at random. Finally,
we add the last 10% and measure the update time. We
then repeated the same experiment by choosing links in
the network that are in the path of injected flows, delet-
ing them and then adding them back and measuring the
time to incorporate the added link. The results are sum-
marized in Table 3. As the table suggests, link up events
take much longer (seconds) to incorporate. This is in fact
expected and acceptable, because when a link is added,
a potentially large number of pipes will be created which
changes routing of flows significantly. Fortunately, since
the link up/down event should be rare, this run time ap-
pears acceptable.

7 Discussion
Conventional Networks: Conceptually, NetPlumber
can be used with conventional networks as long as we
implement a notification mechanism for getting updated
state information. One way to do this is through SNMP
traps; every time a forwarding entry or link state changes,
NetPlumber gets a notification. The drawback of such a
mechanism is resource consumption at the switch.

Handling Transient Violations: Sometimes, during
a sequence of state updates, transient policy violations
may be acceptable (e.g. a black hole is acceptable while
installing a path in a network). NetPlumber probes can
be turned off during the transition and turned on when
the update sequence is complete.

Handling Dynamic Policies: In multi-tenant data
centers, the set of policies might change dynamically
upon VM migration. NetPlumber can handle dynamic
policy changes easily. In the plumbing graph, if we at-
tach a source node to every edge port (as we did in the
case of Google WAN), we can update policies by chang-
ing the locations and test conditions of probe nodes. This
update is fast as long as the structure of the plumbing
graph and routing of flows doesn’t change.

11By contrast, dependent policies can be checked using a single
source node.
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Limitations of NetPlumber: NetPlumber, like HSA
relies on reading the state of network devices and there-
fore cannot model middleboxes with dynamic state. To
handle such dynamic boxes, the notion of “flow” should
be extended to include other kind of state beyond header
and port. Another limitation of NetPlumber is its greater
processing time for verifying link updates. As a result,
it is not suitable for networks with a high rate of link
up/down events such as energy-proportional networks.

8 Related Work
Recent work on network verification, especially on trou-
bleshooting SDNs, focuses on the following directions.

Programming foundations: Frenetic [3] provides
high-level abstractions to achieve per-packet and per-
flow consistency during network updates [13]. Net-
Plumber, on the other hand, verifies forwarding policies.

Offline checking: rcc [2] verifies BGP configura-
tions. NICE [1] applies model checking techniques
to find bugs in OpenFlow control programs. HSA
[8] checks data plane correctness against invariants.
Anteater [10] uses boolean expressions and SAT solvers
for network modeling and checking. However, offline
checking cannot prevent bugs from damaging the net-
work until the periodic check runs.

Online monitoring: Several tools help troubleshoot
network programs at run-time. OFRewind [14] captures
and reproduces the sequence of problematic OpenFlow
command sequence. ATPG [16] systematically gener-
ates test packets against router configurations, and mon-
itors network health by perioidically sending these tests
packets. NDB [4] is a network debugger. These tools
complement but not replace the need for real-time policy
verification.

VeriFlow [9] is the work most closely related to Net-
Plumber. VeriFlow also verifies the compliance of net-
work updates with specified policies in real time. It
uses a trie structure to search rules based on equivalence
classes (ECs), and upon an update, determines the af-
fected ECs and updates the forwarding graph for that
class. This in turn triggers a rechecking of affected
policies. NetPlumber and VeriFlow offer similar run-
time performance. While both systems support verifica-
tion of forwarding actions, NetPlumber additionally can
verify arbitrary header modifications, including rewrit-
ing and encapsulation. NetPlumber is also protocol-
independent.

9 Conclusions
This paper introduces NetPlumber as a real-time policy
checker for networks. Unlike earlier work that checks
periodic snapshots of the network, NetPlumber is fast
enough to validate every update in real time. Users can

express a wide range of policies to be checked using an
extensible regular-expression like language, called Flow-
exp. Since Flowexp might be too low-level for adminis-
trators to use, we implemented a higher level policy lan-
guage (inspired by FML) implemented in Prolog.

The fundamental idea of the dependency graph for-
malized as a plumbing graph benefits us in three ways.
First, it allows incremental computation by allowing only
the (smaller) dependency subgraph to be traversed when
a new rule is added. Second, it naturally leads us to gen-
eralize to probe nodes that can be configured to check
for new policies—without the ad hoc programming ef-
fort required by Hassel. Third, clustering the graph to
minimize inter-cluster edges provides a powerful way to
parallelize computation.

NetPlumber is useful as a foundation that goes be-
yond static policy checking. For example, it can be used
in ATPG [16] to allow the suite of ATPG tests packets
to be updated swiftly when the configuration changes.
Also NDB [4] may benefit from NetPlumber. Like GDB,
NDB allows setting break points in the system when a
specified condition is met. To achieve this goal, NDB
adds a “postcard generating action” that captures and
sends samples of matching packets to a central database.
NetPlumber can be used to notify NDB when a rule that
requires postcard action is about to be added to the net-
work. While these are only two examples, we believe
that the ability to incrementally and quickly do header
space analysis will be a fundamental building block for
network verification tools going forward.
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Abstract
We typically think of network architectures as having two
basic components: a data plane responsible for forward-
ing packets at line-speed, and a control plane that instan-
tiates the forwarding state the data plane needs. With
this separation of concerns, ensuring connectivity is the
responsibility of the control plane. However, the control
plane typically operates at timescales several orders of
magnitude slower than the data plane, which means that
failure recovery will always be slow compared to data
plane forwarding rates.

In this paper we propose moving the responsibility for
connectivity to the data plane. Our design, called Data-
Driven Connectivity (DDC) ensures routing connectivity
via data plane mechanisms. We believe this new separa-
tion of concerns — basic connectivity on the data plane,
optimal paths on the control plane — will allow networks
to provide a much higher degree of availability, while still
providing flexible routing control.

1 Introduction
In networking, we typically make a clear distinction be-
tween the data plane and the control plane. The data
plane forwards packets based on local state (e.g., a router’s
FIB). The control plane establishes this forwarding state,
either through distributed algorithms (e.g., routing) or
manual configuration (e.g., ACLs for access control). In
the naive version of this two-plane approach, the network
can recover from failure only after the control plane has
computed a new set of paths and installed the associated
state in all routers. The disparity in timescales between
packet forwarding (which can be less than a microsecond)
and control plane convergence (which can be as high as
hundreds of milliseconds) means that failures often lead
to unacceptably long outages.

To alleviate this, the control plane is often assigned
the task of precomputing failover paths; when a failure
occurs, the data plane utilizes this additional state to for-
ward packets. For instance, many datacenters use ECMP,
a data plane algorithm that provides automatic failover
to another shortest path. Similarly, many WAN networks
use MPLS’s Fast Reroute to deal with failures on the data
plane. These “failover” techniques set up additional, but
static, forwarding state that allows the datapath to deal
with one, or a few, failures. However, these methods re-
quire careful configuration, and lack guarantees. Such
configuration is tricky, requiring operators to account for

complex factors like multiple link failures, and correlated
failures. Despite the use of tools like shared-risk link
groups to account for these issues, a variety of recent out-
ages [21, 29, 34, 35] have been attributed to link failures.
While planned backup paths are perhaps enough for most
customer requirements, they are still insufficient when
stringent network resilience is required.

This raises a question: can the failover approach be
extended to more general failure scenarios? We say that a
data plane scheme provides ideal forwarding-connectivity
if, for any failure scenario where the network remains
physically connected, its forwarding choices would guide
packets to their intended destinations.1 Our question can
then be restated as: can any approach using static for-
warding state provide ideal forwarding-connectivity? We
have shown (see [9] for a precise statement and proof
of this result) that without modifying packet headers (as
in [16, 18]) the answer is no: one cannot achieve ideal
forwarding-connectivity with static forwarding state.

Given that this impossibility result precludes ideal
forwarding-connectivity using static forwarding infor-
mation, the question is whether we can achieve ideal
forwarding-connectivity using state change operations
that can be executed at data plane timescales. To this
end, we propose the idea of data-driven connectivity
(DDC), which maintains forwarding-connectivity via sim-
ple changes in forwarding state predicated only on the des-
tination address and incoming port of an arriving packet.
DDC relies on state changes which are simple enough to
be done at packet rates with revised hardware (and, in cur-
rent routers, can be done quickly in software). Thus, DDC
can be seen as moving the responsibility for connectivity
to the data plane.

The advantage of the DDC paradigm is that it leaves
the network functions which require global knowledge
(such as optimizing routes, detecting disconnections, and
distributing load) to be handled by the control plane, and
moves connectivity maintenance, which has simple yet
crucial semantics, to the data plane. DDC can react, at
worst, at a much faster time scale than the control plane,
and with new hardware can keep up with the data plane.

DDC’s goal is simple: ideal connectivity with data
plane mechanisms. It does not bound latency, guarantee
in-order packet delivery, or address concerns of routing

1Note that ideal forwarding-connectivity does not guarantee packet
delivery, because such a guarantee would require dealing with packet
losses due to congestion and link corruption.
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policy; leaving all of these issues to be addressed at higher
layers where greater control can be exercised at slower
timescales. Our addition of a slower, background control
plane which can install arbitrary routes safely even as
DDC handles data plane operations, addresses the latency
and routing policy concerns over the long term.

We are unaware of any prior work towards the DDC
paradigm (see discussion of related work in §5). DDC’s
algorithmic foundations lie in link reversal routing (Gafni
and Bertsekas [10], and subsequent enhancements [8, 26,
32]). However, traditional link reversal algorithms are not
suited to the data plane. For example, they involve gener-
ating special control packets and do not handle message
loss (e.g., due to physical layer corruption). In addition,
our work extends an earlier workshop paper [17], but the
algorithm presented here is quite different in detail, is
provably correct, can handle arbitrary delays and losses,
and applies to modern chassis switch designs (where intra-
switch messaging between linecards may exhibit millisec-
ond delays).

2 DDC Algorithm
2.1 System Model
We model the network as a graph. The assumptions we
make on the behavior of the system are as follows.

Per-destination serialization of events at each node.
Each node in the graph executes our packet forwarding
(and state-update) algorithm serially for packets destined
to a particular destination; there is only one such pro-
cessing operation active at any time. For small switches,
representing the entire switch as a single node in our graph
model may satisfy this assumption. However, a single
serialized node is a very unrealistic model of a large high-
speed switch with several linecards, where each linecard
maintains a FIB in its ASIC and processes packets inde-
pendently. For such a large switch, our abstract graph
model has one node for each linecard, running our node
algorithm in parallel with other linecards, with links be-
tween all pairs of linecard-nodes within the same switch
chassis. We thus only assume each linecard’s ASIC ex-
ecutes packets with the same destination serially, which
we believe is an accurate model of real switches.

Simple operations on packet time scales. Reading
and writing a handful of FIB bits associated with a desti-
nation and executing a simple state machine can be per-
formed in times comparable to several packet processing
cycles. Our algorithm works with arbitrary FIB update
times, but the performance during updates is sub-optimal,
so we focus on the case where this period is comparable
to the transmission time for a small number of packets.

In-order packet delivery along each link. This as-
sumption is easily satisfied when switches are connected
physically. For switches that are separated by other net-
work elements, GRE (or other tunneling technologies)

with sequence numbers will enforce this property. Hard-
ware support for GRE or similar tunneling is becoming
more common in modern switch hardware.

Unambiguous forwarding equivalence classes.
DDC can be applied to intradomain routing at either
layer 2 or layer 3. However, we assume that there is an
unambiguous mapping from the “address” in the packet
header to the key used in the routing table. This is true
for routing on MAC addresses and MPLS labels, and
even for prefix-based routing (LPM) as long as every
router uses the same set of prefixes, but fails when
aggregation is nonuniform (some routers aggregate
two prefixes, while others do not). This latter case is
problematic because a given packet will be associated
with different routing keys (and thus different routing
entries). MPLS allows this kind of aggregation, but
makes explicit when the packet is being routed inside a
larger Forwarding Equivalence Class. Thus, DDC is not
universally applicable to all current deployments, but can
be used by domains which are willing to either (a) use a
uniform set of prefixes or (b) use MPLS to implement
their aggregation rather than using nonuniform prefixes.

For convenience we refer to the keys indexing into
the routing table as destinations. Since DDC’s routing
state is maintained and modified independently across
destinations, our algorithms and proofs are presented with
respect to one destination.

Arbitrary loss, delay, failures, recovery. Packets
sent along a link may be delayed or lost arbitrarily (e.g.,
due to link-layer corruption). Links and nodes may fail ar-
bitrarily. A link or node is not considered recovered until
it undergoes a control-plane recovery (an AEO operation;
§3). This is consistent with typical router implementa-
tions which do not activate a data plane link until the
control plane connection is established.

2.2 Link Reversal Background
DDC builds on the classic Gafni-Bertsekas (GB) [10]
link reversal algorithms. These algorithms operate on an
abstract directed graph which is at all times a directed
acyclic graph (DAG). The goal of the algorithm is to
modify the graph incrementally through link reversal
operations in order to produce a “destination-oriented”
DAG, in which the destination is the only node with no
outgoing edges (i.e., a sink). As a result, all paths through
the DAG successfully lead to the destination.

The GB algorithm proceeds as follows: Initially, the
graph is set to be an arbitrary DAG. We model link direc-
tions by associating with each node a variable direction
which maps that node’s links to the data flow direction (In
or Out) for that link. Throughout this section we describe
our algorithms with respect to a particular destination.
Sinks other than the destination are activated at arbitrary
times; a node v, when activated, executes the following
algorithm:
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GB_activate(v)

if for all links L, direction[L] = In

reverse all links

Despite its simplicity, the GB algorithm converges to a
destination-oriented DAG in finite time, regardless of the
pattern of link failures and the initial link directions, as
long as the graph is connected [10]. Briefly, the intuition
for the algorithm’s correctness is as follows. Suppose,
after a period of link failures, the physical network is
static. A node is stable at some point in time if it is done
reversing. If any node is unstable, then there must exist
a node u which is unstable but has a stable neighbor w.
(The destination is always stable.) Since u is unstable,
eventually it reverses its links. But at that point, since w
is already stable, the link u → w will never be reversed,
and hence u will always have an outgoing link and thus
become stable. This increases the number of stable nodes,
and implies that all nodes will eventually stabilize. In
a stable network, since no nodes need to reverse links,
the destination must be the only sink, so the DAG is
destination-oriented as desired. For an illustrated example
of GB algorithm execution, we refer the reader to Gafni-
Bertsekas’ seminal paper [10].

Gafni-Bertsekas also present (and prove correct) a par-
tial reversal variant of the algorithm: Instead of reversing
all links, node v keeps track of the set S of links that were
reversed by its neighbors since v’s last reversal. When
activated, if v is a sink, it does two things: (1) It reverses
N(v) \ S—unless all its links are in S, in which case it
reverses all its links. (2) It empties S.

However, GB is infeasible as a data plane algorithm: To
carry out a reversal, a node needs to generate and send spe-
cial messages along each reversed link; the proofs assume
these messages are delivered reliably and immediately.
Such production and processing of special packets, poten-
tially sent to a large number of neighbors, is too expensive
to carry out at packet-forwarding timescales. Moreover,
packets along a link may be delayed or dropped; loss
of a single link reversal notification in GB can cause a
permanent loop in the network.

2.3 Algorithm
DDC’s goal is to implement a link reversal algorithm
which is suited to the data plane. Specifically, all events
are triggered by an arriving data packet, employ only
simple bit manipulation operations, and result only in the
forwarding of that single packet (rather than duplication
or production of new packets). Moreover, the algorithm
can handle arbitrary packet delays and losses.

The DDC algorithm provides, in effect, an emulation of
GB using only those simple data plane operations. Some-
what surprisingly, we show this can be accomplished
without special signaling, using only a single bit piggy-

backed in each data packet header—or equivalently, zero
bits, with two virtual links per physical link. Virtual links
can be implemented as GRE tunnels.

The DDC algorithm follows. Our presentation and
implementation of DDC use the partial reversal variant
of GB, which generally results in fewer reversals [4].
However, the design and proofs work for either variant.
State at each node:
• to reverse: List containing a subset of the node’s

links, initialized to the node’s incoming links in the
given graph G.

Each node also keeps for each link L:
• direction[L]: In or Out; initialized to the direc-

tion according to the given graph G. Per name, this
variable indicates this node’s view of the direction
of the link L.

• local seq[L]: One-bit unsigned integer; initial-
ized to 0. This variable is akin to a version or se-
quence number associated with this node’s view of
link L’s direction.

• remote seq[L]: One-bit unsigned integer; initial-
ized to 0. This variable attempts to keep track of the
version or sequence number at the neighbor at the
other end of link L.

All three of these variables can be modeled as booleans,
with increments resulting in a bit-flip.
State in packets: We will use the following notation for
our one bit of information in each packet:
• packet.seq: one-bit unsigned integer.
A comparison of an arriving packet’s sequence number

with remote seq[L] provides information on whether
the node’s view of the link direction is accurate, or the
link has been reversed. We note that packet.seq can be
implemented as a bit in the packet header, or equivalently,
by sending/receiving the packet on one of two virtual
links. The latter method ensures that DDC requires no
packet header modification.
Response to packet events: The following two routines
handle received and locally generated packets.

packet p generated locally:

update_FIB_on_departure()

send_on_outlink(any outlink, p)

packet p received on link L:

update_FIB_on_arrival(p, L)

update_FIB_on_departure()

if (direction[L] = Out)

if (p.seq != remote_seq[L])

send_on_outlink(L, p)

send_on_outlink(any outlink, p)

send_on_outlink(link L, packet p)

p.seq = local_seq[L]

send p on L
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These algorithms are quite simple: In general, after
updating the FIB (as specified below), the packet can be
sent on any outlink. There is one special case which will
allow us to guarantee convergence (see proof of Thm. 2.1):
if a packet was received on an outlink without a new
sequence number, indicating that the neighbor has stale
information about the direction of this link, it is “bounced
back” to that neighbor.

FIB update: The following methods perform local link
reversals when necessary.

reverse_in_to_out(L)

direction[L] = Out

local_seq[L]++

reverse_out_to_in(L)

direction[L] = In

remote_seq[L]++

update_FIB_on_arrival(packet p, link L)

if (direction[L] = In)

assert(p.seq == remote_seq[L])

else if (p.seq != remote_seq[L])

reverse_out_to_in(L)

update_FIB_on_departure()

if there are no Out links

if to_reverse is empty

// ‘partial’ reversal impossible

to_reverse = all links

for all links L in to_reverse

reverse_in_to_out(L)

// Reset reversible links

to_reverse = {L: direction[L] = In}

The above algorithms determine when news of a neigh-
bor’s link reversal has been received, and when we must
locally reverse links via a partial reversal. For the partial
reversal, to reverse tracks what links were incoming at
the last reversal (or at initialization). If a partial reversal
is not possible (i.e., to reverse is empty), all links are
reversed from incoming to outgoing.

To understand how our algorithms work, note that
the only exchange of state between neighbors happens
through packet.seq, which is set to local seq[L]

when dispatching a packet on link L. Every time a
node reverses an incoming link to an outgoing one, it
flips local seq[L]. The same operation happens to
remote seq[L] when an outgoing link is reversed.

The crucial step of detecting when a neighbor has re-
versed what a node sees as an outgoing link, is performed
as the check: packet.seq ?

= remote seq[L]. If, in the
stream of packets being received from a particular neigh-
bor, the sequence number changes, then the link has been
reversed to an incoming link.

It is possible for a node v to receive a packet on an
outgoing link for which the sequence number has not
changed. This indicates that v must have previously re-
versed the link to outgoing from incoming, but the neigh-
bor hasn’t realized this yet (because packets are in flight,
or no packets have been sent on the link since that rever-
sal, or packets were lost on the wire). In this case, no
new reversals are needed; the neighbor will eventually re-
ceive news of the reversal due to the previously-discussed
special case of “bouncing back” the packet.
Response to link and node events: Links to neighbors
that fail are simply removed from a node’s forwarding
table. A node or link that recovers is not incorporated
by our data plane algorithm. This recovery occurs in the
control plane, either locally at a node or as a part of the
periodic global control plane process; both use the AEO
operation we introduce later (§3).
FIB update delay: For simplicity our exposition has
assumed that the FIB can be modified as each packet is
processed. While the updates are quite simple, on some
hardware it may be more convenient to decouple packet
forwarding from FIB modifications.

Fortunately, DDC can allow the two update FIB func-
tions to be called after some delay, or even skipped
for some packets (though the calls should still be or-
dered for packets from the same neighbor). From
the perspective of FIB state maintenance, delaying
or skipping update FIB on arrival() is equivalent
to the received packet being delayed or lost, which
our model and proofs allow. Delaying or skipping
update FIB on departure() has the problem that
there might be no outlinks. In this case, the packet can be
sent out an inlink. Since reverse out to in() is not
called, the packet’s sequence number is not incremented,
and the neighbor will not interpret it as a link reversal.

Of course, delaying FIB updates delays data plane con-
vergence, and during this period packets may temporarily
loop or travel on less optimal paths. However, FIB update
delay is a performance, rather than a correctness, issue;
and our experiments have not shown significant problems
with reasonable FIB update delays.

2.4 Correctness and Complexity
Our main results (proofs in Appendix A) show that DDC
(a) provides ideal forwarding-connectivity; and (b) con-
verges, i.e., the number of reversal operations is bounded.
Theorem 2.1. DDC guides2 every packet to the destina-
tion, assuming the graph remains connected during an
arbitrary sequence of failures.

Theorem 2.2. If after time t, the network has no failures
and is connected, then regardless of the (possibly infinite)

2By guide we mean that following the instructions of the forwarding
state would deliver the packet to the destination, assuming no packet
losses or corruption along the way.
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sequence of packets transmitted after t, DDC incurs O(n2)
reversal operations for a network with n nodes.

We note one step in proving the above results that may
be of independent interest. Our results build on the tradi-
tional Gafni-Bertsekas (GB) link reversal algorithm, but
GB is traditionally analyzed in a model in which reversal
notifications are immediately delivered to all of a node’s
neighbors, so the DAG is always in a globally-consistent
state.3 However, we note that these requirements can be
relaxed, without changing the GB algorithm.
Lemma 2.3. Suppose a node’s reversal notifications are
eventually delivered to each neighbor, but after arbitrary
delay, which may be different for each neighbor. Then
beginning with a weakly connected DAG (i.e., a DAG
where not all nodes have a path to the destination) with
destination d, the GB algorithm converges in finite time
to a DAG with d the only sink.

2.5 Proactive Signaling
The data plane algorithm uses packets as reversal noti-
fications. This implies that if node A reverses the link
connecting it to B, B learns of the reversal only when a
packet traverses the link. In some cases this can result in
a packet traversing the same link twice, increasing path
stretch. One could try to overcome this problem by having
A proactively send a packet with TTL set to 1, thus noti-
fying B of this change. This packet looks like a regular
data packet, that gets dropped at the next hop router.

Note that proactive signaling is an entirely optional
optimization. However, such signaling does not address
the general problem of the data plane deviating from
optimal paths to maintain connectivity. The following
section addresses this problem.

3 Control Plane

While DDC’s data plane guarantees ideal connectivity, we
continue to rely on the control plane for path optimality.
However, we must ensure that control plane actions are
compatible with DDC’s data plane. In this section, we
present an algorithm to guide the data plane to use paths
desired by the operator (e.g., least-cost paths). The algo-
rithm described does not operate at packet timescales, and
relies on explicit signaling by the control plane. We start
by showing how our algorithm can guide the data plane
to use shortest paths. In §3.3, we show that our method is
general, and can accommodate any DAG.

We assume that each node is assigned a distance from
the destination. These could be produced, for instance,
by a standard shortest path protocol or by a central co-
ordinator. We will use the distances to define a target

3For example, [19] notes that the GB algorithm’s correctness proof
“requires tight synchronization between neighbors, to make sure the link
reversal happens atomically at both ends ... There is some work required
to implement this atomicity.”

DAG on the graph by directing edges from higher- to
lower-distance nodes, breaking ties arbitrarily but consis-
tently (perhaps by comparing node IDs). Note that this
target DAG may not be destination-oriented — for in-
stance the shortest path protocol may not have converged,
so distances are inconsistent with the topology. Given
these assigned distances, our algorithm guarantees the
following properties:
• Safety: Control plane actions must not break the

data plane guarantees, even with arbitrary simultane-
ous dynamics in both data and control planes.

• Routing Efficiency: After the physical network and
control plane distance assignments are static, if the
target DAG is destination-oriented, then the data
plane DAG will match it.

These guarantees are not trivial to provide. Intuitively,
if the control plane modifies link directions while the
data plane is independently making its own changes, it is
easy for violations of safety to arise. The most obvious
approach would be for a node to unilaterally reverse its
edges to match the target DAG, perhaps after waiting for
nodes closer to the destination to do the same. But dynam-
ics (e.g., link failures) during this process can quickly lead
to loops, so packets will loop indefinitely, violating safety.
We are attempting to repair a running engine; our expe-
rience shows that even seemingly innocuous operations
can lead to subtle algorithmic bugs.

3.1 Control Plane Algorithm
Algorithm idea: We decompose our goals of safety
and efficiency into two modules. First, we design an all-
edges-outward (AEO) operation which modifies all of a
single node’s edges to point outward, and is guaranteed
not to violate safety regardless of when and how AEOs are
performed. For example, a node which fails and recovers,
or has a link which recovers, can unilaterally decide to
execute an AEO in order to rejoin the network.

Second, we use AEO as a subroutine to incrementally
guide the network towards shortest paths. Let v1, . . . ,vn
be the (non-destination) nodes sorted in order of distance
from the destination, i.e., a topological sort of the target
DAG. Suppose we iterate through each node i from 1 to
n, performing an AEO operation on each vi. The result
will be the desired DAG, because for any undirected edge
(u,v) such that u is closer to the destination, v will direct
the edge v → u after u directed it u → v.
Implementation overview: The destination initiates a
heartbeat, which propagates through the network serving
as a trigger for each node to perform an AEO. Nodes
ensure that in applying the trigger, they do not precede
neighbors who occur before them in the topological sort
order. Note that if the target DAG is not destination-
oriented, nodes may be triggered in arbitrary order. How-
ever, this does not affect safety; further, if the target DAG
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is destination-oriented, the data plane will converge to it,
thus meeting the routing efficiency property.

We next present our algorithm’s two modules: the
all-edges-outward (AEO) operation (§3.1.1), and Trig-
ger heartbeats (§3.1.2). We will assume throughout that
all signals are sent through reliable protocols and yield
acks/nacks. We also do not reinvent sequence numbers
for heartbeats ignoring the related details.

3.1.1 All edges outward (AEO) operations
A node setting all its edges to point outward in a DAG
cannot cause loops4. However, the data plane dynamics
necessitate that we use caution with this operation—there
might be packets in flight that attempt to reverse some of
the edges inwards as we attempt to point the rest outwards,
potentially causing loops. One could use distributed locks
to pause reversals during AEO operations, but we cannot
block the data plane operations as this would violate the
ideal-connectivity guarantee provided by DDC.

Below is an algorithm to perform an AEO operation
at a node v safely and without pausing the data plane,
using virtual nodes (vnodes). We use virtual nodes as a
convenient means of versioning a node’s state, to ensure
that the DAG along which a packet is forwarded remains
consistent. The strategy is to connect a new vnode vn
to neighbors with all of vn’s edges outgoing, and then
delete the old vnode. If any reversals are detected during
this process, we treat the process as failed, delete vn, and
continue using the old vnode at v. Bear in mind that this
is all with respect to a specific destination; v has other,
independent vnodes for other destinations. Additionally,
although the algorithm is easiest to understand in terms
of virtual nodes, it can be implemented simply with a few
extra bits per link for each destination5.

We require that neighboring nodes not perform con-
trol plane reversals simultaneously. This is enforced by
a simple lock acquisition protocol between neighbors be-
fore performing other actions in AEO. However, note that
these locks only pause other control-plane AEO opera-
tions; all data plane operations remain active.

AEO algorithm:

Get locks from {neighbors, self} in

increasing ID order

Create virtual node vn

run(thread_watch_for_packets)

run(thread_connect_virtual_node)

thread_watch_for_packets:

if a data packet arrives at vn

kill thread_connect_virtual_node

delete vn

exit thread_watch_for_packets

4This is why we designed the algorithm as a sequence of AEOs.
5Routers implement ECMP similarly: In a k-port router, k-way

ECMP [7] stores state items per (destination, output-port) pair.

thread_connect_virtual_node:

For each neighbor u of v

Link vn, u with virtual link

Signal(LinkDone?) to u

After all neighbors ack(LinkDone):

For each neighbor u of v

Signal(Dir: vn->u?) to u

After all neighbors ack(Dir: vn->u):

kill thread_watch_for_packets

delete old virtual nodes at v

exit thread_connect_virtual_node

When all threads complete:

release all locks

The algorithm uses two threads, one to watch for data
packets directed to the destination (which would mean
the neighbor has reversed the link), and the other to es-
tablish links with the neighbors directed towards them,
using signal-ack mechanisms. The second set of signals
and acks might appear curious at first, but it merely con-
firms that no reversals were performed before all acks
for the first set had been received at vn. There may have
been reversals since any of the second set of acks were
dispatched from the corresponding neighbor, but they are
inconsequential (as our proof will show).

3.1.2 Trigger heartbeats
We make use of periodic heartbeats issued by the destina-
tion to trigger AEO operations. To order these operations,
a node uses heartbeat H as a trigger after making sure
all of its neighbors with lower distances have already re-
sponded to the H. More specifically, a node, v, responds
to heartbeat H from neighbor w as follows:

If (last_heartbeat_processed >= H)

Exit

rcvd[H,w] = true

If (rcvd[H,u] = true for all nbrs u with

lower distance)

If (direction[u] = In for any nbr with

lower distance)

AEO(v)

Send H to all neighbors

last_heartbeat_processed = H

With regard to the correctness of this algorithm, we
prove the following theorem in Appendix B:

Theorem 3.1. The control plane algorithm satisfies the
safety and routing efficiency properties.

3.2 Physical Implementation
A vnode is merely an abstraction containing the state
described in §2.3, and allowing this state to be modi-
fied in the ways described previously. One can therefore
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represent a vnode as additional state in a switch, and inter-
actions with other switches can be realized using virtual
links. As stated previously, the virtual links themselves
may be implemented using GRE tunnels, or by the inclu-
sion of additional bits in the packet header.

3.3 Control Plane Generality
It is easy to show that the resulting DAG from the AEO
algorithm is entirely determined by the order in which
AEO operations are carried out. While trigger heartbeats
as described in §3.1.2 order these AEO operations by
distance, any destination-oriented DAG could in fact be
used. It is also easy to see that given a DAG, one can
calculate at least one order of AEO operations resulting
in the DAG.

Given these observations, the control plane described
above is entirely general allowing for the installation of
an arbitrary DAG, by which we imply that given another
control plane algorithm, for which the resultant routes
form a DAG, there exists a modified trigger heartbeat
function that would provide the same functionality as the
given control plane algorithm. DDC therefore does not
preclude the use of other control plane algorithms that
might optimize for metrics other than path length.

3.4 Disconnection
Detecting disconnection is particularly important for link-
reversal algorithms. If our data plane algorithm fails to
detect that a destination is unreachable, packets for that
destination might keep cycling in the connected compo-
nent of the network. Packets generated for the destination
may continue to be added, while none of these packets are
being removed from the system. This increases conges-
tion, and can interfere with packets for other destinations.

Since DDC can be implemented at both the network
and link-layer we cannot rely on existing TTL/hop-count
fields, since they are absent from most extant link-layer
protocols. Furthermore, failures might result in paths
that are longer than would be allowed by the network
protocol, and thus TTL-related packet drops cannot be
used to determine network connectivity.

Conveniently, we can use heartbeats to detect discon-
nection. Any node that does not receive a heartbeat from
the destination within a fixed time period can assume that
the destination is unreachable. The timeout period can be
set to many times the heartbeat interval, so that the loss
of a few heartbeats is not interpreted as disconnection.

3.5 Edge Priorities
The algorithm as specified allows for the use of an arbi-
trary output link (i.e., packets can be sent out any output
link). One can exploit this choice to achieve greater ef-
ficiency, in particular the choice of output links can be
driven by a control plane specified priority. Priorities can
be chosen to optimize for various objective functions, for

instance traffic engineering. Such priorities can also be
used to achieve faster convergence, and lower stretches,
especially when few links have failed.

Edge priorities are not required for the correct func-
tioning of DDC, and are only useful as a mechanism to
increase efficiency, and as a tool for traffic engineering.
Priorities can be set by the control plane with no syn-
chronization (since they do not affect DDC’s correctness),
and can either be set periodically based on some global
computation, or manually based on operator preference.

4 Evaluation

We evaluated DDC using a variety of microbenchmarks,
and an NS-3 [23] based macrobenchmark.

4.1 Experimental Setup

We implemented DDC as a routing algorithm in NS-3.
(The code is available on request.) Our implementation
includes the basic data plane operations described in §2,
and support for assigning priorities to ports (i.e., links,
which appear as ports for individual switches), allowing
the data plane to discriminate between several available
output ports. We currently set these priorities to minimize
path lengths. We also implemented the control plane al-
gorithm (§3), and use it to initialize routing tables. While
our control plane supports the use of arbitrary DAGs, we
evaluated only shortest-path DAGs.

We evaluated DDC on 11 topologies: 8 AS topolo-
gies from RocketFuel [30] varying in size from 83 nodes
and 272 links (AS1221), to 453 nodes and 1999 links
(AS2914); and 3 datacenter topologies—a 3-tier hierar-
chical topology recommended by Cisco [3], a Fat-Tree [1],
and a VL2 [12] topology. However, we present only a
representative sample of results here.

Most of our experiments use a link capacity of 10 Gbps.
Nodes use output queuing, with drop-tail queues with
a 150 KB capacity. We test both TCP (NS-3’s TCP-
NewReno implementation) and UDP traffic sources.

4.2 Microbenchmarks

4.2.1 Path Stretch
Stretch is defined as the ratio between the length of the
path a packet takes through the network, and the shortest
path between the packet’s source and destination in the
current network state, i.e., after accounting for failures.

Stretch is affected by the topology, the number of failed
links, and the choice of source and destination. To mea-
sure stretch, we selected a random source and destination
pair, and failed a link on the connecting path. We then
sent out a series of packets, one at a time (i.e., making
sure there is no more than one packet in the network at
any time) to avoid any congestion drops, and observed the
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Figure 1: Median and 99th percentile stretch
for AS1239.
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MPLS FRR and DDC in AS2914.

length of the path the packet takes. Subsequent packets
use different paths as DDC routed around the failures.

Figures 1 and 2 show stretch for a series of such packets,
either with 1 or 10 links failed. We tested a wider range
of link failures, but these graphs are representative of the
results. As expected, the initial stretch is dependent on
the number of links failed, for instance the 99th percentile
stretch for AS1239 with 10 link failures is 14. However,
paths used rapidly converge to near-optimal.

We compare DDC’s steady-state stretch with that of
MPLS link protection [25]. Link protection, as commonly
deployed in wide-area networks, assigns a backup path
around a single link, oblivious of the destination6. We
use the stretch-optimal strategy for link protection: the
backup path for a link is the shortest path connecting its
two ends. Figure 3 shows this comparison for AS2914.
Clearly, path elongation is lower for DDC. We also note
that link protection does not support multiple failures.

4.2.2 Packet Latency
In addition to path lengths, DDC may also impact packet
latency by increasing queuing at certain links as it moves
packets away from failures. While end-to-end congestion
control will eventually relieve such queuing, we measure
the temporary effect by comparing the time taken to de-
liver a packet before and after a failure.

To measure packet latencies, we used 10 random source
nodes sending 1GB of data each to a set of randomly
chosen destinations. The flows were rate limited (since
we were using UDP) to ensure that no link was used at
anything higher than 50% of its capacity, with the majority
of links being utilized at a much lower capacity. For
experiments with AS topologies, we set the propagation
delay to 10ms, to match the order of magnitude for a
wide area network, while for datacenter topologies, we
adjusted propagation delay such that RTTs were ∼250µs,
in line with previously reported measurements [5, 36].

For each source destination pair we measure baseline
latency as an average over 100 packets. We then measure

6Protecting links in this manner is the standard method used in wide-
area networks, for instance [6], states “High Scalability Solution—The
Fast Reroute feature uses the highest degree of scalability by supporting
the mapping of all primary tunnels that traverse a link onto a single
backup tunnel. This capability bounds the growth of backup tunnels
to the number of links in the backbone rather than the number of TE
tunnels that run across the backbone.”

the latency after failing a set of links. Figure 4 shows
the results for AS2914, and indicates that over 80% of
packets encounter no increase in latency, and independent
of the number of failures, over 96% of packets encounter
only a modest increase in latency. Similarly, Figure 5
shows the same result for a Fat Tree topology, and shows
that over 95% of the packets see no increased latency. In
the 2 failure case, over 99% of packets are unaffected.

4.2.3 TCP Throughput and FIB Update Delay
Ideally, switches would execute DDC’s small state up-
dates at line rate. However, this may not always be fea-
sible, so we measure the effects of delayed state updates.
Specifically, we measure the effect of additional delay in
FIB updates on TCP throughput in wide-area networks.

We simulated a set of WAN topologies with 1 Gbps
links (for ease of simulation). For each test we picked
a set of 10 source-destination pairs, and started 10 GB
flows between them. Half-a-second into the TCP transfer,
we failed between 1 and 5 links (the half-a-second dura-
tion was picked so as to allow TCP congestion windows
to converge to their steady state), and measured overall
TCP throughput. Our results are shown in Figure 6, and
indicate that FIB delay has no impact on TCP throughput.

4.3 Macrobenchmarks
We also simulated DDC’s operation in a datacenter, us-
ing a fat-tree topology with 8-port switches. To model
failures, we used data on the time it takes for datacen-
ter networks to react to link failures from Gill et al [11].
Since most existing datacenters do not use any link protec-
tion scheme, relying instead on ECMP and the plurality
of paths available, we use a similar multipath routing
algorithm as our baseline.

For our workload, we used partition-aggregate as pre-
viously described in DCTCP [2]. This workload consists
of a set of background flows, whose size and interarrival
frequencies we get from the original paper, and a set of
smaller, latency sensitive, request queries. The request
queries proceed by having a single machine send a set of
8 machines a single small request packet, and then receiv-
ing a 2 KB response in return. This pattern commonly
occurs in front-end datacenters, and a set of such requests
are used to assemble a single page. We generated a set
of such requests, and focused on the percentage of these
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that were satisfied during a “failure event”, i.e., a period
of time where one or more links had failed, but before
the network had reacted. On average, we generated 10
requests per second, spread evenly across 128 hosts. The
hosts involved in processing a request were also picked
at random. We looked at a variety of failure scenarios,
where we failed between 1 and 5 links. Here, we present
results from two scenarios, one where a single link was
failed, and one where 5 links were failed. The links were
chosen at random from a total of 384 links.

Figure 7 shows the percentage of requests served in
every 10 second interval (i.e., percent of request packets
resulting in a response) in a case with 5 link failures. The
red vertical line at x = 50 seconds indicates the point at
which the links failed. While this is a rare failure scenario,
we observe that, without DDC, in the worst case about
14% of requests cannot be fulfilled. We also look at a
more common case in Figure 8 where a single link is
failed, and observe a similar response rate. The response
rate itself is a function of both the set of links failed, and
random requests issued.

For many datacenter applications, response latency is
important. Figure 9 shows the distribution of response
latencies for the 5 link failure case described previously.
About 4% of the requests see no responses when DDC
is not used. When DDC is used, all requests result in
responses and fewer than 1% see higher latency than the
common case without DDC. For these 1% (which would
otherwise be dropped), the latency is at most 1.5× higher.
Therefore, in this environment, DDC not only delivers all
requests, it delivers them relatively quickly.

5 Related Work
Link-Reversal Algorithms: There is a substantial literature
on link-reversal algorithms [10, 8, 26, 32]. We borrow the
basic idea of link reversal algorithms, but have extended
them in ways as described in §2.2.

DAG-based Multipath: More recently there has been
a mini-surge in DAG-based research [15, 28, 27, 14, 24].
All these proposals shared the general goal of maximiz-
ing robustness while guaranteeing loop-freeness. In most
cases, the optimization boils down to a careful ordering
of the nodes to produce an appropriate DAG. Some of
this research also looked at load distribution. Our ap-
proach differs in that we don’t optimize the DAG itself

but instead construct a DAG that performs adequately
well under normal conditions and rely on the rapid link
reversal process to restore connectivity when needed.

Other Resilience Mechanisms: We have already men-
tioned several current practices that provide some degree
of data plane resilience: ECMP and MPLS Fast Reroute.
We note that the ability to install an arbitrary DAG pro-
vides strictly more flexibility than is provided by ECMP.

MPLS Fast Reroute, as commonly deployed, is used to
protect individual links by providing a backup path that
can route traffic around a specific link failure. Planned
backups are inherently hard to configure, especially for
multiple link failures, which as past outages indicate, may
occur due to physical proximity of affected links, or other
reasons [20]. While this correlation is often accounted for
(e.g., using shared risk link groups), such accounting is
inherently imprecise. This is evidenced by the Internet
outage in Pakistan in 2011 [21] which was caused by a
failure in both a link and its backup, and other similar
incidents [29, 35, 34] which have continued to plague
providers. Even if ideal connectivity isn’t an explicit goal,
using DDC frees operators from the difficulties of careful
backup configuration. However, if operators do have
preferred backup configurations, DDC makes it possible
to achieve the best of both worlds: Operators can install a
MPLS/GRE tunnel (i.e., a virtual link) for each desired
backup path, and run DDC over the physical and virtual
links. In such a deployment, DDC would only handle
failures beyond the planned backups.

End-to-End Multipath: There is also a growing litera-
ture on end-to-end multipath routing algorithms (see [31]
and [22] for two such examples). Such approaches require
end-to-end path failure detection (rather than hop-by-hop
link failure detection as in DDC), and thus the recovery
time is quite long compared to packet transmission times.
In addition, these approaches do not provide ideal failure
recovery, in that they only compute a limited number of
alternate paths, and if they all fail then they rely on the
control plane for recovery.

Other Approaches: Packet Recycling [18] is perhaps
the work closest in spirit to DDC (but quite different in
approach), where connectivity is ensured by a packet for-
warding algorithm which involves updating a logarithmic
number of bits in the packet header. While this approach
is a theoretical tour-de-force, it requires solving an NP-
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Figure 9: Request latency for the 5-link fail-
ure case in Figure 7.

hard problem to create the original forwarding state. In
contract, DDC requires little in the way of precomputa-
tion, and uses only two bits in the packet header. Failure-
Carrying Packets (FCP) [16] also achieves ideal connec-
tivity, but data packets carry explicit control information
(the location of failures) and routing tables are recom-
puted upon a packet’s arrival (which may take far longer
than a single packet arrival). Furthermore, FCP packet
headers can be arbitrarily large, since packets potentially
need to carry an unbounded amount of information about
failures encountered along the path traversed.

6 Conclusion
In this paper we have presented DDC, a dataplane algo-
rithm guaranteeing ideal connectivity. We have both pre-
sented proofs for our guarantees, and have demonstrated
the benefits of DDC using a set of simulations. We have
also implemented the DDC dataplane in OpenVSwitch7,
and have tested our implementation using Mininet [13].
We are also working towards implementing DDC on phys-
ical switches.
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A DDC Algorithm Correctness
Compared with traditional link reversal algorithms, DDC
has two challenges. First, notifications of link reversals
might be delayed arbitrarily. Second, the mechanism
with which we provide notifications is extremely limited—
piggybacking on individual data packets which may them-
selves be delayed and lost arbitrarily. We deal with these
two challenges one at a time.

A.1 Link reversal with delayed notification
Before analyzing our core algorithm, we prove a useful
lemma: the classic GB algorithms (§2.2) work correctly
even when reversal notifications are delayed arbitrarily.

7Available at https://bitbucket.org/apanda/ovs-ddc

The subtlety in this analysis is that if notifications are
not delivered instantaneously, then nodes have inconsis-
tent views of the link directions. What we will show is that
when it matters—when a node is reversing its links—the
node’s view is consistent with a certain canonical global
state that we define.

We can reason about this conveniently by defining a
global notion of the graph at time t as follows: In Gt the
direction of an edge (u,v) is:
• u → v if u has reversed more recently than v;
• v → u if v has reversed more recently than u;
• otherwise, whatever it is in the original graph G0.
It is useful to keep in mind several things about this

definition. First, reversing is now a local operation at a
node. Once a node decides to reverse, it is “officially”
reversed—regardless of when control messages are de-
livered to its neighbors. Second, the definition doesn’t
explicitly handle the case where there is a tie in the times
that u and v have reversed. But this case will never occur;
it is easy to see that regardless of notifications begin de-
layed, two neighbors will never reverse simultaneously
because at least one will believe it has an outgoing edge.

Often, nodes’ view of their link directions will be incon-
sistent with the canonical graph Gt because they haven’t
yet received reversal notifications. The following lemma
shows this inconsistency is benign.
Lemma A.1. Consider the GB algorithm with arbitrarily
delayed reversal notifications, but no lost notifications. If
v reverses at t, then v’s local view of its neighboring edge
directions is consistent with Gt .
Proof. The lemma clearly holds for t = 0 due to the algo-
rithm’s initialization. Consider any reversal at t ≥ 0. By
induction, at the time of v’s previous reversal (or at t = 0
if it had none), v’s view was consistent with G. The only
events between then and time t are edge reversals making
v’s edges incoming. Before v receives all reversal notifi-
cations, it believes it has an outgoing edge, and therefore
will not reverse. Once it receives all notifications (and
may reverse), its view is consistent with G.

It should be clear given the above lemma that nodes
only take action when they have a “correct” view of their
edge directions, and therefore delay does not alter GB’s
effective behavior. To formalize this, we define a trace of
an algorithm as a chronological record of its link rever-
sals. An algorithm may have many possible traces, due to

10
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non-determinism in when nodes are activated and when
they send and receive messages (and due to the unknown
data packet inputs and adversarial packet loss, which we
disallow here but will introduce later).
Lemma A.2. Any trace of GB with arbitrarily delayed
notification is also a trace of GB with instant notification.
Proof. Consider any trace T produced by GB with delay.
Create a trace T ′ of GB with instantaneous notification, in
which nodes are initialized to the same DAG as in T and
nodes are activated at the moments in which those nodes
reverse edges in T . We claim T and T ′ are identical. This
is clearly true at t = 0. Consider by induction any t > 0 at
which v reverses in T . In the GB algorithm, notice that v’s
reversal action (i.e., which subset of edges v reverses) is a
function only of its neighboring edge-states at time t and
at the previous moment that v reversed. By Lemma A.1,
local knowledge of these edge-states are identical to Gt ,
which is in turn identical at each step in both T and T ′

(by induction).
LEMMA 2.3. Suppose a node’s reversal notifications

are eventually delivered to each neighbor, but after ar-
bitrary delay, which may be different for each neighbor.
Then beginning with a weakly connected DAG with desti-
nation d, the GB algorithm converges in finite time to a
DAG with d the only sink.
Proof. Lemmas A.1, A.2 imply that if reversal notifica-
tions are eventually delivered, both versions of the algo-
rithm (with arbitrary delay and with instant notifications)
reverse edges identically. Convergence of the algorithm
with arbitrary delay to a destination-oriented DAG thus
follows from the original GB algorithm’s proof.

A.2 DDC
Having shown that GB handles reversal message delay,
we now show that DDC, even with its packet-triggered,
lossy, delayed messages, effectively emulates GB.
Lemma A.3. Any trace of DDC, assuming arbitrary loss
and delay but in-order delivery, is a prefix of a trace of
GB with instantaneous reliable notification.
Proof. Consider any neighboring nodes v,w and any time
t0 such that:

1. v and w agree on the link direction;
2. v’s local seq for the link is equal to w’s

remote seq, and vice versa; and
3. any in-flight packet p has p.seq set to the same value

as its sender’s current local seq.
Suppose w.l.o.g v reverses first, at some time t1. No
packet outstanding at time t0 or sent during [t0, t1) can
be interpreted as a reversal on delivery, since until that
time, the last two properties and the in-order delivery
assumption imply that such an arriving packet will have
its p.seq equal to the receiving node’s remote seq. Now
we have two cases. In the first case, no packets sent v → w
after time t1 are ever delivered; in this case, w clearly
never believes it has received a link reversal. In the second

case, some such packet is delivered to w at some time t2.
The first such packet p will be interpreted as a reversal
because it will have p.seq �= w.remote seq. Note that
neither node reverses the link during (t0, t2) since both
believe they have an outlink and, like GB, DDC will only
reverse a node with no outlinks.

Note that the above three properties are satisfied at time
t0 = 0 by initialization; and the same properties are again
true at time t2. Therefore we can iterate the argument
across the entire run of the algorithm. The discussion
above implies that for any a,b such that v reverses at
time a and does not reverse during [a,b], w will receive
either zero or one reversal notifications during [a,b]. This
is exactly equivalent to the notification behavior of GB
with arbitrary delay, except that some notifications may
never be delivered. Combined with the fact that DDC
makes identical reversal decisions as GB when presented
with the same link state information, this implies that a
trace of DDC over some time interval [0,T ] is a prefix
of a valid trace for GB with arbitrary delay, in which the
unsent notifications are delayed until after T . Since by
Lemma 2.3 any trace of GB with delay is a valid trace of
GB without delay, this proves the lemma.

While it looks promising, the lemma above speaks only
of (data plane) control events, leaving open the possibility
that data packets might loop forever. Moreover, since the
DDC trace is only a prefix of a GB trace, the network
might never converge. Indeed, if no data packets are ever
sent, nothing happens, and even if some are sent, some
parts of the network might never converge. What we need
to show is that from the perspective of any data packets,
the network operates correctly. We now prove the main
theorems stated previously in §2.4.

THEOREM 2.1. DDC guides every packet to the desti-
nation, assuming the graph remains connected during an
arbitrary sequence of failures.
Proof. Consider a packet p which is not dropped due
to physical layer loss or congestion. At each node p is
forwarded to some next node by DDC, so it must either
eventually reach the destination, or travel an infinite num-
ber of hops. We will suppose it travels an infinite number
of hops, and arrive at a contradiction.

If p travels an infinite number of hops then there is
some node v which p visits an infinite number of times.
Between each visit, p travels in a loop. We want to show
that during each loop, at least one control event—either
a reversal or a reversal notification delivery—happens
somewhere in the network.

We show this by contradiction. If there are no control
events, the global abstract graph representing the network
(§A.1) is constant; call this graph Gt . By Lemma A.3,
Gt must match some graph produced by GB (in the in-
stantaneous reliable notification setting), which never has
loops. Thus Gt does not have loops, so there must exist

11
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some edge (w,u) in the packet’s loop which w believes
is outgoing, but which is incoming according to Gt . If
this occurs, then DDC specifies that u will bounce it back
to w. Therefore, by the time the packet returns to w, by
the in-order delivery assumption, w will have received a
reversal notification. Therefore the assumption that there
are no control events must be false: some control event
must happen during each loop.

Therefore, there are an infinite number of control
events. Therefore, DDC has an infinitely long trace of
control events, which by Lemma A.3 means it is also an
infinitely-long valid prefix of a trace for GB, which con-
tradicts the fact [10] that GB converges in a finite number
of steps. Thus, the assumption that the packet is not de-
livered must be false, and all packets not dropped due to
physical layer loss or congestion are delivered.

THEOREM 2.2. If after time t, the network has no
failures and is connected, then regardless of the (possibly
infinite) sequence of packets transmitted after t, DDC
incurs O(n2) reversal operations for a network with n
nodes.
Proof. Following the same argument as above, since any
DDC-trace is a prefix of a GB-trace, and the GB algorithm
incurs Θ(n2) reversals [33], DDC can not incur more
reversals.

B Control Plane Correctness

In this appendix, we prove Theorem 3.1.

Lemma B.1. If the AEO algorithm at node v terminates
with the addition of a virtual node vn, then at the time of
addition of the last edge between vn and a neighbor, all
other edges at vn are directed outward.

Proof. If thread watch for packets did not delete
vn, it saw no incoming packets for the destination at any
of vn’s links until each neighbor had acknowledged the di-
rection of the link as outward from vn. Such packets may
be in flight and some link may have been reversed after
dispatching the ack. However, these acks are requested
only after each neighbor has acknowledged that its link
with vn is functional. Thus, between the addition of the
last edge between vn and a neighbor’s dispatching the ack
for the link, all edges were directed outward.

Lemma B.2. Given a DAG G, an AEO operation at node
v leaves it a DAG with the same physical connectivity.

Proof. First, we note that AEO operations include obtain-
ing a lock from all neighbors, so no two neighbors can
perform an AEO operation concurrently.

AEO either terminates with the addition of vnode vn
and deletion of the old vnode at v, or it terminates leaving
the old vnode’s physical connectivity unchanged. In the

latter case, vn has not sent any packets on its links, nor has
it received any packets until the first reversal that reaches
it – thus, its behavior so far is identical to absence. Further,
vn is immediately killed on receipt of a data packet, in
behavior identical to a link failing after a reversal was
dispatched on it. Neither scenario can leave the rest of the
graph with a loop. On the other hand, if vn was added to
the graph successfully, then by Lemma B.1, it is added as
a node with all edges directed outward, again resulting in
no loops. Further, in either scenario, the graph’s physical
connectivity remains the same – in one case, vn copies
the old vnode’s physical connectivity, while in the other,
the old vnode retains connectivity as is. Thus the graph
remains a DAG with the same physical connectivity.

Given that the algorithm only performs a sequence of
AEO operations, Lemma B.2 suffices to prove safety. We
next show routing efficiency, which completes the proof
of Theorem 3.1.

Lemma B.3. Assume that after some point in time there
are no further failures, stable distances are assigned to
the nodes such that they induce a destination-oriented
target DAG, and control plane messages are eventually
delivered. Then the data plane DAG eventually matches
the target DAG induced by the distances.

Proof. Call a node v compliant when every edge outgoing
from v in the target DAG is also outgoing from v in the
data plane DAG. We will construct a set D of nodes which
are (1) compliant, and (2) form a destination-oriented sub-
graph of the data plane DAG. Specifically, we will prove
by induction that eventually D expands to include all
nodes. Note that the definition of D immediately implies
that these nodes will never reverse their links in the data
plane, or execute an AEO in the control plane: they are
done.

In the base case, D simply includes the destination. In
the general case, suppose not all nodes are in D. Since the
subgraph D complies with the target DAG, it also forms
a destination-oriented subgraph of the target DAG. Com-
bined with the fact that the target DAG is itself destination-
oriented, this means D forms a “sink region” into which
all paths in the target DAG must flow. Then if not all
nodes are in D, there must exist some node v �∈ D which is
non-compliant, but whose neighbors with lower distances
are all in D. Let L be that subset of v’s neighbors. Eventu-
ally, every node in L will send a heartbeat to v, and v will
execute an AEO (if its edges are not already pointing out-
ward to L). At this point, (1) v is compliant, and (2) all v’s
links to nodes in the destination-oriented subgraph D are
outgoing, so that D∪{v} is itself a destination-oriented
subgraph of the data plane DAG. Hence, v satisfies the
two conditions for inclusion into D and the set D expands.
Iterating this argument, D eventually includes all nodes,
which implies the lemma.
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Abstract

This paper presents NetSieve, a system that aims to do

automated problem inference from network trouble tick-

ets. Network trouble tickets are diaries comprising fixed

fields and free-form text written by operators to docu-

ment the steps while troubleshooting a problem. Un-

fortunately, while tickets carry valuable information for

network management, analyzing them to do problem in-

ference is extremely difficult—fixed fields are often in-

accurate or incomplete, and the free-form text is mostly

written in natural language.

This paper takes a practical step towards automati-

cally analyzing natural language text in network tick-

ets to infer the problem symptoms, troubleshooting ac-

tivities and resolution actions. Our system, NetSieve,

combines statistical natural language processing (NLP),

knowledge representation, and ontology modeling to

achieve these goals. To cope with ambiguity in free-form

text, NetSieve leverages learning from human guidance

to improve its inference accuracy. We evaluate NetSieve

on 10K+ tickets from a large cloud provider, and com-

pare its accuracy using (a) an expert review, (b) a study

with operators, and (c) vendor data that tracks device re-

placement and repairs. Our results show that NetSieve

achieves 89%-100% accuracy and its inference output

is useful to learn global problem trends. We have used

NetSieve in several key network operations: analyzing

device failure trends, understanding why network redun-

dancy fails, and identifying device problem symptoms.

1 Introduction

Network failures are a significant contributor to system

downtime and service unavailability [12, 13, 47]. To

track network troubleshooting and maintenance, opera-

tors typically deploy a trouble ticket system which logs

all the steps from opening a ticket (e.g., customer com-

plaint, SNMP alarm) till its resolution [21]. Trouble tick-

ets comprise two types of fields: (a) structured data of-

∗Work done during an internship at Microsoft Research, Redmond.

Ticket Title: Ticket #xxxxxx NetDevice; LoadBalancer Down 100%
Summary: Indicates that the root cause is a failed system

Problem Type Problem SubType Priority Created
Severity - 2 2: Medium

Operator 1: Both power supplies have been reseated
Operator 1: The device has been powered back up and it does not 
appear that it has come back online. Please advise.
Operator 2: Ok. Let me see what I can do.
--- Original Message ---
From: Vendor Support
Subject: Regarding Case Number #yyyyyy
Title: Device v9.4.5 continuously rebooting
As discussed, the device has bad memory chips as such we 
replace it. Please completely fill the RMA form below and return it.
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Figure 1: An example network trouble ticket.

ten generated automatically by alarm systems such as

ticket id, time of alert, and syslog error, and (b) free-

form text written by operators to record the diagnosis

steps and communication (e.g., via IM, email) with the

customer or other technicians while mitigating the prob-

lem. Even though the free-form field is less regular and

precise compared to the fixed text, it usually provides

a detailed view of the problem: what happened? what

troubleshooting was done? and what was the resolution?

Figure 1 shows a ticket describing continuous reboots

of a load balancer even after reseating its power supply

units; bad memory as the root cause; and memory re-

placement as the fix; which would be hard to infer from

coarse-grained fixed data.

Unfortunately, while tickets contain valuable informa-

tion to infer problem trends and improve network man-

agement, mining them automatically is extremely hard.

On one hand, the fixed fields are often inaccurate or

incomplete [36]. Our analysis (§2.1) on a large ticket

dataset shows that the designated problem type and sub-

type fields had incorrect or inconclusive information in

69% and 75% of the tickets, respectively. On the other

hand, since the free-form text is written in natural lan-

guage, it is often ambiguous and contains typos, gram-

matical errors, and words (e.g., “cable”, “line card”,

“power supply”) having domain-specific meanings dif-

ferent from the dictionary.

Given these fundamental challenges, it becomes diffi-

cult to automatically extractmeaning from raw ticket text

even with advanced NLP techniques, which are designed
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Table 1: Examples of network trouble tickets and their inference output from NetSieve.

Inference output from NetSieve

Ticket Title Problems Activities Actions

1 SNMPTrap LogAlert 100%: Internal link 4.8 is

unavailable.

link down, failover,

bad sectors

swap cable, upgrade fiber,

run fsck, verify HDD

replace cable, HDD

2 HSRPEndpoint SwitchOver 100%: The status of

HSRP endpoint has changed since last polling.

firmware error,

interface failure

verify and break-fix

supervisor engine

replace supervisor

engine, reboot switch

3 StandbyFail: Failover condition, this standby will

not be able to go active.

unexpected reboot,

performance degraded

verify load balancer, run

config script

rma power supply unit

4 The machine can no longer reach internet

resources. Gateway is set to load balancer float IP.

verify static route reboot server, invoke

failover, packet capture

rehome server, reboot

top-of-rack switch

5 Device console is generating a lot of log messages

and not authenticating users to login.

sync error, no

redundancy

power down device, verify

maintenance

replace load balancer

6 Kernel panic 100%: CPU context corrupt. load balancer reboot,

firmware bug

check performance,

break-fix upgrade

upgrade BIOS, reboot

load balancer

7 Content Delivery Network: Load balancer is in bad

state, failing majority of keep-alive requests.

standby dead,

misconfigured route

upgrade devices replace standby and

active, deploy hot-fix

8 OSPFNeighborRelationship Down 100%: This

OSPF link between neighboring endpoints is down.

connectivity failure,

packet errors

verify for known

maintenance

replace network card

9 HighErrorRate: Summary:

http://domain/characteristics.cgi?<device>.

packet errors verify interface cable and xenpak

module replaced

10 AllComponentsDown: Summary: Indicates that all

components in the redundancy group are down;

down alerts verify for decommissioned

devices

decommission load

balancer

to process well-written text (e.g., news articles) [33].

Most prior work on mining trouble tickets use either key-

word search and manual processing of free-form con-

tent [20, 27, 42], predefined rule set from ticket his-

tory [37], or document clustering based on manual key-

word selection [36]. While these approaches are sim-

ple to implement and can help narrow down the types

of problems to examine, they risk (1) inaccuracy as they

consider only the presence of a keyword regardless of

where it appears (e.g., “do not replace the cable” speci-

fies a negation) and its relationship to other words (e.g.,

“checking for maintenance” does not clarify whether the

ticket was actually due to maintenance), (2) a significant

human effort to build the keyword list and repeating the

process for new tickets, and (3) inflexibility due to pre-

defined rule sets as they do not cover unexpected inci-

dents or become outdated as the network evolves.

Our Contributions. This paper presents NetSieve, a

problem inference system that aims to automatically an-

alyze ticket text written in natural language to infer the

problem symptoms, troubleshooting activities, and res-

olution actions. Since it is nearly impractical to un-

derstand any arbitrary text, NetSieve adopts a domain-

specific approach to first build a knowledge base using

existing tickets, automatically to the extent possible, and

then use it to do problem inference. While a ticket may

contain multiple pieces of useful information, NetSieve

focuses on inferring three key features for summarization

as shown in Table 1:

1. Problems denote the network entity (e.g., router, link,

power supply unit) and its associated state, condition

or symptoms (e.g., crash, defective, reboot) as identi-

fied by an operator e.g., bad memory, line card failure,

crash of a load balancer.

2. Activities indicate the steps performed on the network

entity during troubleshooting e.g., clean and swap ca-

bles, verify hard disk drive, run configuration script.

3. Actions represent the resolution action(s) performed

on the network entity to mitigate the problem e.g., up-

grade BIOS, rehome servers, reseat power supply.

To achieve this functionality, NetSieve combines tech-

niques from several areas in a novel way to performprob-

lem inference over three phases. First, it constructs a

domain-specific knowledge base and an ontology model

to interpret the free-form text using pattern mining and

statistical NLP. In particular, it finds important domain-

specific words and phrases (e.g., ”supervisor engine”,

”kernel”, ”configuration”) and then maps them onto the

ontology model to specify relationships between them.

Second, it applies this knowledge base to infer problems,

activities and actions from tickets and exports the infer-

ence output for summarization and trend analysis. Third,

to improve the inference accuracy, NetSieve performs in-

cremental learning to incorporate human feedback.

Our evaluation on 10K+ network tickets from a large

cloud provider shows that NetSieve performs automated

problem inference with 89%-100% accuracy, and several

network teams in that cloud provider have used its infer-

ence output to learn global problem trends: (1) compare

device reliability across platforms and vendors, (2) ana-

lyze cases when network redundancy failover is ineffec-

tive, and (3) prioritize checking for the top-k problems
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and failing components during network troubleshooting.

This paper makes the following contributions:

• A large-scale measurement study (§2) to highlight the

challenges in analyzing structured data and free-form

text in network trouble tickets.

• Design and implementation (§3) of NetSieve, an auto-

mated inference system that analyzes free-form text in

tickets to extract the problem symptoms, troubleshoot-

ing activities and resolution actions.

• Evaluation (§4) of NetSieve using expert review, study

with network operators and vendor data, and showing

its applicability (§5) to improve network management.

Scope and Limitations: NetSieve is based on analyz-

ing free-form text written by operators. Thus, its accu-

racy is dependent on (a) fidelity of the operators’ input

and (b) tickets containing sufficient information for in-

ference. NetSieve leverages NLP techniques, and hence

is subject to their well-known limitations such as ambi-

guities caused by anaphoras (e.g., referring to a router

as this), complex negations (e.g., “device gets replaced”

but later in the ticket, the action is negated by the use of

an anaphora) and truth conditions (e.g., “please replace

the unit once you get more in stock” does not clarify

whether the unit has been replaced). NetSieve inference

rules may be specific to our ticket data and may not apply

to other networks. While we cannot establish represen-

tativeness, this concern is alleviated to some extent by

the size and diversity of our dataset. Finally, our ontol-

ogy model represents one way of building a knowledge

base, based on discussions with operators. Given that the

ticket system is subjective and domain-specific, alterna-

tive approaches may work better for other systems.

2 Measurement and Challenges

In this section, we present a measurement study to high-

light the key challenges in automated problem inference

from network tickets. The dataset comprises 10K+ (ab-

solute counts omitted due to confidentiality reasons) net-

work tickets logged during April 2010-2012 from a large

cloud provider. Next, we describe the challenges in ana-

lyzing fixed fields and free-form text in trouble tickets.

2.1 Challenges: Analyzing Fixed Fields

C1: Coarse granularity. The fixed fields in tickets con-

tain attributes such as ‘ProblemType’ and ‘ProblemSub-

Type’, which are either pre-populated by alarm systems

or filled in by operators. Figure 2 shows the top-10

problem types and sub-types along-with the fraction of

34.7
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Figure 2: Problem types and subtypes listed in the tickets.

tickets. Sev denotes problem severity assigned based on

SLAs with the customer. We observe that while problem

types such as Software, Hardware,Maintenance, and In-

cident provide coarse granularity information about the

problem type, other types e.g., Sev[1-5] are highly sub-

jective reflecting operator’s judgement and they account

for 68.8% of the tickets. As a result, these fields are not

useful to precisely infer the observed problems.

C2: Inaccuracy or Incompleteness. Figure 3 shows the

problem categorization for a randomly selected subset of

tickets labeled by a domain expert (top) and the field val-

ues from the tickets (bottom) for three different types of

devices: (1) Access Routers (AR), (2) Firewalls, and (3)

Load balancers (LB); the number of tickets is 300, 42,

and 299, respectively.

We make two key observations. First, the Problem

SubType field (in the bottom row) is Unknown in about

79%-87% of the tickets. As a result, we may incor-

rectly infer that devices failed due to unknown problems,

whereas the problems were precisely reported in the ex-

pert labeled set based on the same ticket data. Second,

the categories annotated by the expert and ticket fields

for each device type have little overlap, and even when

there is a common category, there is a significant differ-

ence in the fraction of tickets attributed to that category

e.g., ‘Cable’ accounts for 0.6% of the LB tickets whereas

the ground truth shows their contribution to be 9.7%.

The reason that these fields are inaccurate or incom-

plete is that operators work under a tight time sched-

ule, and they usually have a narrow focus of mitigating a

problem rather than analyzing failure trends. Thus, they

may not have the time, may not be motivated, or simply

forget to input precise data for these fields after closing

the tickets. Further, some fixed fields have a drop-down

menu of pre-defined labels and every problem may not

be easily described using them.

2.2 Challenges: Analyzing Free-form Text

In comparison to structured data, the free-form text in

network tickets is descriptive and ambiguous: it has
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Figure 3: Categorization of the ’Problem SubType’ field in tickets for (a) Access Routers (AR), (b) Firewalls, and (c) Load balancers

(LB). The top and bottom rows show the major problem subtypes as labeled by an expert and the ticket field, respectively.

domain-specific words and synonyms mixed with regu-

lar dictionary words, spelling and grammar errors, and

writings from different operators.

Specifically, we highlight the following challenges in

mining free-form text in trouble tickets:

C1: Diversity of content. A ticket may contain a variety

of semantic elements such as emails, IMs, device debug

logs, devices names, and operator notes.

C2: Domain-specific words. Without a prior list of

domain-specific keywords, training spell checkers can be

hard e.g., DMZ and DNS are both valid technical key-

words, but they cannot be found in the dictionary.

C3: Redundant text. Tickets often contain text frag-

ments that appear with high frequency. We observe three

types of frequently occurring fragments (see Figure 1):

templates, emails and device logs. Templates are text

fragments added by operators to meet triage guidelines,

but they often do not contain any problem-specific infor-

mation. Many emails are asynchronous replies to a pre-

vious message and thus, it may be hard to reconstruct the

message order for inference. Log messages are usually

appended to a ticket in progress. Therefore, text min-

ing using metrics such as term frequencymay incorrectly

give more weightage to terms that appear in these logs.

Overall, these challenges highlight the difficulty in au-

tomatically inferring problems from tickets. While we

studied only our ticket dataset, our conversation with op-

erators (having a broader industry view and some having

worked at other networks), suggests that these challenges

are similar to those of many other systems.

3 Design and Implementation

In this section, we first give an overview of NetSieve and

then describe its design and implementation.

3.1 Design Goals

To automatically analyze free-form text, NetSieve should

meet the following design goals:

1. Accuracy: The inference system needs to be accurate

as incorrect inference can lead to bad operator deci-

sions, and wasted time and effort in validating infer-

ence output for each ticket, thus limiting practicality.

2. Automation: Although we cannot completely elimi-

nate humans from the loop, the system should be able

to operate as autonomously as possible.

3. Adaptation: As the network evolves, the system should

be able to analyze new types of problems and leverage

human feedback to acquire new knowledge for contin-

uously improving the inference accuracy.

4. Scalability: The system should be scalable to process

a large number of tickets where each ticket may com-

prise up to a million characters, in a reasonable time.

5. Usability: The output from the inference system

should provide a user-friendly interface (e.g., visu-

alization, REST, plaintext) to allow the operator to

browse, filter and process the inference output.

3.2 Overview

NetSieve infers three key features from network trouble

tickets: (1) Problem symptoms indicating what problem

occurred, (2) Troubleshooting activities describing the

diagnostic steps, and (3) Resolution actions denoting the

fix applied to mitigate the problem.

Figure 4 shows an overview of the NetSieve architec-

ture. NetSieve operates in three phases. First, the knowl-

edge building phase constructs a domain-specific knowl-

edge base and an ontology model using existing tickets

and input from a domain-expert. Second, the operational



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 131

REPEATED 
PATTERN

EXTRACTION

KNOWLEDGE
DISCOVERY INFORMATION

INFERENCE

KNOWLEDGE BUILDING PHASE OPERATIONAL PHASE

FRONT-END APP
INTERFACE

ONTOLOGY 
MODELING

TICKETS

INCREMENTAL LEARNING PHASE

KNOWLEDGE
BASE+

OUTPUT RENDERING

DOMAIN
EXPERT

BACKEND

QUERY ENGINE

VISUALIZATION

XML/JSON

QUERY INTERFACE

PLAIN TEXT

Ontology Model
Synonyms
Blacklists
Whitelists

Figure 4: NetSieve Architecture: The first phase builds a domain-specific knowledge base using existing tickets. The second phase

uses the knowledge base to make problem inference. The third phase leverages human guidance to improve the inference accuracy.

phase uses the knowledge base to make problem infer-

ence from tickets. Third, the incremental learning phase

improves the accuracy of knowledge base using human

guidance. We next give a brief description of each of

these phases.

Knowledge Building Phase: The goal of this phase is

to analyze free-form text to extract important domain-

specific phrases such as “power supply unit” and “load

balancer” using repeated pattern mining (§3.3.1) and sta-

tistical NLP (§3.3.2). These domain-specific phrases are

then mapped onto an ontology model (§3.3.3) that for-

mally represents the relationships between network enti-

ties and stores them in a knowledge base. This phase is

executed either when NetSieve is bootstrapped or to re-

train the system using expert feedback.

Operational Phase: The goal of this phase is to perform

problem inference (§3.4) from a ticket using the knowl-

edge base. To export the inference output, NetSieve sup-

ports SQL (through the Query Engine) and HTTP GET

requests (through a Query Interface such as REST [11])

and outputs results in a variety of data formats such as

XML/JSON, and through data visualization for ticket

summarization and trend analysis.

Incremental Learning Phase: To improve inference ac-

curacy, it is important to continuously update the knowl-

edge base to incorporate any new domain-specific ter-

minologies. NetSieve provides an interface to allow a

domain-expert to give feedback for improving the ontol-

ogy model, synonyms, blacklists and whitelists. After

each learning session, NetSieve performs problem infer-

ence using the updated knowledge base.

3.3 Knowledge Building Phase

Building a domain-specific knowledge phase requires

addressing three key questions. First, what type of in-

formation should be extracted from the free-form text to

enable problem inference? Second, how do we extract

this information in a scalable manner from a large ticket

corpus? Third, how do we model the relationships in the

extracted information to infer meaning from the ticket

content. Next we describe solutions to these questions.

3.3.1 Repeated Pattern Extraction

Intuitively, the phrases that would be most useful to

build a knowledge base should capture domain-specific

information and be related to hot (common) and im-

portant problem types. As mining arbitrary ticket text

is extremely hard (§2), we first extract hot phrases and

later apply filters (§3.3.2) to select the important ones.

DESIGN: To find the hot phrases from ticket text, we

initially applied conventional text mining techniques for

n-gram extraction. N-grams are arbitrary and recurrent

word combinations [4] that are repeated in a given con-

text [45]. Since network tickets have no inherent lin-

guistic model, we extracted n-grams of arbitrary length

for comprehensive analysis without limiting to bi-grams

or tri-grams. We implemented several advanced tech-

niques [9, 39, 45] from computational linguistics and

NLP, and observed the following challenges:

1. Extracting all possible n-grams can be computation-

ally expensive for a large n and is heavily dependent

on the size of the corpus. We investigated using a

popular technique by Nagao et al. [39] based on ex-

tracting word co-locations, implemented in C [56]. On

our dataset, this algorithm did not terminate on a 100K

word document after 36 hours of CPU time on a Xeon

2.67 GHz eight-core server with 48 GB RAM, as also

observed by others [52].

2. Determining and fine-tuning the numerous thresholds

and parameters used by statistical techniques [39, 45,
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Figure 5: Two Phase Pattern Extraction. First, NetSieve tok-

enizes input into sentences and applies WLZW to build a dic-

tionary of repeated patterns. Second, it uses the Aho-Corasick

pattern matching algorithm to calculate their frequency.
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Figure 6: Performance of WLZW (a): Optimized implementa-

tion using Cython gives a performance boost of up to 5x-20x

over a Python based solution as expected. Comparing NetSieve

with N-gram extraction of Nagao et al. [39] (b): NetSieve is

able to scale well beyond a million words in comparison to Na-

gao(f=10), where f is the phrase frequency.

55] is difficult when the corpus size is large.

3. Not all n-grams are useful due to their semantic con-

text. For instance, n-grams such as “showing green”

(LED status) and “unracking the” (unmounting the

server) occurred frequently together but they do not

contribute to the domain knowledge.

To address these challenges, we trade completeness in

n-gram extraction for scalability and speedup. Our idea

to extract hot patterns is to use a data compression algo-

rithm, typically used to compress files by finding recur-

ring patterns in the data and encoding them. A dictionary

is maintained to map the repeated patterns to their out-

put codes. Clearly, these dictionaries do not include all

possible n-grams, but they contain hot patterns that are

frequent enough to bootstrap the knowledge base.

Data compression algorithms typically operate at

a byte or character level, and they do not output the

frequency of patterns in their dictionary. To address

these issues, NetSieve performs pattern extraction in two

Table 2: Examples of phrases extracted using the Two Phase

Pattern Extraction algorithm.

Phrase Type Phrase Pattern

Frequent

messages

team this is to inform you that there has been a

device down alarm reported on

Debug

messages

errors 0 collisions 0 interface resets 0 babbles 0

late collision 0 deferred <device> sup 1a

Email snippets
if you need assistance outside of these hours

please call into the htts toll free number 1 800

phases (Figure 5). First, it tokenizes input into sentences

and leverages LZW [49] to develop a word-level LZW

encoder (WLZW) that builds a dictionary of repeated

patterns at the word-level. In the second phase, NetSieve

applies the Aho-Corasick algorithm [2] to output fre-

quency of the repeated phrases. Aho-Corasick is a string

matching algorithm that runs in a single-pass and has a

complexity linear in the pattern length, input size and

the number of output matches.

IMPLEMENTATION: We implemented the two phase

pattern extraction algorithm in Cython [3], that allows

translating Python into optimized C/C++ code. To op-

timize performance, we implemented the Aho-Corasick

algorithm using suffix-trees [48] as opposed to the con-

ventional suffix-arrays [30]. As expected, we achieved

a 5x-20x performance improvement using Cython com-

pared to a Python-based solution (Figure 6(a)).

Figure 6(b) shows the performance comparison of

WLZW to Nagao (f=10) [39] which extracts all n-grams

that occur at least 10 times. The latter terminated due

to insufficient memory for a million word document. In

comparison, NetSieve is able to process documents con-

taining 100 million words in under 2.7 hours.

Note that WLZW is one way to extract hot patterns;

we will explore other methods [16, 18, 52] in the future.

3.3.2 Knowledge Discovery

The goal of the knowledge discovery phase is to filter

important domain-specific patterns from the extracted set

in the previous phase; Table 2 shows examples of the

extracted phrases. We define a pattern as importantwhen

it contributes to understanding of the “central topic” in a

ticket. Consider the following excerpt from a ticket:

We found that the device <name> Power LED is amber and it is

in hung state. This device has silver power supply. We need to

change the silver power supply to black. We will let you know

once the power supply is changed.

The central topic of the above excerpt is “device failure

that requires a power supply unit to be changed” and the
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Phrase Length

Figure 7: Filtering phrases using phrase length and frequency.

phrases in bold are relevant. While the pattern extrac-

tor outputs these phrases as repeated patterns, the key

challenge is how to distinguish them from noisy patterns.

DESIGN: An intuitive method is to select the most

frequently occurring patterns as important. However,

we observed that many of them were warning messages

which did not contribute to the central topic. Therefore,

we apply a pipeline of three filters to identify the

important domain-specific patterns.

Phrase Length/Frequency Filter: The idea behind ap-

plying this filter is that both the length and frequency of

a phrase can act as good indicators of its importance. In-

tuitively, we are interested in phrases of short-length, but

having a high-frequency. The rationale is that the other

length-frequency combinations are either noise, occur

due to typos, or can be constructed using short phrases.

We did not use a spell checker because an un-

trained or an undertrained one may incorrectly modify

domain-specific words such as DNS and DMZ, and the

probability of an important domain-specific phrase hav-

ing typos in a large fraction of tickets is likely small. We

plot the distribution of length and frequency of phrases

(Figure 7) and then manually inspect a random subset

in each quartile to derive heuristics for threshold-based

filtering (Table 3).

Part-Of-Speech (PoS) Filter: The second filter is

based on the seminal work of Justeson et al. [23]. They

postulate that technical terms or domain-specific phrases

have no satisfactory formal definition and can only

be intuitively characterized: they generally occur only

in specialized types of usage and are often specific to

subsets of domains. Specifically, they conclude that

most technical phrases contain only nouns and adjectives

after analyzing four major technical dictionaries and

subsequently provide a set of seven patterns outlined

Table 3: Thresholds for Phrase Length/Frequency filter.

Filtering Rule Reason

Length > 20 words
Likely Templates (long repeated

patterns)

Single word phrases i.e.,

unigrams

Important unigrams occur as part of a

bi-gram or a tri-gram.

Frequency < 10 i.e.,

rare words or phrases

Likely an isolated incident and not a

frequently occurring problem trend

Contain numbers
Domain-specific phrases rarely

contain numbers

Table 4: NetSieve converts the Justeson-Katz PoS patterns to

Penn Treebank PoS patterns to filter technical phrases.

Justeson-Katz

Patterns

NetSieve Patterns Example

Adjective Noun JJ NN[PS]* mobile

network

Noun Noun NN[PS]* NN[PS]* demo phase

Adjective Adjective

Noun

JJ JJ NN[PS]* fast mobile

network

Adjective Noun

Noun

JJ NN[PS]* NN[PS]* accessible

device logs

Noun Adjective

Noun

NN[PS]* JJ NN[PS]* browser based

authentication

Noun Noun Noun NN[PS]* NN[PS]*

NN[PS]*

power supply

unit

Noun Preposition

Noun

NN[PS]* IN NN[PS]* device down

alert

JJ: Adjective; NN: Singular Noun; NNP: Proper singular

noun; NNPS: Proper plural noun; IN: Preposition

in Table 4. We build upon these patterns and map

them to state-of-the-art Penn Treebank tagset [34], a

simplified part-of-speech tagset for English, using regu-

lar expressions (Table 4). Further, this mapping allows

our implementation to leverage existing part-of-speech

taggers of natural language toolkits such as NLTK [29]

and SharpNLP [44]. Filtering takes place in two steps:

(1) each input phrase is tagged with its associated

part-of-speech tags, and (2) the part-of-speech pattern is

discarded if it fails to match a pattern.

Entropy Filter: The third filter uses information theory

to filter statistically insignificant phrases, and sorts them

based on importance to aid manual labeling. We achieve

this by computing two metrics for each phrase [52]:

1. Mutual Information (MI): MI(x,y) compares the

probability of observing word x and word y together

(the joint probability) with the probabilities of observ-

ing x and y independently. For a phrase pattern, MI is

computed by the following formula:

MI(xYz) = log

(

t f (xYz)∗ t f (Y )

t f (xY )∗ t f (Yz)

)

(1)

where xYz is a phrase pattern, x and z are a word/char-
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acter and Y is a sub-phrase or sub-string, t f denotes

the term-frequency of a word or phrase in the corpus.

2. Residual Inverse Document Frequency (RIDF):

RIDF is the difference between the observed IDF and

what would be expected under a Poisson model for

a random word or phrase with comparable frequency.

RIDF of a phrase is computed as follows:

RIDF =− log
(d f

D

)

+ log
(

1− exp(
−t f

D
)
)

(2)

where d f denotes the document-frequency (the num-

ber of tickets which contain the phrase) and D as the

total number of tickets.

Phrases with high RIDF or MI have distributions that

cannot be attributed to chance [52]. In particular, MI

aims to pick vocabulary expected in a dictionary, while

RIDF aims to select domain-specific keywords, not

likely to exist in a general dictionary. We investigated

both metrics as they are orthogonal and that each tends

to separately pick interesting phrases [52].

IMPLEMENTATION: The three filters are applied as

a sequential pipeline and are implemented in Python.

For PoS tagging, we utilize the Stanford Log-Linear PoS

Tagger [46] as an add-on module to the Natural Lan-

guage Toolkit [29] and implement a multi-threaded tag-

ger that uses the phrase length/frequency filter to first fil-

ter a list of candidate phrases for tagging.

After applying the threshold-based filtering and PoS

filters on the input 18.85M phrases, RIDF and MI are

computed for the remaining 187K phrases. This step sig-

nificantly reduced the computational cost compared to

prior work [9, 39, 45, 52], which aim to compute statis-

tics for all n-grams. Similar to [52], we did not ob-

serve strong correlation between RIDF and MI (Figure 8

(top)). We relied solely on RIDF because most phrases

with high MI were already filtered by RIDF and the re-

maining ones contained terms not useful in our context.

The bottom graph of Figure 8 shows the CCDF plot

of RIDF which can be used to set a threshold to narrow

down the phrase list for the next stage of human review.

Determining the threshold poses a trade off between the

completeness of the domain-dictionary and the human

effort required to analyze the extracted patterns. In our

prototype, we set the threshold based on RIDF such that

3% (5.6K) of the total phrases (187K) are preserved. Fur-

ther, we sort these phrase patterns based on RIDF for

expert review as phrases with higher values get labeled

quickly. An expert sifted through the 5.6K phrases (Fig-

ure 9) and selected 1.6K phrase patterns that we consider

as ground truth, in less than four hours. We observed that

Figure 8: Absence of correlation between RIDF and MI metrics

(top). Using a CCDF plot of RIDF to determine a threshold for

filtering the phrases for expert review (bottom).
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Figure 9: The pipeline of filtering phrases to determine a list

of ground truth phrase patterns which are then split and tagged

manually with the NetSieve-Ontology classes.

most of the discarded patternswere redundant as they can

be constructed from the ground truth patterns.

While we leveragemanual review to obtain the ground

truth, this is a necessary step for any supervised tech-

nique. We plan to explore other techniques such as

Named-Entity Recognition [35] and using domain ex-

perts for crowdsourcing [26] to automate this step.

3.3.3 Ontology Modeling

The goal of building ontology models is to determine

semantic interpretation of important domain-specific

phrases generated by the knowledge discovery stage.

For instance, between the terms slot and memory slot,

we are looking for the latter term with high specificity.

Intuitively, we need to model an ontologywhere domain-

specific phrases have a concrete meaning and can be

combined together to enable semantic interpretation.

DESIGN: Developing an ontology model involves three

steps [17, 40]: (1) defining classes in the ontology, (2)

arranging the classes in a taxonomic (superclass, sub-

class) hierarchy and (3) defining interactions amongst the
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Table 5: Classes in the NetSieve-Ontology model

Class Sub-Class Interpretation Example

Entity

Replaceable Tangible object that can be created/destroyed/replaced Flash memory, Core router

Virtual Intangible object that can be created/destroyed/replaced Port channel, configuration

Maintenance Tangible object that can act upon other entities field engineer, technician

Action
Physical Requires creating/destroying an entity decommission, replace, rma

Maintenance Requires interacting with an entity and altering its state clean, deploy, validate, verify

Condition
Problem Describes condition that is known to have a negative effect inoperative, reboot loop

Maintenance Describes condition that describes maintenance break-fix

Incident
False Positive State known to not have any problems false positive, false alert

Error State known to cause a problem error, exception

Quantity

Low

Describes the quantity of an entity/action

low, minor

Medium medium

High high, major

Negation
Synthetic Uses verb or noun to negate a condition/incident/action absence of, declined, denied

Analytic Uses ’not’ to negate a condition/incident/action not

Sentiment

Positive

Adds strength/weakness to an action/incident

confirm, affirmative

Neutral not sure

Negative likely, potential

classes. Note that defining an ontology is highly domain-

specific and depends on extensions anticipated by the

domain-expert. We designed and embedded one such

ontology into NetSieve based on discussion with oper-

ators. Below, we discuss the design rationale behind the

classes, taxonomies and interactions in our model.

Classes and Taxonomies: A class describes a concept

in a given domain. For example, a class of entities can

represent all devices (e.g., routers, load balancers and

cables) and a class of conditions can represent all pos-

sible states of an entity (e.g., bad, flapping, faulty). A

domain-expert sifted through the 1.6K phrases from pre-

vious stage and after a few iterations, identified seven

classes to describe the phrases, shown in Table 5.

Taxonomic Hierarchy: To enable fine-grained problem

inference, Entity is divided into three sub-classes: Re-

placeable denoting entities that can be physically re-

placed, Virtual denoting entities that are intangible and

Maintenance denoting entities that can “act” upon other

entities. Actions are sub-classed in a similar way. The

rest of the classes can be considered as qualifiers for

Entities and Actions. Qualifiers, in general, act as ad-

jectives or adverbs and give useful information about an

Entity or Action. In the final iteration, our domain-expert

split each of the 1.6K long phrase patterns into their con-

stituent small phrase patterns and tagged them with the

most specific class that captured the phrase e.g.,

“and gbic replacement”→ [(and, OMIT WORD), (gbic,

ReplaceableEntity),(replacement, PhysicalAction)].

Most of these tagged phrases are domain-specific

multi-word phrases and are not found in a dictionary.

While the words describing Entities were not ambigu-

ous, we found a few cases where other classes were am-

biguous. For instance, phrases such as “power supply”

(hardware unit or power line), “bit errors” (memory or

COMPLEMENTS

DESCRIBES STATE

COUNTS

COMPLEMENTS

TAKEN ON

COUNTS

ATTACHES OPINION ATTACHES OPINION

OCCURS UPON

Negation

Sentiment

Quantity

Action ConditionConditionConditionIncident

Entity

COUNTS

Figure 10: Ontology Model depicting interactions amongst the

NetSieve-Ontology Classes.

network link), “port channel” (logical link bundling or

virtual link), “flash memory” (memory reset or type of

memory), “device reload” and “interface reset” (unex-

pected or planned), and “key corruption” (crypto-key or

license-key) were hard to understand without a proper

context. To address this ambiguity, we use the text sur-

rounding these phrases to infer their intent (§3.4).

Finally, using these mappings, NetSieve embeds a

ClassTagger module that given an input, outputs tags for

words that have an associated class mapping.

Interactions: An interaction describes relationships

amongst the various classes in the ontology model. For

instance, there are valid interactions (an Action can

be caused upon an Entity) and invalid interactions (an

Entity cannot describe a Sentiment). Figure 10 shows

our model comprising interactions amongst the classes.

IMPLEMENTATION: We obtained 0.6K phrases from

the 1.6K phrases in §3.3.2 categorized into the seven

classes. We implemented the ClassTagger using a trie

constructed using NetSieve knowledge base of domain-
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Table 6: Concepts for the NetSieve-Ontology

Concept Pattern Example

Problems [Replaceable — Virtual —

Maintenance] Entity

preceded/succeeded by

ProblemCondition

The (device) was

(faulty)

Activities [Replaceable — Virtual —

Maintenance] Entity

preceded/succeeded by

MaintenanceAction

(check) (device)

connectivity and

(clean) the (fiber)

Actions [Replaceable — Virtual —

Maintenance] Entity

preceded/succeeded by

PhysicalAction

An (RMA) was

initiated for the

(load balancer)

specific phrases, and a dictionary of their ontology map-

pings. The tagging procedure works in three steps. First,

the input is tokenized into sentences. Second, using

the trie, a search is performed for the longest match-

ing phrase in each sentence to build a list of domain-

specific keywords e.g., in the sentence “the power supply

is down”, both “supply” and “power supply” are valid

domain keywords, but the ClassTagger marks “power

supply” as the relevant word. Finally, these keywords

are mapped to their respective ontology classes using the

dictionary. For instance, given the snippet from §3.3.2,

the ClassTagger will produce the following output:

We found that the (device) / ReplaceableEntity <name> (Power

LED) /ReplaceableEntity is (amber) /Condition and it is in (hung

state) / ProblemCondition. This device has (silver) / Condition

(power supply) / ReplaceableEntity. We need to change the (sil-

ver) / Condition (power supply) / ReplaceableEntity to (black) /

Condition. We will let you know once the (power supply) / Re-

placeableEntity is (changed) / PhysicalAction.

3.4 Operational Phase

The goal of this phase is to leverage the knowledge

base to do automated problem inference on trouble

tickets. A key challenge to address is how to establish

a relationship between the ontology model and the

physical world. In particular, we want to map certain

interactions from our ontology model to concepts that

allow summarizing a given ticket.

DESIGN: Our discussion with operators revealed a com-

mon ask to answer three main questions: (1) What was

observed when a problem was logged?, (2) What activi-

ties were performed as part of troubleshooting? and (3)

What was the final action taken to resolve the problem?

Based on these requirements, we define three key con-

cepts that can be extracted using our ontologymodel (Ta-

ble 6): (1) Problems denote the state or condition of an

entity, (2) Activities describe the troubleshooting steps,

and (3) Actions capture the problem resolution.

The structure of concepts can be identified by sam-

pling tickets describing different types of problems. We

randomly sampled 500 tickets out of our expert-labeled

ground truth data describing problems related to differ-

ent device and link types. We pass these tickets through

NetSieve’s ClassTagger and get a total of 9.5K tagged

snippets. We observed a common linguistic structure in

them: in more than 90% of the cases, the action/condi-

tion that relates to an entity appears in the same sentence

i.e., information can be inferred about an entity based

on its neighboring words. Based on this observation, we

derived three patterns (Table 6) that capture all the cases

of interest. Intuitively, we are interested in finding in-

stances where an action or a condition precedes/succeeds

an entity. Based on the fine granularity of the sub-classes,

the utility of the concepts extracted increases i.e., Phys-

icalAction was taken on a ReplacableEntity is more im-

portant than Action was taken on an Entity.

This type of a proximity-search is performed once for

each of the three concepts. First, the ClassTagger pro-

duces a list of phrases along with their associated tags.

Second, we check to see if the list of tags contain an ac-

tion/condition. Once such a match is found in a sentence,

the phrase associated with the action/condition is added

to a dictionary as a key and all entities within its neigh-

borhood are added as corresponding values. We imple-

mented several additional features like negation detec-

tion [15] and synonym substitution to remove any ambi-

guities in the inference output.

EXAMPLE: “The load balancer was down. We checked the ca-

bles. This was due to a faulty power supply unit which was later re-

placed”, is tagged as “The (load balancer) / ReplaceableEntity was

(down) / ProblemCondition. We (checked) / MaintenanceAction the

(cables) / ReplaceableEntity. This was due to a (faulty) / Problem-

Condition (power supply unit) / ReplaceableEntity which was later

(replaced) / PhysicalAction”. Next, a dictionary is built for each

of the three concepts. Two classes are associated if they are direct

neighbors. In this example, the output is the following:

[+] Problems - {down: load balancer, power supply unit}
[+] Activities - {checked: cable}
[+] Actions - {replaced: power supply unit}
In the final stage, the word “replaced” is changed into “replace” and

“checked” into “check” using a dictionary of synonyms provided by

the domain-expert to remove any ambiguities.

IMPLEMENTATION: We implemented our inference

logic using Python. Each ticket is first tokenized into

sentences and each sentence is then used for concept in-

ference. After extracting the concepts and their associ-

ated entities, we store the results in a SQL table. Our im-

plementation is able to do problem inference at the rate

of 8 tickets/sec on average on our server, which scales

to 28,800 tickets/hour; note that this time depends on the

ticket size, and the overhead is mainly due to text pro-

cessing and part-of-speech tagging.
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Table 7: Evaluating NetSieve accuracy using different datasets. High F-scores are favorable.

Source Dataset Precision Recall F-Score Accuracy %

Devices # Tickets Problems Actions Problems Actions Problems Actions Problems Actions

Domain

Expert

LB-1 122 1 1 0.982 0.966 0.991 0.982 97.7 96.6

LB-2 62 1 1 1 1 1 1 100.0 100.0

LB-3 31 1 1 1 0.958 1 0.978 100.0 95.7

LB-4 36 1 1 1 1 1 1 100.0 100.0

FW 35 1 1 0.971 0.942 0.985 0.970 97.1 94.3

AR 410 1 1 0.964 0.951 0.981 0.974 96.4 95.1

Vendor
LB 78 1 1 0.973 0.986 0.986 0.993 97.3 98.7

CR 77 1 1 1 0.896 1 0.945 100.0 89.6

CR: Core Routers; LB[1-4]:Types of Load balancers; FW:Firewalls; AR: Access Routers

4 Experimental Results

For evaluation, we use two standard metrics from in-

formation retrieval: (1) Accuracy Percentage [31] com-

puted as TP+TN
TP+TN+FP+FN

and (2) F-Score [32] computed

as 2TP
2TP+FP+FN

, where TP, TN, FP, FN are true positives,

true negatives, false positives and false negatives, respec-

tively. F-Scores consider both precision and recall, and

its value of 1 indicates a perfect classifier. Precision is

defined as the ratio of TP and (TP+FP), and recall is de-

fined as the ratio of TP and (TP+FN).

4.1 Evaluating NetSieve Accuracy

To test NetSieve’s accuracy, we randomly divided our

two year ticket dataset into training and test data. The

test data consists of 155 tickets on device replacements

and repairs from two network vendors and 696 tickets

labeled by a domain expert while the training data com-

prises the rest of the tickets. We use the training data

to build NetSieve’s knowledge base. The domain ex-

pert read the original ticket to extract the ground truth

in terms of Problems and Actions, which was then com-

paredwith corresponding phrases in the inference output.

Table 7 shows the overall results by NetSieve on the

test dataset. On the expert labeled data, we observe the

precision of NetSieve to be 1, minimum recall value to

be 0.964 for Problems and 0.942 for Actions, F-score of

0.981-1 for Problems and 0.970-1 for Actions, and ac-

curacy percentage to be 96.4%-100% for Problems and

94.3%-100% for Actions. These results indicate that

NetSieve provides useful inference with reasonable ac-

curacy in analyzing network tickets.

Next, we validate the inference output against data

from two network device vendors that record the ground

truth based on the diagnosis of faulty devices or compo-

nents sent back to the vendor. Each vendor-summary re-

ported the root cause of the failure (similar to NetSieve’s

Problems) and what was done to fix the problem (sim-

ilar to NetSieve’s Actions). We obtained vendor data

corresponding to total 155 tickets on load balancers and

core routers from our dataset. Since the vocabulary in

the vendor data comprised new, vendor-specific words

and synonyms not present in our knowledge base (e.g.,

port interface mentioned as ’PME’), we asked a domain-

expert to validate if NetSieve’s inference summary cov-

ers the root cause and the resolution described in the ven-

dor data. For instance, if the vendor data denoted that a

router failed due to a faulty supervisor engine (SUP), the

expert checked if NetSieve captures “failed device” un-

der Problems and “replaced SUP” under Actions.

The accuracy of NetSieve on the vendor data is ob-

served to be 97.3%-100% for Problems and 89.6%-100%

for Actions. One reason for relatively lower accuracy for

Actions on this dataset is due to a small number of false

negatives: the corrective action applied at the vendor site

may differ from our ticket set as the vendor has the expert

knowledge to fix problems specific to their devices.

Overall, NetSieve has reasonable accuracy of 96.4%-

100% for Problems and 89.6%-100% for Actions, mea-

sured based on the labeled test dataset. We observed sim-

ilar results for Activities and thus omit them.

4.2 Evaluating Usability of NetSieve

We conducted a user study involving five operators to

evaluate the usability of NetSieve for automated problem

inference compared to the traditional method of manu-

ally analyzing tickets. Each operator was shown 20 tick-

ets selected at random from our dataset and asked to an-

alyze the type of problems observed, activities and ac-

tions. Then, the operator was shown NetSieve inference

summary of each ticket and asked to validate it against

their manually labeled ground truth. We measured the

accuracy, speed and user preference in the survey.

Figure 11 shows the accuracy and time to manually

read the ticket versus the NetSieve inference summary

across the operators. We observed average accuracy of

83%-100% and a significant decrease in time taken to

manually read the ticket from 95P of 480s to 95P of 22s

for NetSieve.
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Table 8: Top-3 Problems/Activities/Actions and Failing Components as obtained through NetSieve’s Trend Analysis

Device Problems Activities Actions Failing Components

AR
memory error, packet errors, illegal

frames

verify cable, reseat/clean cable,

upgrade OS

replace with

spare, rma, reboot

SUP engine, cables,

memory modules

AGG
device failure, packet errors, defective

N/W card

verify cable, upgrade N/W card, swap

cable

replace with

spare, reboot, rma

cables, N/W card,

SUP engine

CR
circuit failure, N/W card failure,

packet errors

verify cable, verify N/W card,

upgrade fiber

replace with

spare, reboot, rma

cables, N/W, memory

modules

ER
circuit failure, N/W card failure,

packet errors

verify cable, verify N/W card,

upgrade fiber

replace with

spare, rma, reboot

N/W card, chassis,

cables

LB
PSU failure, device rebooted, config

error
verify PSU, verify config, verify cable

replace with

spare, reboot, rma

PSU, HDD, memory

modules

ToR
connection failure, ARP conflict, SUP

engine failure

verify cable, power cycle blade, verify

PSU

reboot, replace

with spare, rma

cables, OS, SUP

engine

FW
connection failure, reboot loop, data

errors

verify config, verify connections,

verify PSU

reboot, replace

with spare, rma

cables, PSU, N/W

card

VPN
connection failure, config error,

defective memory

verify config, verify N/W card, deploy

N/W card

reboot, replace

with spare, rma

OS, SUP engine,

memory modules

AR: Access Routers, AGG: Aggregation Switch; [E/C]R: Edge/Core Router; LB: Load Balancer; ToR: Top-of-Rack Switch; FW: Firewall
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Figure 11: Accuracy obtained from the user survey (top). CDF

of time to read tickets and inference summaries (bottom).

5 Deployment and Impact

NetSieve has been deployed in the cloud provider we

studied to enable operators to understand global prob-

lem trends instead of making decisions based on isolated

incidents. Further, NetSieve complements existing tools

(e.g., inventory db) by correlating device replacements

with their failures and problem root causes. A simple

alternative to mining tickets using NetSieve is to ask op-

erators for explicit feedback e.g., to build Table 8, but it

will likely be biased by anecdotal or recent data.

Currently, our NetSieve prototype supports SQL-like

queries on the inference output. For instance, “SELECT

TOP 5 Problems FROM InferenceDB WHERE Device-

Type = ‘Load Balancer’ would output the top-5 fail-

ure problems observed across load balancers. Next,

we present how NetSieve has been used across different

teams to improve network management.

Network Architecture: This team used NetSieve to

compare device reliability across platforms and vendors.

In one instance, NetSieve showed that a new generation

of feature-rich, high capacity AR is half as reliable as its

predecessor. In another instance, it showed that software

bugs dominated failures in one type of load balancers.

Based on grouping tickets having Problem inference of

Switch Card Control Processor (SCCP) watchdog time-

out for LB-2, NetSieve showed that hundreds of devices

exhibited reboot loops due to a recurring software bug

and were RMAed in 88% of the tickets.

Capacity Planning: This team applied NetSieve to an-

alyze cases when network redundancy is ineffective in

masking failures. Specifically, for each network failure,

we evaluate if the redundancy failover was not success-

ful [13] and then select the corresponding tickets. These

tickets are then input to NetSieve to do problem inference

which output the following to be the dominant problems:

1. Faulty Cables: The main reason was that the cable

connected to the backup was faulty. Thus, when the

primary failed, it resulted in a high packet error rate.

2. Software Mismatch: When the primary and backup

had mismatched OS versions, protocol incompatibility

caused an unsuccessful failover.

3. Misconfiguration: Because operators usually config-

ure one device and then copy the configuration onto

the other, a typo in one script introduced the same bug

in the other and resulted in an unsuccessful failover.

4. Faulty Failovers: The primary device failed when the

backup was facing an unrelated problem such as soft-

ware upgrade, down for scheduled repairs, or while de-

ploying a new device into production.

Incident Management and Operations: The incident

management team used NetSieve to prioritize checking

for the top-k problems and failing components while
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troubleshooting devices. The operation team uses Net-

Sieve to determine if past repairs were effective and de-

cide whether to repair or replace the device. Table 8

shows NetSieve’s inference output across different de-

vice types.We observe that while Problems show a high

diversity across device types such as packet errors, line

card failures and defective memory, verifying cable con-

nectivity is a common troubleshooting activity, except

for Firewalls and VPNs where operators first verify de-

vice configuration. For Actions related to Firewalls,

VPNs and ToRs, the devices are first rebooted as a quick

fix even though the failing components are likely to be

bad cable or OS bugs. In many cases, we observe that a

failed device is RMAed (sent back to the vendor) which

implies that the network is operating at reduced or no

redundancy until the replacement arrives.

Complementary to the above scenarios, NetSieve in-

ference can be applied in several other ways: (1) priori-

tize troubleshooting steps based on frequently observed

problems on a given device, its platform, its datacenter,

or the hosted application, (b) identify the top-k failing

components in a device platform and resolving themwith

their vendors, and (c) decide whether to repair, replace or

even retire a particular device or platform by computing

a total cost-of-ownership (TCO) metric.

6 Related Work

Network Troubleshooting: There has been a significant

work in analyzing structured logs to learn statistical sig-

natures [1, 10], run-time states [54] or leveraging router

syslogs to infer problems [41]. Xu et al. [51] mine ma-

chine logs to detect runtime problems by leveraging the

source code that generated the logs. NetSieve comple-

ments these approaches to automate problem inference

from unstructured text. Expert systems [8, 25], on the

other hand, diagnose network faults based on a set of

pre-programmed rules. However, they lack generality as

they only diagnose faults in their ruleset and the ruleset

may become outdated as the system evolves. In compar-

ison, the incremental learning phase in NetSieve updates

the knowledge base to improve the inference accuracy.

Mining Network Logs: Prior efforts have focused on

automating mining of network failures from syslogs [41,

53] or network logs [28]. However, these studies do

not analyze free-form text in trouble tickets. Kandula et

al. [24] mine rules in edge networks based on traffic data.

Brauckhoff et al. [7] use association rule mining tech-

niques to extract anomalies in backbone networks. Net-

Sieve is complementary to these efforts in that their min-

ing methodologies can benefit from our domain-specific

knowledge base. TroubleMiner [36] selects keywords

manually from the first two sentences in tickets and then

performs clustering to group them.

Analyzing Bug Reports: There is a large body of work

in software engineering analyzing [19, 22], summariz-

ing [6] and clustering [5, 43] bug reports. Betternburg et

al. [6] rely on features found in bug reports such as stack

traces, source code, patches and enumerations and, hence

their approach is not directly applicable to network tick-

ets. Others [5, 43] use standard NLP techniques for the

task of clustering duplicate bug reports, but they suffer

from the same limitations as keyword based approaches.

In comparison, NetSieve aims to infer “meaning” from

the free-form content by building a knowledge base and

an ontology model to do problem inference.

Natural Language Processing: N-gram extraction tech-

niques [9, 39, 45, 52] focus on extracting all possible

n-grams thereby incurring a high computation cost for

large datasets (§3.3.1). NetSieve addresses this challenge

by trading completeness for scalability and uses the dic-

tionary built by its WLZW algorithm. Wu et al. [50]

detect frequently occurring text fragments that have a

high correlation with labels in large text corpora to de-

tect issues in customer feedback. Other efforts [14, 38]

achieve summarization via paragraph and sentence ex-

traction. Much research in this area deals with properly-

written regular text and is not directly applicable to our

domain. In contrast, NetSieve focuses on free-form text

in trouble tickets to do problem inference.

7 Conclusion

Network trouble tickets contain valuable information for

network management, yet they are extremely difficult to

analyze due to their free-form text. This paper takes a

practical approach towards automatically analyzing the

natural language text to do problem inference. We pre-

sented NetSieve that automatically analyzes ticket text to

infer the problems observed, troubleshooting steps, and

the resolution actions. Our results are encouraging: Net-

Sieve achieves reasonable accuracy, is considered useful

by operators and has been applied to answer several key

questions for network management.
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CORREIA, M., AND VERÍSSIMO, P. Automated rule-based di-

agnosis through a distributed monitor system. IEEE Transactions

on Dependable and Secure Computing (2007).

[26] KITTUR, A., CHI, E., AND SUH, B. Crowdsourcing user studies

with mechanical turk. In ACM SIGCHI Conference on Human

factors in Computing Systems (2008).

[27] LABOVITZ, C., AHUJA, A., AND JAHANIAN, F. Experimental

study of internet stability and backbone failures. In IEEE Inter-

national Symposium on Fault-Tolerant Computing (1999).

[28] LIM, C., SINGH, N., AND YAJNIK, S. A log mining approach

to failure analysis of enterprise telephony systems. In IEEE De-

pendable Systems and Networks (2008).

[29] LOPER, E., AND BIRD, S. Nltk: The natural language toolkit.

In Association for Computational Linguistics Workshop on Ef-

fective Tools and Methodologies for teaching Natural Language

Processing and Computational Linguistics (2002).

[30] MANBER, U., AND MYERS, G. Suffix arrays: a new method

for on-line string searches. In ACM SIAM Journal on Computing

(1990).

[31] MANI, I., HOUSE, D., KLEIN, G., HIRSCHMAN, L., FIRMIN,

T., AND SUNDHEIM, B. The tipster summac text summarization

evaluation. In Association for Computational Linguistics (1999).

[32] MANNING, C., RAGHAVAN, P., AND SCHUTZE, H. Introduc-

tion to information retrieval, vol. 1. Cambridge University Press

Cambridge, 2008.



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 141
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Abstract

Balancing a data center’s reliability, cost, and carbon
emissions is challenging. For instance, data centers de-
signed for high availability require a continuous flow
of power to keep servers powered on, and must limit
their use of clean, but intermittent, renewable energy
sources. In this paper, we present Yank, which uses
a transient server abstraction to maintain server avail-
ability, while allowing data centers to “pull the plug” if
power becomes unavailable. A transient server’s defin-
ing characteristic is that it may terminate anytime after a
brief advance warning period. Yank exploits the advance
warning—on the order of a few seconds—to provide
high availability cheaply and efficiently at large scales by
enabling each backup server to maintain “live” memory
and disk snapshots for many transient VMs. We imple-
ment Yank inside of Xen. Our experiments show that
a backup server can concurrently support up to 15 tran-
sient VMs with minimal performance degradation with
advance warnings as small as 10 seconds, even when
VMs run memory-intensive interactive web applications.

1 Introduction
Despite continuing improvements in energy efficiency,
data centers’ demand for power continues to rise, in-
creasing by an estimated 56% from 2005-2010 and ac-
counting for 1.7-2.2% of electricity usage in the United
States [16]. The rise in power usage has led data cen-
ters to experiment with the design of their power deliv-
ery infrastructure, including the use of renewable energy
sources [3, 20, 21]. For instance, Apple’s goal is to run
its data centers off 100% renewable power; its newest
data center includes a 40MW co-located solar farm [3].

Thus, determining the characteristics of the power
infrastructure—its reliability, cost, and carbon
emissions—has now become a key element of data
center design [5]. Balancing these characteristics is
challenging, since providing a reliable supply of power
is often antithetical to minimizing costs (capital or oper-
ational) and emissions. A state-of-the-art power delivery
infrastructure designed to ensure an uninterrupted flow
of high quality power is expensive, possibly including i)
connections to multiple power grids, ii) on-site backup
generators, and iii) an array of universal power supplies
(UPSs) that both condition grid power and guarantee
enough time after an outage to spin-up and transition

power to generators. Unfortunately, while renewable
energy has no emissions, it is unreliable—generating
power only intermittently based on uncontrollable envi-
ronmental conditions—which limits its broad adoption
in data centers designed for high reliability.

Prior research focuses on balancing a data center’s
reliability, cost, and carbon footprint by optimizing the
power delivery infrastructure itself, while continuing to
provide a highly reliable supply of power, e.g., using en-
ergy storage technologies [13, 14, 32] or designing flex-
ible power switching or routing techniques [10, 24]. In
contrast, we target a promising alternative approach: re-
laxing the requirement for a continuous power source
and then designing high availability techniques to ensure
software services remain available during unexpected
power outages or shortages. We envision data centers
with a heterogeneous power delivery infrastructure that
includes a mix of servers connected to power supplies
with different levels of reliability and cost. While some
servers may continue to use a highly reliable, but expen-
sive, infrastructure that includes connections to multiple
electric grids, high-capacity UPSs, and backup genera-
tors, others may connect to only a single grid and use
cheaper lower-capacity UPSs, and still others may rely
solely on renewables with little or no UPS energy buffer.
As we discuss in Section 2, permitting even slight reduc-
tions in the reliability of the power supply has the poten-
tial to decrease a data center’s cost and carbon footprint.

To maintain server availability while also allowing
data centers to “pull the plug” on servers if the level of
available power suddenly changes, i.e., is no longer suf-
ficient to power the active set of of servers, we introduce
the abstraction of a transient server. A transient server’s
defining characteristic is that it may terminate anytime
after an advance warning period. Transient servers arise
in many scenarios. For example, spot instances in Ama-
zon’s Elastic Compute Cloud (EC2) terminate after a
brief warning if the spot price ever exceeds the instance’s
bid price. As another example, UPSs built into racks pro-
vide some time after a power outage before servers com-
pletely lose power. In this paper, we apply the abstraction
to green data centers that use renewables to power a frac-
tion of servers, where the length of the warning period
is a function of UPS capacity or expected future energy
availability from renewables. In this context, we show
that transient servers are cheaper and greener to oper-
ate than stable servers, which assume continuous power,
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since they i) do not require an expensive power infras-
tructure that ensures 24x7 power availability and ii) can
directly use intermittent renewable energy.

Unfortunately, transient servers expose applications to
volatile changes in their server allotment, which degrade
performance. Ideally, applications would always use as
many transient servers as possible, but seamlessly tran-
sition to stable servers whenever transient servers be-
come unavailable. To achieve this ideal, we propose
system support for transient servers, called Yank, that
maintains “live” backups of transient virtual machines’
(VMs’) memory and disk state on one or more stable
backup servers. Yank extends the concept of whole sys-
tem replication popularized by Remus [7] to exploit an
advance warning period, enabling each backup server to
support a many transient VMs. Highly multiplexing each
backup server is critical to preserving transient servers’
monetary and environmental benefits, allowing them to
scale independently of the number of stable servers.

Importantly, the advance warning period eliminates
the requirement that transient VMs always maintain ex-
ternal synchrony [23] with their backup to ensure cor-
rect operation, opening up the opportunity for both i) a
looser form of synchrony and ii) multiple optimizations
that increase performance and scalability. Our hypoth-
esis is that a brief advance warning—on the order of a
few seconds—enables Yank to provide high availability
in the face of sudden changes in available power, cheaply
and efficiently at large scales. In evaluating our hypoth-
esis, we make the following contributions.
Transient Server Abstraction. We introduce the tran-
sient server abstraction, which supports a relaxed variant
of external synchrony. Our variant, called just-in-time
synchrony, exploits an advance warning that only ensures
consistency with its backup before termination. We show
how just-in-time synchrony applies to advance warnings
with different durations, e.g., based on UPS capacity, and
dynamics, e.g., based on intermittent renewables.
Performance Optimizations. We present multiple op-
timizations that further exploit the advance warning to
scale the number of transient VMs each backup server
supports without i) degrading VM performance during
normal operation, ii) causing long downtimes when tran-
sient servers terminate, and iii) consuming excessive net-
work resources. Our optimizations leverage basic in-
sights about memory usage to minimize the in-memory
state each backup server must write to stable storage.
Implementation and Evaluation. We implement Yank
inside the Xen hypervisor and evaluate its performance
and scalability in a range of scenarios, including with
different size UPSs and using renewable energy sources.
Our experiments demonstrate that a backup server can
concurrently support up to 15 transient VMs with min-
imal performance degradation using an advance warn-

Technique Overhead Extra Cost Warning
Live Migration None None Lengthy

Yank Low Low Modest
High Availability High High None

Table 1: Yank has less overhead and cost than high avail-
ability, but requires less warning than live migration.

ing as small as 10 seconds, even when running memory-
intensive interactive web applications, which is a chal-
lenging application for whole system replication.

2 Motivation and Background
We first define the transient server abstraction before dis-
cussing Yank’s use of the abstraction in green data cen-
ters that use intermittent renewable power sources.
Transient Server Abstraction. We assume a virtual-
ized data center where applications run inside VMs on
one of two types of physical servers: (i) always-on stable
servers with a highly reliable power source and (ii) tran-
sient servers that may terminate anytime. Central to our
work is the notion of an advance warning, which signals
that a transient server will shutdown after a delay Twarn.

Once a transient server receives an advance warning,
a data center must move any VMs (and their associated
state) hosted on the transient server to a stable server to
maintain their availability. Depending on Twarn’s dura-
tion, two solutions exist to transition a VM to a stable
server. If Twarn is large, it may be possible to live mi-
grate a VM from a transient to a stable server. VM migra-
tion requires copying the memory and disk (if necessary)
state [6], so the approach is only feasible if Twarn is long
enough to accommodate the transfer. Completion times
for migration are dependent on a VM’s memory and disk
size, with prior work reporting times up to one minute for
VMs with only 1GB memory and no disk state [1, 19].

An alternative approach is to employ a high availabil-
ity mechanism, such as Remus [7, 22], which requires
maintaining a live backup copy of each transient VM on
a stable server. In this case, a VM transparently fails
over to the stable server whenever its transient server
terminates. While the approach supports warning times
of zero, it requires the high runtime overhead of con-
tinuously propagating state changes from the VM to its
backup. In some cases, memory-intensive, interactive
workloads may experience 5X degradation in latency [7].
Supporting an advance warning of zero also imposes a
high cost, requiring a backup server to keep VM mem-
ory snapshots resident in its own memory. In essence,
supporting a warning time of zero requires a 1:1 ratio be-
tween transient and backup servers. Unfortunately, stor-
ing memory snapshots on disk is not an option, since
it would further degrade performance by reducing the
memory bandwidth (∼3000MB/s) of primary VMs to the
disk bandwidth (<100MB/s) of the backup server.
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Figure 1: A data center with transient servers powered
by renewables and low-capacity UPSs, and stable servers
powered by the grid and redundant, high-capacity UPSs.

Live migration and high availability represent two ex-
treme points in the design space for handling transient
servers. The former has low overhead but requires long
warning times, while the latter has high overhead but
handles warning times of zero. Yank’s goal is to exploit
the middle ground between these two extremes, as out-
lined in Table 1, when a short advance warning is insuffi-
cient to complete a live migration, but does not necessar-
ily warrant the overhead of externally synchronous live
backups of VM memory and disk state. Yank optimizes
for modest advance warnings by maintaining a backup
copy, similar to Remus, of each transient VM’s mem-
ory and disk state on a stable backup server. However,
Yank focuses on keeping costs low, by highly multiplex-
ing each backup server across many transient VMs.

As we discuss, our approach requires storing portions
of each VM’s memory backup on stable storage. We
show that for advance warnings of a few seconds, Yank
provides similar failover properties as high availability,
but with an overhead and cost closer to live migration.
In fact, Yank devolves to high availability for a warning
time of zero, and reduces to a simple live migration as
the warning time becomes larger. Yank focuses on sce-
narios where there is an advance warning of a fail-stop
failure. Many of these failures stem from power outages
where energy storage provides the requisite warning.
Green Data Center Model. Figure 1 depicts the data
center infrastructure we assume in our work. As shown,
the data center powers servers using two sources: (i) on-
site renewables, such as solar and wind energy, and (ii)
the electric grid. Recent work proposes a similar archi-
tecture for integrating renewables into data centers [18].

We assume that the on-site renewable sources power
a significant fraction of the data center’s servers. How-
ever, since renewable generation varies based on envi-
ronmental conditions, this fraction also varies over time.
While UPSs are able to absorb short-term fluctuations in
renewable generation, e.g, over time-scales of seconds to
minutes caused by a passing cloud or a temporary drop
in wind speed, long-term fluctuations require switching
servers to grid power or temporarily deactivating them.

A key assumption in our work is that it is feasible to
switch some, but not all, servers from renewable sources
to the grid to account for these power shortfalls.

The constraint of powering some, but not all, servers
from the grid arises if a data center limits its peak power
usage to reduce its electricity bill. Since peak power dis-
proportionately affects the electric grid’s capital and op-
erational costs, utilities routinely impose a surcharge on
large industrial power consumers based solely on their
peak demand, e.g., the maximum average power con-
sumed over a 30 minute rolling window [10, 13]. Thus,
data centers can reduce their electricity bills by capping
grid power draw. In addition, to scale renewable deploy-
ments, data centers will increasingly need to handle their
power variations locally, e.g., by activating and deactivat-
ing servers, since i) relying on the grid to absorb varia-
tions is challenging if renewables contribute a large frac-
tion (∼20%) of grid power and ii) absorbing variations
entirely using UPS energy storage is expensive [13]. In
the former case, rapid variations from renewables could
cause grid instability, since generators may not be agile
enough to balance electricity’s supply and demand.

Thus, in our model, green data centers employ both
stable and transient servers. Both server types require
UPSs to handle short-term power fluctuations. How-
ever, we expect transient servers to require only a few
seconds of expensive UPS capacity to absorb short-term
power fluctuations, while stable servers may require tens
of minutes of capacity to permit time to spin-up and tran-
sition to backup generators in case of a power outage.

3 Yank Design
Since Yank targets modest-sized advance warnings on
the order of a few seconds, it cannot simply migrate a
transient VM to a stable server after receiving a warn-
ing. To support shorter warning times, one option is to
maintain backup copies (or snapshots) of a VM’s mem-
ory and disk state on a dedicated stable server, and then
continuously update the copies as they change. In this
case, if a transient VM terminates, this backup server can
restart the VM using the latest memory and disk snap-
shot. A high availability technique must commit changes
to a VM’s memory and disk state to a backup server fre-
quently enough to support a warning time of zero. How-
ever, supporting a warning time of zero necessitates a 1:1
ratio between transient and backup servers, eliminating
transient servers’ monetary and environmental benefits.

In contrast, Yank leverages the advance warning time
to scale the number of transient servers independently of
the number of backup servers by controlling when and
how frequently transient VMs commit state updates to
the backup server. In essence, the warning time Twarn

limits the amount of data a VM can commit to its backup
server after receiving a warning. Thus, during normal op-
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Figure 2: Yank’s Design and Basic Operation

eration, a transient VM need only ensure the size of dirty
memory pages and disk blocks remains below this limit.
Maintaining this invariant guarantees that no update will
be lost if a VM terminates after a warning, while pro-
viding additional flexibility over when to commit state.
To keep its overhead and cost low, Yank highly multi-
plexes backup servers, allowing each to support many
(>10) transient VMs by i) storing VM memory and disk
snapshots, in part, on stable storage and ii) using mul-
tiple optimizations to prevent saturating disk bandwidth.
Thus, given an advance warning, Yank supports the same
failure properties as high availability, but uses fewer re-
sources, e.g., hardware or power, for backup servers.

3.1 Yank Architecture
Figure 2 depicts Yank’s architecture, which includes a
snapshot manager on each transient server, a backup
engine on each stable backup server, and a restora-
tion service on each stable (non-backup) server. We
focus primarily on how Yank maintains memory snap-
shots at the backup server, since we assume each backup
server cannot keep memory snapshots for all transient
VMs resident in its own memory. Thus, Yank must
mask the order-of-magnitude difference between a tran-
sient VM’s memory bandwidth (∼3000MB/s) and the
backup server’s disk bandwidth (< 100MB/s). By con-
trast, maintaining disk snapshots poses less of a per-
formance concern, since the speed of a transient VM’s
disk and its backup server’s disk are similar in magni-
tude. This characteristic combined with a multi-second
warning time permits asynchronous disk mirroring to a
backup server without significant performance degrada-
tion. Thus, while many of our optimizations below apply
directly to disk snapshots, Yank currently uses off-the-
shelf software (DRBD [9]) for disk mirroring.

Figure 2 also details Yank’s functions. The snapshot
manager executes within the hypervisor of each transient
server and tracks the dirty memory pages of its resi-
dent VMs, periodically transmitting these pages to the
backup engine, running at the backup server (1). The

backup engine then queues each VM’s dirty memory
pages in its own memory before writing them to disk
(2). Yank includes a service that monitors UPS state-
of-charge, via the voltage level across its diodes, and
translates the readings into a warning time based on the
power consumption of transient servers (3). The service
both i) informs backup and transient servers when the
warning time changes and ii) issues warnings to transient
and backup servers of an impending termination due to
a power shortage. Since Yank depends on warning time
estimates, the service above runs on a stable server. We
discuss warning time estimation further in Section 3.5.

Upon receiving a warning (3), the snapshot manager
pauses its VMs and commits any dirty pages to the
backup engine before the transient server terminates.
The backup engine then has two options, assuming it is
too resource-constrained to run VMs itself: either store
the VMs’ memory images on disk for later use, or mi-
grate the VMs to another stable (non-backup) server (4).
Yank executes a simple restoration service on each stable
(non-backup) server to facilitate rapid VM migration and
restoration after a transient server terminates.

3.2 Just-in-Time Synchrony
Since Yank receives an advance warning of time Twarn

before a transient server terminates, its VM memory
snapshots stored on the backup server need not maintain
strict external synchrony [23]. Instead, upon receiving
a warning of impending termination, Yank only has to
ensure what we call just-in-time synchrony: a transient
VM and its memory snapshot on the backup server are
always capable of being brought to a consistent state be-
fore termination. To guarantee just-in-time synchrony,
as with external synchrony, the snapshot manager tracks
dirty memory pages and transmits them to the backup en-
gine, which then acknowledges their receipt. However,
unlike external synchrony, just-in-time synchrony only
requires the snapshot manager to buffer a VM’s exter-
nally visible, e.g., network or disk, output when the size
of the dirty memory pages exceed an upper threshold Ut,
such that it is impossible to commit any more dirty pages
to the backup engine within time Twarn.

In the worst case, with a VM that dirties pages faster
than the backup engine is able to commit them, the snap-
shot manager is continually at the threshold, and Yank
reverts to high availability-like behavior by always de-
laying the VM’s externally visible output until its mem-
ory snapshot is consistent. Since we assume the backup
server is not able to keep every transient VM memory
snapshot resident in its own memory, the speed of the
backup engine’s disk limits the rate it is able to commit
page changes. While memory bandwidth is an order of
magnitude (or more) greater than disk (or network) band-
width, Yank benefits from well-known characteristics of
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Figure 3: Working set size over time for three bench-
marks: SPECjbb, TPCW, and Linux kernel compile.

typical in-memory application working sets to prevent
saturating disk (or network) bandwidth. Specifically, the
size of in-memory working sets tend to i) grow slowly
over time and ii) be smaller than the total memory [8].

Slow growth stems from applications frequently re-
writing the same memory pages, rather than always writ-
ing new ones. Yank only has to commit the last re-write
of a dirty page (and not the intervening writes) to the
backup server after reaching its upper threshold of dirty
pages Ut. In contrast, to support termination with no ad-
vance warning, a VM must commit nearly every memory
write to the backup server. In addition, small working
sets enable the backup engine to keep most VMs’ work-
ing sets in memory, reducing the likelihood of saturating
disk bandwidth from writing dirty memory pages to disk.
Recent work extends this insight to collections of VMs in
data centers, showing that while the size of a single VM’s
working set may experience temporary bursts in memory
usage, the bursts are often brief and not synchronized
across VMs [33]. Yank relies on these observations in
practice to highly multiplex each backup server’s mem-
ory without saturating disk bandwidth or degrading tran-
sient VM performance during normal operation.

To confirm the characteristics above, we conducted
a simple experiment: Figure 3 plots the dirty memory
pages measured every 100ms for a VM with 1GB mem-
ory over a thirty minute period with three different ap-
plications: 1) the SPECjbb benchmark with 400 ware-
houses, 2) the TPC-W benchmark with 100 clients per-
forming a browsing workload and 3) a Linux kernel (v
3.4) compile. The experiment verifies the observations
above, namely that in each case i) the VM dirties less
than 350MB or 35% of the available memory and ii) after
experiencing an initial burst in memory usage the work-
ing set grows slowly over time.

Yank also relies on the observations above in setting its
upper threshold Ut. To preserve just-in-time synchrony,
this threshold represents the maximum size of the dirty
pages the snapshot manager is capable of committing to
the backup engine within the warning time. Our premise
is that as long as the backup engine is able to keep each
VM’s working set in memory, even if all VMs simulta-

neously terminate, it should be able to commit any out-
standing dirty pages without saturating disk bandwidth.
Thus, Ut is a function of the warning time, the avail-
able network bandwidth between transient and backup
servers, and the number of transient servers that may si-
multaneously terminate. For instance, for a single VM
hosted on a transient server using a 1Gbps network link,
a one second advance warning results in Ut=125MB. In
Figure 3 above, Ut=125MB would only force SpecJBB
to pause briefly on startup (where its usage briefly bursts
above 125MB/s). The other applications never allocate
more than 125MB in one second.

Of course, to support multiple VMs terminating simul-
taneously requires a lower Ut. However, as discussed in
Section 3.5, Yank bases its warning time estimates on
an “empty” UPS being at 40-50% depth-of-discharge.
Thus, Ut need not be exactly precise, providing time
to handle unlikely events, such as a warning coinciding
with a correlated burst in VM memory usage, which may
slow down commits by saturating the backup engine’s
disk bandwidth, or all VMs simultaneously terminating.

3.3 Optimizing VM Performance
For correctness, just-in-time synchrony only requires
pausing a transient VM and committing dirty pages to the
backup engine once their size reaches the upper thresh-
old Ut, described above. A naı̈ve approach only employs
a single threshold at Ut by simply committing all dirty
pages once their size reaches Ut. However, this approach
has two drawbacks. First, it forces the VM to inevitably
delay the release of externally visible output each time
it reaches Ut, effectively pausing the VM from the per-
spective of external clients. If the warning time is long,
e.g., 5-10 seconds, then the Ut will be large, causing long
pauses. Second, it causes bursts in network traffic that af-
fect other network applications.

To address these issues, the snapshot manager also
uses a lower threshold Lt. Once the size of the dirty
pages reaches Lt, it begins asynchronously committing
dirty pages to the backup engine until the size is less
than Lt. Algorithm 1 shows pseudo-code for the snap-
shot manager. The downside to using Lt is that the snap-
shot manager may end up committing more pages than
with a single threshold, since it may unnecessarily com-
mit the same memory page multiple times. Yank uses
two techniques to mitigate this problem. First, to deter-
mine the order to commit pages, the snapshot manager
associates a timestamp with each dirty page and uses a
Least Recently Used (LRU) policy to prevent commit-
ting pages that are being frequently re-written. Second,
the snapshot manager adaptively sets the lower threshold
to be just higher than the VM’s working set, since the
working set contains the pages a VM is actively writing.

As we discuss in Section 5, our results show that as
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Algorithm 1: Snapshot Manager’s Algorithm for
Committing Dirty Pages to the Backup Engine

1 Initialize Dirty Page Bitmap;
2 while No Warning Signal do
3 Check Warning Time Estimate;
4 Convert Warning Time to Upper Threshold (Ut);
5 Get Num. Dirty Pages;
6 if Num. Dirty Pages > Ut then
7 Buffer Network Output of Transient VM;
8 Transmit Dirty Pages to Backup Engine to
9 Reduce Num. Dirty Pages to Lower Threshold (Lt);

10 Wait for Ack. from Backup Engine;
11 Unset Dirty Bitmap for Pages Sent;
12 Release Buffered Network Packets;
13 end
14 if Num. Dirty Pages > Lt then
15 Transmit Dirty Pages to Backup Engine at Specified Rate;
16 Wait for Ack. from Backup Engine;
17 Unset Dirty Bitmap for Pages Sent;
18 end
19 end
20 Warning Received;
21 Pause the Transient VM;
22 Transmit Dirty Pages to Receiver Service;
23 Destroy the Transient VM;

long as the size of the VM’s working set is less than Ut,
using Lt results in smoother network traffic and fewer,
shorter VM pauses. Of course, a combination of a large
working set and short warning time may force Yank to
degrade performance by continuously pausing the VM
to commit frequently changing memory pages. In Sec-
tion 5, we evaluate transient VM performance for a vari-
ety of applications with advance warnings in the range
of 5-10 seconds. Finally, the snapshot manager im-
plements standard optimizations to reduce network traf-
fic, including content-based redundancy elimination and
page deltas [34, 35]. The former technique associates
memory pages with a hash based on their content, allow-
ing the snapshot manager to send a 32b hash index rather
than a 4kB memory page if the page is already present
on the backup server. The technique is most useful in re-
ducing the overhead of committing zero pages. The lat-
ter technique allows the snapshot manager to only send a
page delta if it has previously committed a memory page.

3.4 Multiplexing the Backup Server
To multiplex many transient VMs, the backup engine
must balance two competing objectives: using disk band-
width efficiently during normal operation, while mini-
mizing transient VM downtime in the event of a warning.

3.4.1 Maximizing Disk Efficiency
The backup engine maintains an in-memory queue for
each transient VM to store newly committed (and ac-
knowledged) memory pages. Since the backup server’s
memory is not large enough to store a complete mem-
ory snapshot for every transient VM it supports, it must
inevitably write pages to disk. Yank includes multiple
optimizations to prevent unnecessary disk writes.

First, when a transient VM commits a change to a
memory page already present in its queue, the receiver
deletes the out-of-date memory page without writing it
to disk. As a result, the backup engine can often elimi-
nate disk writes for frequently changing pages, even if
the snapshot manager commits them. Second, to fur-
ther prevent unnecessary writes, the backup engine or-
ders each VM’s queue using an LRU policy. Our use
of LRU in both the snapshot manager (when determin-
ing which pages to commit on the transient VM) and the
backup engine (when determining which pages to write
to disk on the backup server) follows the same princi-
ples as a standard hierarchical cache. In addition, to ex-
ploit the observation that bursts in VM memory usage are
not highly correlated, the backup engine selects pages to
write to disk by applying LRU globally across all VM
queues. Since it allocates a fixed amount of memory for
all queues (near the backup server’s total memory), the
global LRU policy allows each VM’s queue to grow and
shrink as its working set size changes.

Finally, to further maximize disk efficiency, the
backup engine could also use a log-structured file sys-
tem [25], since its workload is write mostly, read rarely
(only in the event of a failure). We discuss this design
alternative and its implications in the next section.

3.4.2 Minimizing Downtime
The primary bottleneck in restoring a transient VM af-
ter a failure is the time required to read its memory state
from the backup server’s disk. Thus, to minimize down-
time, as soon as a transient VM receives a warning, the
backup engine immediately halts writing dirty pages to
disk and begins reading the VM’s existing (out-of-date)
memory snapshot from disk, without synchronizing it
with the queue of dirty page updates. Instead, the backup
engine first sends the VM memory snapshot from disk to
a restoration service, running on the destination stable
(non-backup) server. We assume that an exogenous pol-
icy exists to select a destination stable server in advance
to run a transient VM if its server terminates. In parallel,
the backup engine also sends the VM’s in-memory queue
to the restoration service, after updating it with any out-
standing dirty pages from the halted transient VM. To re-
store the VM, the restoration service applies the updates
from the in-memory queue to the memory snapshot from
the backup server’s disk without writing to its own disk.
Importantly, the sequence only requires reading a VM’s
memory snapshot from disk once, which begins as soon
as the backup engine receives the warning. Note that if
multiple transient VMs fail simultaneously, the backup
engine reads and transmits memory snapshots from disk
one at a time to maximize disk efficiency and minimize
downtime across all VMs.

There are two design alternatives for determining how
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the backup engine writes dirty page updates to its disk.
As mentioned above, one approach is to use a log-
structured file system. While a pure log-structured file
system works well during normal operation, it results in
random-access reads of a VM’s memory snapshot stored
on disk during failover, significantly increasing down-
time (by ∼100X, the difference between random-access
and sequential disk read bandwidth). In addition, main-
taining log-structured files may lead to large log files
on the backup server over time. The other alternative
is to store each VM memory snapshot sequentially on
disk, which results in slow random-access writes during
normal operation but leads to smaller downtimes during
failover because of faster sequential reads. Of course,
this alternative is clearly preferable for solid state drives,
since there is no difference between sequential and ran-
dom write bandwidth. Considering these tradeoffs, in
Yank’s current implementation we use this design alter-
native to minimize downtime during failure.

3.5 Computing the Warning Time
Yank’s correct operation depends on estimates of the ad-
vance warning time. There are multiple ways to compute
the warning time. If transient servers connect to the grid,
the warning time is static and based on server power con-
sumption and UPS energy storage capacity. In the event
of a power outage, if the UPS capacity is N watt-hours
and the aggregate maximum server power is M watts,
then the advance warning time is N

M . Alternatively, the
warning time may vary in real-time if green data centers
charge UPSs from on-site renewables. In this case, the
UPSs’ varying state-of-charge dictates the warning time,
ensuring that transient servers are able to continue oper-
ation for some period if renewable generation immedi-
ately drops to zero. Note that warning time estimates do
not need to be precisely accurate. Since, to minimize
their amortized cost, data centers should not routinely
use UPSs beyond a 40%-50% depth-of-discharge, even
an “empty” UPS has some remaining charge to mind-
the-gap and compensate for slight inaccuracies in warn-
ing time estimates. As a result, a natural buffer exists if
warning time estimates are too short, e.g., by 1%-40%,
although repeated inaccuracies degrade UPS lifetime.

4 Yank Implementation
Yank’s implementation is available at
http://yank.cs.umass.edu. We implement the snap-
shot manager by extending Remus inside the Xen
hypervisor (v4.2). By default, Remus tracks dirty pages
over short epochs (∼100ms) using shadow page tables
and pausing VMs each epoch to copy dirty memory
pages to a separate buffer for transmission to the backup
server. While VMs may speculatively execute after
copying dirty pages to the buffer, but before receiving
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an acknowledgement from the backup server, they must
buffer external network or disk output to preserve exter-
nal synchrony. Remus only releases externally-visible
output from these buffers after the backup server has
acknowledged receiving dirty pages from the last epoch.
Of course, by conforming to strict external synchrony,
Remus enables a higher level of protection than Yank,
including unexpected failures with no advance warn-
ing, e.g., fail-stop disk crashes. Although our current
implementation only tracks dirty memory pages, it is
straightforward to extend our approach to disk blocks.

Rather than commit dirty pages to the backup server
every epoch, our snapshot manager uses a simple bitmap
to track dirty pages and determine whether to commit
these pages to the backup engine based on the upper
and lower threshold, Ut and Lt. In addition, rather than
commit CPU state each epoch, as in Remus, the snap-
shot manager only commits CPU state when it receives
a warning that a transient server will terminate. Imple-
menting the snapshot manager required adding or mod-
ifying roughly 600 lines of code (LOC), primarily in
files related to VM migration, save/restore, and network
buffering, e.g., xc domain save.c, xg save restore.h, and
sch plug.c. Finally, the snapshot manager includes
a simple /proc interface to receive notifications about
warnings or changes in the warning time. Figure 4 de-
picts the snapshot manager’s implementation. As men-
tioned in the previous section, our current implementa-
tion uses DRBD to mirror disk state on a backup server.

Instead of modifying Xen, we implement Yank’s
backup engine “from scratch” at user-level for greater
flexibility in controlling its in-memory queues and disk
writing policy. The implementation is a combination of
Python and C, with a Python front-end (∼300LOC) that
accepts network connections and forks a backend C pro-
cess (∼1500LOC) for each transient VM, as described
below. Since the backup engine extends Xen’s live mi-
gration and Remus functionality, the front-end listens on
the same port (8002) that Xen uses for live migration.
Figure 5 shows a detailed diagram of the backup engine.

For each transient VM, the backend C process accepts
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dirty page updates from the snapshot manager and sends
acknowledgements. Each update includes the number of
pages in the update, as well as each page’s page num-
ber and contents (or a delta from the previous page sent).
The process then places each update in an in-memory
producer/consumer queue. To minimize disk writes, as
described in Section 3.4.1, before queuing the update,
the process checks the queue to see if a page already has
a queued update. If so, the process merges the two up-
dates. To perform these checks, the process maintains
a hashtable that maps page numbers to their position
in their queue. The process’s consumer thread then re-
moves pages from the queue (in LRU order based on a
timestamp) and writes them to disk. In the current im-
plementation, the backend process stores VM memory
pages sequentially in a file on disk. For simplicity, the
file’s format is the same as Xen’s format for storing saved
VM memory images, e.g., via xm save. As discussed
in Section 3.4.2, this results in low downtimes during mi-
gration, but lower performance during normal operation.

Finally, we implement Yank’s restoration service
(∼300LOC) at user-level in C. The daemon accepts a
VM memory snapshot and an in-memory queue of pend-
ing updates, and then applies the updates to the snap-
shot without writing to disk. Since our implementation
uses Xen’s image format, the service uses xm restore
from the resulting in-memory file to re-start the VM.

5 Experimental Evaluation
We evaluate Yank’s network overhead, VM performance,
downtime after a warning, and scalability, and then con-
duct case studies using real renewable energy sources.
While our evaluation does not capture the full range of
dynamics present in a production data center, it does
demonstrate Yank’s flexibility to handle a variety of dy-
namic and unexpected operating conditions.

5.1 Experimental Setup
We run our experiments on 20 blade servers with 2.13
GHz Xeon processors with 4GB of RAM connected to
the same 1Gbps Ethernet switch. Each server running
the snapshot manager uses our modified Xen (v4.2) hy-
pervisor, while those running the backup engine and the
restoration service use unmodified Xen (v4.2). In our
experiments, each transient VM uses one CPU and 1GB
RAM, and runs the same OS and kernel (Ubuntu 12.04,

Linux kernel 3.2.0). We experiment with three bench-
marks from Figure 3—TPC-W, SPECjbb, and a Linux
kernel compile—to stress Yank in different ways.
TPC-W is a benchmark web application that emulates
an online store akin to Amazon. We use a Java servlets-
based multi-tiered configuration of TPC-W that uses
Apache Tomcat (v7.0.27) as a front end and MySQL
(v5.0.96) as a database backend. We use additional VMs
to run clients that connect to the TPC-W shopping web-
site. Our experiments use 100 clients connecting to TPC-
W and performing the “browsing workload” where 95%
of the clients only browse the website and the remaining
5% execute order transactions. TPC-W allows us to mea-
sure the influence of Yank on the response time perceived
by the clients of an interactive web application.
SPECjbb 2005 emulates a warehouse application for
processing customer orders using a three-tier architec-
ture comprising web, application, and database tiers. The
benchmark predominantly exercises the middle tier that
implements the business logic. We execute the bench-
mark on a single server in standalone mode using local
application and database servers. SPECjbb is memory-
intensive, dirtying memory at a fast rate, which stresses
Yank’s ability to maintain snapshots on the backup server
without degrading VM performance.
Linux Kernel Compile compiles v3.5.3 of the kernel,
along with all of its modules. The kernel compilation
stresses both the memory and disk subsystems and is rep-
resentative of a common development workload.

Note that the first two benchmarks are web applica-
tions, which are challenging due to their combination of
interactivity and rapid writes to memory. We focus on
interactive applications rather than non-interactive batch
jobs, since the latter are more tolerant to delays and per-
mit simple scheduling approaches to handling periodic
power shortfalls, e.g., [2, 11, 12, 17]. Yank is applica-
ble to batch jobs, although instead of scheduling them it
shifts them to and from transient servers as power varies.

5.2 Benchmarking Yank’s Performance
Network Overhead. Scaling Yank requires every tran-
sient VM to continuously send memory updates to the
backup server. We first evaluate how much network
traffic Yank generates, and how its optimizations help
in reducing that traffic. As discussed in Section 3.3,
the snapshot manager begins asynchronously commit-
ting dirty pages to the backup engine after reaching a
lower threshold Lt. We compare this policy, which we
call async, with the naı̈ve policy, which we call sync,
that enforces just-in-time synchrony by starting to com-
mit dirty pages only after their size reaches the upper
threshold Ut. Rather than commit all dirty pages when
reaching Ut, which causes long pauses, the policy com-
mits pages until the dirty pages reaches 0.9 ∗ Ut. We ex-
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Figure 6: Network overhead for each benchmark over a 15 minute period.

amine two variants of the async policy: the first one sets
the lower threshold Lt to 0.5∗Ut and the second one sets
it to 0.75 ∗ Ut. Our standard async and sync policies use
a FIFO queue to select pages to commit to the backup
engine; we label Yank’s LRU optimization separately.

In this experiment, transient VMs draw power from
the grid, and have a static warning time dictated by their
UPS capacity. We also limit the backup engine to using
an in-memory queue of 300MB to store memory updates
from each 1GB transient VM. We run each experiment
for 15 minutes before simulating a power outage by issu-
ing a warning to the transient and backup server. We then
measure the data transferred both before and after the
warning for each benchmark. Figure 6 shows the results,
which demonstrate that network usage, in terms of total
data transferred, decreases with increasing warning time.
As expected, the sync policy leads to less network us-
age than either async policy, since it only commits dirty
pages when absolutely necessary. However, the experi-
ment also shows that combining LRU with async reduces
the network usage compared to async with a FIFO pol-
icy. We see that with just a 10 second warning time,
Yank sends less than 100MB of data over 15 minutes
for both TPC-W and the kernel compile, largely because
after their initial memory burst these applications re-
write the same memory pages. For the memory-intensive
SPECjbb benchmark, a 10 second warning time results
in poor performance and excessive network usage. How-
ever, a 20 second warning time reduces network usage to
<100MB over the 15 minute period.
Result: The sync policy has the lowest network over-
head, although async with LRU also results in low net-
work overhead. With these policies, a 10 second warning
leads to < 100MB of data transfer over 15 minutes.
Transient VM Performance. We evaluate Yank’s effect
on VM performance during normal operation by using
the same experimental setup as before except that we do
not issue any warning and only evaluate pre-warning per-
formance. Here, we focus on TPC-W, since it is an in-
teractive application that is sensitive to VM pauses from
buffering network or disk output. We measure the av-
erage response time of TPC-W clients, while varying
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Figure 7: TPC-W response time as warning time varies.

both the warning time and the snapshot manager’s pol-
icy for committing pages to the backup engine. Figure 7
shows that the async policy that selects pages to com-
mit using and LRU policy results in the lowest average
response time. The async policy reduces VM pauses, be-
cause the snapshot manager begins committing pages to
the backup as soon as it hits the lower threshold Lt rather
than waiting until reaching Ut, and forcing a large com-
mit to the backup server. The experiment also demon-
strates that with even a brief five second warning, the re-
sponse time is <500ms using the async policy with LRU.

By contrast, with a warning time of zero the average
response time rises to over nine seconds. In addition, the
90th percentile response time was also near 15 seconds,
indicating that the average response is not the result of
a few overly bad response times. With no warning, the
VM must pause and mirror every memory write to the
backup server and receive an acknowledgement before
proceeding. Although Remus [7] does not use our spe-
cific TPC-W benchmark, their results with the SPECweb
benchmark are qualitatively similar, showing 5X worse
latency scores. Thus, our results confirm that even mod-
est advance warning times lead to vast improvements in
response time for interactive applications.
Result: Yank imposes minimal overhead on TPC-W dur-
ing normal operation. With a brief five second warning
time, the average response time of TPC-W is 10x less
(<500ms) than with no warning time (>9s).
VM Downtime after a Warning. The experiments
above demonstrate that Yank imposes modest network
and VM overhead during normal operation. In this ex-
periment, we issue a warning to the transient server at
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Figure 8: Downtime with the straightforward approach.

the end of 15 minutes and measure downtime while
the backup engine migrates the transient VM to a sta-
ble server. We compare Yank’s approach (described in
Section 3.4.1), which requires only a single read of the
VM’s memory image from disk, with a straightforward
approach where the backup engine applies all updates to
the memory snapshot before migrating it to the destina-
tion stable server. Note that in this latter case there is no
need for Yank’s restoration service, since the backup en-
gine can simply perform a Xen stop-and-copy migration
of the consistent memory snapshot at the backup server.

Figure 8 plots the transient VM’s downtime using the
straightforward approach, and Figure 9 plots it using
Yank’s approach. Each graph decomposes the down-
time into each stage of the migration. In Figure 8, the
largest component is the time required to create a consis-
tent memory snapshot on the backup engine by updating
the memory snapshot on disk. In addition, we run the
experiment with different sizes of the in-memory queue
to show that downtime increases with queue size, since
a larger queue size requires writing more updates to disk
after a warning. While reading the VM’s memory snap-
shot from disk and transmitting it to the destination stable
server still dominates downtime using Yank’s approach
(Figure 9), it is less than half than with the straight-
forward approach and is independent of the queue size.
Note that Yank’s downtimes are in the tens of seconds
and bounded by the time to read a memory snapshot
from disk. While these downtimes are not long enough
to break TCP connections, they are much longer than the
millisecond-level downtimes seen by live migration.
Result: Yank minimizes transient VM downtime after a
warning to a single read of its memory snapshot from
disk, which results in a 50s downtime for a 1GB VM.
Scalability. The experiments above focus on perfor-
mance with a single VM. We also evaluate how many
transient VMs the backup engine is able to support con-
currently, and the resulting impact on transient VM per-
formance during normal operation. Again, we focus on
the TPC-W benchmark, since it is most sensitive to VM
pauses. In this case, our experiments last for 30 minutes
using a warning time of 10 seconds, and scale the number
of transient VMs running TPC-W connected to the same
backup server. We measure CPU and memory usage on
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Figure 9: Downtime with Yank’s optimizations.

the backup server, as well as the average response time of
the TPC-W clients. Figure 10 shows the results, includ-
ing the maximum of the average response time across all
transient VMs observed by the TPC-W clients, the CPU
utilization on the backup server, and the backup engine’s
memory usage as a percentage of total memory. The fig-
ure demonstrates that, in this case, the backup server is
capable of supporting as many as 15 transient VMs with-
out the average client response time exceeding 700ms.
Note that without using Yank the average response time
for TPC-W clients running our workload is 300ms. In
addition, even when supporting 15 VMs, the backup en-
gine does not completely use its entire CPU or memory.
Result: Yank is able to highly multiplex each backup
server. Our experiments indicate that with a warning
time of 10 seconds, a backup server can support at least
15 transient VMs running TPC-W with little performance
degradation for even a challenging interactive workload.

5.3 Case Studies
The previous experiments benchmark different aspects of
Yank’s performance. In this section, we use case studies
to show how Yank might perform in a real data center
using renewable energy sources. We use traces from our
own solar panel and wind turbine deployments, which
we have used in prior work [4, 26, 27, 29]. Note that in
these experiments the warning time changes as renew-
able generation fluctuates, since we assume renewables
charge a small UPS that powers the servers.

5.3.1 Adapting to Renewable Generation
Figure 11 shows the renewable power generation from
compressing a 3-day energy harvesting trace. For these
experiments, we assume the UPS capacity dictates a
maximum warning time of 20 seconds, and that each
server requires a maximum power of 300W. Our results
are conservative, since we assume servers always draw
their maximum power. In the trace, at t=60, power gen-
eration falls below the 300W the server requires, causing
the battery to discharge and the warning time to decrease.
At t=80, power generation rises above 300W, causing the
warning time to increase. Figure 11 shows the instanta-
neous response time of a TPC-W client running on a tran-
sient VM as power varies. The response time rises when



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 153

 0

 200

 400

 600

 800

 1000

5 10 15
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
im

e
 (

m
s
e
c
s
)

P
e
rc

e
n
ta

g
e
(%

)

# of Transient Instances

 Response Time
CPU%

Memory%

Figure 10: Yank scalability

power generation decreases, and falls when it increases.
The experiment illustrates an important property of

Yank: it is capable of translating variations in power
availability to variations in application performance,
even for interactive application running on a sin-
gle server. Since servers remain far from energy-
proportional, decreases in power availability require data
centers to deactivate servers. Until now, the only way
to scale application performance with power was to ap-
proximate energy proportionality in large clusters by de-
activating a subset of servers [30]. For interactive appli-
cations not tolerant to delays, this approach is not ideal,
especially if applications run on small set of servers. Of
course, Yank’s approach complements admission con-
trol policies that may simply reject clients to decrease
load, rather than satisfying existing clients with a slightly
longer response time. In many cases, simply rejecting
new or existing clients may be undesirable.
Result: Yank translates variations in power availability
to variations in application performance for interactive
applications running on a small number of servers.

5.3.2 End-to-End Examples
We use end-to-end examples to demonstrate how Yank
reacts to changes in renewable power by migrating tran-
sient VMs between transient and stable servers.
Solar Power. We first compress solar power traces from
7am to 5pm on both a sunny day and a cloudy day to a
2-hour period, and then scale the power level such that
the trace’s average power is equal to a server’s maximum
power (300W). While we compress our traces to enable
experiments to finish within reasonable times, we do not
introduce any artificial variability in the power genera-
tion, since renewable generation is already highly vari-
able [31]. We then emulate a solar-powered transient
server using a UPS that provides a maximum warning
time of 30 seconds, although as above when power gen-
eration falls below 300W the UPS discharges and the
warning time decreases. When the warning time reaches
zero, Yank issues a warning and transfers the transient
VM to a stable server. Likewise, when the warning
time is non-zero continuously for a minute, Yank reacti-
vates the transient server and transfers the VM back to it.
Again, we run TPC-W in the VM and measure response
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Figure 11: TPC-W response time as power varies

time at the client as power generation varies.
Figure 12(a) and (b) shows that for both days Yank

adapts to power variations with negligible impact on ap-
plication performance. The sunny day (a) only requires
the transient server to deactivate once, and has negligible
impact on response time throughout the day. The cloudy
day (b) requires the transient server to deactivate just
seven times throughout the day. Thus, the application
experiences seven brief periods of downtime, roughly 50
seconds in length, over the day. However, even though
power is more intermittent than the sunny day, outside of
these seven periods, the impact on response time is only
slightly higher than during the sunny day. Note that, in
this experiment, the periods where the VM executes on a
stable server are brief, with Yank migrating the VM back
to the transient server after a short time.
Wind Power. Wind power varies significantly more than
solar power. Thus, in this experiment, we use a less
conservative approach to computing the warning time.
Rather than computing the warning time based on a
UPS’s remaining energy, we use a simple past-predicts-
future (PPF) model (from [27]) to estimate future en-
ergy harvesting. The model predicts energy harvesting
over the next 10 seconds will be same the same as the
last 10 seconds. As above, we compress a wind energy
trace from 7am to 5pm to two hours and scale its aver-
age power generation to the server’s power. Since our
PPF predictions operate over 10 second intervals, we use
a UPS capacity that provides 10 seconds of power if pre-
dictions are wrong. We again measure TPC-W response
time as it shifts between a transient and stable server.

Figure 13(a) shows the PPF model accurately predicts
power over these short timescales even though power
generation varies significantly, allowing Yank to issue
warnings with only a small amount of UPS power. Fig-
ure 13(b) shows the corresponding TPC-W response
time, which is similar to the response time in the more
stable solar traces. Of course, as during the cloudy day
with solar power, when wind generation drops for a long
period there is a brief downtime as the VM migrates from
the transient server to a stable server.
Result: Yank is flexible enough to handle different levels
of intermittency in available power resulting from varia-
tions in renewable power generation.
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Figure 12: Yank using solar power on both a sunny and cloudy day.
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Figure 13: Yank using wind power.

6 Related Work

Prior work on supporting renewables within a data center
primarily targets non-interactive batch jobs, since these
jobs are more tolerant to long delays when renewable
power is not available. For example, GreenSlot [11] is
a general batch job scheduler that uses predictions of fu-
ture energy harvesting to align job execution with pe-
riods of high renewable generation. Similarly, related
work [2, 12] proposes similar types of scheduling algo-
rithms that specifically target MapReduce jobs. These
solutions only support non-interactive batch jobs, and, in
some cases, specifically target solar power [10], which
is more predictable than wind power. Yank takes a dif-
ferent approach to support interactive applications run-
ning off renewable power. However, Yank’s snapshots of
memory and disk state are generic and also capable of
supporting batch applications, although we leave a direct
comparison of the two approaches to future work.

Recent work does combine interactive applications
with renewables. For example, Krioukov et. al. design
a power-proportional cluster targeting interactive appli-
cations that responds to power variations by simply de-
activating servers and degrading request latency [17].
In prior work we propose a blinking abstraction for
renewable-powered clusters, which we have applied to
the distributed caches [26, 28] and distributed file sys-
tems [15] commonly used in data centers. However,
blinking to support intermittent renewable energy re-
quires significant application modifications, while Yank
does not. iSwitch is perhaps the most closely-related
work to Yank [18]. iSwitch assumes a similar design

for integrating renewables into data centers, including
some servers powered off renewables (specifically wind
power) and some powered off the grid. However, iSwitch
is more policy-oriented, tracking variations in renew-
able power to guide live VM migration between the two
server pools. In contrast, Yank introduces a new mecha-
nism, which iSwitch could use instead of live migration.

7 Conclusion
Yank introduces the abstraction of a transient server,
which may terminate anytime after an advance warning.
In this paper, we apply the abstraction to green data cen-
ters, where UPSs provides an advance warning, due to
power shortfalls from renewables, move transient server
state to stable servers. Yank fills the void between Re-
mus, which requires no advance warning, and live VM
migration, which requires a lengthy advance warning, to
cheaply and efficiently support transient servers at large
scale. In particular, our results show that a single backup
server is capable of maintaining memory snapshots for
up to 15 transient VMs with little performance degrada-
tion, which dramatically decreases the cost of providing
high availability relative to existing solutions.
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Abstract

Cloud operators increasingly need more and more fine-
grained rules to better control individual network flows
for various traffic management policies. In this paper,
we explore automated rule management in the context of
a system called vCRIB (a virtual Cloud Rule Informa-
tion Base), which provides the abstraction of a central-
ized rule repository. The challenge in our approach is
the design of algorithms that automatically off-load rule
processing to overcome resource constraints on hypervi-
sors and/or switches, while minimizing redirection traf-
fic overhead and responding to system dynamics. vCRIB
contains novel algorithms for finding feasible rule place-
ments and adapting traffic overhead induced by rule
placement in the face of traffic changes and VM migra-
tion. We demonstrate that vCRIB can find feasible rule
placements with less than 10% traffic overhead even in
cases where the traffic-optimal rule placement may be in-
feasible with respect to hypervisor CPU or memory con-
straints.

1 Introduction
To improve network utilization, application perfor-
mance, fairness and cloud security among tenants in
multi-tenant data centers, recent research has proposed
many novel traffic management policies [8, 32, 28, 17].
These policies require fine-grained per-VM, per-VM-
pair, or per-flow rules. Given the scale of today’s data
centers, the total number of rules within a data center can
be hundreds of thousands or even millions (Section 2).
Given the expected scale in the number of rules, rule
processing in future data centers can hit CPU or mem-
ory resource constraints at servers (resulting in fewer re-
sources for revenue-generating tenant applications) and
rule memory constraints at the cheap, energy-hungry
switches.

In this paper, we argue that future data centers will re-
quire automated rule management in order to ensure rule
placement that respects resource constraints, minimizes
traffic overhead, and automatically adapts to dynamics.
We describe the design and implementation of a virtual
Cloud Rule Information Base (vCRIB), which provides
the abstraction of a centralized rule repository, and au-
tomatically manages rule placement without operator or

Figure 1: Virtualized Cloud Rule Information Base (vCRIB)

tenant intervention (Figure 1). vCRIB manages rules
for different policies in an integrated fashion even in the
presence of system dynamics such as traffic changes or
VM migration, and is able to manage a variety of data
center configurations in which rule processing may be
constrained either to switches or servers or may be per-
mitted on both types of devices, and where both CPU and
memory constraints may co-exist.

vCRIB’s rule placement algorithms achieve resource-
feasible, low-overhead rule placement by off-loading
rule processing to nearby devices, thus trading off some
traffic overhead to achieve resource feasibility. This
trade-off is managed through a combination of three
novel features (Section 3).

• Rule offloading is complicated by dependencies be-
tween rules caused by overlaps in the rule hyperspace.
vCRIB uses per-source rule partitioning with replica-
tion, where the partitions encapsulate the dependen-
cies, and replicating rules across partitions avoids rule
inflation caused by splitting rules.

• vCRIB uses a resource-aware placement algorithm
that offloads partitions to other devices in order to find
a feasible placement of partitions, while also trying to
co-locate partitions which share rules in order to op-
timize rule memory usage. This algorithm can deal
with data center configurations in which some devices
are constrained by memory and others by CPU.

• vCRIB also uses a traffic-aware refinement algorithm
that can, either online, or in batch mode, refine parti-
tion placements to reduce traffic overhead while still
preserving feasibility. This algorithm avoids local
minima by defining novel benefit functions that per-
turb partitions allowing quicker convergence to feasi-
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ble low overhead placement.
We evaluate (Section 4) vCRIB through large-scale

simulations, as well as experiments on a prototype built
on Open vSwitch [4] and POX [1]. Our results demon-
strate that vCRIB is able to find feasible placements with
a few percent traffic overhead, even for a particularly
adversarial setting in which the current practice needs
more memory than the memory capacity of all the servers
combined. In this case, vCRIB is able to find a feasi-
ble placement, without relying on switch memory, albeit
with about 20% traffic overhead; with modest amounts
of switch memory, this overhead drops dramatically to
less than 3%. Finally, vCRIB correctly handles heteroge-
neous resource constraints, imposes minimal additional
traffic on core links, and converges within 5 seconds af-
ter VM migration or traffic changes.

2 Motivation and Challenges
Today, tenants in data centers operated by Amazon [5]
or whose servers run software from VMware place their
rules at the servers that source traffic. However, mul-
tiple tenants at a server may install too many rules at
the same server causing unpredictable failures [2]. Rules
consume resources at servers, which may otherwise be
used for revenue-generating applications, while leaving
many switch resources unused.

Motivated by this, we propose to automatically man-
age rules by offloading rule processing to other devices in
the data center. The following paragraphs highlight the
main design challenges in scalable automated rule man-
agement for data centers.

The need for many fine-grained rules. In this pa-
per, we consider the class of data centers that provide
computing as a service by allowing tenants to rent vir-
tual machines (VMs). In this setting, tenants and data
center operators need fine-grained control on VMs and
flows to achieve different management policies. Access
control policies either block unwanted traffic, or allocate
resources to a group of traffic (e.g., rate limiting [32],
fair sharing [29]). For example, to ensure each tenant
gets a fair share of the bandwidth, Seawall [32] installs
rules that match the source VM address and performs
rate limiting on the corresponding flows. Measurement
policies collect statistics of traffic at different places. For
example, to enable customized routing for traffic engi-
neering [8, 11] or energy efficiency [17], an operator may
need to get traffic statistics using rules that match each
flow (e.g., defined by five tuples) and count its number of
bytes or packets. Routing policies customize the routing
for some types of traffic. For example, Hedera [8] per-
forms specific traffic engineering for large flows, while
VLAN-based traffic management solutions [28] use dif-
ferent VLANs to route packets. Most of these policies,

(a) Wild card rules in a flow space (b) VM assignment

Figure 2: Sample ruleset (black is accept, white is deny) and
VM assignment (VM number is its IP)

expressed in high level languages [18, 37], can be trans-
lated into virtual rules at switches1.

A simple policy can result in a large number of fine-
grained rules, especially when operators wish to con-
trol individual virtual machines and flows. For exam-
ple, bandwidth allocation policies require one rule per
VM pair [29] or per VM [29], and access control policies
might require one rule per VM pair [30]. Data center traf-
fic measurement studies have shown that 11% of server
pairs in the same rack and 0.5% of inter-rack server
pairs exchange traffic [22], so in a data center with 100K
servers and 20 VMs per server, there can, be 1G to 20G
rules in total (200K per server) for access control or fair
bandwidth allocation. Furthermore, state-of-the-art solu-
tions for traffic engineering in data centers [8, 11, 17] are
most effective when per-flow statistics are available. In
today’s data centers, switches routinely handle between
1K to 10K active flows within a one-second interval [10].
Assume a rack with 20 servers and if each server is the
source of 50 to 500 active flows, then, for a data center
with 100K servers, we can have up to 50M active flows,
and need one measurement rule per-flow.

In addition, in a data center where multiple concurrent
policies might co-exist, rules may have dependencies be-
tween them, so may require carefully designed offload-
ing. For example, a rate-limiting rule at a source VM A
can overlap with the access control rule that blocks traf-
fic to destination VM B, because the packets from A to
B match both rules. These rules cannot be offloaded to
different devices.

Resource constraints. In modern data centers, rules
can be processed either at servers (hypervisors) or pro-
grammable network switches (e.g., OpenFlow switches).
Our focus in this paper is on flow-based rules that match
packets on one or more header fields (e.g., IP addresses,
MAC addresses, ports, VLAN tags) and perform various
actions on the matching packets (e.g., drop, rate limit,
count). Figure 2(a) shows a flow-space with source and

1Translating high-level policies to fine-grained rules is beyond the
scope of our work.

2
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destination IP dimensions (in practice, the flow space
has 5 dimensions or more covering other packet header
fields). We show seven flow-based rules in the space;
for example, A1 represents a rule that blocks traffic from
source IP 2 (VM2) to destination IP 0-3 (VM 0-3).

While software-based hypervisors at servers can sup-
port complex rules and actions (e.g., dynamically calcu-
lating rates of each flow [32]), they may require commit-
ting an entire core or a substantial fraction of a core at
each server in the data center. Operators would prefer
to allocate as much CPU/memory as possible to client
VMs to maximize their revenue; e.g., RackSpace opera-
tors prefer not to dedicate even a portion of a server core
for rule processing [6]. Some hypervisors offload rule
processing to the NIC, which can only handle limited
number of rules due to memory constraints. As a result,
the number of rules the hypervisor can support is limited
by the available CPU/memory budget for rule processing
at the server.

We evaluate the numbers of rules and wildcard entries
that can be supported by Open vSwitch, for different val-
ues of flow arrival rates and CPU budgets in Figure 3.
With 50% of a core dedicated for rule processing and a
flow arrival rate of 1K flows per second, the hypervisor
can only support about 2K rules when there are 600 wild-
card entries. This limit can easily be reached for some of
the policies described above, so that manual placement of
rules at sources can result in infeasible rule placement.

To achieve feasible placement, it may be necessary to
offload rules from source hypervisors to other devices
and redirect traffic to these devices. For instance, sup-
pose VM2, and VM6 are located on S1 (Figure 2(b)).
If the hypervisor at S1 does not have enough resources
to process the deny rule A3 in Figure 2(a), we can in-
stall the rule at ToR1, introducing more traffic overhead.
Indeed, some commercial products already support of-
floading rule processing from hypervisors to ToRs [7].
Similarly, if we were to install a measurement rule that
counts traffic between S1 and S2 at Aggr1, it would cause
the traffic between S1 and S2 to traverse through Aggr1
and then back. The central challenge is to design a col-
lection of algorithms that manages this tradeoff — keeps
the traffic overhead induced by rule offloading low, while
respecting the resource constraint.

Offloading these rules to programmable switches,
which leverage custom silicon to provide more scalable
rule processing than hypervisors, is also subject to re-
source constraints. Handling the rules using expensive
power-hungry TCAMs limits the switch capacity to a few
thousand rules [15], and even if this number increases in
the future its power and silicon usage limits its applica-
bility. For example, the HP ProCurve 5406zl switch
hardware can support about 1500 OpenFlow wildcard
rules using TCAMs, and up to 64K Ethernet forwarding
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Figure 3: Performance of openvswitch (The two numbers in
the legend mean CPU usage of one core in percent

and number of new flows per second.)

entries [15].

Heterogeneity and dynamics. Rule management is fur-
ther complicated by two other factors. Due to the differ-
ent design tradeoffs between switches and hypervisors,
in the future different data centers may choose to support
either programmable switches, hypervisors, or even, es-
pecially in data centers with large rule bases, a combi-
nation of the two. Moreover, existing data centers may
replace some existing devices with new models, result-
ing in device heterogeneity. Finding feasible placements
with low traffic overhead in a large data center with dif-
ferent types of devices and qualitatively different con-
straints is a significant challenge. For example, in the
topology of Figure 1, if rules were constrained by an op-
erator to be only on servers, we would need to automati-
cally determine whether to place a measurement rule for
tenant traffic between S1 and S2 at one of those servers,
but if the operator allowed rule placement at any device,
we could choose between S1, ToR1, or S2; in either case,
the tenant need not know the rule placement technology.

Today’s data centers are highly dynamic environments
with policy changes, VM migrations, and traffic changes.
For example, if VM2 moves from S1 to S3, the rules A0,
A1, A2 and A4 should me moved to S3 if there are enough
resources at S3’s hypervisor. (This decision is compli-
cated by the fact that A4 overlaps with A3.) When traffic
changes, rules may need to be re-placed in order to sat-
isfy resource constraints or reduce traffic overhead.

3 vCRIB Automated Rule Management
To address these challenges, we propose the design of
a system called vCRIB (virtual Cloud Rule Information
Base) (Figure 1). vCRIB provides the abstraction of a
centralized repository of rules for the cloud. Tenants and
operators simply install rules in this repository. Then
vCRIB uses network state information including network
topology and the traffic information to proactively place
rules in hypervisors and/or switches in a way that re-
spects resource constraints and minimizes the redirection
traffic. Proactive rule placement incurs less controller
overhead and lower data-path delays than a purely reac-
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Figure 4: vCRIB controller architecture

tive approach, but needs sophisticated solutions to opti-
mize placement and to quickly adapt to cloud dynamics
(e.g., traffic changes and VM migrations), which is the
subject of this paper. A hybrid approach, where some
rules can be inserted reactively, is left to future work.

Challenges
Designs

Overlapping 
rules

Resource 
constraints

Traffic 
overhead

Heterogeneity Dynamics

Partitioning 
with replication

Per-source 
partitions

Similarity

Resource usage 
functions

Resource-aware 
placement

Traffic-aware 
refinement

Table 1: Design choices and challenges mapping

vCRIB makes several carefully chosen design deci-
sions (Figure 4) that help address the diverse challenges
discussed in Section 2 (Table 1). It partitions the rule
space to break dependencies between rules, where each
partition contains rules that can be co-located with each
other; thus, a partition is the unit of offloading decisions.
Rules that span multiple partitions are replicated, rather
than split; this reduces rule inflation. vCRIB uses per-
source partitions: within each partition, all rules have
the same VM as the source so only a single rule is re-
quired to redirect traffic when that partition is offloaded.
When there is similarity between co-located partitions
(i.e., when partitions share rules), vCRIB is careful not
to double resource usage (CPU/memory) for these rules,
thereby scaling rule processing better. To accommo-
date device heterogeneity, vCRIB defines resource us-
age functions that deal with different constraints (CPU,
memory etc.) in a uniform way. Finally, vCRIB splits
the task of finding “good” partition off-loading oppor-
tunities into two steps: a novel bin-packing heuristic
for resource-aware partition placement identifies feasi-
ble partition placements that respect resource constraints,
and leverage similarity; and a fast online traffic-aware
refinement algorithm which migrates partitions between

devices to explore only feasible solutions while reduc-
ing traffic overhead. The split enables vCRIB to quickly
adapt to small-scale dynamics (small traffic changes, or
migration of a few VMs) without the need to recompute
a feasible solution in some cases. These design decisions
are discussed below in greater detail.

3.1 Rule Partitioning with Replication

The basic idea in vCRIB is to offload the rule pro-
cessing from source hypervisors and allow more flexi-
ble and efficient placement of rules at both hypervisors
and switches, while respecting resource constraints at
devices and reducing the traffic overhead of offloading.
Different types of rules may be best placed at different
places. For instance, placing access control rules in the
hypervisor (or at least at the ToR switches) can avoid in-
jecting unwanted traffic into the network. In contrast, op-
erations on the aggregates of traffic (e.g., measuring the
traffic traversing the same link) can be easily performed
at switches inside the network. Similarly, operations on
inbound traffic from the Internet (e.g., load balancing)
should be performed at the core/aggregate routers. Rate
control is a task that can require cooperation between the
hypervisors and the switches. Hypervisors can achieve
end-to-end rate control by throttling individual flows or
VMs [32], but in-network rate control can directly avoid
buffer overflow at switches. Such flexibility can be used
to manage resource constraints by moving rules to other
devices.

However, rules cannot be moved unilaterally because
there can be dependencies among them. Rules can over-
lap with each other especially when they are derived
from different policies. For example, with respect to Fig-
ure 2, a flow from V M6 on server S1 to V M1 on server S2
matches both the rule A3 that blocks the source V M1 and
the rule A4 that accepts traffic to destination V M1. When
rules overlap, operators specify priorities so only the rule
with the highest priority takes effect. For example, op-
erators can set A4 to have higher priority. Overlapping
rules make automated rule management more challeng-
ing because they constrain rule placement. For example,
if we install A3 on S1 but A4 on ToR1, the traffic from
V M6 to V M1, which should be accepted, matches A3
first and gets blocked.

One way to handle overlapping rules is to divide the
flow space into multiple partitions and split the rule that
intersects multiple partitions into multiple independent
rules, partition-with-splitting [38]. Aggressive rule split-
ting can create many small partitions making it flexible
to place the partitions at different switches [26], but can
increase the number of rules, resulting in inflation. To
minimize splitting, one can define a few large partitions,
but these may reduce placement flexibility, since some
partitions may not “fit” on some of the devices.
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(a) Ruleset (b) Partition-with-replication (c) P1 & P3 on a device (d) P2 & P3 on a device

Figure 5: Illustration of partition-with-replications (black is accept, white is deny)

To achieve the flexibility of small partitions while lim-
iting the effect of rule inflation, we propose a partition-
with-replication approach that replicates the rules across
multiple partitions instead of splitting them. Thus, in
our approach, each partition contains the original rules
that are covered partially or completely by that partition;
these rules are not modified (e.g., by splitting). For ex-
ample, considering the rule set in Figure 5(a), we can
form the three partitions shown in Figure 5(b). We in-
clude both A1 and A3 in P1, the left one, in their original
shape. The problem is that there are other rules (e.g., A2,
A7) that overlap with A1 and A3, so if a packet matches
A1 at the device where P1 is installed, it may take the
wrong action – A1’s action instead of A7’s or A2’s ac-
tion. To address this problem, we leverage redirection
rules R2 or R3 at the source of the packet to completely
cover the flow space of P2 or P3, respectively. In this
way, any packets that are outside P1’s scope will match
the redirection rules and get directed to the current host
of the right partition where the packet can match the right
rule. Notice that the other alternatives described above
also require the same number of redirection rules, but we
leverage high priority of the redirection rules to avoid in-
correct matches.

Partition-with-replication allows vCRIB to flexibly
manage partitions without rule inflation. For example,
in Figure 5(c), we can place partitions P1 and P3 on one
device; the same as in an approach that uses small parti-
tions with rule splitting. The difference is that since P1
and P3 both have rules A1, A3 and A0, we only need to
store 7 rules using partition-with-replication instead of
10 rules using small partitions. On the other hand, we
can prove that the total number of rules using partition-
with-replication is the same as placing one large partition
per device with rule splitting (proof omitted for brevity).

vCRIB generates per-source partitions by cutting the
flow space based on the source field according to the
source IP addresses of each virtual machine. For ex-
ample, Figure 6(a) presents eight per-source partitions
P0, · · · ,P7 in the flow space separated by the dotted
black lines.

Per-source partitions contain rules for traffic sourced
by a single VM. Per-source partitions make the place-
ment and refinement steps simpler. vCRIB only needs

(a) Per-source partitions (b) partition assignment

Figure 6: Rule partition example

one redirection rule installed at the source hypervisor to
direct the traffic to the place where the partition is stored.
Unlike per-source partitions, a partition that spans mul-
tiple source may need to be replicated; vCRIB does not
need to replicate partitions. Partitions are ordered in the
source dimension, making it easy to identify similar par-
titions to place on the same device.

3.2 Partition Assignment and Resource Usage

The central challenge in vCRIB design is the assign-
ment of partitions to devices. In general, we can for-
mulate this as an optimization problem, whose goal is
to minimize the total traffic overhead subject to the re-
source constraints at each device.2 This problem, even
for partition-with-splitting, is equivalent to the gener-
alized assignment problem, which is NP-hard and even
APX-hard to approximate [14]. Moreover, existing ap-
proximation algorithms for this problem are inefficient.
We refer the reader to a technical report which discusses
this in greater depth [27].

We propose a two-step heuristic algorithm to solve
this problem. First, we perform resource-aware place-
ment of partitions, a step which only considers resource
constraints; next, we perform traffic-aware refinement, a
step in which partitions reassigned from one device to
another to reduce traffic overhead. An alternative ap-
proach might have mapped partitions to devices first to
minimize traffic overhead (e.g., placing all the partitions
at the source), and then refined the assignments to fit
resource constraints. With this approach, however, we

2One may formulate other optimization problems such as minimiz-
ing the resource usage given the traffic usage budget. A similar greedy
heuristic can also be devised for these settings.
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cannot guarantee that we can find a feasible solution
in the second stage. Similar two-step approaches have
also been used in the resource-aware placement of VMs
across servers [20]. However, placing partitions is more
difficult than placing VMs because it is important to co-
locate partitions which share rules, and placing partitions
at different devices incurs different resource usage.

Before discussing these algorithms, we describe
how vCRIB models resource usage in hypervisors and
switches in a uniform way. As discussed in Sec-
tion 2, CPU and memory constraints at hypervisors and
switches can impact rule placement decisions. We model
resource constraints using a function F (P,d); specif-
ically, F (P,d) is the percentage of the resource con-
sumed by placing partition P on a device d. F de-
termines how many rules a device can store, based on
the rule patterns (i.e., exact match, prefix-based match-
ing, and match based on wildcard ranges) and the re-
source constraints (i.e., CPU, memory). For example, for
a hardware OpenFlow switch d with sTCAM(d) TCAM
entries and sSRAM(d) SRAM entries, the resource con-
sumption F (P,d) = re(P)/sSRAM(d)+rw(P)/sTCAM(d),
where re and rw are the numbers of exact matching rules
and wildcard rules in P respectively.

The resource function for Open vSwitch is more com-
plicated and depends upon the number of rules r(P) in
the partition P, the number of wildcard patterns w(P) in
P, and the rate k(d) of new flow arriving at switch d.
Figure 3 shows the number of rules an Open vSwitch
can support for different number of wild card patterns.3

The number of rules it can support reduces exponentially
with the increase of the number of wild card patterns (the
y-axis in Figure 3 is in log-scale), because Open vSwitch
creates a hash table for each wild card pattern and goes
through these tables linearly. For a fixed number of wild
card patterns and the number of rules, to double the num-
ber of new flows that Open vSwitch can support, we must
double the CPU allocation.

We capture the CPU resource demand of Open
vSwitch as a function of the number of new flows per
second matching the rules in partition and the number of
rules and wild card patterns handled by it. Using non-
linear least squares regression, we achieved a good fit for
Open vSwitch performance in Figure 3 with the func-
tion F (P,d) = α(d)× k(d)×w(P)× log

(

β (d)r(P)
w(P)

)

, where

α = 1.3×10−5, β = 232, with R2 = 0.95.4

3The IP prefixes with different lengths 10.2.0.0/24 and 10.2.0.0/16
are two wildcard patterns. The number of wildcard patterns can be
large when the rules are defined on multiple tuples. For example, the
source and destination pairs can have at most 33*33 wildcard patterns.

4R2 is a measure of goodness of fit with a value of 1 denoting a
perfect fit.

3.3 Resource-aware Placement

Resource-aware partition placement where partitions do
not have rules in common can be formulated as a bin-
packing problem that minimizes the total number of de-
vices to fit all the partitions. This bin-packing problem
is NP-hard, but there exist approximation algorithms for
it [21]. However, resource-aware partition placement for
vCRIB is more challenging since partitions may have
rules in common and it is important to co-locate parti-
tions with shared rules in order to save resources.

Algorithm 1 First Fit Decreasing Similarity Algorithm

P= set of not placed partitions
while |P|> 0 do

Select a partition Pi randomly
Place Pi on an empty device Mk.
repeat

Select Pj ∈ P with maximum similarity to Pi
until Placing Pj on Mk Fails

end while

We use a heuristic algorithm for bin-packing similar
partitions called First Fit Decreasing Similarity (FFDS)
(Algorithm 1) which extends the traditional FFD algo-
rithm [33] for bin packing to consider similarity between
partitions. One way to define similarity between two
partitions is as the number of rules they share. For ex-
ample, the similarity between P4 and P5 is |P4∩P5| =
|P4|+ |P5|− |P4∪P5| = 4. However, different devices
may have different resource constraints (one may be con-
strained by CPU, and another by memory). A more gen-
eral definition of similarity between partitions Pi and Pk
on device d is based on the resource consumption func-
tion F : our similarity function F (Pi,d) +F (Pk,d)−
F (Pi ∪ Pk,d) compares the network resource usage of
co-locating those partitions.

Given this similarity definition, FFDS first picks a par-
tition Pi randomly and stores it in a new device.5 Next,
we pick partitions similar to Pi until the device cannot fit
more. Finally, we repeat the first step till we go through
all the partitions.

For the memory usage model, since we use per-source
partitions, we can quickly find partitions similar to a
given partition, and improve the execution time of the
algorithm from a few minutes to a second. Since per-
source partitions are ordered in the source IP dimension
and the rules are always contiguous blocks crossing only

5As a greedy algorithm, one would expect to pick large partitions
first. However, since we have different resource functions for different
devices, it is hard to pick the large partitions based on different metrics.
Fortunately, in theory, picking partitions randomly or greedily do not
affect the approximation bound of the algorithm. As an optimization,
instead of picking a new device, we can pick the device whose existing
rules are most similar to the new partition.
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neighboring partitions, we can prove that the most sim-
ilar partitions are always the ones adjacent to the parti-
tion [27]). For example, P4 has 4 common rules with
P5 but 3 common rules with P7 in Figure 6(a). So in
the third step of FFDS, we only need to compare left and
right unassigned partitions.

To illustrate the algorithm, suppose each server in the
topology of Figure 1 has a capacity of four rules to place
the partitions and switches have no capacity. Considering
the ruleset in Figure 2(a), we first pick a random partition
P4 and place it on an empty device. Then, we check P3
and P5 and pick P5 as it has more similar rules (4 vs 2).
Between P3 and P6, P6 is the most similar but the device
has no additional capacity for A3, so we stop. In the next
round, we place P2 on an empty device and bring P1, P0
and P3 but stop at P6 again. The last device will contain
P6 and P7.

We have proved that, FFDS algorithm is 2-
approximation for resource-aware placement in networks
with only memory-constrained devices [27]. Approxi-
mation bounds for CPU-constrained devices is left to fu-
ture work.

Our FFDS algorithm is inspired by the tree-based
placement algorithm proposed in [33], which minimizes
the number of servers to place VMs by putting VMs
with more common memory pages together. There are
three key differences: (1) since we use per-source parti-
tions, it is easier to find the most similar partitions than
memory pages; (2) instead of placing sub-trees of VMs
in the same device, we place a set of similar partitions
in the same device since these similar partitions are not
bounded by the boundaries of a sub-tree; and (3) we are
able to achieve a tighter approximation bound (2, instead
of 3). (The construction of sub-trees is discussed in a
technical report [27]).

Finally, it might seem that, because vCRIB uses per-
source partitions, it cannot efficiently handle a rule with
a wildcard on the source IP dimension. Such a rule
would have to be placed in every partition in the source
IP range specified by the wildcard. Interestingly, in this
case vCRIB works quite well: since all partitions on a
machine will have this rule, our similarity-based place-
ment will result in only one copy of this rule per device.

3.4 Traffic-aware Refinement

The resource-aware placement places partitions without
heed to traffic overhead since a partition may be placed
in a device other than the source, but the resulting assign-
ment is feasible in the sense that it respects resource con-
straints. We now describe an algorithm that refines this
initial placement to reduce traffic overhead, while still
maintaining feasibility. Having thus separated place-
ment and refinement, we can run the (usually) fast re-
finement after small-scale dynamics (some kinds of traf-

fic changes, VM migration, or rule changes) that do not
violate resource feasibility. Because each per-source par-
tition matches traffic from exactly one source, the refine-
ment algorithm only stores each partition once in the en-
tire network but tries to migrate it closer to its source.

Given per-source partitions, an overhead-greedy
heuristic would repeatedly pick the partition with the
largest traffic overhead, and place it on the device which
has enough resources to store the partition and the lowest
traffic overhead. However, this algorithm cannot handle
dynamics, such as traffic changes or VM migration. This
is because in the steady state many partitions are already
in their best locations, making it hard to rearrange other
partitions to reduce their traffic overhead. For example,
in Figure 6(a), assume the traffic for each rule (exclud-
ing A0) is proportional to the area it covers and gener-
ated from servers in topology of Figure 6(b). Suppose
each server has a capacity of 5 rules and we put P4 on
S4 which is the source of V M4, so it imposes no traffic
overhead. Now if V M2 migrates from S1 to S4, we can-
not save both P2 and P4 on S4 as it will need space for
6 rules, so one of them must reside on ToR2. As P2 has
3 units deny traffic overhead on A1 plus 2 units of accept
traffic overhead from local flows of S4, we need to bring
P4 out of its sweet spot and put P2 instead. However,
the overhead-greedy algorithm cannot move P4 as it is
already in its best location.

To get around this problem, it is important to choose
a potential refinement step that not only considers the
benefit of moving the selected partition, but also consid-
ers the other partitions that might take its place in future
refinement steps. We do this by calculating the bene-
fit of moving a partition Pi from its current device d(Pi)
to a new device j, M(Pi, j). The benefit comes from
two parts: (1) The reduction in traffic (the first term of
Equation 1); (2) The potential benefit of moving other
partitions to d(Pi) using the freed resources from Pi, ex-
cluding the lost benefit of moving these partitions to j
because Pi takes the resources at j (the second term of
Equation 1). We define the potential benefit of mov-
ing other partitions to a device j as the maximum ben-
efits of moving a partition Pk from a device d to j, i.e.,
Q j = maxk,d(T (Pk,d)−T (Pk, j)). We speed up the cal-
culation of Q j by only considering the current device of
Pk and the best device b(Pk) for Pk with the least traffic
overhead. (We omit the reasons for brevity.) In summary,
the benefit function is defined as:

M(Pi, j) = (T (Pi,d(Pi))−T (Pi, j))+(Qd(Pi)−Q j) (1)

Our traffic-aware refinement algorithm is benefit-
greedy, as described in Algorithm 2. The algorithm is
given a time budget (a “timeout”) to run; in practice, we
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Algorithm 2 Benefit-Greedy algorithm

Update b(Pi) and Q(d)
while not timeout do

Update the benefit of moving every Pi to its best feasible
target device M(Pi,b(Pi))
Select Pi with the largest benefit M(Pi,b(Pi))
Select the target device j for Pi that maximizes the benefit
M(Pi, j)
Update best feasible target devices for partitions and Q’s

end while
return the best solution found

have found time budgets of a few seconds to be suffi-
cient to generate low traffic-overhead refinements. At
each step, it first picks that partition Pi that would bene-
fit the most by moving to its best feasible device b(Pi),
and then picks the most beneficial and feasible device j
to move Pi to.6

We now illustrate the benefit-greedy algorithm (Algo-
rithm 2) using our running example in Figure 6(b). The
best feasible target device for both P2 and P4 are ToR2.
P2 maximizes QS4 with value 5 because its deny traffic is
3 and has 1 unit of accept traffic to V M4 on S4. Also we
assume that Q j is zero for all other devices. In the first
step, the benefit of migrating P2 to ToR2 is larger than
moving P4 to ToR2, while the benefits of all the other
migration steps are negative. After moving P2 to ToR2
the only beneficial step is moving P4 out of S4. After
moving P4 to ToR2, migrating P2 to S4 become feasi-
ble, so QS4 will become 0 and as a result the benefit of
this migration step will be 5. So the last step is moving
P2 to S4.

An alternative to using a greedy approach would
have been to devise a randomized algorithm for perturb-
ing partitions. For example, a Markov approximation
method is used in [20] for VM placement. In this ap-
proach, checking feasibility of a partition movement to
create the links in the Markov chain turns out to be com-
putationally expensive. Moreover, a randomized iterative
refinement takes much longer to converge after a traffic
change or a VM migration.

4 Evaluation
We first use simulations on a large fat-tree topology with
many fine-grained rules to study vCRIB’s ability to min-
imize traffic overhead given resource constraints. Next,
we explore how the online benefit-greedy algorithm han-
dles rule re-placement as a result of VM migrations. Our
simulations are run on a machine with quad-core 3.4
GHz CPU and 16 GB Memory. Finally, we deploy our
prototype in a small testbed to understand the overhead

6By feasible device, we mean the device has enough resources to
store the partition according to the function F .

at the controller, and end-to-end delay between detecting
traffic changes and re-installing the rules.

4.1 Simulation Setup

Topology: Our simulations use a three-level fat-tree
topology with degree 16, containing 1024 servers in 128
racks connected by 320 switches. Since current hyper-
visor implementations can support multiple concurrent
VMs [31], we use 20 VMs per machine. We consider two
models of resource constraints at the servers: memory
constraints (e.g., when rules are offloaded to a NIC), and
CPU constraints (e.g., in Open vSwitch). For switches,
we only consider memory constraints.

Rules: Since we do not have access to realistic data
center rule bases, we use ClassBench [35] to create 200K
synthetic rules each having 5 fields. ClassBench has been
shown to generates rules representative of real-world ac-
cess control.

VM IP address assignment: The IP address assigned
to a VM determines the number of rules the VM matches.
A random address assignment that is oblivious to the
rules generated in the previous set may cause most of the
traffic to match the default rule. Instead, we use a heuris-
tic – we first segment the IP range with the boundaries
of rules on the source and destination IP dimensions and
pick random IP addresses from randomly chosen ranges.
We test two arrangements: Random allocation which as-
signs these IPs randomly to servers and Range allocation
which assigns a block of IPs to each server so the IP ad-
dresses of VMs on a server are in the same range.

Flow generation: Following prior work, we use
a staggered traffic distribution (ToRP=0.5, PodP=0.3,
CoreP=0.2) [8]. We assume that each machine has an av-
erage of 1K flows that are uniformly distributed among
hosted VMs; this represents larger traffic than has been
reported [10], and allows us to stress vCRIB. For each
server, we select the source IP of a flow randomly from
the VMs hosted on that machine and select the destina-
tion IP from one of the target machines matching the traf-
fic distribution specified above. The protocol and port
fields of flows also affect the distribution of used rules.
The source port is wildcarded for ClassBench rules so we
pick that randomly. We pick the destination port based
on the protocol fields and the port distributions for differ-
ent protocols (This helps us cover more rules and do not
dwell on different port values for ICMP protocol.). Flow
sizes are selected from a Pareto distribution [10]. Since
CPU processing is impacted by newly arriving flows, we
marked a subset of these flows as new flows in order to
exercise the CPU resource constraint [10]. We run each
experiment multiple times with different random seeds
to get a stable mean and standard deviation.
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Figure 7: Traffic overhead and resource constraints tradeoffs

4.2 Resource Usage and Traffic Trade-off

The goal of vCRIB rule placement is to minimize the
traffic overhead given the resource constraints. To cali-
brate vCRIB’s performance, we compare it against Sour-
cePlacement, which stores the rules at the source hy-
pervisor. Our metric for the efficacy of vCRIB’s per-
formance is the ratio of traffic as a result of vCRIB’s
rule placement to the traffic incurred as a result of Sour-
cePlacement (regardless of whether SourcePlacement is
feasible or not). When all the servers have enough capac-
ity to process rules (i.e., SourcePlacement is feasible),
it incurs lowest traffic overhead; in these cases, vCRIB
automatically picks the same rule placement as Source-
Placement, so here we only evaluate cases that Source-
Placement is infeasible. We begin with memory resource
model at servers because of its simpler similarity model
and later compare it with CPU-constrained servers.

vCRIB uses similarity to find feasible solutions when
SourcePlacement is infeasible. With Range IP allo-
cation, partitions in the Source IP dimension which are
similar to each other are saved on one server, so the av-
erage load on machines is smaller for SourcePlacement.
However, there may still be a few overloaded machines
that result in an infeasible SourcePlacement. With Ran-
dom IP allocation, the partitions on a server have low
similarity and as a result the average load of machines
is larger and there are many overloaded ones. Having
the maximum load of machines above 5K in all runs for
both Range and Random cases, we set a capacity of 4K
for servers and 0 for switches (“4K 0” setting) to make
SourcePlacement infeasible. vCRIB could successfully
fit all the rules in the servers by leveraging the similarities
of partitions and balancing the rules. The power of lever-
aging similarity is evident when we observe that in the
Random case the average number of rules per machine
(4.2K) for SourcePlacement exceeds the server capacity,
yet vCRIB finds a feasible placement by saving similar
partitions on the same machine. Moreover, vCRIB finds
a feasible solution when we add switch capacity and uses
this capacity to optimize traffic (see below), yet Source-
Placement is unable to offload the load.

vCRIB finds a placement with low traffic overhead.
Figure 7(a) shows the traffic ratio between vCRIB and

SourcePlacement for the Range and Random cases with
error bars representing standard deviation for 10 runs.
For the Range IP assignment, vCRIB minimizes the traf-
fic overhead under 0.1%. The worst-case traffic over-
head for vCRIB is 21% when vCRIB cannot leverage
rule processing in switches to place rules and the VM IP
address allocation is random, an adversarial setting for
vCRIB. The reason is that in the Random case the ar-
rangement of the traffic sources is oblivious to the simi-
larity of partitions. So any feasible placement depending
on similarity puts partitions far from their sources and
incurs traffic overhead. When it is possible to process
rules on switches, vCRIB’s traffic overhead decreases
dramatically (6% (3%) for 4K (6K) rule capacity in in-
ternal switches); in these cases, to meet resource con-
straints, vCRIB places partitions on ToR switches on the
path of traffic, incurring minimal overhead. As an aside,
these results illustrate the potential for using vCRIB’s al-
gorithms for provisioning: a data center operator might
decide when, and how much, to add switch rule process-
ing resources by exploring the trade-off between traffic
and resource usage.

vCRIB can also optimize placement given CPU con-
straints. We now consider the case where servers
may be constrained by CPU allocated for rule process-
ing (Figure 7(b)). We vary the CPU budget allocated to
rule processing (10%, 20%, 40%) in combination with
zero, 4K or 6K memory at switches. For example in case
“40 0” (i.e., each server has 40% CPU budget, but there
is no capacity at switches), SourcePlacement results in
an infeasible solution, since the highest CPU usage is
56% for range IP allocation and 42% for random IP al-
location. In contrast, vCRIB can find feasible solutions
in all the cases except “10 0” case. When we have only
10% CPU budget at servers, vCRIB needs some mem-
ory space at the switches (e.g., 4K rules) to find a fea-
sible solution. With a 20% CPU budget, vCRIB can
find a feasible solution even without any switch capacity
(“20 0”). With higher CPU budgets, or with additional
switch memory, vCRIB’s traffic overhead becomes neg-
ligible. Thus, vCRIB can effectively manage heteroge-
neous resource constraints and find low traffic-overhead
placement in these settings. Unlike with memory con-
straints, Range IP assignment with CPU constraints does
not have a lower average load on servers for Source-
Placement, nor does it have a feasible solution with lower
traffic overhead, since with the CPU resource usage func-
tion closer partitions in the source IP dimension are no
longer the most similar.

4.3 Resource Usage and Traffic Spatial Distribution

We now study how resource usage and traffic overhead
are spatially distributed across a data center for the Ran-
dom case.
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(a) Traffic overhead for different rules
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Figure 8: Spatial distribution of traffic and resource usage

vCRIB is effective in leveraging on-path and nearby
devices. Figure 8(a) shows the case where servers
have a capacity of 4K and switches have none. We clas-
sify the rules into deny rules, accept rules whose traf-
fic stays within the rack (labelled as “ToR”), within the
Pod (“Pod”), or goes through the core routers (“Core”).
In general, vCRIB may redirect traffic to other loca-
tions away from the original paths, causing traffic over-
head. We thus classify the traffic overhead based on the
hops the traffic incurs, and then normalize the overhead
based on the traffic volume in the SourcePlacement ap-
proach. Adding the percentage of traffic that is handled
in the same rack of the source for deny traffic (8.8%) and
source or destination for accept traffic (1.8% ToR, 2.2%
POD, and 1.6% Core), shows that out of 21% traffic over-
head, about 14.4% is handled in nearby servers.

Most traffic overhead vCRIB introduces is within the
rack. Figure 8(b) classifies the locations of the ex-
tra traffic vCRIB introduces. vCRIB does not require
additional bandwidth resources at the core links; this is
advantageous, since core links can limit bisection band-
width. In part, this can be explained by the fact that only
20% of our traffic traverses core links. However, it can
also be explained by the fact that vCRIB places parti-
tions only on ToRs or servers close to the source or des-
tination. For example, in the “4K 0” case, there is 29%
traffic overhead in the rack, 11% in the Pod and 2% in
the core routers, and based on Figure 8(c) all partitions
are saved on servers. However, if we add 4K capacity to
internal switches, vCRIB will offload some partitions to
switches close to the traffic path to lower the traffic over-
head. In this case, for accept rules, the ToR switch is on
the path of traffic and does not increase traffic overhead.
Note that the servers are always full as they are the best
place for saving partitions.

4.4 Parameter Sensitivity Analysis

The IP assignment method, traffic locality and rules in
partitions can affect vCRIB performance in finding a fea-
sible solution with low traffic. Our previous evaluations
have explored uniform IP assignment for two extreme
cases Range and Random above. We have also evaluated
a skewed distribution of the number of IPs/VMs per ma-

chine but have not seen major changes in the traffic over-
head. In this case, vCRIB was still able to find a nearby
machine with lower load. We also conducted another
experiment with different traffic locality patterns, which
showed that having more non-local flows gives vCRIB
more choices to offload rule processing and reach feasi-
ble solutions with lower traffic overhead. Finally, exper-
iments on FFDS performance for different machine ca-
pacities [27] also validates its superior performance com-
paring to the tree-based placement [33]. Beyond these
kinds of analyses, we have also explored the parameter
space of similarity and partition size, which we discuss
next.
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Figure 9: vCRIB working region and ruleset properties

vCRIB uses similarity to accommodate larger parti-
tions. We have explored two properties of the rules in
partitions by changing the ruleset. In Figure 9, we de-
fine a two dimensional space: one dimension measures
the average similarity between partitions and the other
the average size of partitions. Intuitively, the size of par-
titions is a measure of the difficulty in finding a feasible
solution and similarity is the property of a ruleset that
vCRIB exploits to find solutions. To generate this fig-
ure, we start from an infeasible setting for SourcePlace-
ment with a maximum of 5.7K rules for “4k 0” setting
and then change the ruleset without changing the load on
the maximum loaded server. We then explore the two
dimensions as follows. Starting from the ClassBench
ruleset and Range IP assignment, we split rules into half
in the source IP dimension to decrease similarity with-
out changing partition sizes. To increase similarity, we
extend a rule in source IP dimension and remove rules
in the extended area to maintain the same partition size.

10
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Adding or removing rules matching only one VM (micro
rules), also help us change average partitions size with-
out changing the similarity. Unfortunately, removing just
micro rules is not enough to explore the entire range of
partition sizes, so we also remove rules randomly.

Figure 9(a) presents the feasibility region for vCRIB
regardless of traffic overhead. Since average similarity
cannot be more than the average partition size, the in-
teresting part of the space is below the 45◦. Note that
vCRIB is able to cover a large part of the space. More-
over, the shape of the feasibility region shows that for
a fixed average partition size, vCRIB works better for
partitions with larger similarity. This means that to han-
dle larger partitions, vCRIB needs more similarity be-
tween partitions; however, this relation is not linear since
vCRIB may not be able to utilize the available similarity
given limits on server capacity. When considering only
solutions with less than 10% traffic overhead, vCRIB’s
feasibility region (Figure 9(b)) is only slightly smaller.
This figure demonstrates vCRIB’s utility: for a small
additional traffic overhead, vCRIB can find many ad-
ditional operating points in a data center that, in many
cases, might have otherwise been infeasible.

We also tried a different method for exploring the
space, by tuning the IP selection method on a fixed rule-
set, and obtained qualitatively similar results [27].

4.5 Reaction to Cloud Dynamics

Figure 10 compares benefit-greedy (with timeout 10
seconds) with overhead-greedy and a randomized algo-
rithm7 after a single VM migration for the 4K 0 case.
Each point in Figure 10 shows a step in which one parti-
tion is moved, and the horizontal axis is time in log scale.
At time A, we migrate a VM from its current server Sold
to a new one Snew, but Snew does not have any space for
the partition of the VM, P. As a result, P remains on
Sold and the traffic overhead increases by 40MBps. Both
benefit-greedy and overhead-greedy move the partition
P for the migrated VM to a server in the rack containing
Snew at time B and reduce traffic by 20Mbps. At time B,
benefit-greedy brings out two partitions from their cur-
rent host Snew to free up the memory for P while impos-
ing a little traffic overhead. At time C, benefit-greedy
moves P to Snew and reduces traffic further by 15Mbps.
The entire process takes only 5 seconds. In contrast, the
randomized algorithm takes 100 seconds to find the right
partitions and thus is not useful with these dynamics.

We then run multiple VM migrations to study the av-
erage behavior of benefit-greedy with 5 and 10 seconds
timeout. In each 20 seconds interval, we randomly pick
a VM and move it to another random server. Our sim-
ulations last for 30 minutes. The trend of data cen-

7Markov Approximation [20] with target switch selection probabil-
ity ∝ exp(traffic reduction of migration step)
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Figure 10: Traffic refinement for one VM migration

ter traffic in Figure 11 shows that benefit-greedy main-
tains traffic levels, while overhead-greedy is unable to
do so. Over time, benefit-greedy (both configurations)
reduces the average traffic overhead around 34 MBps,
while overhead-greedy algorithm increases the overhead
by 117.3 MBps. Besides, this difference increases as the
interval between two VM migration increases.
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Figure 11: The trend of traffic during multiple VM migration

4.6 Prototype Evaluation

We built vCRIB prototype using Open vSwitch [4] as
servers and switches, and POX [1] as the platform for
vCRIB controller for micro-benchmarking.

Overhead of collecting traffic information: In our
prototype, we send traffic information collected from
each server’s Open vSwitch kernel module to the con-
troller. Each piece of information requires 13 Bytes for
5 tuples8 and 2 Bytes for the traffic change volume.

Since we only need to detect traffic changes at the rule-
level, we can more aggressively filter the traffic infor-
mation than traditional traffic engineering solutions [11].
The vCRIB controller sets a threshold δ (F) for traffic
changes of a set of flows F and sends the threshold to
the servers. The servers then only report traffic changes
above δ (F). We set the threshold δ for two different
granularities of flow sets F . A larger set F makes vCRIB
less sensitive to individual flow changes and leads to less
reporting overhead but incurs less accuracy. (1) We set
F as the volume each rule for each destination server in

8Some rules may have more packet header fields and thus require
more bytes. In this cases, we can compress these information using
fingerprints to reduce the overhead.
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each per-source partition. (2) We assume all the rules in
a partition have accept actions (as the worst case for traf-
fic). Thus, the vCRIB controller sets the threshold that
affects the size of traffic to each destination server for
each per-source partition (summing up all the rules). If
there are 20 flow changes above the threshold, we need
to send 260B/s per server, which means 20Mbps for 10K
servers in the data center. For VM migrations and rule
insertion/deletion, the vCRIB controller can be notified
directly by the the data center management system.

Controller overhead: We measure the delay of pro-
cessing 200K ClassBench rules. Initially, the vCRIB
controller partitions these rules, runs the resource-aware
placement algorithm and the traffic-aware refinement to
derive an initial placement; this takes up to five minutes.
However, these recomputations are triggered only when
a placement becomes infeasible; this can happen after a
long sequence of rule changes or VM add/remove.

The traffic overhead of rule installation and removal
depends on the number of refinement steps and the num-
ber of rules per partition. The size of OpenFlow com-
mand for a rule entry is 100 Bytes, so if a partition
has 1K rules, the overhead of removing it from one
device and installing at another device is 200KB. For
each VM migration, which needs an average of 11 par-
titions, the bandwidth overhead of moving the rules is
11×200KB=2.2MB.

Reaction to cloud dynamics: We evaluate the latency
of handling traffic changes by deploying our prototype in
a topology with five switches and six servers as shown in
Figure 1. We deploy a vCRIB controller that connects
with all the devices with an RTT of 20 ms. We set the
capacity of each server/switch as large enough to store at
most one partition. We then inject a traffic change pattern
that causes vCRIB to swap two partitions and add a redi-
rection rule at a VM. It takes vCRIB 30ms to detect the
traffic changes, and move the rules to the new locations.

5 Related Work
Our work is inspired by several different strands of re-
search, each of which we cover briefly.

Policies and rules in the cloud: Recent proposals
for new policies often propose customized systems to
manage rules on either hypervisors [4, 13, 32, 30]) or
switches [3, 8, 29]. vCRIB proposes an abstraction of
a centralized rule repository for all the policies, frees
these systems from the complexity inherent in the rule
management, and handles heterogeneous resource con-
straints at devices while minimizing the traffic overhead.

Rule management in software-defined networks
(SDNs): Recent work on SDNs provides rule reposi-
tory abstractions and some rule management capabili-

ties [12, 23, 38, 13]. vCRIB focuses on data centers,
which are more dynamic, more sensitive to traffic over-
head, and face heterogeneous resource constraints.

Distributed firewall: Distributed firewalls [9, 19], of-
ten used in enterprises, leverage a centralized manager
to deploy security policies on edge machines. vCRIB
manages more fine-grained rules on flows and VMs for
various policies including firewalls in the cloud. Rather
than placing these rules at the edge, vCRIB places these
rules taking into account the rule processing constraints,
while minimizing traffic overhead.

Rule partition and placement solutions: The problem
of partitioning and placing multi-dimensional data at dif-
ferent locations also appears in other contexts. Unlike
traditional partitioning algorithms [36, 34, 16, 25, 24]
which divide rules into partitions using a top-down ap-
proach, vCRIB uses per-source partitions to place the
partitions close to the source with low traffic overhead.
Compared with DIFANE [38], which randomly places
a single partition of rules at each switch, vCRIB takes
the partitions-with-replication approach to flexibly place
multiple per-source partitions at one device. In prelim-
inary work [26], we proposed an offline placement so-
lution which works only for the TCAM resource model.
The paper has a top-down heuristic partition-with-split
algorithm which cannot limit the overhead of redirec-
tion rules and is not optimized for CPU-based resource
model. Besides, having partitions with traffic from mul-
tiple sources requires complicated partition replication to
minimize traffic overhead. In contrast, vCRIB uses fast
per-source partition-with-replication algorithm which re-
duces TCAM-usage by leveraging similarity of partitions
and restricts the resource usage of redirection by using
limited number of equal shaped redirection rules. Our
preliminary work used an unscalable DFS branch-and-
bound approach to find a feasible solution and optimized
the traffic in one step. vCRIB scales better using a two-
phase solution where the first phase has an approxima-
tion bound in finding a feasible solution and the second
can be run separately when the placement is still feasible.

6 Conclusion
vCRIB, is a system for automatically managing the fine-
grained rules for various management policies in data
centers. It jointly optimizes resource usage at both
switches and hypervisors while minimizing traffic over-
head and quickly adapts to cloud dynamics such as traffic
changes and VM migrations. We have validated its de-
sign using simulations for large ClassBench rulesets and
evaluation on a vCRIB prototype built on Open vSwitch.
Our results show that vCRIB can find feasible place-
ments in most cases with very low additional traffic over-
head, and its algorithms react quickly to dynamics.
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Abstract

The emerging ecosystem of cloud applications leads to
significant inter-tenant communication across a datacen-
ter’s internal network. This poses new challenges for
cloud network sharing. Richer inter-tenant traffic pat-
terns make it hard to offer minimum bandwidth guaran-
tees to tenants. Further, for communication between eco-
nomically distinct entities, it is not clear whose payment
should dictate the network allocation.

Motivated by this, we study how a cloud network
that carries both intra- and inter-tenant traffic should be
shared. We argue for network allocations to be dictated
by the least-paying of communication partners. This,
when combined with careful VM placement, achieves
the complementary goals of providing tenants with mini-
mum bandwidth guarantees while bounding their max-
imum network impact. Through a prototype deploy-
ment and large-scale simulations, we show that mini-
mum bandwidth guarantees, apart from helping tenants
achieve predictable performance, also improve overall
datacenter throughput. Further, bounding a tenant’s max-
imum impact mitigates malicious behavior.

1 Introduction

As cloud platforms mature, applications running in cloud
datacenters increasingly use other cloud-based applica-
tions and services. Some of these services are offered
by the cloud provider; for instance, Amazon EC2 offers
services like S3, EBS, DynamoDB, RDS, SQS, Cloud-
Search, etc. that tenants can use as application building
blocks [1]. Other services like CloudArray and Alfresco
are run by tenants themselves [2]. The resulting ecosys-
tem of applications and services means that, apart from
communication between virtual machines of the same
tenant, there is an increasing amount of tenant-tenant and
tenant-provider communication [3]. Indeed, examining
several datacenters of a major cloud provider, we find

that such inter-tenant traffic can amount up to 35% of
the total datacenter traffic. Looking ahead, we expect this
ecosystem to become richer, further diversifying network
traffic in the cloud.

The increasing importance and diversity of network
traffic in cloud datacenters is at odds with today’s
cloud platforms. While tenants can rent virtual machines
(VMs) with dedicated cores and memory, the underly-
ing network is shared. Consequently, tenants experience
variable and unpredictable network performance [4–6]
which, in turn, impacts both application performance and
tenant costs [5,7,8]. To tackle this, many network shar-
ing policies have been proposed [9–14]. In recent work,
FairCloud [14] presented a set of requirements for net-
work sharing: i). associate VMs with minimum band-
width guarantees, ii). ensure high network utilization,
and iii). divide network resources in proportion to tenant
payments. However, the proposals above focus only on
intra-tenant communication, and naively extending these
requirements to inter-tenant settings is problematic.

Inter-tenant traffic changes the network sharing prob-
lem both quantitatively and qualitatively, and leads to
two main challenges. First, offering (non-trivial) min-
imum bandwidth guarantees for inter-tenant traffic is
harder as the set of VMs that can possibly communi-
cate with each other is significantly larger. Second, traf-
fic flowing between distinct economic entities begs the
question– whose payment should the bandwidth alloca-
tion be proportional to? Extending intra-tenant propor-
tionality [14] to inter-tenant scenarios entails that band-
width should be allocated in proportion to the combined
payment of communicating partners. However, this is in-
adequate as tenants can increase their network allocation,
beyond what their payment dictates, by communicating
with more VMs of other tenants. Thus, the challenge is
how to achieve proportional yet robust network sharing
in inter-tenant scenarios.

Motivated by these challenges, we revisit the require-
ments for sharing a cloud network. To address the first
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challenge of providing minimum bandwidth guarantees,
we propose relaxing the semantics of the guarantees of-
fered. For example, instead of targeting arbitrary com-
munication patterns, a VM is only guaranteed bandwidth
for intra-tenant traffic and for traffic to tenants it de-
pends upon. Such communication dependencies could
be explicitly declared or inferred. To address the second
challenge, we identify a new network sharing require-
ment, upper-bound proportionality, which requires that
the maximum bandwidth a tenant can acquire is in pro-
portion to its payment. This mitigates aggressive tenant
behavior and ensures robust network sharing. We show
this requirement can be met by allocating bandwidth to
flows in proportion to the least-paying communication
partner. We call this “Hose-compliant” allocation.

To illustrate these ideas, we design Hadrian, a network
sharing framework for multi-tenant datacenters. With
Hadrian, VMs are associated with a minimum band-
width. This minimum guarantee and tenant dependencies
guide the placement of VMs across the datacenter. Net-
work bandwidth is allocated using the hose-compliant al-
location policy. This, when combined with careful VM
placement, achieves the complementary goals of provid-
ing tenants with minimum bandwidth while achieving
upper-bound proportionality.

As a proof of concept, we have implemented a Hadrian
prototype comprising an end-host and a switch compo-
nent. Through testbed deployment and cross-validated
simulation experiments, we show that Hadrian benefits
both tenants and providers. Minimum VM bandwidth
yields predictable and better network performance for
tenants (at the 95th percentile, flows finish 3.6x faster).
For the provider, such guarantees improve datacenter
throughput up to 20% by avoiding outliers with very poor
network performance. Thus, providers can offer an im-
proved service at a lower price while remaining revenue
neutral.

Overall, our main contributions are–

• We provide evidence of the prevalence of inter-tenant
traffic through measurements from eight datacenters
of a major public cloud provider.

• We present a new definition of payment proportional-
ity that ensures robust network sharing in inter-tenant
scenarios. We also devise a bandwidth allocation pol-
icy that meets this proportionality.

• We present relaxed bandwidth guarantee semantics to
improve the multiplexing a provider is able to achieve.
Further, we design a novel VM placement algorithm
that uses a max-flow network formulation to satisfy
such guarantees.

• To illustrate the feasibility of the mechanisms above,
we present the design and implementation of Hadrian.
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Figure 1: Inter-tenant traffic, as a % of the datacen-
ter’s total traffic, for eight production datacenters.

2 Motivation and challenges

With Infrastructure-as-a-Service, tenants rent VMs with
varying amount of CPU, memory and storage, and pay
a fixed flat rate per-hour for each VM [15,16]. However,
the cloud’s internal network is shared amongst the ten-
ants. The cloud network carries external traffic to and
from the Internet, intra-tenant traffic between a tenant’s
VMs and inter-tenant traffic. The latter includes traffic
between different customer tenants, and between cus-
tomer tenants and provider services. In the rest of this
paper, we use the term “tenant” to refer to both customer
tenants and provider services.

In this section, we show the prevalence of inter-tenant
traffic in datacenters, and use this to drive our design.

2.1 Inter-tenant communication
Today’s cloud providers offer many services that ten-
ants can use to compose their cloud applications. For ex-
ample, Amazon AWS offers sixteen services that result
in network traffic between tenant VMs and service in-
stances [1]. These services provide diverse functionality,
ranging from storage to load-balancing and monitoring.
Over a hundred cloud applications using such services
are listed here [17]. Beyond provider services, many ten-
ants run cloud applications that provide services to other
tenants. AWS marketplace [2] lists many such tenant ser-
vices, ranging from web analytics to identity and content
management. These result in tenant-tenant traffic too.
Chatty tenants. To quantify the prevalence of inter-
tenant traffic in today’s datacenters, we analyze aggre-
gate traffic data collected from eight geographically dis-
tributed datacenters operated by a major public cloud
provider. Each datacenter has thousands of physical
servers and tens of thousands of customer VMs. The
data was collected from August 1-7, 2012 and includes
all traffic between customer VMs. This does not include
traffic to and from provider services. The total volume
of such traffic in each datacenter was a few hundred
terabytes to a few petabytes. Figure 1 shows that the
percentage of inter-tenant traffic varies from 9 to 35%.
When external traffic to or from the Internet is excluded,
inter-tenant traffic varies from 10 to 40%.

We also studied traffic between customer tenants and
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a specific provider service, the storage service. Since the
local disk on a VM only provides ephemeral storage, for
persistent storage, all tenants rely on the storage service
which needs to be accessed across the network. The re-
sulting network traffic is inter-tenant too. By analyzing
application-level logs of the storage service, we found
that read and write traffic for the storage service is, on
average, equal to 36% and 70% of the total traffic be-
tween customer VMs respectively.

We complement these public cloud statistics with data
from a private cloud with ∼300 servers. This represents
a mid-size enterprise datacenter. The servers run over a
hundred applications and production services, most serv-
ing external users. In summary, we find that 20% of the
servers are involved in inter-tenant communication. For
these servers, the fraction of inter-tenant to total flows
is 6% at the median and 20% at the 95th percentile with
a maximum of 56% (3% at the median and 10% at the
95th percentile in terms of volume). A tenant communi-
cates with two other tenants in the median case and six at
the 95th percentile. Further, this inter-tenant traffic is not
sporadic as it is present even at fine timescales.

Overall we find that tenants are indeed chatty with a
significant fraction of traffic between tenants.

Impact of network performance variability. Sev-
eral studies have commented on variable network perfor-
mance in datacenters [4–6]. This impacts both provider
and tenant services. For example, the performance of the
cloud storage service varies both over time and across
datacenters [18,19]. Any of the resources involved can
cause this: processing on VMs, processing or disks at the
storage tier, or the cloud network. For large reads and
writes, the network is often the bottleneck resource. For
example, Ghosal et al. [18] observed a performance vari-
ability of >2x when accessing Amazon EBS from large
VMs (and far greater variability for small VMs), a lot of
which can be attributed to cloud network contention.

In summary, these findings highlight the significance
of inter-tenant traffic in today’s datacenters. As cloud ser-
vice marketplaces grow, we expect an even richer ecosys-
tem of inter-tenant relationships. Offering service-level
agreements in such settings requires network guarantees
for inter-tenant communication.

2.2 Cloud network sharing
The distributed nature of the cloud network makes it
tricky to apportion network bandwidth fairly amongst
tenants. Today, network bandwidth is allocated through
end host mechanisms such as TCP congestion control
which ensure per-connection fairness. This has a number
of drawbacks. For instance, misbehaving tenants can un-
fairly improve their network performance by using mul-
tiple TCP connections [12] or simply using UDP. Conse-
quently, the cloud network sharing problem has received

a lot of attention [9–14]. This section describes how
inter-tenant traffic adds a new dimension to this problem.

2.2.1 Network sharing requirements

We first discuss how a cloud network carrying only intra-
tenant traffic should be shared. FairCloud [14] presented
the following broad set of requirements for fairly sharing
the cloud network with a focus on intra-tenant traffic.
(1). Min-Guarantee: Each VM should be guaranteed
a minimum bandwidth. This allows tenants to estimate
worst-case performance and cost for their applications.
(2). High Utilization: Cloud datacenters multiplex phys-
ical resources across tenants to amortize costs and the
same should hold for the network. So, spare network
resources should be allocated to tenants with demand
(work conservation). Further, tenants should be incen-
tivised to use spare resources.
(3). Proportionality: Just like CPU and memory, the net-
work bandwidth allocated to a tenant should be propor-
tional to its payment.

However, inter-tenant traffic has important implica-
tions for these sharing requirements. As explained below,
such traffic makes it harder to offer minimum bandwidth
guarantees and necessitates a different kind of propor-
tionality. Overall, we embrace the first and second re-
quirements, and propose a new proportionality require-
ment suitable for inter-tenant settings.

2.2.2 Implications of inter-tenant traffic

Min-guarantee. Guaranteeing the minimum bandwidth
for a VM requires ensuring sufficient capacity on all net-
work links the VM’s traffic can traverse. For intra-tenant
traffic, this is the set of network links connecting a ten-
ant’s VMs. However, for inter-tenant traffic, the set ex-
pands to network links between VMs of all tenants that
may communicate with each other. If we assume no in-
formation about a tenant’s communication partners, the
minimum bandwidth for each VM needs to be carved on
all network links, and is thus strictly limited by the ca-
pacity of the underlying physical network. For instance,
consider a datacenter with a typical three-tier tree topol-
ogy with a 1:4 oversubscription at each tier (i.e., core
links are oversubscribed by 1:64). If each physical server
has 4 VMs and 1 Gbps NICs, such naive provisioning
would provide each VM with a minimum guarantee of a
mere 4 Mbps (≈ 1000/(4*64))! Hence, richer traffic pat-
terns resulting from inter-tenant communication make it
harder to guarantee minimum bandwidth for VMs.

Payment proportionality. Defining payment propor-
tionality for inter-tenant settings is tricky. Since traf-
fic can flow between different tenants, a key question
is whose payment should dictate the bandwidth it gets.
Intra-tenant proportionality requires that a tenant be allo-
cated bandwidth in proportion to its payment. A simple
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p1

q1

r1

r2
r3
r4

Network 
link

(a)

Allocation P Q R
per-flow 250 750 1000

per-src (→) 500 500 1000
per-src (←) 250 750 1000

PS-L 333 666 1000
PS-P 250 750 1000

(b)

Figure 2: Inter-tenant traffic: Tenants P, Q and R
have one (p1), one (q1) and four VMs respectively.

extension to inter-tenant settings entails that if a set of
tenants are communicating with each other, their com-
bined bandwidth allocation should be proportional to
their combined payment. Assuming tenants pay a fixed
uniform price for each VM, this means that a tenant’s
bandwidth should be in proportion to the total number of
VMs involved in its communication (its own VMs and
VMs of other tenants too).

As an example, consider the inter-tenant scenario
shown in Figure 2. Since the traffic for tenants P and
Q involves 2 and 4 VMs respectively, such proportional-
ity requires that tenant Q’s bandwidth be twice that of P,
i.e., BQ

BP
= 4

2 . Similarly, BR
BP

= 6
2 and BR

BQ
= 6

4 . Further, the
high utilization requirement entails that the link’s capac-
ity (1000 Mbps) should be fully utilized, i.e., BP +BQ =
BR = 1000. An allocation where BP = 333, BQ = 666 and
BR = 1000 satisfies these requirements.

While past proposals for network sharing have all fo-
cused on intra-tenant traffic, we consider how they would
fare in this inter-tenant scenario. Figure 2b shows the
bandwidth for tenants P, Q and R with different allo-
cation strategies. Per-flow allocation ensures each flow
gets an equal rate. Here, “flow” refers to the set of con-
nections between a given pair of VMs. Hence tenant P,
with its one flow, gets a quarter of the link’s capacity,
i.e., BP = 250. Per-source allocation [12] gives an equal
rate to each source, so the bandwidth allocated depends
on the direction of traffic. PS-L and PS-P are allocation
strategies that assign bandwidth in a weighted fashion
with carefully devised weights for individual flows [14].
As the table shows, only PS-L, which was designed
to achieve intra-tenant proportionality, satisfies the ex-
tended proportionality definition too.

However, such proportionality means that a tenant can
acquire a disproportionate network share by communi-
cating with more VMs of other tenants. For example, in
Figure 2b, all approaches result in a higher bandwidth for
tenant Q than P because Q is communicating with more
VMs, even though both P and Q pay for a single VM and
are using the same service R. Q could be doing this mali-
ciously or just because its workload involves more com-
munication partners. Further, Q can increase its share of
the link’s bandwidth by communicating with even more
VMs. This key property leads to two problems. First, this
makes it infeasible to guarantee a minimum bandwidth

for any VM. In effect, such proportionality is incompat-
ible with the min-guarantee requirement. Second, it al-
lows for network abuse. An aggressive tenant with even
a single VM can, simply by generating traffic to VMs
of other tenants, degrade the performance for any ten-
ants using common network links. The presence of many
cloud services that are open to all tenants makes this a
real possibility.

The root cause for these problems is that, with current
network sharing approaches in inter-tenant settings, there
is no limit on the fraction of a link’s bandwidth a VM can
legitimately acquire. To avoid such unbounded impact,
we propose a new network sharing requirement.
Requirement 3. Upper bound proportionality: The
maximum bandwidth each tenant and each VM can ac-
quire should be a function of their payment. Further, this
upper bound should be independent of the VM’s com-
munication patterns. Later we show that, apart from mit-
igating tenant misbehavior, this new proportionality defi-
nition is compatible with the min-guarantee requirement.
It actually facilitates offering minimum VM bandwidth.

3 Revisiting network sharing
Guided by the observations above, we study how a cloud
network that carries both intra- and inter-tenant traffic
should be shared. The sharing should meet three require-
ments: (i). Minimum bandwidth guarantees, (ii). High
Utilization, and (iii). Upper bound proportionality.

3.1 Minimum bandwidth guarantee
The cloud provider may allow tenants to specify the min-
imum bandwidth for individual VMs. So each VM p
is associated with a minimum bandwidth Bmin

p . Alterna-
tively, the provider may offer a set of VM classes with
varying guarantees (small, medium, and large, as is done
for other resources today). In either case, a VM’s mini-
mum guarantee should dictate its price.

Like past proposals [10,11,14,20,21], we use the hose
model to capture the semantics of the bandwidth guaran-
tees being offered. As shown in Figure 3, with this model
a tenant can imagine each of its VMs is connected to an
imaginary, non-blocking switch by a link whose capacity
is equal to the VM’s minimum bandwidth. For simplicity,
we assume all VMs for a tenant have the same minimum
bandwidth.

However, as described in §2.2.2, richer inter-tenant
communication patterns severely limit that the provider’s
ability to accommodate many concurrent tenants with
minimum bandwidth guarantees atop today’s oversub-
scribed networks. We show this in our experiments too.
To better balance the competing needs of tenants and
providers, we propose relaxing the bandwidth guaran-
tees offered to tenants; they should be reasonable for ten-
ants yet provider friendly. To achieve this, we rely on: i).
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Switch

Tenant P VMs Tenant Q VMs Tenant R VMs

BP
min BP

min BQ
min BQ

min BR
min BR

min

Flow’s rate in hose model = min(BP
min, BQ

min)

VM qVM p

Figure 3: Hose model with three tenants.

communication dependencies, and ii). hierarchical guar-
antees. We elaborate on these below.

3.1.1 Communication dependencies

Allowing arbitrary VMs to communicate under guar-
anteed performance is impractical. Instead, our guaran-
tees apply only for “expected” communication. To this
end, we rely on communication dependencies. A tenant’s
communication dependency is a list of other tenants or
peers that the tenant expects to communicate with. Ex-
amples of such dependencies include: i) P: {Q}, ii) Q:
{P, R}, iii) R: {*}.

The first dependency is declared by tenant P and im-
plies that VMs of P, apart from sending traffic to each
other, should be able to communicate with VMs of tenant
Q. The second dependency is for Q and declares its peer-
ing with tenants P and R. Since a tenant running a service
may not know its peers a priori, we allow for wildcard de-
pendencies. Thus, the last dependency implies that ten-
ant R is a service tenant and can communicate with any
tenant that explicitly declares a peering with R (in this
example, tenant Q). Note however that since P has not
declared a peering with R, communication between VMs
of P and R is not allowed.

The provider can use these dependencies to determine
what inter-tenant communication is allowed and is thus
better positioned to offer bandwidth guarantees to ten-
ants. In the example above, the communication allowed
is P ↔ Q and Q ↔ R. An additional benefit is that this
makes the cloud network “default-off” [22] since traffic
can only flow between a pair of tenants if both have de-
clared a peering with each other. This is in contrast to the
“default-on” nature of today’s cloud network.

We admit that discovering communication dependen-
cies is challenging. While tenants could be expected to
declare their dependencies when asking for VMs, a better
option may be to infer them automatically. For example,
today tenants need to sign up for provider services, so
such tenant-provider dependencies are known trivially.
The same mechanism could be extended for third-party
services.

3.1.2 Hierarchical guarantees

With the hose model, each VM gets a minimum guar-
antee for all its traffic, irrespective of whether the traf-

Switch

BP
min BP

min BQ
min BQ

min BR
min BR

min

Tenant P VMs Tenant Q VMs Tenant R VMs

Inter-tenant Switch

SwitchSwitch

BP
inter BQ

inter BR
inter

Figure 4: Hierarchical hose model gives per-VM min-
imum bandwidth for intra-tenant traffic and per-
tenant minimum for inter-tenant traffic.

fic is destined to the same tenant or not. However, when
accessing other tenants and services, tenants may find it
easier to reason about an aggregate guarantee for all their
VMs. Further, typical cloud applications involve more
communication between VMs of the same tenant than
across tenants. This was observed in our traces too. To
account for these, we introduce hierarchical guarantees.
Figure 4 shows the hierarchical hose model that captures
such guarantees. Each VM for tenant P is guaranteed a
bandwidth no less than Bmin

P for traffic to P’s VMs. Be-
yond this, the tenant also gets a minimum bandwidth
guarantee for its aggregate inter-tenant traffic, Binter

P .

Putting these modifications together, we propose offering
tenants hose-style guarantees combined with communi-
cation dependencies and hierarchy. Hence, a tenant re-
questing V VMs is characterized by the four tuple <V,
Bmin, Binter, dependencies>.1 We show in §5.1 how this
allows the provider to achieve good multiplexing while
still offering minimum bandwidth to tenants.

3.2 Upper bound proportionality
Upper bound proportionality seeks to tie the maximum
bandwidth a tenant can acquire to its payment. The same
applies for individual VMs. Since a VM’s minimum
bandwidth dictates its price, it can be used as a proxy
for payment. Thus, such proportionality requires that the
upper bound on the aggregate bandwidth allocated to a
VM should be a function of its minimum bandwidth. In
this section, we describe a bandwidth allocation policy
that achieves such proportionality.

3.2.1 Hose-compliant bandwidth allocation

Allocating bandwidth to flows in proportion to the com-
bined payment of communicating partners results in ten-
ants being able to get a disproportionate share of the net-
work. To avoid this, we argue for bandwidth to be al-
located in proportion to the least paying of communica-
tion partners. In other words, the bandwidth allocated to
a flow should be limited by both source and destination

1Typically Binter < V∗Bmin. If Binter = V∗Bmin, no hierarchy is used
and VMs simply get the same minimum bandwidth for all their traffic.
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payment. For example, consider a flow between VMs p
and q belonging to tenants P and Q. The minimum band-
width for these VMs is Bmin

P and Bmin
Q , and they have a

total of Np and Nq flows respectively. Note that Bmin
P re-

flects the payment for VM p. Assuming a VM’s payment
is distributed evenly amongst its flows, p’s payment for
the p–q flow is Bmin

P /Np. Similarly, q’s payment for the
flow is Bmin

Q /Nq. Hence, this allocation policy says the
flow should be allocated bandwidth in proportion to the

smaller of these values, i.e., min( Bmin
P

Np
,

Bmin
Q
Nq

).2

To achieve this, we assign appropriate weights to flows
and allocate them network bandwidth based on weighted
max-min fairness. So the bandwidth for a flow between
VMs p and q, as determined by the bottleneck link along
its path, is given by

Bp,q =
wp,q

wT
∗C, where wp,q = min(

Bmin
P

Np
,

Bmin
Q

Nq
) (1)

Here, wp,q is the weight for this flow, C is the capacity of
the bottleneck link and wT is the sum of the weights for
all flows across the link. Note that the weight for a flow
is equal to the rate the flow would achieve on the hose
model. Hence, we call this allocation “Hose-compliant”.

Below we discuss how hose-compliance leads to upper
bound proportionality and can also meet the other two
network sharing requirements.
Req 3. Upper-bound Proportionality. Hose-compliant
bandwidth allocation satisfies upper bound proportional-
ity. The intuition here is that since the weight for each
flow is limited by both the source and destination pay-
ments, the aggregate weight for a VM’s flows and hence,
its aggregate bandwidth has an upper bound. Formally,
the aggregate weight for a VM p’s flows–

waggregate
p = ∑

q∈dst(p)
wp,q = ∑

q
min(

Bmin
P

Np
,

Bmin
Q

Nq
)

⇒ waggregate
p ≤ ∑

q

Bmin
P

Np
=

Bmin
P

Np
∗Np = Bmin

P (2)

So the aggregate weight for a VM’s flows cannot ex-
ceed its minimum bandwidth. This aggregate weight, in
turn, dictates the VM’s aggregate bandwidth. This means
that a tenant cannot acquire bandwidth disproportionate
to its payment. More precisely, this yields the following
constraint for a VM’s total bandwidth on any link–

Bp = ∑
q∈dst(p)

wp,q

wT
∗C =

waggregate
p

wT
∗C ≤ Bmin

P

Bmin
P +wT ′

∗C

where Bp is the total bandwidth for VM p on the link,
wT ′ is the sum of weights for all non-p flows and C is

2A VM may favor some flows over others and choose to distribute
its payment unevenly across its flows. This can be used by service
providers to offer differentiated services to their clients. The allocation
policy can accommodate such scenarios.

the link capacity. Hence, hose-compliant allocation re-
sults in an upper bound for a VM’s bandwidth on any
link. This upper bound depends on the VM’s minimum
bandwidth (and hence, its payment).

To understand this, let’s revisit the inter-tenant sce-
nario in Figure 2. Assume a minimum bandwidth of
100 Mbps for all VMs. With hose-compliant allocation,
the weight for the p1–r1 flow is min( 100

1 , 100
1 ) = 100

while the weight for q1–r2 flow is min( 100
3 , 100

1 ) = 100
3 .

Similarly, the weight for the q1–r3 and q1–r4 flow is
100

3 too. Hence, the actual bandwidth for the p1–r1 flow
is 500, while the other three flows get 500

3 each. Note
that even though tenant Q has three flows, their aggre-
gate weight is the same as the weight for P’s single flow.
Hence, both tenants get the same bandwidth. This is de-
sirable as both of them pay for a single VM. Even if ten-
ant Q were to communicate with more VMs, the aggre-
gate weight of its flows will never exceed 100. Thus, by
bounding the aggregate weight for a VM’s traffic, we en-
sure an upper bound for the impact it can have on any
network link and hence, on the datacenter network.

Req 1. Min-guarantee. Minimum guarantees for VMs
can be used to determine the minimum bandwidth that
their flows should achieve. For example, in Figure 3, if
VMs p and q communicate with Np and Nq VMs each,
then the bandwidth for a p–q flow should be at least

min( Bmin
P

Np
,

Bmin
Q
Nq

). With hose-compliant allocation, this is
also the flow’s weight wp,q. This observation simplifies
ensuring that flows do get their minimum bandwidth.

To ensure a flow’s actual bandwidth always exceeds its
guarantee, the total weight for all traffic that can traverse
a link should not exceed its capacity. Formally, to ensure
Bp,q ≥ wp,q, we need wT ≤C (see equation 1). This con-
dition can be used to design a VM placement algorithm
that ensures the condition holds across all links in the
datacenter. §4.1 presents such an algorithm.

Req 2. High utilization. Hose-compliant allocation is
work conserving. Since flows are assigned bandwidth in
a weighted fashion, any VM with network demand is al-
lowed to use spare capacity on network links. Beyond
work conservation, high utilization also requires that ten-
ants not be disincentivised to use spare bandwidth. This
can be achieved by making the flow weights vary from
link-to-link, as proposed in [14]. However, for brevity,
we omit this extension in the rest of the paper.

4 Hadrian

Apart from a policy for bandwidth allocation, a complete
network sharing solution has to include an admission
control and VM placement mechanism to achieve proper
network sharing. Guided by this, we design Hadrian, a
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network sharing framework for multi-tenant datacenters
that caters to both intra- and inter-tenant communication.
Hadrian relies on the following two components.
• VM Placement. A logically centralized placement

manager, upon receiving a tenant request, performs ad-
mission control and maps the request to datacenter
servers. This allocation of VMs to physical servers ac-
counts for the minimum bandwidth requirements and
communication dependencies of tenants.
• Bandwidth Allocation. Hose-compliant allocation is

used to assign network bandwidth to flows.

4.1 VM placement
VM placement problems are often mapped to multi-
dimensional packing with constraints regarding vari-
ous physical resources [23]. Our setting involves two
resources– each tenant requires empty VM slots on phys-
ical servers and minimum bandwidth on the network
links connecting them. The key novelty in our approach
is that we model minimum bandwidth requirements and
communication dependencies of tenants as a max-flow
network. This allows us to convert our two-dimensional
placement constraints into a simple set of constraints re-
garding the number of VMs that can be placed in a given
part of the datacenter.

The placement discussion below focuses on tree-like
physical network topologies like the multi-rooted tree
topologies used today. Such topologies are hierarchi-
cal, made up of sub-trees at each level. Also, it as-
sumes that if the topology offers multiple paths be-
tween VMs, the underlying routing protocol load bal-
ances traffic across them. This assumption holds for fat-
tree topologies [24,25] that use multi-pathing mecha-
nisms like ECMP, VLB [24] and Hedera [26].

4.1.1 Characterizing bandwidth requirements
Hose-compliant bandwidth allocation simplifies the
problem of ensuring minimum VM bandwidth. As ex-
plained in §3.2.1, to satisfy the minimum guarantees of
VMs, the provider needs to ensure the total weight for all
traffic that can traverse any network link should not ex-
ceed the link’s capacity. Thus, we need to quantify the to-
tal weight for traffic across any given link. To explain our
approach, we use an example scenario involving three
tenants, P, Q and R across any network link. The link
has p VMs for tenant P to the left and the remaining p′

VMs to the right. Similarly, there are q and r VMs for Q
and R on the left, and q′ and r′ VMs on the right.

With hose-compliant bandwidth allocation, the ag-
gregate weight for any VM’s traffic cannot exceed its
minimum guarantee (equation 2). So the total weight
for traffic from all VMs on the left of the link can-
not exceed the sum of their minimum bandwidths, i.e.,
∑(pBmin

P +qBmin
Q + rBmin

R ). The same holds for VMs on
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Figure 5: Flow network to capture the bandwidth
needed on a link that connects p VMs of tenant P on
the left to p′ VMs on the right, and so on for tenants
Q and R. Circles represent VMs, solid rectangles are
intra-tenant nodes and shaded rectangles are inter-
tenant nodes.

the right of the link. Further, since the weight for any
given flow is limited by both its source and destination,
the total weight for all traffic across the link is limited by
both the total weight for VMs on the left and for VMs on
the right of the link.

However, this analysis assumes all VMs can talk to
each other and the same guarantees apply to both intra-
and inter-tenant traffic. Accounting for communication
dependencies and hierarchical guarantees leads to even
more constraints regarding the total weight for the link’s
traffic. To combine these constraints, we express them
as a flow network. A flow network is a directed graph
where each edge has a capacity and can carry a flow not
exceeding the capacity of the edge. Note that this flow
is different from “real” flows across the datacenter net-
work. Hereon, we use “link” to refer to physical network
links while “edge” corresponds to the flow network.

Figure 5 shows the flow network for the link in our
example and is explained below. All unlabeled edges
have an infinite capacity. Each VM to the left of the
physical link is represented by a node connected to the
source node, while each VM to the right of the link
is represented by a node connected to the destination.
The VM nodes for any given tenant are connected to
“intra-tenant” nodes (solid rectangles) by edges whose
capacity is equal to the minimum bandwidth for the VM.
These edges represent the constraint that the weight for
a VM’s traffic cannot exceed its minimum bandwidth.
The two intra-tenant nodes for each tenant are connected
by an edge of infinite capacity (long-dashed edge). Fur-
ther, the two intra-tenant nodes for each tenant are con-
nected to “inter-tenant” nodes (shaded rectangles) by
edges whose capacity is equal to the tenant’s minimum
inter-tenant bandwidth. This constrains the total weight
for inter-tenant traffic that each tenant can generate. Fi-
nally, based on the tenant communication dependencies,
the appropriate inter-tenant nodes are connected to each
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other (short-dashed edges). For our example, tenant Q
can communicate with P and R, so inter-tenant nodes of
Q are connected to those of P and R.

The max-flow for this flow network gives the total
weight for all traffic across the link. This, in turn, is the
bandwidth required on the physical link to ensure that
the bandwidth guarantees of VMs are met.

4.1.2 Finding Valid Placements
Given a tenant request, a valid placement of its VMs
should satisfy two constraints. First, VMs should only be
placed on empty slots on physical hosts. Second, after the
placement, the bandwidth required across each link in the
datacenter should not exceed the link’s capacity. The VM
Placement problem thus involves finding a valid place-
ment for a tenant’s request. We designed a greedy, first-
fit placement algorithm that we briefly sketch here. A
formal problem definition, algorithm details and pseudo
code are available in [27].

Instead of trying to place VMs while satisfying con-
straints across two dimensions (slots and bandwidth), we
use the flow-network formulation to convert the band-
width requirements on each physical link to constraints
regarding the number of VMs that can be placed inside
the sub-tree under the link, i.e., in the host, rack or pod
under the link. Hence, given a tenant request, its place-
ment proceeds as follows. We traverse the network topol-
ogy in a depth-first fashion. Constraints for each level of
the topology are used to recursively determine the maxi-
mum number of VMs that can be placed at sub-trees be-
low the level, and so on till we determine the number of
VMs that can be placed on any given host. VMs are then
greedily placed on the first available host, and so on un-
til all requested VMs are placed. The request is accepted
only if all VMs can be placed.

A request can have many valid placements. Since data-
center topologies typically have less bandwidth towards
the root than at the leaves, the optimization goal for the
placement algorithm is to choose placements that reduce
the bandwidth needed at higher levels of the datacen-
ter hierarchy. To achieve this, we aim for placement lo-
cality which comprises two parts. First, a tenant’s VMs
are placed close to VMs of existing tenants that it has
communication dependencies with. Second, the VMs are
placed in the smallest sub-tree possible. This heuristic
reduces the number and the height of network links that
may carry the tenant’s traffic. It preserves network band-
width for future tenants, thus improving the provider’s
ability to accommodate them.

4.2 Bandwidth allocation
Hadrian uses hose-compliant bandwidth allocation. This
can be achieved in various ways. At one end of the spec-
trum is an end-host only approach where a centralized

controller monitors flow arrivals and departures to calcu-
late the weight and hence, the rate for individual flows.
These rates can then be enforced on physical servers. At
the other end is a switch-only approach where switches
know the VM bandwidth guarantees and use weighted
fair queuing to achieve weighted network sharing. Both
these approaches have drawbacks. The former is hard to
scale since the controller needs to track the utilization of
all links and all flow rates. The bursty nature of cloud
traffic makes this particularly hard. The latter requires
switches to implement per-flow fair queuing.

We adopt a hybrid approach involving end-hosts and
switches. The goal here is to minimize the amount of net-
work support required by moving functionality to trusted
hypervisors at ends. Our design is based on explicit con-
trol protocols like RCP [28] and XCP [29] that share
bandwidth equally and explicitly convey flow rates to
end hosts. Hose-compliance requires weighted, instead
of an equal, allocation of bandwidth. We provide a de-
sign sketch of our bandwidth allocation below.

To allow VMs to use any and all transport protocols,
their traffic is tunneled inside hypervisor-to-hypervisor
flows such that all traffic between a pair of VMs counts
as one flow. Traffic is only allowed to other VMs of the
same tenant and to VMs of peers. The main challenge
is determining the rate for a flow which, in turn, is dic-
tated by the flow’s weight. The weight for a p–q flow

is min( Bmin
P

Np
,

Bmin
Q
Nq

). The source hypervisor hosting VM

p knows Bmin
P and Np while the destination hypervisor

knows Bmin
Q and Nq. Thus, the source and destination hy-

pervisor together have all the information to determine a
flow’s weight. For each flow, the hypervisor embeds Bmin

and N into the packet header, and over the course of the
first round trip, the hypervisors at both ends have all the
information to calculate the weights.

Packet headers also contain the flow weight. For the
first round trip, hypervisors set the weight to a default
value. Switches along the path only track the sum of the
weights, S, for all flows through them. For a flow with
weight w, its rate allocation on a link of capacity C is
w
S ∗C. Each switch adds this rate allocation to the packet
header. This reaches the destination and is piggybacked
to the source on the reverse path. The source hypervisor
enforces the rate it is allocated, which is the minimum of
the rates given by switches along the path. To account for
queuing or under-utilization due to insufficient demand,
switches adjust C using the RCP control equation.

This basic design minimizes switch overhead; they do
not need to maintain per-flow state. However, it does
not support hierarchical guarantees. With such guaran-
tees, the weight for a flow between different tenants de-
pends on the total number of inter-tenant flows each of
them have. Hence, hypervisors at the end of a flow do
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not have enough information to determine its weight.
Instead, switches themselves have to calculate the flow
weight. In this extended design, the hypervisor also em-
beds the VM-id, the tenant-id, the inter-tenant band-
width guarantee for the source and destination VM in
the packet header. Each switch maintains a count of the
number of inter-tenant flows for each tenant traversing
it. Based on this, the switch can determine the weight
for any flow and hence, its rate allocation. Thus switches
maintain per-tenant state. The details for this extended
design are available in [27].

4.3 Implementation
Our proof-of-concept Hadrian implementation com-
prises two parts.

(1). A placement manager that implements the place-
ment algorithm. To evaluate its scalability, we measured
the time to place tenant requests in a datacenter with
100K machines. Over 100K representative requests, the
median placement time is 4.13ms with a 99th percentile
of 2.72 seconds. Note that such placement only needs to
be run when a tenant is admitted.

(2). For bandwidth allocation, we have implemented
an extended version of RCP (RCPw) that distributes net-
work bandwidth in a weighted fashion, and is used for
the hypervisor-to-hypervisor flows. This involves an end-
host component and a switch component.

Ideally, the end-host component should run inside the
hypervisor. For ease of prototyping, our implementation
resides in user space. Application packets are intercepted
and tunneled inside RCPw flows with a custom header.
We have a kernel driver that binds to the Ethernet inter-
face and efficiently marshals packets between the NIC
and the user space RCPw stack. The switch is imple-
mented on a server-grade PC and implements a store and
forward architecture. It uses the same kernel driver to
pass all incoming packets to a user space process.

In our implementation, switches allocate rate to flows
once every round trip time. To keep switch overhead
low, we use integer arithmetic for all rate calculations.
Although each packet traverses the user-kernel space
boundary, we can sustain four 1Gbps links at full duplex
line rate. Futher, experiments in the next section show
that we can achieve a link utilization of 96%. Overall,
we find that our prototype imposes minimal overhead on
the forwarding path.

4.4 Design discussion
Other placement goals. Today, placement of VMs in
datacenters is subject to many constraints like their CPU
and memory requirements, ensuring fault tolerance, en-
ergy efficiency and even reducing VM migrations [30].
Production placement managers like SCVMM [31] use
heuristics to meet these constraints. Our flow network

formulation maps tenant network requirements to con-
straints regarding VM placement which can be added to
the set of input constraints used by existing placement
managers. We defer an exploration of such extensions
to future work. We do note that our constraints can be
at odds with existing requirements. For example, while
bandwidth guarantees entail placement locality, fault tol-
erance requires VMs be placed in different fault domains.

Hose-compliant allocation. Allocating bandwidth in
proportion to the least paying of communication partners
has implications for provisioning of cloud services. A
service provider willing to pay for VMs with higher min-
imum bandwidth (and higher weight) will only improve
the performance of its flows that are bottlenecked by the
weight contributed by the service VMs. Performance for
flows bottlenecked by client VMs will not improve. This
is akin to network performance across the Internet today.
When clients with poor last mile connectivity access a
well-provisioned Internet service, their network perfor-
mance is limited by their own capacity. Allocating band-
width based on the sum of payments of communicating
partners avoids this but at the expense of allowing net-
work abuse.

5 Evaluation
We deployed our prototype implementation across a
small testbed comprising twelve end-hosts arranged
across four racks. Each rack has a top-of-rack (ToR)
switch, and the ToR switches are connected through a
root switch. All switches and end-hosts are Dell T3500
servers with a quad core Intel Xeon 2.27GHz proces-
sor, 4GB RAM and 1 Gbps interfaces, running Win-
dows Server 2008 R2. Given our focus on network per-
formance, the tenants are not actually allocated VMs
but simply run as a user process. With 8 VM slots per
host, the testbed has a total of 96 slots. We complement
the testbed experiments with large-scale simulations. For
this, we developed a simulator that models a multi-tenant
datacenter with a three tier network topology. All simula-
tion results here are based on a datacenter with 16K hosts
and 4 VMs per host, resulting in 64K VMs. The network
has an oversubscription of 1:10.

Overall, our evaluation covers three main aspects: (i)
We combine testbed and simulation experiments to illus-
trate that Hadrian, by ensuring minimum VM bandwidth,
benefits both tenants and providers, (ii) We use simula-
tions to quantify the benefits of relaxing bandwidth guar-
antee semantics, and (iii) We use testbed experiments to
show hose-compliance mitigates aggressive behavior in
inter-tenant settings.

5.1 Cloud emulation experiments
We emulate the operation of a cloud datacenter on our
testbed (and in the simulator) as follows. We generate
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Placement → Greedy Dependency Hadrian’s
B/w Allocation -aware placement

Per-flow Baseline Baseline+ –
Hose-compliant – – Hadrian

Reservations – – Oktopus [11]
Per-source Seawall [12] – Seawall

PS-L FairCloud [14] – FairCloud

Table 1: Solution space for cloud network sharing

a synthetic workload with tenant requests arriving over
time. A placement algorithm is used to allocate the re-
quested VMs and if the request cannot be placed, it is
rejected. The arrival of tenants is a Poisson process. By
varying the rate at which tenants arrive, we control the
target VM occupancy of the datacenter. This is the frac-
tion of datacenter VMs that, on average, are expected to
be occupied. As for bandwidth guarantees, tenants can
choose from three classes for their minimum bandwidth–
50, 150 and 300 Mbps. By varying the fraction of tenant
requests in each class, we control the average minimum
bandwidth for tenants.

Tenants. We model two kinds of tenants– service ten-
ants that have a wildcard (*) communication dependency
and client tenants that depend on zero or more service
tenants. Tenants request both VMs (V ) and a minimum
bandwidth (Bmin). Each tenant runs a job involving net-
work flows; some of these flows are intra-tenant while
others are to VMs of service tenants. A job finishes when
its flows finish. The fraction F ∈ [0,1] of a tenant’s flows
that are inter-tenant allows us to determine the minimum
bandwidth required by the tenant for inter-tenant com-
munication. Overall, each tenant request is characterized
by <V, Bmin, V*Bmin*F, dependencies>.

By abstracting away non-network resources, this sim-
ple workload model allows us to directly compare vari-
ous network sharing approaches. While the workload is
synthetic, we use our datacenter measurements to ensure
it is representative of today’s datacenters. For instance,
the fraction of client tenants with dependencies (20%),
the average number of dependencies (2), the fraction of
inter-tenant flows (10-40%), and other workload param-
eters are as detailed in §2.1.

In the following sections, we compare Hadrian against
alternate network sharing solutions. Since a complete
network sharing framework ought to include both care-
ful VM placement and bandwidth allocation, we consider
various state of the art solutions for both–

VM Placement. We experiment with three place-
ment approaches. (i) With Greedy placement, a ten-
ant’s VMs are greedily placed close to each other. (ii)
With Dependency-aware placement, a tenant’s VMs are
placed close to each other and to VMs of existing ten-
ants that the tenant has a dependency on. (iii) Hadrian’s
placement, described in §4.1, which is aware of tenant
minimum bandwidths and their dependencies.

Bandwidth allocation. Apart from Per-flow, Per-
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Figure 6: Accepted requests in testbed and simulator.

source and PS-L sharing, we evaluate two other poli-
cies. (i) With hose-compliant allocation, bandwidth is
allocated as described in §3.2. (ii) With “Reservations”,
VMs get to use their guaranteed bandwidth but no more.
Hence, this allocation policy is not work conserving.

Table 1 summarizes the solution space for cloud net-
work sharing. Note that by combining Hadrian’s place-
ment with Reservations, we can extend Oktopus [11] to
inter-tenant settings. We begin by focussing on the ap-
proaches in the first two rows. The approach of placing
tenant VMs greedily combined with the Per-flow sharing
of the network reflects the operation of today’s datacen-
ters, and is thus used as a Baseline for comparison.

5.1.1 Testbed experiments
The experiment involves the arrival and execution of 100
tenant jobs on our testbed deployment. The average min-
imum bandwidth for tenants is 200 Mbps and requests ar-
rive such that target VM occupancy is 75%. Note that op-
erators like Amazon EC2 target an average occupancy of
70-80% [32]. Since our prototype uses weighted RCP, we
emulate various bandwidth allocation policies by setting
flow weights appropriately; for example, for Per-flow al-
location, all flows have the same weight. Figure 6 shows
that Baseline only accepts 35% of the requests, Base-
line+ accepts 55%, while Hadrian accepts 72%. This is
despite the fact that Hadrian will reject a request if there
is insufficient bandwidth while the other approaches will
not. To show that Hadrian leads to comparable benefits
at datacenter scale, we rely on large-scale simulations.

However, we first validate the accuracy of our simu-
lator. To this end, we replayed the same set of jobs in
the simulator. The figure also shows that the percentage
of accepted requests in the testbed is similar to those ac-
cepted in the simulator; the difference ranges from 0-2%.
Further, the completion time for 87% of the requests is
the same across the testbed and simulator; at the 95th per-
centile, requests are 17% faster in the simulator. This is
because the simulator achieves perfect network sharing
(e.g., no overheads). This gives us confidence in the fi-
delity of the simulation results below.

5.1.2 Large-scale simulations
We simulate a stream of 25K jobs on a datacenter with
16K servers. Figure 7(left) shows that, with Hadrian, the
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Figure 7: Provider can accept more requests with
Hadrian. (average Bmin = 200 Mbps)
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Figure 8: With Baseline (and Baseline+), many ten-
ants receive poor network performance and finish
past the worst-case completion time estimate.

provider is able to accept 20% more requests than both
Baseline and Baseline+. We also simulate the use of hard
reservations for allocating bandwidth (Oktopus), and find
that Hadrian can still accept 6% more requests. Further,
figure 7(right) shows the average VM occupancy during
the experiment. With Hadrian, the average VM utiliza-
tion is 87% as compared to 99.9% with Baseline and
90% with Oktopus. This is because jobs finish earlier
with Hadrian. Thus, Hadrian allows the provider to ac-
commodate more requests while reducing the VM-level
utilization which, in turn, allows more future requests to
be accepted.

To understand this result, we examine the perfor-
mance of individual requests. Since tenants are associ-
ated with minimum bandwidths, each tenant can estimate
the worst-case completion time for its flows and hence,
its job. Figure 8 shows the CDF for the ratio of a job’s
actual completion time to the worst-case estimate. With
Hadrian, all requests finish before the worst-case esti-
mate. With Oktopus, tenants get their requested band-
width but no more, so most requests finish at the worst-
case estimate.3 As a contrast, with Baseline, many ten-
ants get very poor network performance. The completion
time for 15% tenants is 1.25x the worst-case estimate and
for 5% tenants, it is 3.4x the worst-case. These outliers
occupy VMs longer, thus driving up utilization but reduc-
ing actual throughput. By ensuring minimum bandwidth
for VMs and thus avoiding such outliers, Hadrian allows
the provider to accept more requests.

3Requests that finish earlier with Oktopus have all their flows be-
tween co-located VMs in the same physical machine, hence achieving
bandwidth greater than their reservation, so the job can finish early.
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Figure 9: With non-aggressive tenants, Hadrian’s
placement provides most of the gains.

Beyond this, we also experimented with other val-
ues for the simulation parameters– the average mini-
mum bandwidth, the target occupancy, the network over-
subscription and the percentage of inter-tenant traffic.
The results are along expected lines so we omit them
for brevity but they are available in [27]. For exam-
ple, Hadrian’s gains increase as inter-tenant traffic in-
creases and network oversubscription increases. Further,
Hadrian can offer benefits even when there is no oversub-
scription. While it accepts the same number of requests
as Baseline, 22% of requests are outliers with Baseline.

Cost analysis. Today’s cloud providers charge tenants
a fixed amount per hour for each VM; for instance, Ama-
zon EC2 charges $0.08/hr for small VMs. Hence, the
improved tenant performance with Hadrian has implica-
tions for their cost too. For the experiment above, the av-
erage tenant would pay 34% less with Hadrian than Base-
line. This is because there are no outliers receiving very
poor network performance. From the provider’s perspec-
tive though, there are two competing factors. Hadrian
allows them to accommodate more tenants but tenants
finish faster and hence, pay less. We find the provider’s
revenue with Hadrian is 82% of that with Baseline. This
reduction in revenue can be overcome by new pricing
models that account for the added value Hadrian offers.
Since Hadrian provides tenants with VMs that have min-
imum bandwidth, the provider can increase the price of
VMs. We repeat the cost analysis to determine how much
tenants would have to pay so that the provider remains
revenue neutral and find that the average tenant would
still pay 19% less. Overall, the results above show that
Hadrian allows the provider to offer network guarantees
while reducing the average tenant cost.

Importance of relaxed guarantee semantics. In the
experiments above, we find that with simple hose guar-
antees where all tenants are assumed to speak to each
other, the provider is only able to accept 1% of the re-
quests! However, when the provider is aware of tenant
dependencies, it can accept 85% of the requests. This is
because bandwidth constraints need to enforced on far
fewer links. Hierarchical guarantees allow the provider
to accept a further 5% requests. These results highlight
the importance of relaxed guarantee semantics.



182 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

Top of Rack
(ToR) Switch

Switch

qp
other 

tenants
VM 

slots

0

100

200

300

400

500

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 fo

r V
M

 p
 (M

bp
s)

Number of flows for VM q

PS-P/Flow/Src(In)
Src(out)
PS-L
Hose Compliant

(a) Testbed

0

100

200

300

400

500

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 fo

r V
M

 p
 (M

bp
s)

Number of flows for VM q

PS-P/Flow/Src(In)
Src(Out)
PS-L
Hose Compliant

(b) Simulator

Figure 10: By sending and receiving more flows, q can
degrade p’s network performance.

Importance of placement. We now also consider the
Per-source and PS-L allocation, and compare their per-
formance, when coupled with Greedy and Hadrian’s
placement. Figure 9 shows that Hadrian’s placement pro-
vides gains irrespective of how bandwidth is being allo-
cated. Here, the allocation policy does not have much
impact because all tenants have the same traffic pattern.
Hence, under scenarios with well-behaved tenants, VM
placement dictates the datacenter throughput. However,
as we show in the next section, when some tenants are
aggressive, the allocation policy does matter.

5.1.3 Benefits of hose-compliant allocation
To illustrate the benefits of hose-compliance relative to
alternate bandwidth allocation policies, we focus on a
simple scenario that captures aggressive tenant behavior.
The experiment involves two tenants, each with one VM
(p and q). As shown in Figure 10 (top), VM p has one
flow while VM q has a lot of flows to VMs of other ten-
ants. All flows are bottlenecked at the same link. VM q
could be acting maliciously and initiating multiple flows
to intentionally degrade p’s network performance. Alter-
natively, it could just be running a popular service that
sends or receives a lot of traffic which, in turn, can hurt
p’s performance. All VMs, including destination VMs,
have a minimum bandwidth of 300 Mbps.

Figures 10a and 10b show the average bandwidth for
VM p on the testbed and in the simulator respectively.
With hose-compliant allocation, VM p’s bandwidth re-
mains the same throughout. As a contrast, with other
policies, p’s bandwidth degrades as q has more flows.
This is because, with these approaches, there is no limit
on the fraction of a link’s bandwidth a VM can grab. This
allows tenants to abuse the network at the expense of oth-
ers. By bounding tenant impact, hose-compliant alloca-

tion addresses this. Note that with Per-source allocation,
p’s bandwidth does not degrade if both VMs are sending
traffic (labelled as “out”) but it does if they are receiving
traffic (labelled as “in”). Instead, hose-compliant alloca-
tion is not impacted by the traffic direction.

The figures also show that the testbed results closely
match simulation results for all policies. With hose-
compliance, VM p’s bandwidth on the testbed is
480 Mbps as compared to the ideal 500 Mbps. This
shows our weighted RCP implementation is performant
and can achieve a link utilization of 96%.

6 Related work
Many recent efforts tackle the cloud network sharing
problem. They propose different sharing policies, includ-
ing reservations [9,11], time-varying reservations [33],
minimum bandwidth reservations [10,14,34], per-source
fairness [12] and per-tenant fairness [13]. Mogul et
al. [35] present a useful survey of these proposals. How-
ever, as detailed in this paper, none of these proposals
explicitly target inter-tenant communication which poses
its own challenges.

To achieve desirable network sharing, we have bor-
rowed and extended ideas from many past proposals. The
hose model [20] has been used to capture both reserva-
tions [11] and minimum bandwidth guarantees [14,21].
We extend it by adding communication dependencies
and hierarchy. The use of hierarchy means that Hadrian
offers aggregate, “per-tenant” minimum guarantees for
inter-tenant traffic. This is inspired by Oktopus [11]
and NetShare [13] that offer per-tenant reservations and
weights respectively. CloudPolice [3] argues for network
access control in inter-tenant settings. However, many
cloud services today are open to tenants. Hence, network
access control needs to be coupled with a robust network
sharing mechanism like Hadrian.

7 Concluding remarks
Inter-tenant communication plays a critical role in to-
day’s datacenters. In this paper, we show this neces-
sitates a rethink of how the cloud network is shared.
To ensure provider flexibility, we modify the kind of
bandwidth guarantees offered to tenants. To ensure ro-
bust yet proportional network sharing, we argue for cou-
pling the maximum bandwidth allocated to tenants to
their payment. Tying these ideas together, we propose
Hadrian, a network sharing framework that uses hose-
compliant allocation and bandwidth-aware VM place-
ment to achieve desirable network sharing properties for
both intra- and inter-tenant communication. Our evalua-
tion shows that Hadrian’s mechanisms are practical. Fur-
ther, apart from improving the performance of both ten-
ants and providers, it ensures robust network sharing.
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Abstract
Small jobs, that are typically run for interactive data anal-

yses in datacenters, continue to be plagued by dispropor-

tionately long-running tasks called stragglers. In the pro-

duction clusters at Facebook and Microsoft Bing, even

after applying state-of-the-art straggler mitigation tech-

niques, these latency sensitive jobs have stragglers that

are on average 8 times slower than the median task in that

job. Such stragglers increase the average job duration by

47%. This is because current mitigation techniques all

involve an element of waiting and speculation. We in-

stead propose full cloning of small jobs, avoiding waiting

and speculation altogether. Cloning of small jobs only

marginally increases utilization because workloads show

that while the majority of jobs are small, they only con-

sume a small fraction of the resources. The main chal-

lenge of cloning is, however, that extra clones can cause

contention for intermediate data. We use a technique, de-

lay assignment, which efficiently avoids such contention.

Evaluation of our system, Dolly, using production work-

loads shows that the small jobs speedup by 34% to 46%
after state-of-the-art mitigation techniques have been ap-

plied, using just 5% extra resources for cloning.

1 Introduction

Cloud computing has achieved widespread adoption due

to its ability to automatically parallelize a job into multi-

ple short tasks, and transparently deal with the challenge

of executing these tasks in a distributed setting. One

such fundamental challenge is straggling tasks, which is

faced by all cloud frameworks, such as MapReduce [1],

Dryad [2], and Spark [3]. Stragglers are tasks that run

much slower than other tasks, and since a job finishes

only when its last task finishes, stragglers delay job com-

pletion. Stragglers especially affect small jobs, i.e., jobs

that consist of a few tasks. Such jobs typically get to run

all their tasks at once. Therefore, even if a single task is

slow, i.e., straggle, the whole job is significantly delayed.

Small jobs are pervasive. Conversations with datacen-

ter operators reveal that these small jobs are typically

used when performing interactive and exploratory anal-

yses. Achieving low latencies for such jobs is critical

to enable data analysts to efficiently explore the search

space. To obtain low latencies, analysts already re-

strict their queries to small but carefully chosen datasets,

which results in jobs consisting of only a few short tasks.

The trend of such exploratory analytics is evident in

traces we have analyzed from the Hadoop production

cluster at Facebook, and the Dryad cluster at Microsoft

Bing. Over 80% of the Hadoop jobs and over 60% of the

Dryad jobs are small with fewer than ten tasks1. Achiev-

ing low latencies for these small interactive jobs is of

prime concern to datacenter operators.

The problem of stragglers has received considerable

attention already, with a slew of straggler mitigation

techniques [1, 4, 5] being developed. These techniques

can be broadly divided into two classes: black-listing

and speculative execution. However, our traces show that

even after applying state-of-the-art blacklisting and spec-

ulative execution techniques, the small jobs have strag-

glers that, on average, run eight times slower than that

job’s median task, slowing them by 47% on average.

Thus, stragglers remain a problem for small jobs. We

next explain the limitations of these two approaches.

Blacklisting identifies machines in bad health (e.g.,

due to faulty disks) and avoids scheduling tasks on

them. The Facebook and Bing clusters, in fact, blacklist

roughly 10% of their machines. However, stragglers oc-

cur on the non-blacklisted machines, often due to intrin-

sically complex reasons like IO contentions, interference

by periodic maintenance operations and background ser-

vices, and hardware behaviors [6].

For this reason, speculative execution [1, 4, 5, 7] was

explored to deal with stragglers. Speculative execution

waits to observe the progress of the tasks of a job and

launches duplicates of those tasks that are slower. How-

ever, speculative execution techniques have a fundamen-

tal limitation when dealing with small jobs. Any mean-

ingful comparison requires waiting to collect statistically

significant samples of task performance. Such waiting

limits their agility when dealing with stragglers in small

jobs as they often start all their tasks simultaneously. The

problem is exacerbated when some tasks start straggling

when they are well into their execution. Spawning a

speculative copy at that point might be too late to help.

In this paper, we propose a different approach. Instead

of waiting and trying to predict stragglers, we take spec-

ulative execution to its extreme and propose launching

multiple clones of every task of a job and only use the

result of the clone that finishes first. This technique is

both general and robust as it eschews waiting, speculat-

ing, and finding complex correlations. Such proactive

1The length of a task is mostly invariant across small and large jobs.
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cloning will significantly improve the agility of straggler

mitigation when dealing with small interactive jobs.

Cloning comes with two main challenges. The first

challenge is that extra clones might use a prohibitive

amount of extra resources. However, our analysis of pro-

duction traces shows a strong heavy-tail distribution of

job sizes: the smallest 90% of jobs consume as less as 6%
of the resources. The interactive jobs whose latency we

seek to improve all fall in this category of small jobs. We

can, hence, improve them by using few extra resources.

The second challenge is the potential contention that

extra clones create on intermediate data, possibly hurting

job performance. Efficient cloning requires that we clone

each task and use the output from the clone of the task

that finishes first. This, however, can cause contention

for the intermediate data passed between tasks of the dif-

ferent phases (e.g., map, reduce, join) of the job; frame-

works often compose jobs as a graph of phases where

tasks of downstream phases (e.g., reduce) read the out-

put of tasks of upstream phases (e.g., map). If all down-

stream clones read from the upstream clone that finishes

first, they contend for the IO bandwidth. An alternate that

avoids this contention is making each downstream clone

read exclusively from only a single upstream clone. But

this staggers the start times of the downstream clones.

Our solution to the contention problem, delay assign-

ment, is a hybrid solution that aims to get the best of both

the above pure approaches. It is based on the intuition

that most clones, except few stragglers, finish nearly si-

multaneously. Using a cost-benefit analysis that captures

this small variation among the clones, it checks to see

if clones can obtain exclusive copies before assigning

downstream clones to the available copies of upstream

outputs. The cost-benefit analysis is generic to account

for different communication patterns between the phases,

including all-to-all (MapReduce), many-to-one (Dryad),

and one-to-one (Dryad and Spark).

We have built Dolly, a system that performs cloning to

mitigate the effect of stragglers while operating within a

resource budget. Evaluation on a 150 node cluster using

production workloads from Facebook and Bing shows

that Dolly improves the average completion time of the

small jobs by 34% to 46%, respectively, with LATE [5]

and Mantri [4] as baselines. These improvements come

with a resource budget of merely 5% due to the afore-

mentioned heavy-tail distribution of job-sizes. By pick-

ing the fastest clone of every task, Dolly effectively re-

duces the slowest task from running 8× slower on aver-

age to 1.06×, thus, effectively eliminating all stragglers.

2 The Case for Cloning

In this section we quantify: (i) magnitude of stragglers

and the potential in eliminating them, and (ii) power law

distribution of job sizes that facilitate aggressive cloning.

Facebook Microsoft Bing

Dates Oct 2010 May-Dec∗ 2009
Framework Hadoop Dryad

File System HDFS [9] Cosmos

Script Hive [10] Scope [11]

Jobs 375K 200K

Cluster Size 3,500 Thousands

Straggler– LATE [5] Mantri [4]

mitigation
∗ One week in each month

Table 1: Details of Facebook and Bing traces.

Production Traces: Our analysis is based on traces from

Facebook’s production Hadoop [8] cluster and Microsoft

Bing’s production Dryad [2] cluster. These are large

clusters with thousands of machines running jobs whose

performance and output have significant impact on pro-

ductivity and revenue. Therefore, each of the machines

in these clusters is well-provisioned with tens of cores

and sufficient (tens of GBs) memory. The traces cap-

ture the characteristics of over half a million jobs running

across many months. Table 1 lists the relevant details

of the traces. The Facebook cluster employs the LATE

straggler mitigation strategy [5], while the Bing cluster

uses the Mantri straggler mitigation strategy [4].

2.1 Stragglers in Jobs

We first quantify the magnitude and impact of stragglers,

and then show that simple blacklisting of machines in the

cluster is insufficient to mitigate them.

2.1.1 Magnitude of Stragglers and their Impact

A job consists of a graph of phases (e.g., map, reduce,

and join), with each phase executing the same type of

tasks in parallel. We identify stragglers by comparing

the progress rates of tasks within a phase. The progress

rate of a task is defined as the size of its input data di-

vided by its duration. In absence of stragglers, progress

rates of tasks of a phase are expected to be similar as

they perform similar IO and compute operations. We use

the progress rate instead of the task’s duration to remain

agnostic to skews in work assignment among tasks [4].

Techniques have been developed to deal with the prob-

lem of data skews among tasks [12, 13, 14] and our ap-

proach is complementary to those techniques.

Within each phase, we measure the slowdown ratio,

i.e., the ratio of the progress rate of the median task to

the slowest task. The negative impact of stragglers in-

creases as the slowdown ratio increases. We measure the

slowdown ratio after applying the LATE and Mantri mit-

igations; a what-if simulation is used for the mitigation

strategy that the original trace did not originally deploy.

Figure 1a plots the slowdown ratio by binning jobs ac-

cording to their number of tasks, with LATE in effect.

2



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 187

1

3

5

7

9

1
-
1

0

1
1

-
5

0

5
1

-

1
5

0

1
5

0
-

5
0

0

>
 
5

0
0

Facebook

Bing

(
M

e
d

i
a

n
 
:
 
M

i
n

i
m

u
m

)
 

P
r
o

g
r
e

s
s
-
r
a

t
e

Bin (#Tasks)

(a) LATE

1

3

5

7

9

1
-
1

0

1
1

-
5

0

5
1

-

1
5

0

1
5

0
-

5
0

0

>
 
5

0
0

Facebook

Bing

(
M

e
d

ia
n

 
:
 
M

i
n

i
m

u
m

)
 

P
r
o

g
r
e

s
s
-
r
a

t
e

Bin (#Tasks)

(b) Mantri

Figure 1: Slowdown ratio after applying LATE and Mantri.

Small jobs see a higher prevalence of stragglers.

pb Blacklisted Machines (%) Job Improvement (%)

5 min 1 hour 5 min 1 hour

0.3 4% 6% 7.1% 8.4%
0.5 1.6% 2.8% 4.4% 5.2%
0.7 0.8% 1.2% 2.3% 2.8%

Table 2: Blacklisting by predicting straggler probability.

We show the fraction of machines that got blacklisted and

the improvements in completion times by avoiding them.

Phases in jobs with fewer than ten tasks, have a median

value of this ratio between 6 and 8, i.e., the slowest task

is up to 8× slower than the median task in the job. Also,

small jobs are hit harder by stragglers.2 This is simi-

lar even if Mantri [4] was deployed. Figure 1b shows

that the slowest task is still 7× slower than the median

task, with Mantri. However, both LATE and Mantri ef-

fectively mitigate stragglers in large jobs.

Speculation techniques are not as effective in mitigat-

ing stragglers in small jobs as they are with large jobs

because they rely on comparing different tasks of a job to

identify stragglers. Comparisons are effective with more

samples of task performance. This makes them challeng-

ing to do with small jobs because not only do these jobs

have fewer tasks but also start all of them simultaneously.

Impact of Stragglers: We measure the potential in

speeding up jobs in the trace using the following crude

analysis: replace the progress rate of every task of a

phase that is slower than the median task with the me-

dian task’s rate. If this were to happen, the average com-

pletion time of jobs improves by 47% and 29% in the

Facebook and Bing traces, respectively; small jobs (those

with ≤ 10 tasks) improve by 49% and 38%.

2.1.2 Blacklisting is Insufficient

An intuitive solution for mitigating stragglers is to black-

list machines that are likely to cause them and avoid

2Implicit in our explanation is that small interactive jobs consist of

just a few tasks. While we considered alternate definitions based on

input size and durations, in both our traces, we see a high correlation

between jobs running for short durations and the number of tasks they

contain along with the size of their input.

scheduling tasks on them. For this analysis, we classify

a task as a straggler if its progress rate is less than half

of the median progress rate among tasks in its phase. In

our trace, stragglers are not restricted to a small set of

machines but are rather spread out uniformly through the

cluster. This is not surprising because both the clusters

already blacklist machines with faulty disks and other

hardware troubles using periodic diagnostics.

We enhance this blacklisting by monitoring machines

at finer time intervals and employing temporal prediction

techniques to warn about straggler occurrences. We use

an EWMA to predict stragglers—the probability of a ma-

chine causing a straggler in a time window is equally de-

pendent on its straggler probability in the previous win-

dow and its long-term average. Machines with a pre-

dicted straggler probability greater than a threshold (pb)
are blacklisted for that time window but considered again

for scheduling in the next time window.

We try time windows of 5 minutes and 1 hour. Table 2

lists the fraction of machines that get blacklisted and the

resulting improvement in job completion times by elim-

inating stragglers on them, in the Facebook trace. The

best case eliminates only 12% of the stragglers and im-

proves the average completion time by only 8.4% (in the

Bing trace, 11% of stragglers are eliminated leading to

an improvement of 6.2%). This is in harsh contrast with

potential improvements of 29% to 47% if all stragglers

were eliminated, as shown in §2.1.1.

The above results do not prove that effective blacklist-

ing is impossible, but shows that none of the blacklisting

techniques that we and, to our best knowledge, others [6]

have tried effectively prevent stragglers, suggesting that

such correlations either do not exist or are hard to find.

2.2 Heavy Tail in Job Sizes

We observed that smaller jobs are most affected by strag-

glers. These jobs were submitted by users for iterative

experimental purposes. For example, researchers tune

the parameters of new mining algorithms by evaluating

it on a small sample of the dataset. For this reason, these

jobs consist of just a few tasks. In fact, in both our traces,

we have noted a correlation between a job’s duration and

the number of tasks it has, i.e., jobs with shorter durations

tend to have fewer tasks. Short and predictable response

times for these jobs is of prime concern to datacenter op-

erators as they significantly impact productivity.

On the one hand, small interactive jobs absolutely

dominate the cluster and have stringent latency demands.

In the Facebook and Bing traces, jobs with ≤ 10 tasks ac-

count for 82% and 61% of all the jobs, respectively. On

the other hand, they are the most affected by stragglers.

Despite this, we can clone all the small jobs using few

extra resources. This is because job sizes have a heavy-

tail distribution. Just a few large jobs consume most of

3



188 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

0

20

40

60

80

100

0 20 40 60 80 100

Total Cluster Cycles (%)

Facebook

Bing

F
r
a

c
t
i
o

n
 
o

f
 
J
o

b
s
 
(
%

)
 

(a) Heavy-tail

y = (9E+06)x
-1.9

N
u

m
b

e
r
 
o

f
 
J
o

b
s
 

Cluster Cycles

10
6

10
5

10
4

10
3

10
2

10

1

1 10 10
2

10
3

10
4

10
5

10
6

(b) Power Law

Figure 2: Heavy tail. Figure (a) shows the heavy tail in the

fraction of total resources used. Figure (b) shows that the

distribution of cluster resources consumed by jobs, in the

Facebook trace, follows a power law. Power-law exponents

are 1.9 and 1.8 when fitted with least squares regression in

the Facebook and Bing traces.

the resources in the cluster, while the cluster is domi-

nated by small interactive jobs. As Figure 2a shows, 90%
of the smallest jobs consume only 6% and 11% of the to-

tal cluster resources in the Facebook and Bing clusters,

respectively. Indeed, the distribution of resources con-

sumed by jobs follows a power law (see Figure 2b). In

fact, at any point in time, the small jobs do not use more

than 2% of the overall cluster resources.

The heavy-tail distribution offers potential to speed up

these jobs by using few extra resources. For instance,

cloning each of the smallest 90% of the jobs three times

increases overall utilization by merely 3%. This is well

within reach of today’s underutilized clusters which are

heavily over-provisioned to satisfy their peak demand of

over 99%, that leaves them idle at other times [15, 16].

Google recently released traces from their cluster job

scheduler that schedules a mixed workload of MapRe-

duce batch jobs, interactive queries and long-running ser-

vices [17]. Analysis of these traces again reveal a heavy-

tail distribution of job sizes, with 92% of the jobs ac-

counting for only 2% of the overall resources [18].

3 Cloning of Parallel Jobs

We start this section by describing the high-level idea

of cloning. After that (§3.1) we determine the granu-

larity of cloning, and settle for cloning at the granularity

of tasks, rather than entire jobs, as the former requires

fewer clones. Thereafter (§3.2), we investigate the num-

ber of clones needed if we desire the probability of a job

straggling to be at most ǫ, while staying within a cloning

budget. Finally (§3.3), as we are unlikely to have room

to clone every job in the cluster, we show a very simple

admission control mechanism that decides when to clone

jobs. An important challenge of cloning—handling data

contention between clones—is dealt with in §4.

In contrast to reactive speculation solutions [1, 4,

5], Dolly advocates a proactive approach—straightaway
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(b) Task-level Cloning

Figure 3: Probability of a job straggling for varying num-

ber of clones, and sample jobs of 10, 20 and 50 tasks. Task-

level cloning requires fewer clones than job-level cloning to

achieve the same probability of the job straggling.

launch multiple clones of a job and use the result of the

first clone that finishes. Cloning makes straggler miti-

gation agile as it does not have to wait and observe a

task before acting, and also removes the risk inherent in

speculation—speculating the wrong tasks or missing the

stragglers. Similar to speculation, we assume that pick-

ing the earliest clone does not bias the results, a property

that generally holds for data-intensive computations.

3.1 Granularity of Cloning

We start with a job consisting of a single phase. A crucial

decision affecting efficiency is the granularity of cloning.

A simple option is to clone at the granularity of jobs. For

every job submitted to the cluster, multiple clones of the

entire job are launched. Results are taken from the earli-

est job that finishes. Such job-level cloning is appealing

due to its simplicity and ease of implementation.

A fine-grained alternative is to clone at the granularity

of individual tasks. Thus, multiple clones of each task

are launched. We refer to the different clones of the same

task as a clone group. In every clone group, we then use

the result of the clone that finishes first. Therefore, un-

like job-level cloning, task-level cloning requires internal

changes to the execution engine of the framework.

As a result of the finer granularity, for the same num-

ber of clones, task-level cloning provides better proba-

bilistic guarantees for eliminating stragglers compared to

job-level cloning. Let p be the probability of a task strag-

gling. For a single-phased job with n parallel tasks and c
clones, the probability that it straggles is (1− (1− p)n)

c

with job-level cloning, and 1− (1− pc)
n

with task-level

cloning. Figure 3 compares these probabilities. Task-

level cloning gains more per clone and the probability of

the job straggling drops off faster.

Task-level cloning’s resource efficiency is desirable

because it reduces contention on the input data which is

read from file systems like HDFS [9]. If replication of in-

put data does not match the number of clones, the clones

contend for IO bandwidth in reading the data. Increas-

4
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ing replication, however, is difficult as clusters already

face a dearth of storage space [19, 20]. Hence, due to its

efficiency, we opt for task-level cloning in Dolly.

3.2 Budgeted Cloning Algorithm

Pseudocode 1 describes the cloning algorithm that is ex-

ecuted at the scheduler per job. The algorithm takes as

input the cluster-wide probability of a straggler (p) and

the acceptable risk of a job straggling (ǫ). We aim for an

ǫ of 5% in our experiments. The probability of a strag-

gler, p, is calculated every hour, where the straggler pro-

gresses at less than half the median task in the job. This

coarse approach suffices for our purpose.

Dolly operates within an allotted resource budget. This

budget is a configurable fraction (β) of the total capacity

of the cluster (C). At no point does Dolly use more than

this cloning budget. Setting a hard limit eases deploy-

ment concerns because operators are typically nervous

about increasing the average utilization by more than a

few percent. Utilization and capacity are measured in

number of slots (computation units allotted to tasks).

The pseudocode first calculates the desired number of

clones per task (step 2). For a job with n tasks, the num-

ber of clones desired by task-level cloning, c, can be de-

rived to be at least log
(

1− (1− ǫ)
(1/n)

)

/ log p. 3 The

number of clones that are eventually spawned is limited

by the resource budget (C · β) and a utilization threshold

(τ ), as in step 3. The job is cloned only if there is room

to clone all its tasks, a policy we explain shortly in §3.3.

Further, cloning is avoided if the cluster utilization after

spawning clones is expected to exceed a ceiling τ . This

ceiling avoids cloning during heavily-loaded periods.

Note that Pseudocode 1 spawns the same number of

clones to all the tasks of a job. Otherwise, tasks with

fewer clones are more likely to lag behind. Also, there

are no conflicts between jobs in updating the shared vari-

ables BU and U because the centralized scheduler han-

dles cloning decisions one job at a time.

Multi-phased Jobs: For multi-phased jobs, Dolly uses

Pseudocode 1 to decide the number of clones for tasks

of every phase. However, the number of clones for

tasks of a downstream phase (e.g., reduce) never exceeds

the number of clones launched its upstream phase (e.g.,

map). This avoids contention for intermediate data (we

revisit this in §4). In practice, this limit never applies be-

cause small jobs have equal number of tasks across their

phases. In both our traces, over 91% of the jobs with

≤ 10 tasks have equal number of tasks in their phases.

3.3 Admission Control

The limited cloning budget, β, should preferably be uti-

lized to clone the small interactive jobs. Dolly achieves

3The probability of a job straggling can be at most ǫ, i.e., 1 −

(1− p
c)n ≤ ǫ. The equation is derived by solving for c.

1: procedure CLONE(n tasks, p, ǫ)
C: Cluster Capacity, U : Cluster Utilization

β: Budget in fraction, BU : Utilized budget in #slots

2: c = ⌈log
(

1− (1− ǫ)(1/n)
)

/ log p⌉

3: if (BU + c · n) ≤ (C · β) and (U + c · n) ≤ τ then

⊲ Admission Control: Sufficient capacity to

create c clones for each task

4: for each task t do

Create c clones for t
BU ← BU + c · n

Pseudocode 1: Task-level cloning for a single-phased job

with n parallel tasks, on a cluster with probability of strag-

gler as p, and the acceptable risk of straggler as ǫ.

this using a simple policy of admission control.

Whenever the first task of a job is to be executed, the

admission control mechanism computes, as previously

explained, the number of clones c that would be required

to reach the target probability ǫ of that job straggling. If,

at that moment, there is room in the cloning budget for

creating c copies of all the tasks, it admits cloning the

job. If there is not enough budget for c clones of all the

tasks, the job is simply denied cloning and is executed

without Dolly’s straggler mitigation. The policy of ad-

mission control implicitly biases towards cloning small

jobs—the budget will typically be insufficient for cre-

ating the required number of clones for the larger jobs.

Step 3 in Pseudocode 1 implements this policy.

Many other competing policies are possible. For in-

stance, a job could be partially cloned if there is not

enough room for c clones. Furthermore, preemption

could be used to cancel the clones of an existing job to

make way for cloning another job. It turns out that these

competing policies buy little performance compared to

our simple policy. We compare these policies in §5.5.

4 Intermediate Data Access with Dolly

A fundamental challenge of cloning is the potential con-

tention it creates in reading data. Downstream tasks in

a job read intermediate data from upstream tasks accord-

ing to the communication pattern of that phase (all-to-all,

many-to-one, one-to-one). The clones in a downstream

clone group would ideally read their intermediate data

from the upstream clone that finishes first as this helps

them all start together.4 This, however, can create con-

tention at the upstream clone that finishes first. Dealing

with such contentions is the focus of this section.

We first (§4.1) explore two pure strategies at opposite

ends of the spectrum for dealing with intermediate data

contention. At one extreme, we completely avoid con-

4Intermediate data typically only exists on a single machine, as it is

not replicated to avoid time and resource overheads. Some systems do

replicate intermediate data [4, 21] for fault-tolerance but limit this to

replicating only a small fraction of the data.
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(a) Contention-Avoidance Cloning (CAC)
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(b) Contention Cloning (CC)

Figure 4: Intermediate data contention. The example job

contains two upstream tasks (U1 and U2) and two down-

stream tasks (D1 and D2), each cloned twice. The clone of

U1 is a straggler (marked with a dotted circle). CAC waits

for the straggling clone while CC picks the earliest clone.

tention by assigning each upstream clone, as it finishes,

to a new downstream task clone. This avoids contention

because it guarantees that every upstream task clone only

transfers data to a single clone per downstream clone

group. At another extreme, the system ignores the ex-

tra contention caused and assumes that the first finished

upstream clone in every clone group can sustain trans-

ferring its intermediate output to all downstream task

clones. As we show (§4.2), the latter better mitigates

stragglers compared to the former strategy. However,

we show (§4.3) that the latter may lead to congestion

whereas the former completely avoids it. Finally (§4.4),

we settle on a hybrid between the two (§4.4), delay as-

signment that far outperforms these two pure strategies.

4.1 Two Opposite Strategies

We illustrate two approaches at the opposite ends of the

spectrum through a simple example. Consider a job with

two phases (see Figure 4) and an all-to-all (e.g., shuffle)

communication pattern between them (§4.4 shows how

this can be generalized to other patterns). Each of the

phases consist of two tasks, and each task has two clones.

The first option (Figure 4a), which we call Contention-

Avoidance Cloning (CAC) eschews contention alto-

gether. As soon as an upstream task clone finishes, its

output is sent to exactly one downstream task clone per
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Figure 5: CAC vs. CC: Probability of a job straggling.

clone group. Thus, the other downstream task clones

have to wait for another upstream task clone to finish

before they can start their computation. We call this

Contention-Avoidance Cloning (CAC). Note that in CAC

an upstream clone will send its intermediate data to the

exact same number of other tasks as if no cloning was

done, avoiding contention due to cloning. The disadvan-

tage with CAC is that when some upstream clones strag-

gle, the corresponding downstream clones that read data

from them automatically lag behind.

The alternate option (Figure 4b), Contention Cloning

(CC), alleviates this problem by making all the tasks in a

downstream clone group read the output of the upstream

clone that finishes first. This ensures that no downstream

clone is disadvantaged, however, all of them may slow

down due to contention on disk or network bandwidth.

There are downsides to both CAC and CC. The next

two sub-sections quantify these downsides.

4.2 Probability of Job Straggling: CAC vs. CC

CAC increases the vulnerability of a job to stragglers by

negating the value of some of its clones. We first ana-

lytically derive the probability of a job straggling with

CAC and CC, and then compare them for some repre-

sentative job sizes. We use a job with n upstream and n
downstream tasks, with c clones of each task.

CAC: A job straggles with CAC when either the up-

stream clones straggle and consequently handicap the

downstream clones, or the downstream clones straggle

by themselves. We start with the upstream phase first

before moving to the downstream phase.

The probability that at least d upstream clones of every

clone group will succeed without straggling is given by

the function Ψ; p is the probability of a task straggling.

Ψ(n, c, d) = Probability[n upstream tasks of c clones with

≥ d non-stragglers per clone group]

Ψ(n, c, d) =

(

c−d
∑

i=0

(

c

i

)

pi(1− p)c−i

)n

(1)

6
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Therefore, the probability of exactly d upstream

clones not straggling is calculated as:

Ψ(n, c, d)−Ψ(n, c, d− 1)

Recall that there are n downstream tasks that are cloned

c times each. Therefore, the probability of the whole

job straggling is essentially the probability of a straggler

occurring in the downstream phase, conditional on the

number of upstream clones that are non-stragglers.

Probability[Job straggling with CAC] =

1−
c

∑

d=1

[Ψ(n, c, d)−Ψ(n, c, d− 1)]
(

1− pd
)n (2)

CC: CC assigns all downstream clones to the output of

the first upstream task that finishes in every clone group.

As all the downstream clones start at the same time, none

of them are handicapped. For a job to succeed with-

out straggling, it only requires that one of the upstream

clones in each clone group be a non-straggler. Therefore,

the probability of the job straggling is:

Probability[Job straggling with CC] =

1− Ψ(n, c, 1) (1− pc)
n (3)

CAC vs. CC: We now compare the probability of a job

straggling with CAC and CC for different job sizes. Fig-

ure 5 plots this for jobs with 10 and 20 upstream and

downstream tasks each. With three clones per task, the

probability of the job straggling increases by over 10%
and 30% with CAC compared to CC. Contrast this with

our algorithm in §3.2 which aims for an ǫ of 5%. The

gap between CAC and CC diminishes for higher num-

bers of clones but this is contradictory to our decision to

pick task-level cloning as we wanted to limit the num-

ber of clones. In summary, CAC significantly increases

susceptibility of jobs to stragglers compared to CC.

4.3 I/O Contention with CC

By assigning all tasks in a downstream clone group to

read the output of the earliest upstream clone, CC causes

contention for IO bandwidth. We quantify the impact due

to this contention using a micro-benchmark rather than

using mathematical analysis to model IO bandwidths,

which for contention is likely to be inaccurate.

With the goal of realistically measuring contention,

our micro-benchmark replicates the all-to-all data shuf-

fle portion of jobs in the Facebook trace. The experiment

is performed on the same 150 node cluster we use for

Dolly’s evaluation (§5). Every downstream task reads its

share of the output from each of the upstream tasks. All

the reads start at exactly the same relative time as in the

original trace and read the same amount of data from ev-

ery upstream task’s output. The reads of all the down-

stream tasks of a job together constitute a transfer [22].
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Figure 6: Slowdown (%) of transfer of intermediate data

between phases (all-to-all) due to contention by CC.

The number of clones per upstream and downstream

task is decided as in §3. In the absence of stragglers,

there would be as many copies of the upstream outputs

as there are downstream clones. However, a fraction of

the upstream clones will be stragglers. When upstream

clones straggle, we assume their copy of the intermedi-

ate data is not available for the transfer. Naturally, this

causes contention among the downstream clones.

Reading contended copies of intermediate data likely

results in a lower throughput than when there are exclu-

sive copies. Of interest to us is the slowdown in the trans-

fer of the downstream phase due to such contentions,

compared to the case where there are as many copies of

the intermediate data as there are downstream clones.

Figure 6 shows the slowdown of transfers in each bin

of jobs. Transfers of jobs in the first two bins slow

down by 32% and 39% at median, third quartile values

are 50%. Transfers of large jobs are less hurt because

tasks of large jobs are often not cloned because of lack

of cloning budget. Overall, we see that contentions cause

significant slowdown of transfers and are worth avoiding.

4.4 Delay Assignment

The analyses in §4.2 and §4.3 conclude that both CAC

and CC have downsides. Contentions with CC are not

small enough to be ignored. Following strict CAC is not

the solution either because it diminishes the benefits of

cloning. A deficiency with both CAC and CC is that they

do not distinguish stragglers from tasks that have normal

(but minor) variations in their progress. CC errs on the

side of assuming that all clones other than the earliest are

stragglers, while CAC assumes all variations are normal.

We develop a hybrid approach, delay assignment, that

first waits to assign the early upstream clones (like CAC),

and thereafter proceeds without waiting for any remain-

ing stragglers (like CC). Every downstream clone waits

for a small window of time (ω) to see if it can get an ex-

clusive copy of the intermediate data. The wait time of

ω allows for normal variations among upstream clones.

If the downstream clone does not get its exclusive copy

even after waiting for ω, it reads with contention from

one of the finished upstream clone’s outputs.

7
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Crucial to delay assignment’s performance is setting

the wait time of ω. We next proceed to discuss the anal-

ysis that picks a balanced value of ω.

Setting the delay (ω): The objective of the analysis is

to minimize the expected duration of a downstream task,

which is the minimum of the durations of its clones.

We reuse the scenario from Figure 4. After waiting

for ω, the downstream clone either gets its own exclusive

copy, or reads the available copy with contention with

the other clone. We denote the durations for reading the

data in these two cases as TE and TC , respectively. In

estimating read durations, we eschew detailed modeling

of systemic and network performance. Further, we make

the simplifying assumption that all downstream clones

can read the upstream output (of size r) with a bandwidth

of B when there is no contention, andαB in the presence

of contention (α ≤ 1).

Our analysis, then, performs the following three steps.

1. Calculate the clone’s expected duration for reading

each upstream output using TC and TE .

2. Use read durations of all clones of a task to estimate

the overall duration of the task.

3. Find the delay ω that minimizes the task’s duration.

Step (1): We first calculate TC , i.e., the case where the

clone waits for ω but does not get its exclusive copy,

and contends with the other clone. The downstream

clone that started reading first will complete its read in
(

ω +
(

r−Bw
αB

))

, i.e., it reads for ω by itself and contends

with the other clone for the remaining time. The other

clone takes
(

2ω +
(

r−Bw
αB

))

to read the data.

Alternately, if the clone gets its exclusive copy, then

the clone that began reading first reads without interrup-

tion and completes its read in
(

r
B

)

. The other clone,

since it gets its own copy too, takes
(

r
B +min( r

B , ω)
)

to read the data.5 Now that we have calculated TC and

TE , the expected duration of the task for reading this up-

stream output is simply pcTC +(1− pc)TE , where pc is

the probability of the task not getting an exclusive copy.

Note that, regardless of the number of clones, every clone

is assigned an input source latest at the end of ω. Unfin-

ished upstream clones at that point are killed.

Step (2): Every clone may have to read the outputs of

multiple upstream clones, depending on the intermedi-

ate data communication pattern. In all-to-all communi-

cation, a task reads data from each upstream task’s out-

put. In one-to-one or many-to-one communications, a

task reads data from just one or few tasks upstream of it.

Therefore, the total time Ti taken by clone i of a task is

obtained by considering its read durations from each of

5The wait time of ω is an upper limit. The downstream clone can

start as soon as the upstream output arrives.

the relevant upstream tasks, along with the expected time

for computation. The expected duration of the task is the

minimum of all its clones, mini (Ti).

Step (3): The final step is to find ω that minimizes this

expected task duration. We sample values of B and α,

pc and the computation times of tasks from samples of

completed jobs. The value of B depends on the number

of active flows traversing a machine, while the pc is in-

versely proportional to ω. Using these, we pick ω that

minimizes the duration of a task calculated in step (2).
The value of ω is calculated periodically and automati-

cally for different job bins (see §5.2). A subtle point with

our analysis is that it automatically considers the option

where clones read from the available upstream output,

one after the other, without contending.

A concern in the strategy of delaying a task is that it is

not work-conserving and also somewhat contradicts the

observation in §2 that waiting before deciding to specu-

late is harmful. Both concerns are ameliorated by the fact

that we eventually pick a wait duration that minimizes

the completion time. Therefore, our wait is not because

we lack data to make a decision but precisely because the

data dictates that we wait for the duration of ω.

5 Evaluation

We evaluate Dolly using a prototype built by modifying

the Hadoop framework [8]. We deploy our prototype on

a 150-node cluster and evaluate it using workloads de-

rived from the Facebook and Bing traces (§2), indicative

of Hadoop and Dryad clusters. In doing so, we preserve

the inter-arrival times of jobs, distribution of job sizes,

and the DAG of the jobs from the original trace. The

jobs in the Dryad cluster consist of multiple phases with

varied communication patterns between them.

5.1 Setup

Prototype Implementation: We modify the job sched-

uler of Hadoop 0.20.2 [8] to implement Dolly. The two

main modifications are launching clones for every task

and assigning map outputs to reduce clones such that

they read the intermediate data without contention.

When a job is submitted, its tasks are queued at the

scheduler. For every queued task, the scheduler spawns

many clones. Clones are indistinguishable and the sched-

uler treats every clone as if it were another task.

The all-to-all transfer of intermediate data is imple-

mented as follows in Hadoop. When map tasks finish,

they notify the scheduler about the details of their out-

puts. The scheduler, in turn, updates a synchronized list

of available map outputs. Reduce tasks start after a frac-

tion of the map tasks finish [23]. On startup, they poll

on the synchronized list of map outputs and fetch their

data as and when they become available. There are two

changes we make here. First, every reduce task differen-

8
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Bin 1 2 3 4 5

Tasks 1–10 11–50 51–150 151–500 > 500

Table 3: Job bins, binned by their number of tasks.

tiates between map clones and avoids repetitive copying.

Second, tasks in a reduce clone group notify each other

when they start reading the output of a map clone. This

helps them wait to avoid contention.

Deployment: We deploy our prototype on a private clus-

ter with 150machines. Each machine has 24GB of mem-

ory, 12 cores, and 2TB of storage. The machines have

1Gbps network links connected in a topology with full

bisection bandwidth. Each experiment is repeated five

times and we present the median numbers.

Baseline: Our baselines for evaluating Dolly are the

state-of-the-art speculation algorithms—LATE [5] and

Mantri [4]. Additionally, with each of these specula-

tion strategies, we also include a blacklisting scheme that

avoids problematic machines (as described in §2.1.2).

In addition to overall improvement in average com-

pletion time of jobs, we bin jobs by their number of tasks

(see Table 3) and report the average improvement in each

bin. The following is a summary of our results.

• Average completion time of small jobs improves by

34% to 46% compared to LATE and Mantri, using

fewer than 5% extra resources (§5.2 and §5.4).

• Delay assignment outperforms CAC and CC by 2×.

Its benefit increases for jobs with higher number of

phases and all-to-all intermediate data flow (§5.3).

• Admission control of jobs is a good approximation

for preemption in favoring small jobs (§5.5).

5.2 Does Dolly mitigate stragglers?

We first present the improvement in completion time us-

ing Dolly. Unless specified otherwise, the cloning budget

β is 5% and utilization threshold τ is 80%.

Dolly improves the average completion time of jobs by

42% compared to LATE and 40% compared to Mantri,

in the Facebook workload. The corresponding improve-

ments are 27% and 23% in the Bing workload. Fig-

ure 7 plots the improvement in different job bins. Small

jobs (bin-1) benefit the most, improving by 46% and

37% compared to LATE and 44% and 34% compared

to Mantri, in the Facebook and Bing workloads. This

is because of the power-law in job sizes and the policy

of admission control. Figures 8a and 8b show the aver-

age duration of jobs in the smallest two bins with LATE

and Mantri, and its reduction due to Dolly’s cloning, for

the Facebook workload. Figure 8c shows the distribution

of gains for jobs in bin-1. We see that jobs improve by
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(a) Facebook workload.
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(b) Bing workload.

Figure 7: Dolly’s improvement for the Facebook and Bing

workloads, with LATE and Mantri as baselines.

nearly 50% and 60% at the 75th and 90th percentiles, re-

spectively. Note that even at the 10th percentile, there is

a non-zero improvement, demonstrating the seriousness

and prevalence of the problem of stragglers in small jobs.

Figure 9 presents supporting evidence for the improve-

ments. The ratio of medium to minimum progress rates

of tasks, which is over 5 with LATE and Mantri in our de-

ployment, drops to as low as 1.06 with Dolly. Even at the

95th percentile, this ratio is only 1.17, thereby indicating

that Dolly effectively mitigates nearly all stragglers.

The ratio not being exactly 1 shows that some strag-

glers still remain. One reason for this is that while

our policy of admission control is a good approximation

(§3.3), it does not explicitly prioritize small jobs. Hence

a few large jobs possibly deny the budget to some small

jobs. Analyzing the consumption of the cloning budget

shows that this is indeed the case. Jobs in bin-1 and bin-2
together consume 83% of the cloning budget. However,

even jobs in bin-5 get a small share (2%) of the budget.

5.3 Delay Assignment

Setting ω: Crucial to the above improvements is delay

assignment’s dynamic calculation of the wait duration of

ω. The value of ω, picked using the analysis in §4.4, is

updated every hour. It varied between 2.5s and 4.7s for

jobs in bin-1, and 3.1s and 5.2s for jobs in bin-2. The

value of ω varies based on job sizes because the number

of tasks in a job influences B, α and pc. Figure 10 plots

the variation with time. The sensitivity ofω to the period-

icity of updating its value is low—using values between

9
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(c) Distribution of improvements (≤ 10 tasks).

Figure 8: Dissecting Dolly’s improvements for the Face-

book workload. Figures (a) and (b) show the duration of

the small jobs before and after Dolly. Figure (c) expands on

the distribution of the gains for jobs with ≤ 10 tasks.

1

2

3

4

5

6

1 2 3 4 5

LATE

Mantri

Dolly

(
M

e
d

i
a

n
 
:
 
M

i
n

i
m

u
m

)
 

P
r
o

g
r
e

s
s
 
R

a
t
e

Bin (#Tasks)

(a) Facebook

1

2

3

4

5

6

1 2 3 4 5

LATE

Mantri

Dolly

Bin (#Tasks)

(
M

e
d

i
a

n
 
:
 
M

i
n

i
m

u
m

)
 

P
r
o

g
r
e

s
s
 
R

a
t
e

(b) Bing

Figure 9: Ratio of median to minimum progress rates of

tasks within a phase. Bins are as per Table 3.

30 minutes to 3 hours causes little change in its value.

CC and CAC: We now compare delay assignment to the

two static assignment schemes, Contention Cloning (CC)

and Contention Avoidance Cloning (CAC) in Figure 11,

for the Bing workload. With LATE as the baseline, CAC

and CC improve the small jobs by 17% and 26%, in con-

trast to delay assignment’s 37% improvement (or up to

2.1× better). With Mantri as the baseline, delay assign-

ment is again up to 2.1× better. In the Facebook work-

load, delay assignment is at least 1.7× better.

The main reason behind delay assignment’s better per-

formance is its accurate estimation of the effect of con-

tention and the likelihood of stragglers. It uses sampling

from prior runs to estimate both. Bandwidth estimation

is 93% accurate without contention and 97% accurate

with contention. Also, the probability of an upstream
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Figure 10: Variation in ω when updated every hour.
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Figure 11: Intermediate data contention. Delay Assign-

ment is 2.1× better than CAC and CC (Bing workload).

clone straggling is estimated to an accuracy of 95%.

Between the two, CC is a closer competitor to delay

assignment than CAC, for small jobs. This is because

they transfer only moderate amounts of data. However,

contentions hurt large jobs as they transfer sizable inter-

mediate data. As a result, CC’s gains drop below CAC.

Number of Phases: Dryad jobs may have multiple

phases (maximum of 6 in our Bing traces), and tasks of

different phases have the same number of clones. More

phases increases the chances of there being fewer exclu-

sive copies of task outputs, which in turn worsens the

effect of both waiting as well as contention. Figure 12

measures the consequent drop in performance. CAC’s

gains drop quickly while CC’s performance drops at a

moderate rate. Importantly, delay assignment’s perfor-

mance only has a gradual and relatively small drop. Even

when the job has six phases, improvement is at 31%, a

direct result of its deft cost-benefit analysis (§4.4).

Communication Pattern: Delay assignment is generic

to handle any communication pattern between phases.

Figure 13 differentiates the gains in completion times of

the phases based on their communication pattern. Re-

sults show that delay assignment is significantly more

10
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Figure 12: Dolly’s gains as the number of phases in jobs in

bin-1 varies in the Bing workload, with LATE as baseline.
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Figure 13: Performance of Dolly across phases with differ-

ent communication patterns in bin-1, in the Bing workload.
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Figure 14: Sensitivity to cloning budget (β). Small jobs see

a negligible drop in performance even with a 3% budget.

valuable for all-to-all communication patterns than the

many-to-one and one-to-one patterns. The higher the de-

pendency among communicating tasks, the greater the

value of delay assignment’s cost-benefit analysis.

Overall, we believe the above analysis shows the ap-

plicability and robust performance of Dolly’s mecha-

nisms to different frameworks with varied features.

5.4 Cloning Budget

The improvements in the previous sections are based on

a cloning budget β of 5%. In this section, we analyze

the sensitivity of Dolly’s performance to β. We aim to

understand whether the gains hold for lower budgets and

how much further gains are obtained at higher budgets.

In the Facebook workload, overall improvement re-

mains at 38% compared to LATE even with a cloning

budget of only 3% (Figure 14a). Small jobs, in fact, see

a negligible drop in gains. This is due to the policy of

admission control to favor small jobs. Large jobs take

a non-negligible performance hit though. In fact, in the

Bing workload, even the small jobs see a drop of 7%
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Figure 15: Sweep of β to measure the overall average com-

pletion time of all jobs and specifically those within bin-1.
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Figure 16: Admission Control. The policy of admission

control well approximates the policy of preemption and out-

performs pure-FCFS in utilizing the cloning budget.

when the budget is reduced from 5% to 3%. This is be-

cause job sizes in Bing are less heavy-tailed. However,

the gains still stand at a significant 28% (Figure 14b).

Increasing the budget to 10% does not help much.

Most of the gains are obtained by eliminating stragglers

in the smaller jobs, which do not require a big budget.

In fact, sweeping the space of β (Figure 15) reveals

that Dolly requires a cloning budget of at least 2% and 3%
for the Facebook and Bing workloads, below which per-

formance drops drastically. Gains in the Facebook work-

load plateau beyond 5%. In the Bing workload, gains for

jobs in bin-1 plateau at 5% but the overall gains cease to

grow only at 12%. While this validates our setting of β
as 5%, clusters can set their budgets based on their uti-

lizations and the jobs they seek to improve with cloning.

11
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5.5 Admission Control

A competing policy to admission control (§3.3) is to pre-

empt clones of larger jobs for the small jobs. Preemption

is expected to outperform admission control as it explic-

itly prioritizes the small jobs; we aim to quantify the gap.

Figure 16 presents the results with LATE as the base-

line and cloning budgets of 5% and 3%. The gains with

preemption is 43% and 29% in the Facebook and Bing

workloads, compared to 42% and 27% with the policy

of admission control. This small difference is obtained

by preempting 8% and 9% of the tasks in the two work-

loads. Lowering the cloning budget to 3% further shrinks

this difference, even as more tasks are preempted. With

a cloning budget of 3%, the improvements are nearly

equal, even as 17% of the tasks are preempted, effec-

tively wasting cluster resources. Admission control well

approximates preemption due to the heavy tailed distri-

bution. Note the near-identical gains for small jobs.

Doing neither preemption or admission control in al-

locating the cloning budget (“pure-FCFS”) reduces the

gains by nearly 14%, implying this often results in larger

jobs denying the cloning budget to the smaller jobs.

6 Related Work

Replicating tasks in distributed systems have a long his-

tory [24, 25, 26], and have been studied extensively [27,

28, 29] in prior work. These studies conclude that model-

ing running tasks and using it for predicting and compar-

ing performance of other tasks is the hardest component,

errors in which often cause degradation in performance.

We concur with a similar observation in our traces.

The problem of stragglers was identified in the orig-

inal MapReduce paper [1]. Since then solutions have

been proposed to fix it using speculative executions [2,

4, 5]. Despite these techniques, stragglers remain a prob-

lem in small jobs. Dolly addresses their fundamental

limitation—wait to observe before acting—with a proac-

tive approach of cloning jobs. It does so using few extra

resources by relying on the power-law of job sizes.

Based on extensive research on detecting faults in ma-

chines (e.g., [30, 31, 32, 33, 34]), datacenters period-

ically check for faulty machines and avoid scheduling

jobs on them. However, stragglers continue to occur on

the non-blacklisted machines. Further improvements to

blacklisting requires a root cause analysis of stragglers

in small jobs. However, this is intrinsically hard due to

the complexity of the hardware and software modules, a

problem recently acknowledged in Google’s clusters [6].

In fact, Google’s clusters aim to make jobs “pre-

dictable out of unpredictable parts” [6]. They overcome

vagaries in performance by scheduling backup copies

for every job. Such backup requests are also used in

Amazon’s Dynamo [35]. This notion is similar to Dolly.

However, these systems aim to overcome variations in

scheduling delays on the machines, not runtime strag-

glers. Therefore, they cancel the backup copies once one

of the copies starts. In contrast, Dolly has to be resilient

to runtime variabilities which requires functioning within

utilization limits and efficiently handle intermediate data.

Finally, our delay assignment model is similar to the

idea of delay scheduling [36] that delays scheduling tasks

for locality. We borrow this idea in Dolly, but crucially,

pick the value of the delay based on a cost-benefit analy-

sis weighing contention versus waiting for slower tasks.

7 Conclusions and Future Work

Analysis of production traces from Facebook and Mi-

crosoft Bing show that straggler tasks continue to af-

fect small interactive jobs by 47% even after applying

state-of-the-art mitigation techniques [4, 5]. This is be-

cause these techniques wait before launching speculative

copies. Such waiting bounds their agility for small jobs

that run all their tasks at once.

In this paper we developed a system, Dolly, that

launches multiple clones of jobs, completely removing

waiting from straggler mitigation. Cloning of small jobs

can be achieved with few extra resources because of the

heavy-tail distribution of job sizes; the majority of the

jobs are small and can be cloned with little overhead. The

main challenge of cloning was making the intermediate

data transfer efficient, i.e., avoiding multiple tasks down-

stream in the job from contending for the same upstream

output. We developed delay assignment to efficiently

avoid such contention using a cost-benefit model. Evalu-

ation using production workloads showed that Dolly sped

up small jobs by 34% to 46% on average, after applying

LATE and Mantri, using only 5% extra resources.

Going forward, we plan to evaluate Dolly’s compat-

ibility with caching systems proposed for computation

frameworks. These systems rely on achieving memory

locality—scheduling a task on the machine that caches

its input—along with cache replacement schemes tar-

geted for parallel jobs [37]. Analyzing (and dealing with)

the impact of multiple clones for every task on both these

aspects is a topic for investigation.

We also plan to extent Dolly to deal with clusters that

deploy multiple computation frameworks. Trends indi-

cate a proliferation of frameworks, based on different

computational needs and programming paradigms (e.g.,

[3, 7]). Such specialized frameworks may, perhaps, lead

to homogeneity of job sizes within them. Challenges

in extending Dolly to such multi-framework clusters in-

cludes dealing with any weakening of the heavy-tail dis-

tribution, a crucial factor behind Dolly’s low overheads.
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Abstract

This paper studies the name lookup issue with longest
prefix matching, which is widely used in URL filtering,
content routing/switching, etc. Recently Content-Centric
Networking (CCN) has been proposed as a clean slate
future Internet architecture to naturally fit the content-
centric property of today’s Internet usage: instead of
addressing end hosts, the Internet should operate based
on the identity/name of contents. A core challenge
and enabling technique in implementing CCN is exactly
to perform name lookup for packet forwarding at wire
speed. In CCN, routing tables can be orders of magni-
tude larger than current IP routing tables, and content
names are much longer and more complex than IP ad-
dresses. In pursuit of conquering this challenge, we con-
duct an implementation-based case study on wire speed
name lookup, exploiting GPU’s massive parallel pro-
cessing power. Extensive experiments demonstrate that
our GPU-based name lookup engine can achieve 63.52M
searches per second lookup throughput on large-scale
name tables containing millions of name entries with
a strict constraint of no more than the telecommunica-
tion level 100µs per-packet lookup latency. Our solu-
tion can be applied to contexts beyond CCN, such as
search engines, content filtering, and intrusion preven-
tion/detection.
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1 Introduction

Name lookup is widely used in a broad range of techno-
logical fields, such as search engine, data center, storage
system, information retrieval, database, text processing,
web application, programming languages, intrusion de-
tection/prevention, malware detection, content filtering
and so on. Most of these name lookup applications ei-
ther perform exact matching only or operate on small-
scale data sets. The recently emerging Content-Centric
Networking (CCN) [12] proposes to use a content name
to identify a piece of data instead of using an IP address
to locate a device. In CCN scenario, every distinct con-
tent/entity is referenced by a unique name. Accordingly,
communication in CCN is no longer address-based, but
name-based. CCN routers forward packets based on the
requested content name(s) carried in each packet header,
by looking up a forwarding table consisting of content
name prefixes.

CCN name lookup complies with longest prefix
matching (LPM) and backbone CCN routers can have
large-scale forwarding tables. Wire speed name lookup
presents a research challenge because of stringent re-
quirements on memory occupation, throughput, latency
and fast incremental update. Practical name lookup en-
gine design and implementation, therefore, require elab-
orate design-level innovation plus implementation-level
re-engineering.

1.1 Names and Name Tables
Content naming, as recently proposed in the Named
Data Network (NDN) project [28]1, is hierarchi-
cally structured and composed of explicitly delim-
ited name components, such as reversed domain
names followed by directory-style path. For in-

1CCN refers to the general content-centric networking paradigm;
NDN refers to the specific proposal of the NDN project. However, we
shall use them interchangeably in the rest of the paper.
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Figure 1: NDN communication example3.

stance, com/parc/bulletin/NSDI.html is an exam-
ple NDN content name, where com/parc/ is the re-
versed domain name parc.com of the web site and
/bulletin/NSDI.html is the content’s directory path
on the web site. ‘/’ is the component boundary delimiter
and not a part of the name; com, parc, bulletin and
NSDI.html are four components of the name.

The format of Forwarding Information Base (FIB)2

of NDN routers is shown beside Router A and B in
Figure 1. Each FIB entry is composed of a name
prefix and the corresponding outgoing port(s). NDN
name lookup also complies with longest prefix match-
ing (LPM). For example, suppose the content name is
/com/parc/products/printers/hp, which matches
the third and fourth entries in Router A; the fourth entry
as the longest matching prefix determines that the packet
should be forwarded through port 3.

1.2 Challenges

To implement CCN routing with large-scale FIB tables in
high speed networks, a core challenge and enabling tech-
nique is to perform content name lookup for forwarding
packets at wire speed. In particular, a name lookup en-
gine is confronted with the following difficulties.

First, content names are far more complex than IP ad-
dresses. As introduced above, content names are much
longer than IPv4/IPv6 addresses; each name is composed
of tens, or even hundreds, of characters. In addition, un-
like fixed-length IP addresses, content names have vari-
able lengths, which further complicates the name lookup.

Second, CCN name tables could be far larger than to-
day’s IP forwarding tables. Compared with the current
IP routing tables with up to 400K IP prefix entries, CCN

2In this paper, we shall use three terms — FIB, FIB table and name
table — interchangeably.

3In the NDN proposal, there are three kinds of tables, FIB, PIT and
CS. Only if the CS and PIT both fail to match, name lookup in FIB is
performed. When we evaluate our lookup engine, we assume this worst
case where every name has to be looked up in FIB.

name tables could be orders of magnitude larger. With-
out elaborate compression and implementation, they can
by far exceed the capacity of today’s commodity devices.

Third, wire speeds have been relentlessly accelerat-
ing. Today, OC-768 (40Gbps) links have already been
deployed in Internet backbone, and OC-3072 (160Gbps)
technology is emerging at the horizon of Internet.

Fourth, in addition to network topology changes and
routing policy modifications, CCN routers have to han-
dle one new type of FIB update — when contents are
published/deleted, name prefixes may need to be inserted
into or deleted from FIBs. This makes FIB update much
more frequent than in today’s Internet. Fast FIB update,
therefore, must be well handled for large-scale FIBs.

1.3 Our work
In pursuit of conquering these challenges, we conduct
an implementation-based case study of wire speed name
lookup in large-scale name tables, exploiting GPU’s
massive parallel processing power.

1) We present the first design, implementation
and evaluation of a GPU-based name lookup engine.
Through this implementation-based experimental study,
we demonstrate the feasibility of implementing wire
speed name lookup with large-scale name tables at low
cost, using today’s commodity GPU devices. We have
released the implementation code, data traces and docu-
ments of our work [3].

2) Our GPU-based name lookup engine is featured by
a new technique called multiple aligned transition arrays
(MATA), which combines the best of two worlds. On one
hand, MATA effectively improves lookup speed by re-
ducing the number of memory access. On the other hand,
MATA as one-dimensional arrays can substantially com-
press storage space. Due to these unique merits, MATA
is demonstrated through experiments to be able to com-
press storage space by two orders of magnitude, while
promoting lookup speed by an order of magnitude, com-
pared with two-dimensional state transition tables.

3) GPU achieves high processing throughput by ex-
ploiting massive data-level parallelism — large amounts
of input data (i.e., names) are loaded into GPU, looked
up in GPU and output results from GPU together to hide
GPU’s DRAM access latency. While effectively boost-
ing processing throughput, this typical GPU design phi-
losophy easily leads to extended per-packet latency. In
this work, we take on this throughput-latency dilemma
by exploiting the multi-stream mechanism featured in
NVIDIA’s Fermi GPU family. Our stream-based pipeline
solution ensures practical per-packet latency (less than
100µs) while keeping high lookup throughput.

4) We employ data interweaving [32] technique for
optimizing the storage of input names in GPU memory.
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As a result, memory access efficiency is significantly im-
proved, further boosting name lookup performance.

We implement our name lookup engine on a com-
modity PC installed with an NVIDIA GeForce GTX590
GPU board. Using real world URL names collected from
Internet, we conduct extensive experiments to evaluate
and analyze the performance of our GPU-based name
lookup engine. On large-scale name tables containing
up to 10M names, the CPU-GPU lookup engine obtains
63.52M searches per second (SPS) under average work-
load, enabling an average line rate of 127 Gbps (with
256-byte average packet size). Even under heavy work-
load, we can still obtain up to 55.65 MSPS, translating to
111 Gbps wire speed. Meanwhile, lookup latency can be
as low as 100µs. In fact, if the PCIe bus bandwidth be-
tween CPU and GPU were not the system bottleneck, the
lookup engine core running on the GPU could achieve
219.69 MSPS! Besides, experiments also show that our
name lookup engine can support fast incremental name
table update.

These results advocate our GPU-based name lookup
engine design as a practical solution for wire speed name
lookup, using today’s off-the-shelf technologies. The re-
sults obtained in this work, however, will have broad im-
pact on many technological fields other than CCN.

2 Algorithms & Data Structures

In this section, we present the core algorithmic and data
structure design of our GPU-based name lookup engine.
The entire design starts with name table aggregation
in Section 2.1, where name tables are aggregated into
smaller yet equivalent ones. After that, we present in
Section 2.2 aligned transition array (ATA), which sub-
sequently evolves into multi-striding ATA in Section 2.3
and multi-ATA (MATA) — the core data structure for
high speed and memory efficient name lookup — in Sec-
tion 2.4. Finally in Section 2.5, we demonstrate how
name table updates can be handled with ease in our
lookup engine design.

2.1 Name table aggregation

The hierarchical structure of NDN names and the longest
prefix matching property of NDN name lookup enable
us to aggregate NDN name tables into smaller ones. For
example, consider Router A’s name table in Figure 1. If
the third entry and the fourth entry map to the same next
hop port, they can be aggregated into one, by removing
the fourth entry. After this aggregation, names originally
matching the fourth entry will now match the third one.
Since the two entries are hereby assumed to map to the
same port, it is safe to perform this aggregation.

 
   

   



 
 

 
 
 

 
 
 
 
 
 
 
 








Figure 2: Aligned transition array.

To safely aggregate the two name table entries, they
need to comply with two simple principles: (1) One of
them is the shortest prefix of the other in the name table;
(2) They must map to the same next hop port(s).

2.2 Aligned transition array (ATA)

A natural approach to implementing NDN name lookup
is to build a character-trie [9], which is essentially a fi-
nite state machine (FSM) for matching incoming names
against a name table, as shown in the left part of Fig-
ure 2. Each node in the character-trie is implemented as
a state in the FSM, and transitions to its child nodes (i.e.,
states) on specified input characters. To start with, we
assume the FSM processes one input character on each
state transition. In such a 1-stride FSM, each state has
256 transitions, and each transition corresponds to a dis-
tinct input character. The entire FSM is essentially a two-
dimensional state transition table, where the ith row im-
plements the ith state si and the jth column corresponds
to the jth character c j in the input alphabet Σ, which in
this case is the ASCII character set. The table entry at
the intersection of the ith row and jth column records
the destination state we should transit to, if the current
state is si and the input character is c j; an empty en-
try indicates failing to match. Using current state ID as
row number and input character as column number, one
memory access is sufficient to perform every state tran-
sition.

However, this standard solution does not work in prac-
tice. To see that, we experiment with a real name table
consisting of 2,763,780 names (referred as “3M name ta-
ble” for brevity). After aggregation, the constructed 1-
stride FSM consists of 20,440,366 states; four bytes are
needed for encoding state ID, and 256×4 = 1,024 bytes
are thus needed for each row of the state transition table.
The entire state transition table takes 19.49 GB memory
space. In fact, the largest name table used in our experi-
ments is even several times larger than the 3M name ta-
ble. To fit such a large-scale name table into commodity
GPU devices, the FSM has to be compressed by at least
2-3 orders of magnitude, while still has to perform name
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lookup at wire speed, meeting stringent lookup latency
requirement and supporting fast incremental name table
update. This is a key challenge in the design and imple-
mentation of a practical name lookup engine, which we
take on in this work.

As we can observe from Figure 2, the FSM for name
lookup demonstrates a key feature — most states have
valid transitions on very few input characters. For ex-
ample in Figure 2, state 0 only has a valid transition on
character a. This intuitive observation is also verified
through experiments. For example, in the 1-stride FSM
constructed from the 3M name table, more than 80% of
states have only one single valid transition, plus more
than 13% of states (which are accepting states) that have
no valid transition at all. The state transition table is thus
a rather sparse one.

In light of this observation, we store valid transitions
into what we call an aligned transition array (ATA). The
basic idea is to take the sum of current state ID and input
character as an index into the transition array. For exam-
ple, if the current state ID is 1,000 and the input char-
acter is a (whose ASCII code is 97), we shall take the
transition stored in the 1,097th transition array element
as our valid transition4. To properly implement, we need
to assign each state s a unique state ID such that no two
valid transitions are mapped to the same transition array
element. For that, we first find the smallest input char-
acter on which state s has a valid transition; suppose the
character is the kth character in input alphabet Σ. Then,
we find the lowest vacant element in the transition array,
and suppose it is the ℓth element in the transition array.
The number ℓ-k, if previously unused as a state ID, is
considered as a candidate state ID for state s. To avoid
possible storage collision, we need to check every input
character c on which state s has a valid transition. If no
collision is detected on any valid transition of state s, ℓ-k
is assigned as the state ID of state s. Otherwise, if the
(ℓ-k+c)th transition array element is already occupied, a
collision is detected and ℓ-k is not good as the state ID for
state s. The next vacant elements in the transition array
are probed one by one until finding the available element.

Another mistake that can potentially happen here is
that, even if current state s has not a valid transition on
the current input character, (state ID + input character)
may mistakenly refer to a stored valid transition belong-
ing to another state. To handle this problem, we store for
each valid transition not only its destination state ID, but
also its input character for verification.

With this aligned transition array design, the example

4This basic idea of storing a sparse table as a one-dimensional ar-
ray is introduced by Robert Endre Tarjan and Andrew Chi-Chih Yao
[23] back in 1979. With our new techniques proposed in subsequent
sections, we shall be able to effectively boost name lookup speed while
further reducing storage space.
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Figure 3: A 3-stride FSM.

name table in the left part of Figure 2 is implemented as
the aligned transition array in the right part of Figure 2.
State transition is as efficient as using two-dimensional
state transition table. We simply take the sum of current
state ID and input character, and read the transition ar-
ray element indexed by the sum. If the stored character
is the same as input character, the obtained transition di-
rectly gives us the destination state; otherwise, failing to
match is detected. One single memory access is still suf-
ficient for every state transition. Meanwhile, only valid
transitions need to be stored, leading to significant com-
pression of storage space.

Thus far, this basic ATA design looks perfect. How-
ever, scale can completely change the nature of prob-
lems. Given the limited resource and capacity of today’s
commodity devices, as we shall observe in subsequent
sections, performing name lookup at 10Gbps in a name
table containing hundreds of thousands name prefixes is
one thing, while performing name lookup at 100Gbps in
a name table consisting of millions of name prefixes is to-
tally different. Especially, we also have to meet stringent
per-packet lookup latency requirement and support fast
incremental name table update. In subsequent sections,
we shall unfold and solve various technical issues, as
we proceed towards wire speed name lookup with large-
scale name tables.

2.3 Multi-striding
The storage efficiency and lookup speed of aligned tran-
sition array can be further improved with multi-striding
— instead of processing one character per state tran-
sition, d characters are processed on each state transi-
tion. The same algorithm for constructing 1-stride FSMs
can be used to construct multi-stride FSMs. To ensure
proper matching of name prefixes and to facilitate name
table update, component delimiter ‘/’ can only be the
last character we read upon each state transition. Thus,
the d-stride FSM we construct is actually an FSM of
variable strides, which processes up to d characters (8d
bits) per state transition. For example, Figure 3 shows
the 3-stride FSM constructed from the following three
names: /com/amazon/books/, /com/amazon/www/
and /com/yahoo/www/. Upon state transition, we keep
reading in d input characters unless ‘/’ is encountered,
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where we stop. These input characters are transformed
into an integer, which is taken as the input number.

By processing multiple bytes per state transition,
multi-striding effectively accelerates name lookup. Even
better, multi-striding also helps reduce storage space.
Because a large number of intermediate states and tran-
sitions in the 1-stride FSM will be consolidated.

2.4 Multi-ATA (MATA)

While multi-striding is very effective on boosting lookup
speed and reducing storage space, trying to further ex-
pand its power using larger strides leads us to an inherent
constraint of the basic ATA design — its multi-striding
is limited by available memory. For example, in the 3-
stride FSM in Figure 3, it takes two state transitions to
match the first-level name component ‘com/’, making
us naturally think about using a 4-stride FSM so that one
state transition will be enough. Unfortunately, in a d-
stride FSM, a state can have 28d transitions at most, so
the distance between a state’s two valid transitions stored
in the aligned transition array can be as large as 28d-
1. Thus, with the 3GB memory space available on the
NVIDIA GTX590 GPU board used in our experiments,
3-stride has been the maximum stride that can be imple-
mented with basic ATA; 4-stride is not a practical option.

We break this constraint of basic ATA by defining a
maximum ATA length L (L < 28d). For a state with state
ID x, its valid transition on input number y can be stored
in the ((x+y) mod L)th transition array element instead
of the (x+y)th element. However, suppose state x has
another valid transition on input number z. If y-z is a
multiple of L, the two valid transitions will be mapped
to the same transition array element and hence cause a
storage collision.

For solving the above problem, we shall use a set of
prime numbers L1, L2, . . ., Lk, such that L1×L2×. . .×Lk
≥ 28d . Accordingly, instead of creating one huge ATA,
we create a number of small ATAs, each ATA using one
of the prime numbers as its maximum length. Then, we
first try to store the two valid transitions on y and z into
an ATA with prime number L1. (There can be multi-
ple ATAs having the same maximum length.) If the two
valid transitions do not collide with each other but col-
lide with some valid transition(s) previously stored in
that ATA, we shall try another ATA with the same maxi-
mum length; if the two valid transitions collide with each
other, we shall move on trying to store state x into an
ATA with a different maximum length, until ATAs with
all different maximum lengths have been tried. It is guar-
anteed that, there must be at least one prime number Li
that can be used to store the two valid transitions with-
out any collision. To prove by contradiction, assume the
two valid transitions collide with all prime numbers L1,

L2, . . ., Lk as the maximum length. That means, y-z is a
multiple of all these prime numbers L1, L2, . . ., Lk, and
hence a multiple of L1×L2×. . .×Lk; this in turn means
y-z ≥ L1×L2×. . .×Lk ≥ 28d , which is impossible.

For each state in the FSM, as part of its state ID in-
formation, we record the small ATA that is used to store
its valid transition(s). Thus, one single memory access is
still sufficient to perform every state transition.

To handle cases where a state has multiple pairs of
valid transitions colliding with each other, the above de-
sign can be simply augmented with more prime numbers.

In addition to breaking the constraint on maximum
stride, the above described multi-ATA (MATA) design
also has two other merits.

First, ATAs can leave elements unused in vacancy, due
to storage collision or insufficient number of valid tran-
sitions to store. By defining maximum ATA length, we
now have better control over the amount of ATA elements
that are wasted in vacancy.

Second, constructing the MATA optimally is NP-hard.
One single large basic ATA can take prohibitively long
time to construct, even employing a heuristic algorithm.
By breaking into a number of small ATAs, the entire
FSM takes much less time to store into these ATAs. For
example, the construction time of heuristic algorithm for
the 3M name table can be reduced from days (for basic
ATA) to minutes (for MATA), with an appropriate set of
prime numbers.

2.5 Name table update
There are two types of name table updates: insertion and
deletion. In this subsection, we demonstrate how these
updates can be handled with ease in our design. First of
all, it is worth reminding the reader that our name lookup
mechanism is composed of two components.

(1) The name table is first organized into a character-
trie, which is essentially a finite state machine.

(2) The character-trie is then transformed into MATA.
Accordingly, insertion and deletion of names are first

conducted on the character-trie, in order to determine
the modifications that need to be made to the character-
trie structure. Then, we carry out the modifications in
MATA. Following this logic, we explain name insertion
and deletion as follows.

2.5.1 Name deletion
To delete a name P from the name table, we simply con-
duct a lookup of name P in the name table. If it is not
matched, we determine that the proposed deletion oper-
ation is invalid, as name P does not actually exist in the
name table.

Once name P is properly matched and comes to the
leaf node representing itself, we then simply backtrack
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towards the root. (This can be done by remembering all
the nodes we have traversed along the path from the root
to the leaf node.) Every node with one single valid transi-
tion will be deleted from the trie (each trie node contains
a field that records the number of children nodes), till
when we encounter the first node with next-hop informa-
tion or more than one valid transition.

It is equally simple to carry out character-trie node
deletion in MATA. Since every node to be deleted has
one single valid transition, deleting the node is equiv-
alent to deleting its stored valid transition in MATA. It
takes one single memory access to locate the transition
array element storing that transition, and mark that tran-
sition array element as vacant.

2.5.2 Name insertion
To insert a name P into the name table, we also conduct
a lookup of name P in the name table, where we traverse
the character-trie in a top-down manner, starting from the
root. At each node on our way down the character-trie, if
an existing transition is properly matched by P, we need
to do nothing about the node. Otherwise, suppose we
read in a number of characters from name P, which is
converted into an integer x. We add a new transition on x
to the current node, pointing to a new node we create for
this new transition. This process continues until lookup
of name P is completed.

To add an existing node’s new transition on x into
MATA, we directly locate the transition array element in
which the new transition should be stored. If that element
is vacant, we simply store the new transition into that el-
ement, and we are done. Otherwise, suppose the existing
node needs to be relocated to resolve storage collision.
This is done as if the node is a new node to be stored into
MATA, following the algorithm described in Section 2.2
and 2.4. (One minor difference is that, here we also need
to update the upstream transition pointing to the relocat-
ing node. This can be easily handled by always remem-
bering the parent node of current node, during the lookup
process for name P.)

3 The CPU-GPU System: Packet Latency
and Stream Pipeline

GPU achieves high processing throughput by exploiting
massive data-level parallelism — a large batch of names
are processed by a large number of GPU threads con-
currently. However, this massive batch processing mode
can lead to extended per packet lookup latency5. Fig-
ure 4 presents a 4-stride MATA’s throughput and latency

5Name lookup engine latency: the aggregate time from a packet
being copied from host CPU to GPU device till its lookup result being
returned from GPU to CPU.

Figure 4: Throughput and
latency of MATA without
pipeline (3M name table, av-
erage workload).

Figure 5: Throughput and la-
tency of MATA with pipeline
(3M name table, average
workload).

obtained on the 3M name table, where names are pro-
cessed in 16MB batches. As we can see, per-packet
lookup latency can be many milliseconds. While in prac-
tice, telecommunication industry standards require that
the entire system latency should be less than 450 µs6;
name lookup as one of the various packet processing
tasks should take no longer than 100 µs.

This extended lookup latency results from concurrent
lookups of multiple names, due to contention among
concurrent lookup threads processing different names.
That said, a straightforward thought, therefore, is to re-
duce per-packet lookup latency by reducing batch size.
Figure 4 also presents the above MATA’s throughput and
latency obtained with 1MB batch size. As we can see,
small batch size leads to reduced lookup throughput, due
to reduced data-level parallelism. But it is insufficient to
hide off-chip DRAM access latency, causing throughput
decline accordingly. Essentially, this latency-throughput
dilemma is rooted in the GPU design philosophy of ex-
ploiting massive data-level parallelism. Unfortunately,
previous proposals on GPU-based pattern matching (e.g.
[29, 16]) have not taken latency requirements into ac-
count.

In this work, we resolve this latency-throughput
dilemma by exploiting the multi-stream mechanism fea-
tured in NVIDIA’s Fermi GPU architecture. In CUDA
programming model, a stream is a sequence of op-
erations that execute in issue-order. For example, in
our design, each stream is composed of a number of
lookup threads, each thread consisting of three tasks.
(1) DataFetch: copy input names from host CPU to
GPU device (via PCIe bus); (2) Kernel: perform name
lookup inside GPU; (3) WriteBack: write lookup re-
sults back from GPU device to host CPU (via PCIe
bus). Among them, DataFetch and WriteBack tasks
are placed into one queue, executed by the copy engine;
Kernel tasks are organized into another queue, executed
by the kernel engine. Tasks in the same queue are exe-
cuted in the order they enter the queue. In our design,
each batch of input names is divided into m subsets;
the kth subset is assigned to the kth stream for lookup.

6Here we refer to the specifications of the ISDN switch.
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Figure 6: Multi-stream pipeline solution.

By pipelining these concurrent streams, lookup latency
can be effectively reduced while keeping high lookup
throughput. Algorithm 1 shows the pseudo code descrip-
tion of this optimized scheduling.

As shown in Figure 6, the Kernel task of stream i runs
(on the kernel engine) in parallel with the WriteBack

task of stream i-1 followed by the DataFetch task of
stream i+1 (both running on the copy engine).

Figure 5 presents MATA’s throughput and latency ob-
tained on the 3M name table with 16MB batch size
organized into 1∼512 streams, using 2,048 threads.
This multi-stream pipeline solution successfully reduces
lookup latency to 101µs while maintaining lookup
throughput (using 128 or more streams).

Throughput: As described in Section 6.2.2, the copy
engine is the throughput bottleneck. Then, the time T to
finish processing an input name batch can be calculated
by Formula (1) [15].

T = 2tstart ∗N +
Mbatch +Mresult

SPCIe
+

Mbatch

N ∗Skernel
(1)

Here, Mbatch and Mresult are the name batch size and the
corresponding lookup results size, respectively. SPCIe is
the PCIe speed, Skernel is the name lookup speed in GPU
kernel, tstart is the warm up time of the copy engine,
and N is the number of streams. Maximizing through-
put means minimizing T . According to Fermat’s the-
orem [2], T gets the minimal value at the stationary

point f ′(N) = 0, where N =
√

Mbatch
2tstart∗Skernel

. In Figure 5,
our CPU-GPU name lookup engine has Mbatch=16MB,
tstart≈10µs, Skernel≈8GB/s (200MSPS × 40B/packet).
So the engine gets the maximal throughput with N=16
streams.

Algorithm 1 Multi-stream Pipeline Scheduling
1: procedure MultiStreamPipelineScheduling
2: i ← 0;
3: offset ← i*data size/m;
4: DataFetch(offset, streams[i]);
5: Kernel(offset, streams[i]);
6: for i: 0 → m-2 do
7: offset ← (i+1)*data size/m;
8: DataFetch(offset, streams[i+1]);
9: Kernel(offset, streams[i+1]);
10: wb offset ← i*data size/m;
11: WriteBack(wb offset, streams[i]);
12: end for
13: WriteBack(offset, streams[m-1]);
14: end procedure
































    







  







































   






Figure 7: Input name storage layout.

Latency: Lookup latency Tlatency equals to the period
from a stream’s DataFetch task launched to the corre-
sponding WriteBack task finished, i.e.,

Tlatency = 2tstart +
1
N
∗
(

Mbatch +Mresult

SPCIe
+

Mbatch

Skernel

)
(2)

Obviously, lookup latency decreases as the increasing
of the stream number N.

4 Memory Access Performance

Like in all other modern computing architectures, mem-
ory access efficiency has a significant impact on GPU ap-
plication performance. One practical approach to boost-
ing performance is to reduce the amount of slow DRAM
accesses, by exploiting GPU’s memory access coales-
cence mechanism. In NVIDIA GeForce GTX GPU de-
vices, the off-chip DRAM (e.g. global memory) is par-
titioned into 128-byte memory blocks. When a piece of
data is requested, the entire 128-byte block containing
the data is fetched (with one memory access). When
multiple threads simultaneously read data from the same
block, their read requests will be coalesced into one sin-
gle memory access (to that block).

In our design, we employ an effective technique for
optimizing memory access performance called input in-
terweaving [32], which stores input names in an inter-
weaved layout. In NVIDIA GeForce GTX GPUs, ev-
ery 32 threads (with consecutive thread IDs) are bundled
together as a separate warp, running synchronously in
a single-instruction multiple-data (SIMD) manner — at
any time, the 32 threads execute the same instruction, on
possibly different data objects. In common practice, in-
put data (i.e., names) are simply stored contiguously, as
shown in the left part of Figure 7. For ease of illustration,
each name is 128-byte long and occupies a whole mem-
ory block (one row). The 32 names parallel processed by
the 32 threads in a warp reside in 32 different 128-byte
blocks. Therefore, when the 32 threads simultaneously
read the first piece of data from each of the names they
are processing, resulting in 32 separate memory accesses
that cannot be coalesced.
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Here, memory access performance can be substan-
tially improved by storing input names in an interweaved
layout. Suppose the name lookup engine employs Nthread
concurrent GPU threads. (1) Host CPU distributes in-
put names into Nthread queues (i.e., name sequences), in
the order of their arrival7; (2) Then, every 32 adjacent
name sequences are grouped together, to be processed
by a GPU warp consisting of 32 threads; each thread in
the warp locates one of the 32 name sequence using its
thread ID; (3) Finally, each group of 32 name sequences
are interweaved together. Iteratively, CPU takes a 4-byte
data slice from the head of each name sequence and inter-
weaves them into a 128-byte memory block (one row), as
shown in the right part of Figure 7. After interweaving,
the 32 data slices of one name are stored in 32 different
blocks (one column), and the 32 data slices belonging to
32 different names are stored in one block. The inter-
weaved memory blocks are then transmitted to GPU’s
DRAM. Now, when the 32 threads in the same warp
each requests for a slice from its own name sequence si-
multaneously, the 32 requested slices reside in the same
128-byte block. Therefore, the 32 memory requests are
coalesced into one single memory access to that block.
Interweaving thus significantly reduces the total amount
of memory accesses to DRAM and hence substantially
boosts overall performance.

5 Implementation

In this section, we describe the implementation of
our GPU-based name lookup engine, including its in-
put/output. First in Section 5.1, we introduce the hard-
ware platform, operating system environment and devel-
opment tools with which we implement the name lookup
engine. Then in Section 5.2, we present the framework
of our system. The lookup engine has two inputs: name
tables and name traces. We introduce how we obtain or
generate the name tables and name traces in Section 5.3
and Section 5.4, respectively.

5.1 Platform, environment and tools
We implement and run the name lookup engine on a
commodity PC installed with an NVIDIA GeForce GTX
590 GPU board. The PC is installed with two 6-core
CPUs (Intel Xeon E5645×2), with 2.4GHz clock fre-

7When appending names into sequences, we transform each input
name (and name sequence) from a sequence of characters into a se-
quence of numbers. In our implementation and experiments, we imple-
ment 4-stride FSMs and hence each input name is transformed into a
sequence of 32-bit unsigned int type integers. To transform an in-
put name, CPU keeps reading up to 4 characters from that name unless
a ‘/’ is encountered; the characters read out are then transformed into
an unsigned int integer. Each name sequence is thus transformed
into a sequence of 32-bit integers.

quency. Relevant hardware configuration is listed in Ta-
ble 1.

Table 1: Hardware configuration.
Item Specification

Motherboard ASUS Z8PE-D12X (INTEL S5520)
CPU Intel Xeon E5645×2 (6 cores, 2.4GHz)
RAM DDR3 ECC 48GB (1333MHz)
GPU NVIDIA GTX590 (2×512 cores, 2×1536MB)

The PC runs Linux Operating System version
2.6.41.9-1.fc15.x86 64 on its CPU. The GPU runs
CUDA NVIDIA-Linux operating system version
x86 64-285.05.09.

The entire lookup engine program consists of about
8,000 lines of code, and is composed of two parts: a
CPU-based part and a GPU-based part. The CPU part
of the system is developed using the C++ programming
language; the GPU part of the system is developed using
NVIDIA CUDA C programming language’s SDK 4.0.

5.2 System framework

Figure 8 depicts the framework of our name lookup en-
gine. Module 1 takes a name table as input and builds a
character-trie for aggregating and representing that name
table; this character-trie serves as the control plane of
name lookup. To implement high speed and memory ef-
ficient name lookup, Module 2 transforms the character-
trie into MATA, which serves as the data plane of name
lookup, and hence will be transferred to and operated in
the GPU-based lookup engine. Module 3 is the lookup
engine operating in GPU, which accepts input names,
performs lookup in the MATA and outputs lookup re-
sults. Meanwhile, GPU takes the generated name traces
as input to search against the name table, which is imple-
mented as the MATA. The lookup result in GPU is output
to a module running on CPU, which obtains next-hop in-
terface information based on GPU’s output. There is also
a 5-th module that is responsible for handling name ta-
ble updates. We measure the core latency between point
A and B, that is from the sending buffer to the receiving
buffer of CPU.

5.3 Name Tables

The two name tables used in our experiments contain
2,763,780 entries and 10,000,000 entries, respectively.
For brevity, we refer to them as the “3M name table” and
the “10M name table”, respectively. Each name table en-
try is composed of an NDN-style name and a next hop
port number. As NDN is not yet standardized and there
is no real NDN network, the name tables are obtained
through the following five-step process.
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Figure 8: Framework of the name lookup engine.

Step 1: We collect Internet domain names in two
ways. (1) We obtain existing domain name information
from DMOZ [1], which is later used to generate the 3M
name table. (2) We use a web crawler program to col-
lect domain names, which are later used to generate the
10M name table. To achieve good geographic coverage,
we ran web crawler programs on three servers located
in North America, Europe and Asia, respectively. The
web crawler programs kept collecting URLs from Octo-
ber 1st, 2011 to March 31st, 2012. At last, the crawler
collected 7M domain names different from that collected
from DMOZ. Consequently, we obtain 10 million non-
duplicate domain names in total with our maximum ef-
forts.

Step 2: We convert the domain names into NDN-style
names, by putting the components in reverse order. For
example, domain name www.parc.com is transformed
into /com/parc/www/.

Step 3: For each NDN-style name, we map its cor-
responding domain name to an IP address resolved by
DNS.

Step 4: For each NDN-style name, we obtain its next
hop port number by performing longest prefix matching
on its IP address obtained in Step 3, using an IP FIB
downloaded from www.ripe.net.

Step 5: We map each NDN prefix to its obtained next
hop port number, which gives us the final name table.

5.4 Name Traces
The name traces, which are generated from name tables,
simulate the destination names carried in NDN pack-
ets. The names are formed by concatenating name pre-
fixes selected from the name table and randomly gen-
erated suffixes. We generate two types of name traces,
simulating average lookup workload and heavy lookup
workload, respectively. Each name trace contains 200M
names, and is generated as follows.

For each name table used in our experiments, its av-
erage workload trace is generated by randomly choosing

names from the name table; its heavy work load trace
is generated by randomly choosing from the top 10%
longest names in the name table. Intuitively, the longer
the input names are, the more state transition operations
the GPU will perform for their lookup, meaning heavier
workload.

Names chosen from name tables do not have a direc-
tory path. From the URLs we collected from Internet,
we randomly choose a directory path for each name in
the traces and append that path to the name.

6 Experimental Evaluation

We compare the performance of four lookup methods
we have discussed in Section 2. The baseline method is
using a two-dimensional state transition table (denoted
by STT), which is largely compressed by ATA. Then,
we upgrade ATA into 4-stride MATA. Finally, we im-
prove MATA with interweaved name storage (denoted by
MATA-NW).

First, in Section 6.1, we evaluate the memory ef-
ficiency of these methods. Then in Section 6.2, we
conduct comprehensive evaluation and analysis of the
throughput and latency of our name lookup engine —
both the entire prototype engine and the core GPU part.
The scalability of our lookup engine is evaluated in Sec-
tion 6.3. Finally in Section 6.4, we evaluate its perfor-
mance on handling name table updates.

6.1 Memory Space
If implemented with STT, the 3M and 10M name ta-
bles will take 19.49GB and 69.62GB, respectively. Com-
pared with state transition table, ATA compresses storage
space by 101× (on the 3M name table) and 102× (on the
10M name table), respectively. By constructing multiple
smaller ATAs, MATA further compresses storage space
— MATA compresses storage space by 130× (on the
3M name table) and 142× (on the 10M name table),
respectively, easily fitting into the GTX590 GPU board
of our prototype system, which has 3GB off-chip DRAM
on board. (Note that input name interweaving changes
storage layout but does not change storage space require-
ment.)

6.2 Lookup Performance
6.2.1 CPU-GPU System Performance
We now proceed to compare the lookup throughput and
latency that can be achieved by the methods in compar-
ison. Due to the excessive memory space requirement
of STT, we hereby implement two small subsets of the
3M and 10M name tables, respectively, each containing
100,000 name entries. To explore the best achievable
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Figure 9: Throughput and la-
tency on the 3M table’s subset
(average workload).

Figure 10: Throughput and
latency on the 3M table’s sub-
set (heavy workload).

Figure 11: Throughput and
latency on the 10M table’s
subset (average workload).

Figure 12: Throughput and
latency on the 10M table’s
subset (heavy workload).

lookup performance of each method, we run experiments
with a wide range of parameter settings: doubling num-
ber of CUDA thread blocks from 8 to 4096, doubling
number of threads per CUDA thread block from 32 to
1024, and doubling CUDA stream count from 1 to 4096.
The measured lookup throughput and latency of the four
methods are plotted in Figure 9-12, in which one point
means the throughput and latency of the method with one
parameter setting. (For legibility, we have only plotted
results with less than 1ms latency.)

As we expected, STT and ATA have nearly identical
performance, although ATA uses two orders of magni-
tude less memory. With multi-striding, MATA signifi-
cantly outperforms ATA. STT and ATA have not been
able to meet the 100µs latency requirement; in con-
trast, MATA can achieve up to 29.75 MSPS under av-
erage worload and 28.52 MSPS under heavy workload,
while keeping latency below 100µs. With input name
interweaving, MATA-NW further raises lookup through-
put to 61.40 MSPS under average workload and 56.10
MSPS under heavy workload. The minimum lookup la-
tency that can be achieved by MATA-NW is around 50µs
(with about 20 MSPS lookup throughput), while the min-
imum achievable latency of STT and ATT is around
200µs. With a 200µs latency requirement, the maximum
throughput that can be achieved by STT, ATA, MATA
and MATA-NW are 6.59, 6.56, 52.99 and 71.12 MSPS
under average workload and 6.02, 6.01, 49.04 and 63.32
MSPS under heavy workload, respectively; MATA-NW
achieves over 10× speedup.

As the above two subsets are relatively small, we then
conduct experiments based on the 3M and 10M name
tables (without STT), and plot the results in Figure 13-

Figure 13: Throughput and
latency on the 3M table (aver-
age workload).

Figure 14: Throughput and
latency on the 3M table
(heavy workload).

Figure 15: Throughput and
latency on the 10M table (av-
erage workload).

Figure 16: Throughput and
latency on the 10M table
(heavy workload).

16. The results are similar to what we observe on the
two subsets. With 100µs latency requirement, MATA-
NW can achieve 63.52 MSPS under average workload
and 55.65 MSPS under heavy workload, translating to
127 Gbps under average workload and 111 Gbps under
heavy workload, respectively.

6.2.2 GPU Engine Core Performance
The above experiments have not answered the following
question — which part of the prototype system is the per-
formance bottleneck? To answer this question, we con-
duct the following experiments for comparison8. (1) In
experiment I, the GPU does not perform lookup on any
input name and directly returns. The measured through-
put represents the raw bandwidth of PCIe bus connect-
ing CPU and GPU, and is plotted as “PCIe” in Fig-
ure 17-18; (2) In experiment II, the GPU performs one
lookup on every input name. The measured throughput
represents the normal throughput of our prototype sys-
tem and is plotted as “MATA-NW”. The experiment re-
sults reveal that system throughput is tightly bounded by
PCIe bus bandwidth; although with overly large stream
counts, system throughput starts dropping due to insuffi-
cient number of threads per stream9.

As the PCIe bus limits the lookup throughput achiev-
able with our prototype system, we conduct another set
of experiments to evaluate the lookup throughput that can
be achieved with our core algorithmic design (MATA-

8Here, lookup throughput is obtained with 16 concurrent CUDA
thread blocks and 32 threads per CUDA thread block running in paral-
lel. Because the above experiment results show that they produce the
best lookup throughput under 100µs latency requirement.

9Recall that every warp of 32 threads must execute synchronously.
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Figure 17: System through-
put on the 3M table.

Figure 18: System through-
put on the 10M table.

Figure 19: Kernel through-
put on the 3M table.

Figure 20: Kernel through-
put on the 10M table.

NW) running on GPU. (1) First, we transmit input names
from CPU to GPU’s global memory in advance; (2)
Then, we perform name lookup on GPU. Lookup results
are not written back to CPU (via PCIe). When calculat-
ing lookup throughput, we do not include the time taken
in (1). The calculated throughput represents the GPU’s
kernel throughput, without the bottleneck of PCIe band-
width. As we can see in Figure 19-20, GPU’s kernel
throughput is more than two times higher than the entire
engine throughput, reaching up to 219.69 MSPS, which
is 96× of CPU-based implementation (MATA can per-
form 2.28 MSPS with one thread in CPU-based plat-
form). These results demonstrate the real potential of
our GPU-based name lookup engine design; this poten-
tial can be realized by high speed routers, which do not
have the PCIe bandwidth problem.

6.3 Scalability

While our GPU-based name lookup engine is demon-
strated to perform well on the 3M and 10M name ta-
bles, we are also interested in foreseeing its performance
trend as name table size grows. For that, we partition
each name table into ten equal-sized subsets, and pro-
gressively generate ten name tables for each of them; the
kth generated name table consists of the first k equal-
size subsets. Experiments are then conducted on these
20 generated name tables derived from the 3M name ta-
ble and 10M name table. Measured results on lookup
throughput, memory space requirement and lookup la-
tency are presented in Figure 21-23, respectively.

As name table size grows, lookup throughput and
lookup latency tend to stabilize around 60 MSPS and
100µs, respectively. The memory space requirement,

Figure 21: Growth trend of
lookup throughput.

Figure 22: Growth trend of
MATA size.

Figure 23: Growth trend of
lookup latency.

Figure 24: Growth trend of
update performance.

represented by MATA size, tends to grow with linear
scalability, which is consistent with our intuition.

6.4 Name table update
Finally, we measure the performance of our design on
handling name table updates, both insertions and dele-
tions. The results are reported in Figure 24. The general
trend is that, the larger the name table, the more difficult
it is to handle updates. Just like what we have observed
on the growth trend of throughput and latency, update
performance also tends to stabilize at a certain perfor-
mance level. On both name tables, we can consistently
handle more than 30K insertions per second. As we have
described in Section 2, deletions are much easier to im-
plement than insertions; we can steadily handle around
600K deletions per second. Compared with the current
IP networks, which have an average update rate of sev-
eral thousand per second, our name updating mechanism
runs one order of magnitude faster.

7 Related Work

7.1 GPU-based Packet Processing
GPU as a high throughput parallel processing platform is
attracting proliferating interest, and is being studied as a
potential platform for high speed packet processing, such
as IP lookup [10, 30, 19], packet classification [14, 20]
and pattern matching [17, 7, 29, 24, 32, 16].

Pattern matching is a much simpler special form
of name lookup, whose technical core is longest pre-
fix string matching. While the initial study on name-
based routing [22, 11, 25, 26] has revealed the feasi-
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bility of routing based on hierarchical names instead
of IP addresses, there has been lacking a comprehen-
sive implementation-based study to address the follow-
ing practical problems: (1) With large-scale name tables
containing millions of names, how and to what extent
can name tables be compressed for practical implemen-
tation; (2) What name lookup throughput can be reached
under practical latency constraints; (3) What update per-
formance can be obtained.

The existing methods for GPU-based pattern match-
ing [17, 7, 29, 24, 32, 16] are designed targeting IDS-like
systems where packet latency is not a first priority, and
have all ignored the important issue of packet latency. As
we have analyzed in Section 3 and demonstrated through
experiments in Section 6, the latency-throughput trade-
off is rooted in GPU’s design philosophy; optimizing
throughput without considering latency constraints leads
to overly optimistic results, and are not practically com-
petent for high speed routers. By employing the multi-
stream mechanism featured by NVIDIA Fermi architec-
ture, which has been proven effective in other fields (e.g.
[21, 13, 6]), our design is able to achieve wire speed
lookup throughput with 50-100µs packet latency.

In fact, the existing GPU-based pattern matching
methods have not even considered practical performance
issues specific to such CPU-GPU hybrid systems, such
as data transmission (e.g. via PCIe bus). Meanwhile,
the existing methods have also not paid deserved atten-
tion to update performance, which is an important issue
in high speed router design. The pattern sets used in
their study are also multiple orders of magnitude smaller
than what we target and have adopted in our experiments.
On one hand, this requires more advanced compression
techniques; on the other hand, high speed lookup can
become even more challenging in the presence of more
sophisticated compression. In contrast, our work is the
first system-based study on GPU-based large-scale pat-
tern matching and addresses all these performance is-
sues: lookup throughput, latency, memory efficiency, up-
date performance and CPU-GPU communication.

IP lookup is much simpler than name lookup. For ex-
ample, in our implementation-based study, average name
length is around 40 bytes, 10× longer than IP addresses
used in GPU-based IP lookup research (e.g. Packet-
Shader [10]). Unlike fixed length IP addresses, names
are also variable in length, making it even more complex
to implement efficient lookup. Moreover, name tables
are 1-2 orders of magnitude larger than IP forwarding ta-
bles in terms of entry count, and 2-3 orders of magnitude
larger in terms of byte count.

Packet classification is more complex than IP lookup
in that packet classification rules typically check five
packet header fields (13 bytes in total for IPv4) includ-
ing two IP addresses. Nevertheless, packet classification

rules are still much shorter than names, and are also fixed
in length. In fact, packet classification rule sets are typi-
cally 1-3 orders of magnitude smaller than IP forwarding
tables, let alone name tables.

In summary, GPU-based IP lookup and packet classi-
fication are not comparable/applicable to the large-scale
name lookup problem studied in our work. Meanwhile,
almost all of these GPU-based packet processing tech-
niques (except PacketShader [10]) ignore the important
issue of packet processing latency.

7.2 Algorithm & Data Structure

The technical core of name lookup is longest prefix
matching. Before determining the matched longest pre-
fix, hash-based methods have to perform multiple hash
computations, which significantly degrade lookup per-
formance [27]. In trie-based methods, to quickly deter-
mine the correct branch to transfer, hash techniques have
been intensively studied. B. Michel et al. designed an
incremental hash function called Hash Chain [18], im-
proved by Zhou et al. [31], to aggregate URLs sharing
common prefixes, while minimizing collisions between
prefixes. These hash-based algorithms all have a com-
mon drawback — false positives due to hash collisions.
More importantly, hash collision during trie traversal can
lead name lookup to a wrong branch, causing packets
to be forwarded to wrong ports; this undermines rout-
ing integrity — a fundamental property of NDN routers.
So remedies for false positives are required in these sys-
tems. For eliminating false positive, we [26] proposed to
encode all the name components for efficient traversal.
When balancing hash collision probability and memory
space requirement, we may not necessarily gain memory
efficiency.

Tarjan and Yao proposed in their pioneer work [23]
a method for compressing two-dimensional (state transi-
tion) tables into compact one-dimensional arrays — the
original idea underlying basic ATA. In a follow-up work,
Suwaiyel and Horowitz [5] proved that producing an op-
timal array is NP-hard, and proposed approximation al-
gorithms for producing arrays. Our work develops be-
yond prior arts on the following aspects: (1) We pro-
pose a multi-stride ATA approach that can significantly
improve storage efficiency, matching speed and lookup
latency; (2) We propose the more advanced multi-ATA
(MATA) design. Compared with the basic ATA design,
MATA liberates multi-stride ATA from the constraint of
available memory space. As a result, matching speed, la-
tency, storage space and array construction time are all
optimized substantially. We demonstrate through exper-
imental evaluation that, while the naı̈ve ATA design can
be inadequate for large-scale, high throughput and low
latency name lookup, the innovated MATA design is suf-
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ficient for tackling such real applications.

7.3 Software Routers

Compared with hardware routers, software routers are
cost-effective and much easier to program. Software
routers can also provide extensible platforms for imple-
menting CCN router prototypes.

PacketShader [10] exploits the GPU’s massively-
parallel processing power to overcome the CPU bottle-
neck in the current software IP routers. However, name
lookup is more complex than IP lookup, for the vari-
able and unbounded length of names as well as the much
larger name tables. Compared with the IP FIB in [10],
name FIB in our engine needs elaborate data structures to
reduce memory consumption and speed up name lookup.
Besides, PacketShader has not described any detail about
how to balance lookup throughput and latency in Pack-
etShader. However, the high performance packet I/O en-
gine in PacketShader may help improve the performance
of a whole CCN router.

In backbone routers, a high speed interface (e.g. 40
Gbps OC-768) is usually processed by a single data
plane. RouteBricks [8] bundles multiple PCs together
to handle packets, but one single PC is hard to handle the
traffic from a high speed interface. Our work focuses
on wire speed name lookup with a single data plane,
which is different from RouteBricks. If more capacity
or a larger number of ports is needed, we can apply a
multi-machine approach in [8].

8 Discussion and Conclusion

8.1 Discussion

As described in Section 6.2.2, PCIe is the bottleneck of
our name lookup engine, which has to use a GPU board
installed on a PC via PCIe. However, it does not rule out
the possibility of embedding GPUs into a high-end router
through other non-PCIe means. Moreover, note that, al-
though GTX590 GPU has two processor cores on chip,
we have only used one of them in our experiments; using
both processor cores can potentially boost performance
as well.

Since CCN has not been standardized yet, its FIB ta-
ble size and name length bound are still unknown. The
10M name table, collected with our maximum efforts,
has only consumed one-sixth of the memory resource of
GTX590. Thus we estimate our name lookup engine at
least can handle a name table with 60M prefixes while
keeping the lookup throughput. However, the name table
would be orders of magnitude vaster when the prefixes
cannot be aggregated effectively. As the first step, in

this paper we demonstrate the feasibility of implement-
ing wire speed name lookup on a table of substantial size.
Scaling name tables to the larger conceivable size will be
our future work.

Routing changes, including network topology
changes, routing policy modifications and content
publish/deletion, will cause FIB updates. Given no
CCN/NDN network is deployed today, FIB update fre-
quency cannot be accurately measured. We will estimate
the update frequency from the current Internet. On one
hand, the frequency of network topology changes and
routing policy modifications in CCN can be inferred
from the current IP network, which makes up to several
thousand updates per second. On the other hand, content
publish/deletion will not necessarily lead to FIB updates,
since the name prefixes in FIBs are aggregated. If we
assume the addition and deletion of domains will cause
FIB updates, there are only a few tens of FIB updates per
second, according to the top-level domain statistics [4]
of the current Internet. Therefore, in this case, our
approach can meet update performance requirements.
Whether our FIB update mechanism meets practical
performance requirements in real CCN networks needs
to be further studied in future work.

8.2 Conclusion
Name lookup is one of the fundamental functions un-
derlying a great variety of technological fields, among
which wire speed CCN name lookup in large-scale name
tables is the most challenging. Thus far, implementation-
based study on real systems has been lacking. How
much memory will CCN name tables consume? How
fast can name lookup engine be implemented, from
both technical and economic point of view? These are
still unknown. In this paper, we propose a multi-stride
character-trie algorithm, implemented in our GPU-based
name lookup engine with a number of new techniques.
Extensive experiments demonstrate that our GPU-based
lookup engine can achieve up to 63.52 MSPS on name
tables containing millions of names under a delay of less
than 100µs. Our GPU-based implementation results an-
swer that large-scale name lookup can not only run at
high speed with low latency and fast incremental update,
but also be cost-effective with today’s off-the-shelf tech-
nologies.
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Abstract

The physical and data link layers of the network stack

contain valuable information. Unfortunately, a systems

programmer would never know. These two layers are

often inaccessible in software and much of their poten-

tial goes untapped. In this paper we introduce SoNIC,

Software-defined Network Interface Card, which pro-

vides access to the physical and data link layers in soft-

ware by implementing them in software. In other words,

by implementing the creation of the physical layer bit-

stream in software and the transmission of this bitstream

in hardware, SoNIC provides complete control over the

entire network stack in realtime. SoNIC utilizes com-

modity off-the-shelf multi-core processors to implement

parts of the physical layer in software, and employs an

FPGA board to transmit optical signal over the wire. Our

evaluations demonstrate that SoNIC can communicate

with other network components while providing realtime

access to the entire network stack in software. As an ex-

ample of SoNIC’s fine-granularity control, it can perform

precise network measurements, accurately characteriz-

ing network components such as routers, switches, and

network interface cards. Further, SoNIC enables tim-

ing channels with nanosecond modulations that are un-

detectable in software.

1 Introduction
The physical and data link layers of the network stack of-

fer untapped potential to systems programmers and net-

work researchers. For instance, access to these lower

layers can be used to accurately estimate available band-

width [23, 24, 32], increase TCP throughput [37], char-

acterize network traffic [19, 22, 35], and create, detect

and prevent covert timing channels [11, 25, 26]. In par-

ticular, idle characters that only reside in the physical

layer can be used to accurately measure interpacket de-

lays. According to the 10 Gigabit Ethernet (10 GbE)

standard, the physical layer is always sending either data

or idle characters, and the standard requires at least 12

idle characters (96 bits) between any two packets [7].

Using these physical layer (PHY1) idle characters for a

measure of interpacket delay can increase the precision

of estimating available bandwidth. Further, by control-

ling interpacket delays, TCP throughput can be increased

1We use PHY to denote the physical layer throughout the paper.

by reducing bursty behavior [37]. Moreover, capturing

these idle characters from the PHY enables highly ac-

curate traffic analysis and replay capabilities. Finally,

fine-grain control of the interpacket delay enables timing

channels to be created that are potentially undetectable

to higher layers of the network stack.

Unfortunately, the physical and data link layers are

usually implemented in hardware and not easily accessi-

ble to systems programmers. Further, systems program-

mers often treat these lower layers as a black box. Not to

mention that commodity network interface cards (NICs)

do not provide nor allow an interface for users to ac-

cess the PHY in any case. Consequently, operating sys-

tems cannot access the PHY either. Software access to

the PHY is only enabled via special tools such as BiFo-

cals [15] which uses physics equipment, including a laser

and an oscilloscope.

As a new approach for accessing the PHY from soft-

ware, we present SoNIC, Software-defined Network In-

terface Card. SoNIC provides users with unprecedented

flexible realtime access to the PHY from software. In

essence, all of the functionality in the PHY that ma-

nipulate bits are implemented in software. SoNIC con-

sists of commodity off-the-shelf multi-core processors

and a field-programmable gate array (FPGA) develop-

ment board with peripheral component interconnect ex-

press (PCIe) Gen 2.0 bus. High-bandwidth PCIe inter-

faces and powerful FPGAs can support full bidirectional

data transfer for two 10 GbE ports. Further, we created

and implemented optimized techniques to achieve not

only high-performance packet processing, but also high-

performance 10 GbE bitstream control in software. Par-

allelism and optimizations allow SoNIC to process mul-

tiple 10 GbE bitstreams at line-speed.

With software access to the PHY, SoNIC provides the

opportunity to improve upon and develop new network

research applications which were not previously feasi-

ble. First, as a powerful network measurement tool,

SoNIC can generate packets at full data rate with min-

imal interpacket delay. It also provides fine-grain control

over the interpacket delay; it can inject packets with no

variance in the interpacket delay. Second, SoNIC accu-

rately captures incoming packets at any data rate includ-

ing the maximum, while simultaneously timestamping

each packet with sub-nanosecond granularity. In other

1



214 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

words, SoNIC can capture exactly what was sent. Fur-

ther, this precise timestamping can improve the accu-

racy of research based on interpacket delay. For exam-

ple, SoNIC can be used to profile network components.

It can also create timing channels that are undetectable

from software application.

The contributions of SoNIC are as follows:

• We present the design and implementation of

SoNIC, a new approach for accessing the entire net-

work stack in software in realtime.

• We designed SoNIC with commodity components

such as multi-core processors and a PCIe pluggable

board, and present a prototype of SoNIC.

• We demonstrate that SoNIC can enable flexible,

precise, and realtime network research applications.

SoNIC increases the flexibility of packet generation

and the accuracy of packet capture.

• We also demonstrate that network research studies

based on interpacket delay can be significantly im-

proved with SoNIC.

2 Challenge: PHY Access in Software
Accessing the physical layer (PHY) in software provides

the ability to study networks and the network stack at

a heretofore inaccessible level: It can help improve the

precision of network measurements and profiling/moni-

toring by orders of magnitude [15]. Further, it can help

improve the reliability and security of networks via faith-

ful capture and replay of network traffic. Moreover,

it can enable the creation of timing channels that are

undetectable from higher layers of the network stack.

This section discusses the requirements and challenges

of achieving realtime software access to the PHY, and

motivates the design decisions we made in implement-

ing SoNIC. We also discuss the Media Access Control

(MAC) layer because of its close relationship to the PHY

in generating valid Ethernet frames.

The fundamental challenge to perform the PHY func-

tionality in software is maintaining synchronization with

hardware while efficiently using system resources. Some

important areas of consideration when addressing this

challenge include hardware support, realtime capability,

scalability and efficiency, precision, and a usable inter-

face. Because so many factors go into achieving realtime

software access to the PHY, we first discuss the 10 GbE

standard before discussing detailed requirements.

2.1 Background

According to the IEEE 802.3 standard [7], the PHY of

10 GbE consists of three sublayers: the Physical Cod-

ing Sublayer (PCS), the Physical Medium Attachment

(PMA) sublayer, and the Physical Medium Dependent

(PMD) sublayer (See Figure 1). The PMD sublayer is

responsible for transmitting the outgoing symbolstream

over the physical medium and receiving the incoming

Data Link
(L2)

TX Path RX Path

(L1)
Physical

MAC (Media Access Control)
LLC (Logical Link Control)

Encoder DecoderPCS3

Scrambler Descrambler

Gearbox

PCS2

PCS1

PCS (Physical Coding Sublayer)

Application (L5)

Transport (L4)

Network (L3)

PMA (Physical Medium  Attachment)
PMD (Physical Medium Dependent)

Blocksync

Figure 1: 10 Gigabit Ethernet Network stack.

symbolstream from the medium. The PMA sublayer is

responsible for clock recovery and (de-)serializing the

bitstream. The PCS performs the blocksync and gear-

box (we call this PCS1), scramble/descramble (PCS2),

and encode/decode (PCS3) operations on every Ethernet

frame. The IEEE 802.3 Clause 49 explains the PCS sub-

layer in further detail, but we will summarize below.

When Ethernet frames are passed from the data link

layer to the PHY, they are reformatted before being sent

across the physical medium. On the transmit (TX) path,

the PCS encodes every 64-bit of an Ethernet frame into

a 66-bit block (PCS3), which consists of a two bit syn-

chronization header (syncheader) and a 64-bit payload.

As a result, a 10 GbE link actually operates at 10.3125

Gbaud (10G× 66
64

). The PCS also scrambles each block

(PCS2) to maintain DC balance2 and adapts the 66-bit

width of the block to the 16-bit width of the PMA in-

terface (PCS1; the gearbox converts the bit width from

66- to 16-bit width.) before passing it down the network

stack. The entire 66-bit block is transmitted as a contin-

uous stream of symbols which a 10 GbE network trans-

mits over a physical medium (PMA & PMD). On the

receive (RX) path, the PCS performs block synchroniza-

tion based on two-bit syncheaders (PCS1), descrambles

each 66-bit block (PCS2) before decoding it (PCS3).

Above the PHY is the Media Access Control (MAC)

sublayer of the data link layer. The 10 GbE MAC oper-

ates in full duplex mode; it does not handle collisions.

Consequently, it only performs data encapsulation/de-

capsulation and media access management. Data encap-

sulation includes framing as well as error detection. A

Cyclic Redundancy Check (CRC) is used to detect bit

corruptions. Media access management inserts at least

96 bits (twelve idle /I/ characters) between two Eth-

ernet frames.

On the TX path, upon receiving a layer 3 packet,

the MAC prepends a preamble, start frame delimiter

(SFD), and an Ethernet header to the beginning of the

frame. It also pads the Ethernet payload to satisfy a

2Direct current (DC) balance ensures a mix of 1’s and 0’s is sent.

2
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minimum frame-size requirement (64 bytes), computes

a CRC value, and places the value in the Frame Check

Sequence (FCS) field. On the RX path, the CRC value is

checked, and passes the Ethernet header and payload to

higher layers while discarding the preamble and SFD.

2.2 Hardware support

The hardware must be able to transfer raw symbols from

the wire to software at high speeds. This requirement can

be broken down into four parts: a) Converting optical

signals to digital signals (PMD), b) Clock recovery for

bit detection (PMA), and c) Transferring large amounts

of bits to software through a high-bandwidth interface.

Additionally, d) the hardware should leave recovered bits

(both control and data characters in the PHY) intact until

they are transferred and consumed by the software. Com-

mercial optical transceivers are available for a). How-

ever, hardware that simultaneously satisfies b), c) and d)

is not common since it is difficult to handle 10.3125 Giga

symbols in transit every second.

NetFPGA 10G [27] does not provide software access

to the PHY. In particular, NetFPGA pushes not only lay-

ers 1-2 (the physical and data link layer) into hardware,

but potentially layer 3 as well. Furthermore, it is not pos-

sible to easily undo this design since it uses an on-board

chip to implement the PHY which prevents direct access

to the PCS sublayer. As a result, we need a new hardware

platform to support software access to the PHY.

2.3 Realtime Capability

Both hardware and software must be able to process

10.3125 Gigabits per second (Gbps) continuously. The

IEEE 802.3 standard [7] requires the 10 GbE PHY to

generate a continuous bitstream. However, synchroniza-

tion between hardware and software, and between multi-

ple pipelined cores is non-trivial. The overheads of inter-

rupt handlers and OS schedulers can cause a discontinu-

ous bitstream which can subsequently incur packet loss

and broken links. Moreover, it is difficult to parallelize

the PCS sublayer onto multiple cores. This is because

the (de-)scrambler relies on state to recover bits. In par-

ticular, the (de-)scrambling of one bit relies upon the 59

bits preceding it. This fine-grained dependency makes it

hard to parallelize the PCS sublayer. The key takeaway

here is that everything must be efficiently pipelined and

well-optimized in order to implement the PHY in soft-

ware while minimizing synchronization overheads.

2.4 Scalability and Efficiency

The software must scale to process multiple 10 GbE

bitstreams while efficiently utilizing resources. Intense

computation is required to implement the PHY and MAC

layers in software. (De-)Scrambling every bit and com-

puting the CRC value of an Ethernet frame is especially

intensive. A functional solution would require multiple

duplex channels to each independently perform the CRC,

encode/decode, and scramble/descramble computations

at 10.3125 Gbps. The building blocks for the PCS and

MAC layers will therefore consume many CPU cores.

In order to achieve a scalable system that can handle

multiple 10 GbE bitstreams, resources such as the PCIe,

memory bus, Quick Path Interconnect (QPI), cache, CPU

cores, and memory must be efficiently utilized.

2.5 Precision

The software must be able to precisely control and cap-

ture interpacket gaps. A 10 GbE network uses one bit per

symbol. Since a 10 GbE link operates at 10.3125 Gbaud,

each and every symbol length is 97 pico-seconds wide

(= 1/(10.3125∗109)). Knowing the number of bits can

then translate into having a precise measure of time at

the sub-nanosecond granularity. In particular, depending

on the combination of data and control symbols in the

PCS block3, the number of bits between data frames is

not necessarily a multiple of eight. Therefore, on the

RX path, we can tell the exact distance between Eth-

ernet frames in bits by counting every bit. On the TX

path, we can control the data rate precisely by control-

ling the number of idle characters between frames: An

idle character is 8 (or 7) bits and the 10 GbE standard

requires at least 12 idle characters sent between Ethernet

frames.

To achieve this precise level of control, the software

must be able to access every bit in the raw bitstream (the

symbolstream on the wire). This requirement is related

to point d) from Section 2.2. The challenge is how to

generate and deliver every bit from and to software.

2.6 User Interface

Users must be able to easily access and control the

PHY. Many resources from software to hardware must

be tightly coupled to allow realtime access to the PHY.

Thus, an interface that allows fine-grained control over

them is necessary. The interface must also implement an

I/O channel through which users can retrieve data such

as the count of bits for precise timing information.

3 SoNIC
The design goals of SoNIC are to provide 1) access to

the PHY in software, 2) realtime capability, 3) scalabil-

ity and efficiency, 4) precision, and 5) user interface. As

a result, SoNIC must allow users realtime access to the

PHY in software, provide an interface to applications,

process incoming packets at line-speed, and be scalable.

Our ultimate goal is to achieve the same flexibility and

control of the entire network stack for a wired network,

as a software-defined radio [33] did for a wireless net-

work, while maintaining the same level of precision as

BiFocals [15]. Access to the PHY can then enhance the

accuracy of network research based on interpacket delay.

3Figure 49-7 [7]
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Figure 2: An FPGA development board [6]

In this section, we discuss the design of SoNIC and how

it addresses the challenges presented in Section 2.

3.1 Access to the PHY in software

An application must be able to access the PHY in soft-

ware using SoNIC. Thus, our solution must implement

the bit generation and manipulation functionality of the

PHY in software. The transmission and reception of bits

can be handled by hardware. We carefully examined the

PHY to determine an optimal partitioning of functional-

ity between hardware and software.

As discussed in Section 2.1, the PMD and PMA sub-

layers of the PHY do not modify any bits or change the

clock rate. They simply forward the symbolstream/bit-

stream to other layers. Similarly, PCS1 only converts the

bit width (gearbox), or identifies the beginning of a new

64/66 bit block (blocksync). Therefore, the PMD, PMA,

and PCS1 are all implemented in hardware as a forward-

ing module between the physical medium and SoNIC’s

software component (See Figure 1). Conversely, PCS2

(scramble/descramble) and PCS3 (encode/decode) actu-

ally manipulate bits in the bitstream and so they are im-

plemented in SoNIC’s software component. SoNIC pro-

vides full access to the PHY in software; as a result, all of

the functionality in the PHY that manipulate bits (PCS2

and PCS3) are implemented in software.

For this partitioning between hardware and software,

we chose an Altera Stratix IV FPGA [4] development

board from HiTechGlobal [6] as our hardware platform.

The board includes a PCIe Gen 2 interface (=32 Gbps)

to the host PC, and is equipped with two SFP+ (Small

Form-factor Pluggable) ports (Figure 2). The FPGA is

equipped with 11.3 Gbps transceivers which can perform

the 10 GbE PMA at line-speed. Once symbols are deliv-

ered to a transceiver on the FPGA they are converted to

bits (PMA), and then transmitted to the host via PCIe by

direct memory access (DMA). This board satisfies all the

requirements discussed in the previous Section 2.2.

3.2 Realtime Capability

To achieve realtime, it is important to reduce any syn-

chronization overheads between hardware and software,

and between multiple pipelined cores. In SoNIC, the

hardware does not generate interrupts when receiving or

transmitting. Instead, the software decides when to initi-

ate a DMA transaction by polling a value from a shared

TX MAC

TX PCS RX PCS

TX HW RX HW

Socket

(a) Packet Generator

APP RX MAC

TX PCS RX PCS

TX HW RX HW

Socket

(b) Packet Capturer

Figure 3: Example usages of SoNIC

data memory structure where only the hardware writes.

This approach is called pointer polling and is better than

interrupts because there is always data to transfer due to

the nature of continuous bitstreams in 10 GbE.

In order to synchronize multiple pipelined cores, a

chasing-pointer FIFO from Sora [33] is used which sup-

ports low-latency pipelining. The FIFO removes the

need for a shared synchronization variable and instead

uses a flag to indicate whether a FIFO entry is available

to reduce the synchronization overheads. In our imple-

mentation, we improved the FIFO by avoiding memory

operations as well. Memory allocation and page faults

are expensive and must be avoided to meet the realtime

capability. Therefore, each FIFO entry in SoNIC is pre-

allocated during initialization. In addition, the number

of entries in a FIFO is kept small so that the amount of

memory required for a port can fit into the shared L3

cache.

We use the Intel Westmere processor to achieve high

performance. Intel Westmere is a Non-Uniform Memory

Access (NUMA) architecture that is efficient for imple-

menting packet processing applications [14, 18, 28, 30].

It is further enhanced by a new instruction PCLMULQDQ
which was recently introduced. This instruction per-

forms carry-less multiplication and we use it to imple-

ment a fast CRC algorithm [16] that the MAC requires.

Using PCLMULQDQ instruction makes it possible to im-

plement a CRC engine that can process 10 GbE bits at

line-speed on a single core.

3.3 Scalability and Efficiency

The FPGA board we use is equipped with two physical

10 GbE ports and a PCIe interface that can support up

to 32 Gbps. Our design goal is to support two physical

ports per board. Consequently, the number of CPU cores

and the amount of memory required for one port must be

bounded. Further, considering the intense computation

required for the PCS and MAC, and that recent proces-

sors come with four to six or even eight cores per socket,

our goal is to limit the number of CPU cores required per

port to the number of cores available in a socket. As a

result, for one port we implement four dedicated kernel

threads each running on different CPU cores. We use a

PCS thread and a MAC thread on both the transmit and

receive paths. We call our threads: TX PCS, RX PCS,

TX MAC and RX MAC. Interrupt requests (IRQ) are re-
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routed to unused cores so that SoNIC threads do not give

up the CPU and can meet the realtime requirements.

Additionally, we use memory very efficiently: DMA

buffers are preallocated and reused and data structures

are kept small to fit in the shared L3 cache. Further, by

utilizing memory efficiently, dedicating threads to cores,

and using multi-processor QPI support, we can linearly

increase the number of ports with the number of proces-

sors. QPI provides enough bandwidth to transfer data

between sockets at a very fast data rate (> 100 Gbps).

A significant design issue still abounds: communi-

cation and CPU core utilization. The way we pipeline

CPUs, i.e. sharing FIFOs depends on the application.

In particular, we pipeline CPUs differently depending on

the application to reduce the number of active CPUs; un-

necessary CPUs are returned to OS. Further, we can en-

hance communication with a general rule of thumb: take

advantage of the NUMA architecture and L3 cache and

place closely related threads on the same CPU socket.

Figure 3 illustrates examples of how to share FIFOs

among CPUs. An arrow is a shared FIFO. For exam-

ple, a packet generator only requires TX elements (Fig-

ure 3a); RX PCS simply receives and discards bitstreams,

which is required to keep a link active. On the contrary,

a packet capturer requires RX elements (Figure 3b) to

receive and capture packets. TX PCS is required to es-

tablish and maintain a link to the other end by sending

/I/s. To create a network profiling application, both the

packet generator and packet capturer can run on different

sockets simultaneously.

3.4 Precision

As discussed in Section 3.1, the PCS2 and PCS3 are im-

plemented in software. Consequently, the software re-

ceives the entire raw bitstream from the hardware. While

performing PCS2 and PCS3 functionalities, a PCS thread

records the number of bits in between and within each

Ethernet frame. This information can later be retrieved

by a user application. Moreover, SoNIC allows users to

precisely control the number of bits in between frames

when transmitting packets, and can even change the

value of any bits. For example, we use this capability to

give users fine-grain control over packet generators and

can even create virtually undetectable covert channels.

3.5 User Interface

SoNIC exposes fine-grained control over the path that

a bitstream travels in software. SoNIC uses the ioctl
system call for control, and the character device interface

to transfer information when a user application needs to

retrieve data. Moreover, users can assign which CPU

cores or socket each thread runs on to optimize the path.

To allow further flexibility, SoNIC allows additional

application-specific threads, called APP threads, to be

pipelined with other threads. A character device is used

1: #include "sonic.h"
2:
3: struct sonic_pkt_gen_info info = {
4: .pkt_num = 1000000000UL,
5: .pkt_len = 1518,
6: .mac_src = "00:11:22:33:44:55",
7: .mac_dst = "aa:bb:cc:dd:ee:ff",
8: .ip_src = "192.168.0.1",
9: .ip_dst = "192.168.0.2",
10: .port_src = 5000,
11: .port_dst = 5000,
12: .idle = 12, };
13:
14: fd1 = open(SONIC_CONTROL_PATH, O_RDWR);
15: fd2 = open(SONIC_PORT1_PATH, O_RDONLY);
16:
17: ioctl(fd1, SONIC_IOC_RESET)
18: ioctl(fd1, SONIC_IOC_SET_MODE, SONIC_PKT_GEN_CAP)
19: ioctl(fd1, SONIC_IOC_PORT0_INFO_SET, &info)
20: ioctl(fd1, SONIC_IOC_RUN, 10)
21:
22: while ((ret = read(fd2, buf, 65536)) > 0) {
23: // process data }
24:
25: close(fd1);
26: close(fd2);

Figure 4: E.g. SoNIC Packet Generator and Capturer

to communicate with these APP threads from userspace.

For instance, users can implement a logging thread

pipelined with receive path threads (RX PCS and/or RX

MAC). Then the APP thread can deliver packet informa-

tion along with precise timing information to userspace

via a character device interface. There are two con-

straints that an APP thread must always meet: Perfor-

mance and pipelining. First, whatever functionality is

implemented in an APP thread, it must be able to perform

it faster than 10.3125 Gbps for any given packet stream

in order to meet the realtime capability. Second, an APP

thread must be properly pipelined with other threads,

i.e. input/output FIFO must be properly set. Currently,

SoNIC supports one APP thread per port.

Figure 4 illustrates the source code of an example

use of SoNIC as a packet generator and capturer. Af-

ter SONIC IOC SET MODE is called (line 18), threads

are pipelined as illustrated in Figure 3a and 3b. After

SONIC IOC RUN command (line 20), port 0 starts gen-

erating packets given the information from info (line 3-

12) for 10 seconds (line 20) while port 1 starts capturing

packets with very precise timing information. Captured

information is retrieved with read system calls (line 22-

23) via a character device. As a packet generator, users

can set the desired number of /I/s between packets (line

12). For example, twelve /I/ characters will achieve the

maximum data rate. Increasing the number of /I/ char-

acters will decrease the data rate.

3.6 Discussion

We have implemented SoNIC to achieve the design goals

described above, namely, software access to the PHY, re-

altime capability, scalability, high precision, and an inter-

active user interface. Figure 5 shows the major compo-

nents of our implementation. From top to bottom, user
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Figure 5: SoNIC architecture

applications, software as a loadable Linux kernel mod-

ule, hardware as a firmware in FPGA, and a SFP+ optical

transceiver. Although Figure 5 only illustrates one physi-

cal port, there are two physical ports available in SoNIC.

SoNIC software consists of about 6k lines of kernel mod-

ule code, and SoNIC hardware consists of 6k lines of

Verilog code excluding auto-generated source code by

Altera Quartus [3] with which we developed SoNIC’s

hardware modules.

The idea of accessing the PHY in software can be ap-

plied to other physical layers with different speeds. The

1 GbE and 40 GbE PHYs are similar to the 10 GbE PHY

in that they run in full duplex mode, and maintain con-

tinuous bitstreams. Especially, the 40GbE PCS employes

four PCS lanes that implements 64B/66B encoding as in

the 10GbE PHY. Therefore, it is possible to access the

PHYs of them with appropriate clock cycles and hard-

ware supports. However, it might not be possible to im-

plement four times faster scrambler with current CPUs.

In the following sections, we will highlight how

SoNIC’s implementation is optimized to achieve high

performance, flexibility, and precision.

4 Optimizations
Performance is paramount for SoNIC to achieve its goals

and allow software access to the entire network stack.

In this section we discuss the software (Section 4.1) and

hardware (Section 4.2) optimizations that we employ to

enable SoNIC. Further, we evaluate each optimization

(Sections 4.1 and 4.2) and demonstrate that they help to

enable SoNIC and network research applications (Sec-

tion 5) with high performance.

4.1 Software Optimizations

MAC Thread Optimizations As stated in Section 3.2,

we use PCLMULQDQ instruction which performs carry-

less multiplication of two 64-bit quadwords [17] to im-

plement the fast CRC algorithm [16]. The algorithm

folds a large chunk of data into a smaller chunk using the

PCLMULQDQ instruction to efficiently reduce the size of

data. We adapted this algorithm and implemented it us-

ing inline assembly with optimizations for small packets.

PCS Thread Optimizations Considering there are 156

million 66-bit blocks a second, the PCS must process

each block in less than 6.4 nanoseconds. Our opti-

mized (de-)scrambler can process each block in 3.06

nanoseconds which even gives enough time to imple-

ment decode/encode and DMA transactions within a sin-

gle thread.

In particular, the PCS thread needs to implement the

(de-)scrambler function, G(x) = 1 + x39 + x58, to en-

sure that a mix of 1’s and 0’s are always sent (DC bal-

ance). The (de-)scrambler function can be implemented

with Algorithm 1, which is very computationally ex-

pensive [15] taking 320 shift and 128 xor operations (5

shift operations and 2 xors per iteration times 64 iter-

ations). In fact, our original implementation of Algo-

rithm 1 performed at 436 Mbps, which was not sufficient

and became the bottleneck for the PCS thread. We opti-

mized and reduced the scrambler algorithm to a total of 4

shift and 4 xor operations (Algorithm 2) by carefully ex-

amining how hardware implements the scrambler func-

tion [34]. Both Algorithm 1 and 2 are equivalent, but

Algorithm 2 runs 50 times faster (around 21 Gbps).

Algorithm 1 Scrambler

s ← state

d ← data

for i = 0 → 63 do

in ← (d >> i) & 1

out ← (in⊕ (s >> 38)⊕ (s >> 57)) & 1

s ← (s << 1) | out

r ← r | (out << i)
state ← s

end for

Algorithm 2 Parallel Scrambler

s ← state

d ← data

r ← (s >> 6)⊕ (s >> 25)⊕d

r ← r⊕ (r << 39)⊕ (r << 58)
state ← r

Memory Optimizations We use packing to further im-

prove performance. Instead of maintaining an array of

data structures that each contains metadata and a pointer

to the packet payload, we pack as much data as possible

into a preallocated memory space: Each packet structure

contains metadata, packet payload, and an offset to the

next packet structure in the buffer. This packing helps to

reduce the number of page faults, and allows SoNIC to

process small packets faster. Further, to reap the bene-

fits of the PCLMULQDQ instruction, the first byte of each

packet is always 16-byte aligned.

Evaluation We evaluated the performance of the TX

MAC thread when computing CRC values to assess the

performance of the fast CRC algorithm and packing

packets we implemented relative to batching an array of

6
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packets. For comparison, we computed the theoretical

maximum throughput (Reference throughput) in packets

per second (pps) for any given packet length (i.e. the

pps necessary to achieve the maximum throughput of 10

Gbps less any protocol overhead).

If only one packet is packed in the buffer, packing will

perform the same as batching since the two are essen-

tially the same in this case. We doubled the factor of

packing from 1 to 32 and assessed the performance of

packing each time, i.e. we doubled the number of packets

written to a single buffer. Figure 6 shows that packing by

a factor of 2 or more always outperforms the Reference

throughput and is able to achieve the max throughput for

small packets while batching does not.

Next, we compared our fast CRC algorithm against

two CRC algorithms that the Linux Kernel provides. One

of the Linux CRC algorithms is a naive bit computa-

tion and the other is a table lookup algorithm. Figure 7

illustrates the results of our comparisons. The x-axis

is the length of packets tested while the y-axis is the

throughput. The Reference line represents the maximum

possible throughput given the 10 GbE standard. Packet

lengths range the spectrum of sizes allowed by 10 GbE

standard from 64 bytes to 1518 bytes. For this evalua-

tions, we allocated 16 pages packed with packets of the

same length and computed CRC values with different al-

gorithms for 1 second. As we can see from Figure 7, the

throughput of the table lookup closely follows the Ref-

erence line; however, for several packet lengths, it un-

derperforms the Reference line and is unable to achieve

the maximum throughput. The fast CRC algorithm, on

the other hand, outperforms the Reference line and tar-

get throughput for all packet sizes.

Lastly, we evaluated the performance of pipelining and

using multiple threads on the TX and RX paths. We

tested a full path of SoNIC to assess the performance

as packets travel from the TX MAC to the TX PCS for

transmission and up the reverse path for receiving from

the RX PCS to the RX MAC and to the APP (as a log-

ging thread). We do not show the graph due to space

constraints, but all threads perform better than the Ref-

erence target throughput. The overhead of FIFO is neg-

ligible when we compare the throughputs of individual

threads to the throughput when all threads are pipelined
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Figure 7: Throughput of different CRC algorithms

together. Moreover, when using two ports simultane-

ously (two full instances of receive and transmit SoNIC

paths), the throughput for both ports achieve the Refer-

ence target maximum throughput.

4.2 Hardware Optimizations

DMA Controller Optimizations Given our desire to

transfer large amounts of data (more than 20 Gbps) over

the PCIe, we implemented a high performance DMA

controller. There are two key factors that influenced our

design of the DMA controller. First, because the incom-

ing bitstream is a continuous 10.3125 Gbps, there must

be enough buffering inside the FPGA to compensate for a

transfer latency. Our implementation allocates four rings

in the FPGA for two ports (Figure 5 shows two of the

rings for one port). The maximum size of each ring is

256 KB, with the size being limited by the amount of

SRAM available.

The second key factor we needed to consider was the

efficient utilization of bus bandwidth. The DMA con-

troller operates at a data width of 128 bits. If we send a

66-bit data block over the 128-bit bus every clock cy-

cle, we will waste 49% of the bandwidth, which was

not acceptable. To achieve more efficient use of the

bus, we create a sonic dma page data structure and

separated the syncheader from the packet payload be-

fore storing a 66-bit block in the data structure. Sixteen

two-bit syncheaders are concatenated together to create

a 32-bit integer and stored in the syncheaders field

of the data structure. The 64-bit packet payloads associ-

ated with these syncheaders are stored in the payloads
field of the data structure. For example, the ith 66-bit

PCS block from a DMA page consists of the two-bit sync

header from syncheaders[i/16] and the 64-bit pay-

load from payloads[i]. With this data structure there

is a 32-bit overhead for every page, however it does not

impact the overall performance.

PCI Express Engine Optimizations When SoNIC was

first designed, it only supported a single port. As we

scaled SoNIC to support multiple ports simultaneously,

the need for multiplexing traffic among ports over the

single PCIe link became a significant issue. To solve

this issue, we employ a two-level arbitration scheme to

provide fair arbitration among ports. A lower level ar-

biter is a fixed-priority arbiter that works within a sin-

7
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Configuration Same Socket? # pages
Throughput (RX)

# pages
Throughput (TX)

Realtime?
Port 0 Port 1 Port 0 Port 1

Single RX 16 25.7851

Dual RX
Yes 16 13.9339 13.899

No 8 14.2215 13.134

Single TX 16 23.7437

Dual TX
Yes 16 14.0082 14.048

No 16 13.8211 13.8389

Single RX/TX 16 21.0448 16 22.8166

Dual RX/TX

Yes

4 10.7486 10.8011 8 10.6344 10.7171 No

4 11.2392 11.2381 16 12.384 12.408 Yes

8 13.9144 13.9483 8 9.1895 9.1439 Yes

8 14.1109 14.1107 16 10.6715 10.6731 Yes

No

4 10.5976 10.183 8 10.3703 10.1866 No

4 10.9155 10.231 16 12.1131 11.7583 Yes

8 13.4345 13.1123 8 8.3939 8.8432 Yes

8 13.4781 13.3387 16 9.6137 10.952 Yes

Table 1: DMA throughput. The numbers are average over eight runs. The delta in measurements was within 1% or

less.

gle port and arbitrates between four basic Transaction

Level Packet (TLP) types: Memory, I/O, configuration,

and message. The TLPs are assigned with fixed priority

in favor of the write transaction towards the host. The

second level arbiter implements a virtual channel, where

the Traffic Class (TC) field of TLP’s are used as demul-

tiplexing keys. We implemented our own virtual channel

mechanism in SoNIC instead of using the one available

in the PCIe stack since virtual channel support is an op-

tional feature for vendors to comply with. In fact, most

chipsets on the market do not support the virtual channel

mechanism. By implementing the virtual channel sup-

port in SoNIC, we achieve better portability since we do

not rely on chip vendors that enable PCI arbitration.

Evaluation We examined the maximum throughput for

DMA between SoNIC hardware and SoNIC software

to evaluate our hardware optimizations. It is important

that the bidirectional data rate of each port of SoNIC is

greater than 10.3125 Gbps. For this evaluation, we cre-

ated a DMA descriptor table with one entry, and changed

the size of memory for each DMA transaction from one

page (4K) to sixteen pages (64KB), doubling the num-

ber of pages each time. We evaluated the throughput of

a single RX or TX transaction, dual RX or TX transac-

tions, and full bidirectional RX and TX transactions with

both one and two ports (see the rows of Table 1). We also

measured the throughput when traffic was sent to one or

two CPU sockets.

Table 1 shows the DMA throughputs of the transac-

tions described above. We first measured the DMA with-

out using pointer polling (see Section 3.2) to obtain the

maximum throughputs of the DMA module. For sin-

gle RX and TX transactions, the maximum throughput

is close to 25 Gbps. This is less than the theoretical max-

imum throughput of 29.6 Gbps for the x8 PCIe interface,

but closely matches the reported maximum throughput

of 27.5 Gbps [2] from Altera design. Dual RX or TX

transactions also resulted in throughputs similar to the

reference throughputs of Altera design.

Next, we measured the full bidirectional DMA trans-

actions for both ports varying the number of pages again.

As shown in the bottom half of Table 1, we have multi-

ple configurations that support throughputs greater than

10.3125 Gbps for full bidirections. However, there are

a few configurations in which the TX throughput is less

than 10.3125 Gbps. That is because the TX direction

requires a small fraction of RX bandwidth to fetch the

DMA descriptor. If RX runs at maximum throughput,

there is little room for the TX descriptor request to get

through. However, as the last column on the right in-

dicates these configurations are still able to support the

realtime capability, i.e. consistently running at 10.3125

Gbps, when pointer polling is enabled. This is because

the RX direction only needs to run at 10.3125 Gbps, less

than the theoretical maximum throughput (14.8 Gbps),

and thus gives more room to TX. On the other hand, two

configurations where both RX and TX run faster than

10.3125 Gbps for full bidirection are not able to support

the realtime capability. For the rest of the paper, we use

8 pages for RX DMA and 16 pages for TX DMA.

5 Network Research Applications
How can SoNIC enable flexible, precise and novel net-

work research applications? Specifically, what unique

value does software access to the PHY buy? As dis-

cussed in Section 2.5, SoNIC can literally count the num-

ber of bits between and within packets, which can be

used for timestamping at the sub-nanosecond granular-

ity (again each bit is 97 ps wide, or about ∼0.1 ns).

At the same time, access to the PHY allows users con-

trol over the number of idles (/I/s) between packets

when generating packets. This fine-grain control over

the /I/s means we can precisely control the data rate

and the distribution of interpacket gaps. For example, the

data rate of a 64B packet stream with uniform 168 /I/s

is 3 Gbps. When this precise packet generation is com-

bined with exact packet capture, also enabled by SoNIC,

we can improve the accuracy of any research based on

interpacket delays [11, 19, 22, 23, 24, 25, 26, 32, 35, 37].

8
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Figure 8: Experiment setups for SoNIC

In this section, we demonstrate that SoNIC can pre-

cisely and flexibly characterize and profile commodity

network components like routers, switches, and NICs.

Section 5.4 discusses the profiling capability enabled

by SoNIC. Further, in Section 5.5, we demonstrate that

SoNIC can be used to create a covert timing channel that

is not detectable by applications that do not have access

to the PHY and data link layers and that do not have

accurate timestamping capabilities. First, however, we

demonstrate SoNIC’s accurate packet generation capa-

bility in Section 5.2 and packet capture capability in Sec-

tion 5.3, which are unique contributions and can enable

unique network research in and of themselves given both

the flexibility, control, and precision.

Interpacket delay (IPD) and interpacket gap (IPG) are

defined as follows: IPD is the time difference between

the first bit of successive packets, while IPG is the time

difference between the last bit of the first packet and the

first bit of the next packet.

5.1 Experiment Setup

We deployed SoNIC on a Dell Precision T7500 work-

station. This workstation is a dual socket, 2.93 GHz

six core Xeon X5670 (Westmere) with 12 MB of shared

L3 cache and 12 GB of RAM, 6 GB connected to each

of the two CPU sockets. The machine has two PCIe

Gen 2.0 x8 slots, where SoNIC hardware is plugged in,

and is equipped with an Intel 5520 chipset connected

to each CPU socket by a 6.4 GT/s QuickPath Intercon-

nect (QPI). Two Myricom 10G-SFP-LR transceivers are

plugged into SoNIC hardware. We call this machine the

SoNIC server. For our evaluations we also deployed an

Altera 10G Ethernet design [1] (we call this ALT10G)

on an FPGA development board. This FPGA is the same

type as the one SoNIC uses and is deployed on a server

identical to the SoNIC server. We also used a server iden-

tical to the SoNIC server with a Myricom 10G-PCIE2-

8B2-2S dual 10G port NIC (we call this Client).

To evaluate SoNIC as a packet generator and capturer,

we connected the SoNIC board and the ALT10G board

directly via optic fibers (Figure 8a). ALT10G allows us

to generate random packets of any length and with the

minimum IPG to SoNIC. It also provides us with de-

tailed statistics such as the number of valid/invalid Eth-

ernet frames, and frames with CRC errors. We used this
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Figure 9: Throughput of packet generator and capturer

feature to stress test SoNIC for the packet generator and

capturer. We compared these numbers from ALT10G

with statistics from SoNIC to verify the correctness of

SoNIC.

To evaluate other applications, we used port 0 of

SoNIC server to generate packets to the Client server

via an arbitrary network, and split the signal with a fiber

optic splitter so that the same stream can be directed

to both the Client and port 1 of the SoNIC server per-

forming the packet capture (Figure 8b). We used var-

ious network topologies composed of Cisco 4948, and

IBM BNT G8264 switches for the network between the

SoNIC server and the Client.

5.2 Packet Generator

Packet generation is important for network research. It

can stress test end-hosts, switches/routers, or a network

itself. Moreover, packet generation can be used for re-

playing a trace, studying distributed denial of service

(DDoS) attacks, or probing firewalls.

In order to claim that a packet generator is accurate,

packets need to be crafted with fine-grained precision

(minimum deviations in IPD) at the maximum data rate.

However, this fine-grained control is not usually exposed

to users. Further, commodity servers equipped with a

commodity NIC often does not handle small packets ef-

ficiently and require batching [14, 18, 28, 30]. Thus, the

sending capability of servers/software-routers are deter-

mined by the network interface devices. Myricom Snif-

fer 10G [8] provides line-rate packet injection capability,

but does not provide fine-grained control of IPGs. Hard-

ware based packet generators such as ALT10G can pre-

cisely control IPGs, but do not provide any interface for

users to flexibly control them.

We evaluated SoNIC as a packet generator (Figure 3a).

Figure 10 compares the performance of SoNIC to that of

Sniffer 10G. Note, we do not include ALT10G in this

evaluation since we could not control the IPG to gener-

ate packets at 9 Gbps. We used two servers with Snif-

fer 10G enabled devices to generate 1518B packets at 9

Gbps between them. We split the stream so that SoNIC

can capture the packet stream in the middle (we describe

this capture capability in the following section). As the

graph shows, Sniffer 10G allows users to generate pack-

ets at desired data rate, however, it does not give the con-

9
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Figure 10: Comparison of packet generation at 9 Gbps

trol over the IPD; that is, 85.65% packets were sent in

a burst (instantaneous 9.8 Gbps and minimum IPG (14

/I/s)). SoNIC, on the other hand, can generate packets

with uniform distribution. In particular, SoNIC gener-

ated packets with no variance for the IPD (i.e. a single

point on the CDF, represented as a triangle). Moreover,

the maximum throughput perfectly matches the Refer-

ence throughput (Figure 9) while the TX PCS consis-

tently runs at 10.3125 Gbps (which is not shown). In

addition, we observed no packet loss, bit errors, or CRC

errors during our experiments.

SoNIC packet generator can easily achieve the maxi-

mum data rate, and allows users to precisely control the

number of /I/s to set the data rate of a packet stream.

Moreover, with SoNIC, it is possible to inject less /I/s

than the standard. For example, we can achieve 9 Gbps

with 64B packets by inserting only eight /I/s between

packets. This capability is not possible with any other

(software) platform. In addition, if the APP thread is

carefully designed, users can flexibly inject a random

number of /I/s between packets, or the number of /I/s

from captured data. SoNIC packet generator is thus by

far the most flexible and highest performing.

5.3 Packet Capturer

A packet capturer (a.k.a. packet sniffer, or packet ana-

lyzer) plays an important role in network research; it is

the opposite side of the same coin as a packet genera-

tor. It can record and log traffic over a network which

can later be analyzed to improve the performance and

security of networks. In addition, capturing packets with

precise timestamping is important for High Frequency

Trading [21, 31] or latency sensitive applications.

Similar to the sending capability, the receiving capa-

bility of servers and software routers is inherently limited

by the network adapters they use; it has been shown that

some NICs are not able to receive packets at line speed

for certain packet sizes [30]. Furthermore, if batching

is used, timestamping is significantly perturbed if done

in kernel or userspace [15]. High-performance devices

such as Myricom Sniffer10G [8, 20] provide the ability

of sustained capture of 10 GbE by bypassing kernel net-

work stack. It also provides timestamping at 500 ns res-

olution for captured packets. SoNIC, on the other hand,

can receive packets of any length at line-speed with pre-
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cise timestamping. For instance, we will show in Sec-

tion 5.5 that we can create a covert timing channel that

is undetectable to a Sniffer 10G enabled system or any

other software-enabled systems[14, 18, 28, 30].

Putting it all together, when we use SoNIC as a packet

capturer (Figure 3b), we are able to receive at the full

Reference data rate (Figure 9). For the APP thread, we

implemented a simple logging application which cap-

tures the first 48 bytes of each packet along with the num-

ber of /I/s and bits between packets. Because of the rel-

atively slow speed of disk writes, we store the captured

information in memory. This requires about 900MB to

capture a stream of 64 byte packets for 1 second, and 50

MB for 1518 byte packets. We use ALT10G to generate

packets for 1 second and compare the number of packets

received by SoNIC to the number of packets generated.

SoNIC has perfect packet capture capabilities with

flexible control in software. In particular, Figure 11

shows that given a 9 Gbps generated traffic with uni-

form IPD (average IPD=1357.224ns, stdev=0), SoNIC

captures what was sent; this is shown as a single trian-

gle at (1357.224, 1). All the other packet capture meth-

ods within userspace, kernel or a mixture of hardware

timestamping in userspace (Sniffer 10G) failed to accu-

rately capture what was sent. We receive similar results

at lower bandwidths as well.

5.4 Profiler

Interpacket delays are a common metric for network

research. It can be used to estimate available band-

width [23, 24, 32], increase TCP throughput [37], char-

acterize network traffic [19, 22, 35], and detect and pre-

vent covert timing channels [11, 25, 26]. There are a

lot of metrics based on IPD for these areas. We argue

that SoNIC can increase the accuracy of those applica-

tions because of its precise control and capture of IPDs.

In particular, when the SoNIC packet generator and cap-

turer are combined, i.e. one port transmits packets while

the other port captures, SoNIC can be a flexible platform

for various studies. As an example, we demonstrate how

SoNIC can be used to profile network switches.

Switches can be generally divided into two categories:

store-and-forward and cut-through switches. Store-and-

forward switches decode incoming packets, buffers them

before making a routing decision. On the other hand, cut-

10
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through switches route incoming packets before entire

packets are decoded to reduce the routing latency. We

generated 1518B packets with uniform 1357.19 ns IPD

(=9 Gbps) to a Cisco 4948 (store-and-forward) switch

and a IBM BNT G8264 (cut-through) switch. These

switches show different characteristics as shown in Fig-

ure 12. The x-axis is the interpacket delay; the y-axis

is the cumulative distribution function. The long dashed

vertical line on the left is the original IPD injected to the

packet stream.

There are several takeaways from this experiment.

First, the IPD for generated packets had no variance;

none. The generated IPD produced by SoNIC was al-

ways the same. Second, the cut-through switch intro-

duces IPD variance (stdev=31.6413), but less than the

IPD on the store-and-forward switch (stdev=161.669).

Finally, the average IPD was the same for both switches

since the data rate was the same: 1356.82 (cut-through)

and 1356.83 (store-and-forward). This style of experi-

ment can be used to profile and fingerprint network com-

ponents as different models show different packet distri-

butions.

5.5 Covert Channels

Covert channels in a network is a side channel that can

convey a hidden message embedded to legitimate pack-

ets. There are two types of covert channels: Storage and

timing channels. Storage channels use a specific location

of a packet to deliver a hidden message. Timing channels

modulate resources over time to deliver a message [38].

Software access to the PHY opens the possibility for both

storage and timing channels. The ability to detect covert

channels is important because a rogue router or an end-

host can create covert channels to deliver sensitive infor-

mation without alerting network administrators. We will

discuss how to create covert channels with SoNIC, and

thus argue that SoNIC can be used to detect any poten-

tially undetectable covert channels in local area network

or data center networks.

When SoNIC enabled devices are directly connected

between two end-hosts, a secret message can be commu-

nicated without alerting the end-host. In particular, there

are unused bits in the 10 GbE standard where an adver-

sary can inject bits to create covert messages. Unfortu-
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nately, such a covert storage channel can only work for

one hop. On the other hand, precisely controlling IPG

can create a timing channel that can travel multiple hops

in the network, and that cannot be easily detected with

inaccurate timestamping. Such a covert timing channel

is based on the two observations: First, timing channel

detection is usually performed in the application layer,

and depends on the inherently inaccurate timestamping

from kernel or userspace. Secondly, switches perturb the

IPD, although the difference is still bounded, i.e. an IPD

does not increase to an arbitrarily long one. Therefore, if

we can modulate IPGs in a way that allows switches to

preserve the gaps while making them indistinguishable

to kernel/userspace timestamping, it is possible to create

a virtually undetectable timing channel from applications

operating at layers higher than layer 2.

We experimented with the creation of a simple timing

channel. Let ∆ be an uniform IPG for a packet stream.

Then a small time window can be used to signal 1’s and

0’s. For example, IPG with ∆− ε /I/s represents 0 (if

∆− ε < 12, we set it to 12, the minimum IPG) and ∆+ ε
/I/s represents 1. If the number of 1’ and 0’s meets

the DC balance, the overall data rate will be similar to a

packet stream with uniform IPGs of ∆ /I/s. To demon-

strate the feasibility of this approach, we created a net-

work topology such that a packet travels from SoNIC

through a Cisco 4948, IBM G8264, a different Cisco

4948, and then to the SoNIC server and the Client server

with a fiber splitter (Figure 8b). SoNIC generates 1518B

packets with ∆ = 170, 1018, 3562, 13738 (= 9, 6, 3, 1

Gbps respectively), with ε = 16,32, ...,2048. Then, we

measured the bit error ratio (BER) with captured pack-

ets. Table 2 summarizes the result. We only illustrated

the smallest ε from each ∆ that achieves BER less than

1%. The takeaway is that by modulating IPGs at 100 ns

scale, we can create a timing channel.

Data rate (Gbps) ∆ δ (# /I/s) δ (in ns) BER

9 170 2048 1638.9 0.0359

6 1018 1024 819.4 0.0001

3 3562 128 102.4 0.0037

1 13738 128 102.4 0.0035

Table 2: Bit error ratio of timing channels

Figure 13 illustrates the IPDs with kernel timestamp-

ing from overt channel and covert channel when ∆ =

11
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3562 and ε = 128. The two lines closely overlap, in-

dicating that it is not easy to detect. There are other

metrics to evaluate the undetectability of a timing chan-

nel [11, 25, 26], however they are out of the scope of this

paper, and we do not discuss them.

6 Related Works
6.1 Reconfigurable Network Hardware

Reconfigurable network hardware allows for the experi-

mentation of novel network system architectures. Previ-

ous studies on reconfigurable NICs [36] showed that it is

useful for exploring new I/O virtualization technique in

VMMs. NetFPGA [27] allows users to experiment with

FPGA-based router and switches for research in new net-

work protocols and intrusion detection [10, 12, 29, 39].

The recent NetFPGA 10G platform is similar to the

SoNIC platform. While NetFPGA 10G allows user to

access the layer 2 and above, SoNIC allows user to ac-

cess the PHY. This means that user can access the entire

network stack in software using SoNIC.

6.2 Timestamp

The importance of timestamping has long been estab-

lished in the network measurement community. Prior

work either does not provide precise enough timestamp-

ing, or requires special devices. Packet stamping in user-

space or kernel suffers from the imprecision introduced

by the OS layer [13]. Timestamping in hardware either

requires offloading the network stack to a custom proces-

sor [37], or relies on an external clock source [5], which

makes the device hard to program and inconvenient to

use in a data center environment. Data acquisition and

generation (DAG) cards [5] additionally offer globally

synchronized clocks among multiple devices, whereas

SoNIC only supports delta timestamping.

Although BiFocals [15] is able to provide an exact

timestamping, the current state-of-art has limitations that

prevented it from being a portable and realtime tool. Bi-

Focals can store and analyze only a few milliseconds

worth of a bitstream at a time due to the small memory

of the oscilloscope. Furthermore, it requires thousands of

CPU hours for converting raw optic waveforms to pack-

ets. Lastly, the physics equipment used by BiFocals are

expensive and not easily portable. Its limitations moti-

vated us to design SoNIC to achieve the realtime exact

precision timestamping.

6.3 Software Defined Radio

The Software Defined Radio (SDR) allows easy, rapid

prototyping of wireless network in software. Open-

access platforms such as the Rice University’s WARP [9]

allow researchers to program both the physical and net-

work layer on a single platform. Sora [33] presented

the first SDFR platform that fully implements IEEE

802.11b/g on a commodity PC. AirFPGA [39] imple-

mented a SDR platform on NetFPGA, focusing on build-

ing a chain of signal processing engines using commod-

ity machines. SoNIC is similar to Sora in that it allows

users to access and modify the PHY and MAC layers.

The difference is that SoNIC must process multiple 10

Gbps channels which is much more computationally in-

tensive than the data rate of wireless channels. More-

over, it is harder to synchronize hardware and software

because a 10GbE link runs in a full duplex mode, unlike

a wireless newtork.

6.4 Software Router

Although SoNIC is orthogonal to software routers, it is

worth mentioning software routers because they share

common techniques. SoNIC preallocates buffers to re-

duce memory overhead [18, 30], polls huge chunks of

data from hardware to minimize interrupt overhead [14,

18], packs packets in a similar fashion to batching to im-

prove performance [14, 18, 28, 30]. Software routers

normally focus on scalability and hence exploit multi-

core processors and multi-queue supports from NICs to

distribute packets to different cores to process. On the

other hand, SoNIC pipelines multiple CPUs to handle

continuous bitstreams.

7 Conclusion
In this paper, we presented SoNIC which allows users

to access the physical layer in realtime from software.

SoNIC can generate, receive, manipulate and forward

10 GbE bitstreams at line-rate from software. Fur-

ther, SoNIC gives systems programmers unprecedented

precision for network measurements and research. At

its heart, SoNIC utilizes commodity-off-the-shelf multi-

core processors to implement part of the physical layer

in software and employs an FPGA board to transmit

optical signal over the wire. As a result, SoNIC al-

lows cross-network-layer research explorations by sys-

tems programmers.

8 Availability
The SoNIC platform and source code is published under

a BSD license and is freely available for download at

http://sonic.cs.cornell.edu
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Abstract

Developing elastic applications should be easy. This pa-
per takes a step toward the goal of generalizing elasticity
by observing that a broadly deployed class of software—
the network middlebox—is particularly well suited to
dynamic scale. Middleboxes tend to achieve a clean sep-
aration between a small amount of per-flow network state
and a large amount of complex application logic. We
present a state-centric, systems-level abstraction for elas-
tic middleboxes called Split/Merge. A virtual middle-
box that has appropriately classified its state (e.g., per-
flow state) can be dynamically scaled out (or in) by a
Split/Merge system, but remains ignorant of the number
of replicas in the system. Per-flow state may be transpar-
ently split between many replicas or merged back into
one, while the network ensures flows are routed to the
correct replica. As a result, Split/Merge enables load-
balanced elasticity. We have implemented a Split/Merge
system, called FreeFlow, and ported Bro, an open-source
intrusion detection system, to run on it. In controlled ex-
periments, FreeFlow enables a 25% reduction in maxi-
mum latency while eliminating hotspots during scale-out
and a 50% quicker scale-in than standard approaches.

1 Introduction

The prevalence of Infrastructure as a Service (IaaS)
clouds has given rise to a new breed of applications
that better support elasticity: the ability to scale in or
out to handle variations in workloads [17]. Fundamen-
tal to achieving elasticity is the ability to create or de-
stroy virtual machine (VM) instances, or replicas, and
partitioning work between them [14, 34]. For exam-
ple, a 3-tier Web application may scale out the middle
tier and balance requests between them. Consequently,
the—virtual—middleboxes that these applications rely
on (such as firewalls, intrusion detection systems, and
protocol accelerators) must scale in a similar fashion.

A recent survey of 57 enterprise networks of various
sizes found that scalability was indeed critical for mid-
dleboxes [24].

Due to the diversity of cloud applications, supporting
elasticity has been mostly the burden of the application or
application-level framework [7]. For example, it is their
responsibility to manage replicas and ensure that each
replica will be assigned the same amount of work [1]. In
the worst case, imbalances between replicas can result
in inefficiencies, hotspots (e.g., overloaded replicas with
degraded performance) or underutilized resources [33].

Unlike generic cloud applications, middleboxes share a
unique property that can be exploited to achieve efficient,
balanced elasticity. Despite the complex logic involved
in routing or detecting intrusions, middleboxes are often
implemented around the idea that each individual flow
is an isolated context of execution [22, 26, 31]. Middle-
boxes typically classify packets to a specific flow, and
then interact with data specific to that flow [9, 30]. By
replicating a middlebox and adjusting the flows that each
replica receives from the network—and the associated
state held by each replica—any middlebox can maintain
balanced load between replicas as the middlebox scales
in or out.

To this end, we present a new hypervisor-level ab-
straction for virtual middleboxes called Split/Merge.
A Split/Merge-aware middlebox may be replicated at
will, yet remains oblivious to the existence of replicas.
Split/Merge divides a middlebox application’s state into
two broad classes: internal and external. Internal state
is treated similarly to application logic: it is required for
a given replica to run, but is of no consequence outside
that replica’s execution. External state describes the ap-
plication state that is actually scaled, and can be thought
of as a large distributed data structure that is managed
across all replicas. It can be further subdivided into to
classes: partitioned and coherent state. Partitioned state
is exclusively accessed, flow-specific data, and is the fun-
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damental unit of reconfiguration in a Split/Merge system.
Coherent state describes additional, often “global” state
such as counters, that must remain consistent—either
strongly or eventually—among all replicas.

We have designed and implemented FreeFlow, a system
that implements Split/Merge to provide efficient, bal-
anced elasticity for virtual middleboxes. FreeFlow splits
flow-specific state among replicas and dynamically re-
balances both existing and new flows across them. To
enable middlebox applications to identify external state,
associate it with network flows, and manage the migra-
tion of partitioned state between replicas, we have im-
plemented an application-level FreeFlow library. In ad-
dition, we have implemented a Split/Merge-aware soft-
ware defined network (SDN) that enables FreeFlow to
partition the network such that each replica receives the
appropriate network traffic even as partitioned state mi-
grates between replicas.

FreeFlow enables elasticity by creating and destroy-
ing VM replicas, while balancing load between them.
We have ported Bro [19], a real-world intrusion de-
tection system, and built two synthetic middleboxes
on FreeFlow. Using these middleboxes, we show that
FreeFlow eliminates hotspots created during scale-out
and inefficiencies during scale-in. In particular, it re-
duces the maximum latency by 25% after rebalancing
flows during scale-out and achieves 50% quicker scale-in
than standard approaches.

To summarize, the contributions of this paper are:

• a new hypervisor-level state abstraction that enables
flow-related middlebox state to be identified, split,
and merged between replica instances,

• a network abstraction that ensures that network in-
put related to a particular flow-related piece of mid-
dlebox state arrives at the appropriate replica, and

• a system, FreeFlow, that implements Split/Merge
alongside VM scale-in and scale-out to enable bal-
anced elasticity for middleboxes.

The rest of this paper is organized as follows. Section 2
describes middleboxes and the Split/Merge abstraction.
Section 3 describes the design and implementation of
FreeFlow. Section 4 describes our experience in port-
ing and building middleboxes for FreeFlow. Section 5
evaluates FreeFlow, Section 6 surveys related work, and
Section 7 concludes.

2 Split/Merge

In this section, we describe the common structure in
which middlebox state is organized. Motivated by this
common structure, we define the three types of states

Figure 1: Typical structure of a middlebox

exposed by the Split/Merge abstraction. We then de-
scribe how robust elasticity is achieved by tagging state
and transparently partitioning network input across vir-
tual middlebox replicas. We conclude the section with
design challenges.

2.1 Anatomy of a Virtual Middlebox

A middlebox is defined as “any intermediary device per-
forming functions other than the normal, standard func-
tions of an IP router on the datagram path between a
source host and destination host” [4]. Middleboxes can
vary drastically in their function, performing such di-
verse tasks as network address translation, intrusion de-
tection, packet filtering, protocol acceleration, and acting
as a network proxy. However, middleboxes typically pro-
cess packets and share the same basic structure [9,12,30].

Figure 1 shows the basic structure of a middlebox. State
held by a middlebox can be characterized as policy and
configuration data or as run-time responses to network
flows [9, 26, 30, 31]. The former is provisioned, and can
include, for example, firewall rules or intrusion detection
rules. The latter, called flow state is created on-the-fly
when packets of a new flow are received for the first time
or through an explicit request. Flow state can vary in
size. For example, on seeing a packet from a new flow, a
middlebox may generate some small state like a firewall
pinhole or a NAT translation entry, or it may begin to
maintain a buffer to reconstruct a TCP stream.

Flow state is stored in a flow table data structure and ac-
cessed using flow identifiers (packet headers) as keys.
(Figure 1) Models of middleboxes have been developed
that represent state as a key-value database indexed by
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addresses (e.g., a standard IP 5-tuple) [12]. A middlebox
may have multiple flow tables (e.g., per network inter-
face). It may also contain timers that refer to flow state,
for example, to clean up stale flows.

We have performed a detailed analysis of the source code
or specifications of several middleboxes to confirm that
they fit into this model. We discuss three of them below:

Bro. Bro [19] is a highly stateful intrusion detection
system. It maintains a flow table in the form of a dic-
tionary of Connection objects, indexed by the stan-
dard IP 5-tuple without the protocol field. Inside the
Connection objects, flow-related state varies depend-
ing on the protocol analyzers that are being used. Ana-
lyzer objects contain state machine data for a given pro-
tocol (e.g., HTTP) and reassembly buffers to reconstruct
a request/response payload, leading to tens of kilobytes
per flow in the common case. A dictionary of timers is
maintained for each Connection object. Bro also con-
tains statistics and configuration settings.

Application Delivery Controller (ADC). ADC [35,
38, 40] is a packet-modifying load balancer that en-
sures the addresses of servers behind it are not visible
to clients. It contains a flow table that is indexed by the
source IP address and port. Flow-specific data includes
the internal address of the target server and a timestamp,
resulting in only tens of bytes per flow. ADC also main-
tains timers for each flow, which it uses to clean up flow
entries.

Stateful NAT64. Stateful NAT64 [15] translates IPv6
packets to IPv4 and vice-versa. NAT64 maintains three
flow tables, which it calls session tables: for UDP, TCP,
and ICMP Query sessions, respectively. Session tables
are indexed using a 5-tuple. Flow state, called session
table entries (STEs), consists of a source and destination
IPv6 address and a source and destination IPv4 address,
so is therefore tens of bytes in size. Timers, called STE
lifetimes, are also maintained.

2.2 The Split/Merge Abstraction

The Split/Merge abstraction enables transparent and bal-
anced elasticity for virtual middlebox applications. Us-
ing Split/Merge, middlebox applications can continue to
be written and configured oblivious to the number of
replicas that may be instantiated. Each replica perceives
an identical VM abstraction, down to the details of the
MAC address on the virtual network interface card.

As depicted Figure 2, using Split/Merge, the output of a
middlebox application remains consistent, regardless of
the number of replicas that have been instantiated or de-
stroyed throughout its operation. Slightly more formally:

Figure 2: Split/Merge retains output consistency irre-
spective of the number of replicas.

Definition. Let a VM be represented by a state machine
that accepts input from the network, reads or writes some
internal state, and produces output back to the network.
A Split/Merge-aware VM is abstractly defined as a set of
identical state machine replicas; the aggregate output of
which—modulo some reordering—is identical to that of
a single machine, despite the partitioning of the input be-
tween the replicas. Consistency is achieved by ensuring
that each replicated state machine can access the state
required to produce the appropriate output in response
to its share of the input.

There are two types of state in a Split/Merge-aware VM
(Figure 1): internal and external state. Internal state is
relevant only to a single replica. It can also be thought
of as “ephemeral” [5]; its contents can deviate between
replicas of the state machine without affecting the con-
sistency of the output. Examples of internal state include
background operating system processes, cache contents,
and temporary side effects. External state, on the other
hand, transcends a single replica. If accessed by any
replica, external state cannot deviate from what it would
have been in a single, non-replicated state machine with-
out affecting output consistency. For example, a NAT
may look up the port translation for a particular flow.
Any deviation in the value of this state would cause the
middlebox to malfunction, violating consistency.
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Figure 3: A Split/Merge-aware VM uses the different
types of state to achieve transparent elasticity.

As depicted in Figure 1, external state can take two
forms: partitioned or coherent. Partitioned state is made
up of a collection of sub-states, each of which are intrin-
sically tied to a subset of the input and therefore only
need to be accessed by the state machine replica that is
handling that input. The NAT port translation state is
an example of partitioned state, because only the replica
handling the network flow in question must access the
state. Coherent state, on the other hand, is accessed by
multiple state machine replicas, regardless of how the in-
put is partitioned. In Figure 1, the flow table and timers
reside in partitioned state, while configuration informa-
tion and statistics reside in coherent state.

2.3 Using Split/Merge for Elasticity

Figure 3 depicts how the state of a middlebox VM is
split and merged when elastically scaling out and in. On
scale-out, internal state is replicated with the VM, but be-
gins to diverge as each replica runs independently. Co-
herent state is also replicated with the VM, but remains
consistent (or eventually consistent) because access to
coherent state from each replica is transparently coordi-
nated and controlled. Partitioned state is split among the
VM replicas, allowing each replica to work in parallel
with its own sub-state. At the same time, the input to the
VM is partitioned, such that each replica receives only
the input pertinent to its partitioned sub-state.

On scale-in, one of the replicas is selected to be de-
stroyed. Internal state residing at the replica can be
safely discarded, since it is not needed for consistent out-
put. Coherent state may be discarded when any outstand-

ing updates are pushed to other replicas. The sub-states
of the partitioned state residing at the dying replica are
merged into a surviving replica. At the same time, the
input that was destined for the dying replica is also redi-
rected to the surviving replica now containing the parti-
tioned sub-state.

2.4 Challenges

To implement a system that supports Split/Merge for vir-
tual middleboxes, several challenges need to be met.

C1. VM state must be classified. For virtual middle-
box applications to take advantage of Split/Merge,
each application must identify which parts of its
VM state are internal vs. external. Fortunately,
the structure of middleboxes (Figure 1) is naturally
well-suited to this task. The flow table of mid-
dleboxes already associates partitioned state with a
subset of the input, namely network flows.

C2. Transactional boundaries must be respected. In
some cases, a middlebox application may need to
convey that it finished processing relevant input be-
fore partitioned state can be moved from one VM
to another. For example, an IDS may continuously
record information about a connection’s state; such
write operations must complete before the state can
be moved. Other cases, such as a NAT looking up a
port translation, do not have such transactional con-
straints.

C3. Partitioned state must be able to move between
replicas. Merging partitioned state from multiple
replicas requires at the most primitive level the abil-
ity to move the responsibility for a flow from one
replica to another. In addition to moving the flow
state, the replica receiving the flow must update its
flow table data structures and timer structures so
that it can readily access the state.

C4. Traffic must be routed to the correct replica. As
partitioned state—associated with network flows—
is split between VM replicas, the network must en-
sure that the appropriate flows arrive at the replica
holding the state associated with those flows. Rout-
ing is complicated by the fact that partitioned state
may move between replicas and each replica shares
the same IP and MAC address.

The Split/Merge abstraction can be thought of in two
parts: splitting and merging VM state between replicas
(Figure 3), and splitting and merging network input be-
tween replicas (Figure 2). As such, the challenges can
also be classified into those that deal with state manage-
ment (C1, C2, C3) and those that deal with network man-
agement (C4).
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Figure 4: FreeFlow Architecture

3 FreeFlow

FreeFlow implements the Split/Merge abstraction to en-
able virtual middleboxes to achieve transparent, balanced
elasticity. The design of FreeFlow is shown in Fig-
ure 4. It consists of four components. First, the state as-
pects of the Split/Merge abstraction are implemented via
the application-level FreeFlow library, which addresses
the state-related challenges (C1, C2,C3). In particular,
through the interface to the library, a middlebox appli-
cation classifies its state as internal or external and com-
municates its transactional requirements. Additionally,
the library manages all aspects of external state, includ-
ing the migration of partitioned sub-states. Second, the
network aspects of the Split/Merge abstraction are im-
plemented in FreeFlow’s Split/Merge-aware software de-
fined network (SDN). The SDN addresses the final chal-
lenge (C4) and ensures that the correct network flows are
routed to the replica maintaining the corresponding par-
titioned sub-state. Third, the orchestrator implements an
elasticity policy: it decides when to create or destroy VM
replicas and when to migrate flows between them. Fi-
nally, VMM agents perform the actual creation and de-
struction of replicas. The four components communicate
with each other over a control network, distinct from the
Split/Merge-aware SDN.

We have implemented a prototype of FreeFlow, in-
cluding all of its components shown in Figure 4.
Each physical machine runs Xen [2] as a VMM and
Open vSwitch [20] as an OpenFlow-compatible software
switch. In all components, flows are identified using the
IP 5-tuple.

// MIDDLEBOX−SPECIFIC PARTITIONED STATE HANDLING

create_flow(flow_key, size); // alloc flow state
delete_flow(flow_key); // free flow state

flow_state get_flow(flow_key); // increment refcnt
put_flow(flow_key); // decrement refcnt

flow_timer(flow_key, timeout, callback);

// COHERENT STATE HANDLING

create_shared(key, size, cb); // if cb is null, then use
delete_shared(key); // strong consistency

state get_shared(key, flags); // synch | pull | local
put_shared(key, flags); // synch | push | local

Figure 5: Interface to the FreeFlow library

3.1 Guest Library: State Management

Middlebox applications interact with the FreeFlow li-
brary in order to classify state as external and identify
transaction boundaries on such state. The interface to
the library is shown in Figure 5. Behind the scenes, the
library interfaces with the rest of the FreeFlow system
to split and merge partitioned state between replicas and
control access to coherent state.

To fulfill the task of identifying external state, the library
acts a memory allocator, and is therefore the only mech-
anism the middlebox application can use to obtain parti-
tioned or coherent sub-state. Partitioned state in middle-
box applications generally consists of a flow table and
a list of timers related to flow state; therefore, the li-
brary manages both. The library provides an interface,
create flow to allocate a new entry in the flow table
against a flow key, which is usually an IP 5-tuple. A new
timer (and its callback) can be allocated against a flow
key using flow timer. Coherent sub-state is allocated
against a key by invoking create shared, but the key
is not necessarily associated with a network flow.

Transaction boundaries are inferred by maintaining refer-
ence counts for external sub-states. Using get flow or
get shared, the middlebox application accesses ex-
ternal sub-state from the library, at which point a ref-
erence counter (refcnt) is incremented. When the ap-
plication finishes with a transaction on the sub-state, it
informs the library with put flow or put shared,
which decrements the reference counter. The application
must avoid dangling references to partitioned state. If it
fails to inform the library that a transaction is complete,
the state will be pinned to the current replica.

The library may copy partitioned sub-state across the
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control network to another replica in response to a noti-
fication from the orchestrator (§ 3.3). When instructed
to migrate a flow—identified with a flow key and a
unique network address for a target replica on the control
network—the library waits for the reference counter on
the state to become zero, then copies the flow table entry
and any timers across the control network. The flow table
at the source is updated to record the fact that the partic-
ular flow state has migrated. Upon future get flow
calls, the library returns an error code indicating that
the flow has migrated and the packet should be dropped.
Similarly, when the target library receives flow data—
and the flow key for it to be associated with—during a
flow migration, the flow table and timer list are updated
and the orchestrator is notified. At any one time, only
one library instance maintains an active copy of the flow
data for a particular flow.

The library also manages the consistency of coherent
state across replicas. In most cases, strong consistency is
not required. For example, the application can read and
write counters or statistics locally most of the time (using
the LOCAL flag on get shared). Periodically, the ap-
plication may require a consistent view of a counter. For
example, an IDS may need to check an attack threshold
value has not been exceeded. For periodic merging of
coherent state between replicas, FreeFlow supports com-
biners [7,16]. On create shared, an application can
specify a callback (cb) function, which takes a list of co-
herent state elements as an argument and combines them
in an application specific way. In most cases, this func-
tion simply adds the values of the counters in the coher-
ent state. The combiner will be invoked automatically
by the library when a replica is about to be destroyed. It
can also be invoked explicitly by the application either
before a reference to the coherent state is obtained (us-
ing the PULL flag on get shared) or after a transac-
tion is complete (using the PUSH flag on put shared).
The combiner never runs in the middle of a transaction;
get shared using PULL may block until other repli-
cas finish their transaction and the state can be safely
read. In the rare case that strong consistency is required,
the application does not specify a combiner, and library
instead interacts with a distributed locking service [3,11].
On get shared (with the SYNCH flag), the library ob-
tains the lock associated with the specified key and en-
sures that it has the most recent copy of the coherent
data. The library releases the lock on put shared and
the system registers the local copy of the coherent data
as the most recent version.

We have implemented the FreeFlow library as a C library.
In doing so, we addressed the implementation challenge
of allowing flow state to include self-referential pointers
to other parts of the flow state. To support unmodified

Figure 6: The SDN splits network input to replica VMs
based on flow rules. The SDN ensures that traffic from
VM 1 arrives at VM 3 and traffic from VM 2 arrives at
VM 4. For clarity, we have omitted the flow rules for
routing middlebox output.

pointers, the library must ensure that the flow state re-
sides at same virtual address range regardless of which
replica it is in. To accomplish this, the library allocates
a large virtual address space before notifying the VMM
agent to compute the initial snapshot. Within the vir-
tual address range, the orchestrator provides each replica
with a non-overlapping region to service new flow re-
lated memory allocations obtained with create flow.

3.2 Split/Merge-Aware SDN: Network Management

The Split/Merge-aware SDN implements the networking
part of the Split/Merge abstraction. Each replica VM
contains an identical virtual network interface. In par-
ticular, every replica has the same MAC and IP address.
Maintaining consistent addresses in the replicas avoids
breaking OS or application level address dependencies
in the internal state within a VM.

As depicted in Figure 6, FreeFlow leverages OpenFlow-
enabled [41] network elements (e.g., switches [20],
routers) to enforce routing to various replicas. As pack-
ets flow through the OpenFlow network, each network
element searches a local forwarding table for rules that
match the headers of the packet, indicating they belong
to a particular flow. If an entry is found, the network el-
ement forwards the packets along the appropriate inter-
face on the fast path. If no entry exists, the packet (or just
its header) is forwarded to an OpenFlow controller. The
OpenFlow controller has a global view of the network
and can make a routing decision for the new flow. The
controller then pushes a new rule to one or more network
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elements so that future packets belonging to the flow can
be forwarded without consulting the controller.

The Split/Merge-aware SDN must ensure that packets ar-
rive at the appropriate replica even as partitioned flow
state migrates between replicas. To do this, FreeFlow
contains a customized OpenFlow controller that commu-
nicates with the orchestrator (§ 3.3). When a flow is mi-
grated between replicas, the orchestrator interfaces with
the OpenFlow controller to communicate the new for-
warding rules for the flow. Packets belonging to new
flows are forwarded to the OpenFlow controller by de-
fault. The OpenFlow controller picks a replica toward
which the new flow should be routed and notifies the or-
chestrator.

When a flow migration notification is received from the
orchestrator, rules to route the flow are deleted from all
network elements in the current path traversed by the
flow. The flow is then considered suspended. Packets
arriving from the switches are temporarily buffered at
the OpenFlow controller until the flow is resumed by the
controller, at the new replica. The flow is not resumed
until partitioned sub-state has arrived at its new destina-
tion. The controller resumes a flow by calculating a new
path for the flow that traverses the new replica, installing
forwarding rules in the switches on the path, and inject-
ing any buffered packets directly into the virtual switch
connected to the new replica.1

We implemented the SDN in a module on top of
POX [42], a python version of the popular NOX [10]
OpenFlow controller. The controller provides a simple
web API that allows it to receive notifications from the
orchestrator about events like middlebox creation and
deletion, or instructions to migrate one or more flows
from one replica to another. We addressed three imple-
mentation challenges. First, the controller cannot use
MAC learning techniques for middleboxes because ev-
ery replica shares a MAC address. Instead, when repli-
cas are created, the VMM agent registers a replica in-
terface on a virtual switch port with the controller. Sec-
ond, ARP broadcast requests may cause multiple repli-
cas to respond or unexpected behavior, since they share a
MAC address. To avoid this, the controller intercepts and
replies to ARP requests that refer to the middlebox IP.
Finally, the controller decides which replica a new flow
is routed to, so must ensure that bi-directional flows are
assigned to the same replica. This is achieved by main-
taining a table that maps each flow to its replica that is
checked before assigning new flows to replicas.

1Alternately, buffering could occur at the destination hypervisor and
the controller could update the path immediately upon suspend, thereby
reducing its load.

Figure 7: Migrating flow �b� from Replica 2 to Replica 1

3.3 Orchestrator: Splitting and Merging

The orchestrator implements the most fundamental prim-
itive for enabling the splitting and merging of partitioned
state between replicas: flow migration. Figure 7 shows
the migration of a flow �b� between two replicas. The
orchestrator interacts with other parts of the system as
follows. It:

• instructs the SDN to suspend the flow �b� such that
no traffic of the flow will reach either replica.

• instructs the guest library in Replica 2 to transfer the
partitioned state associated with �b� to Replica 1.

• instructs the SDN to resume the flow by modifying
the routing of flow �b� such that any new traffic be-
longing to the flow will arrive at Replica 1.

It is possible, although rare in practice, that some pack-
ets will arrive at Replica 2 after the flow state has
been migrated to Replica 1. For example, packets may
be buffered in the networking stack in the kernel of
Replica 2 and not yet have reached the application. In
case the application receives a packet after the flow state
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is migrated, it should drop the packet.2

The orchestrator triggers the creation or destruction of
replicas by the VMM Agent (§3.4) in order to scale in or
out as part of an elasticity policy. It can trigger these op-
erations automatically based on utilization (resembling
the Autoscale functionality in Amazon EC2 [34]) or ex-
plicitly in response to user input.

3.4 VMM Agent: Scaling In and Out

The VMM agent creates or destroys replica VMs in re-
sponse to instructions from the orchestrator. Replica
VMs are instantiated from a point-in-time snapshot of
the first instantiation of the middlebox VM, before it be-
gan processing packets. During library initialization, af-
ter variables in the internal state are initialized but before
the VM has allocated any external state, the FreeFlow li-
brary instructs the VMM agent to compute the snapshot.
By definition, the internal state in the replica VM can
diverge from the snapshot.

We have implemented the VMM agent in Xen’s con-
trol domain (Domain 0). Communication with the li-
brary is implemented using Xenstore, a standard, non-
network based virtual communication channel used be-
tween guest VMs and Domain 0 in Xen. Checkpoints
are computed with the xm save command, and repli-
cas are instantiated with the xm restore command.3

The time to create a new fully operational replica is on
the order of a few seconds; it may be possible to reduce
this delay with rapid VM cloning techniques [14].

3.5 Limitations

Virtual middleboxes cannot use FreeFlow (or the
Split/Merge paradigm in general) unless their structure
roughly matches that described in Figure 1. While most
middleboxes we have examined do fit this architecture,
it should be noted that some middleboxes are more diffi-
cult to adapt to FreeFlow than others. The main cause of
difficulty is how the middleboxes deal with partitioning
granularity and coherent state.

Middleboxes can be composed of numerous layers and
modules, each of which may refer to flows using a dif-
ferent granularity. For example, in an IDS, like Bro, one
module may store coarse-grained state (e.g., concerning
all traffic in an IP subnet), while another may store fine-
grained state (e.g., individual connection state). There
are two approaches to adapting such a middlebox to
FreeFlow. First, the notion of a flow could be expanded
to the largest granularity of all modules. In the preceding

2In this case, the library returns an error code when flow-specific
state is accessed (§ 3.1).

3In our prototype, the distribution of VM disk images to physical
hosts is performed manually.

example, this would mean using the same flow key for
all data related to all flows in an IP subnet, fundamen-
tally limiting FreeFlow’s ability to balance load. Second,
a fine-grained flow key could be used to identify parti-
tioned state, causing the coarse-grained state to be clas-
sified as coherent. If strong consistency is required for
the coarse-grained state or a combiner cannot be speci-
fied, this approach may cause high overhead due to state
synchronization.

4 Experience Building Split/Merge Capa-
ble Middleboxes

To validate that the Split/Merge abstraction is well suited
to virtual middleboxes, we have ported Bro, an open-
source intrusion detection system, to run on FreeFlow.
To evaluate a wider range of middleboxes, we have also
implemented two synthetic FreeFlow middleboxes.

4.1 Bro

Bro is composed of two key components: an Event En-
gine and a Policy Script Interpreter. Packets captured
from the network are processed by the Event Engine.
The Event Engine runs a protocol analysis, then gener-
ates one or more predefined events (e.g., connection es-
tablishment, HTTP request) as input to the Policy Script
Interpreter. The Policy Script Interpreter executes code
written in the Bro scripting language to handle events.
As explained in Section 2.1, the Event Engine maintains
a flow table with each table entry corresponding to an
individual connection. Each event handler executed by
the Policy Script Interpreter also maintains state that is
related to one or more flows.

Our porting effort focused on Bro’s Event Engine and
one event handler.4 The event handler scans for potential
SQL injection strings in HTTP requests to a webserver.
The handler tracks—on a per-flow basis—the number
of HTTP requests (num sqli) that contain a SQL in-
jection exploit. When num sqli exceeds a predefined
threshold (sqli thresh), Bro issues an alert.

Porting Bro to FreeFlow. Porting Bro to FreeFlow
involved the straightforward classification of external
state and interfacing with the FreeFlow library to man-
age it. First, we identified all points of memory allo-
cation in the code. If the memory allocation was for
flow-specific data, we modified the allocation to use
FreeFlow-provided memory instead of the heap. In cer-
tain cases, we had to provide custom implementations
of standard C++ constructs like std::List, to avoid
leaking references to FreeFlow-managed memory.

4For ease of implementation, we ported the event handler to C++
instead of using the Bro scripting language.
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After ensuring partitioned state was allocated in
FreeFlow-managed memory, we checked for external
references to it. The only two references were from
the global dictionary of Connection objects and the
global dictionary of timers. Since FreeFlow manages ac-
cess to flow-related objects and timers, we could replace
these two global collections. We found that Bro always
accesses flow-related state in the context of processing
a single packet, and therefore has well-defined transac-
tional boundaries. References from FreeFlow-managed
classes to external memory occur only to read static con-
figuration data (internal state).

As expected, there was very little data that we classi-
fied as coherent state. We used FreeFlow’s support for
combiners for non-critical global statistics counters. The
combiners were configured to only be invoked by the sys-
tem (i.e., on replica VM destruction). We did not find
any variables that required strong consistency or real-
time synchronization across replicas.

Verification. To validate the correctness of the modified
system, we used a setup consisting of a client and a web-
server, separated by two middlebox replicas running the
modified version of Bro. At a high level, we used the
client to issue a single flow of HTTP requests containing
SQL injection exploits while FreeFlow migrated the flow
between the two replicas multiple times. We check for
the integrity of state and execution by ensuring (a) Bro
generates an alert, (b) the number of exploits detected
exactly matches those sent by the client (c) both replicas
remain operational after each flow migration. Assuming
Bro sees all packets on the flow, the first two conditions
cannot be satisfied if the state becomes corrupted during
migration. Additionally, the system would crash on flow
migration when objects inside FreeFlow memory refer to
external memory that does not exist on the local replica.

4.2 Synthetic Middlebox Applications

We built two synthetic FreeFlow based middlebox appli-
cations that capture the essence of commonly used real
world middlebox applications. The first application is
compute-bound. It performs a set of computations on
each packet of a flow, resembling the compute intensive
behavior of middlebox applications like an Intrusion Pre-
vention System (IPS) or WAN optimizer. The second
application modifies packets in a flow in both directions,
using a particular application-level (layer 7) protocol, re-
sembling a NAT or Application Layer Gateway. Both
middleboxes were built in userspace using the Linux net-
filter [39] framework to interpose on packets arriving at
the VM. The userspace applications inspect and/or mod-
ify packets before forwarding them to the target.
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Figure 8: Splitting/Merging Bro for Stateful Elasticity

5 Evaluation

FreeFlow enables balanced elasticity by leveraging the
Split/Merge abstraction to distribute—and migrate—
flows between replicas. In this section, we evaluate
FreeFlow with the following goals:

• demonstrate FreeFlow’s ability to provide dynamic
and stateful elasticity to complex real world middle-
boxes (§ 5.1),

• demonstrate FreeFlow’s ability to alleviate hotspots
created by a highly skewed load distribution across
replicas (§ 5.2),

• measure the gain in resource utilization when scal-
ing in a deployment using FreeFlow (§ 5.3), and

• quantify the performance overhead of migrating a
single flow under different application loads (§ 5.4).

In our experimental setup, a set of client and server VMs
are placed on different subnets. Traffic—TCP or UDP—
is routed between the VMs via a middlebox. We evaluate
FreeFlow using Bro or one of the synthetic middleboxes
described in Section 4.2.

5.1 Stateful Elasticity with Split/Merge

Figure 8 shows FreeFlow’s ability to dynamically scale
Bro out and in during a load burst, splitting and merging
partitioned state. In this experiment, the generated load
contains SQL injection exploits; we measure the percent-
age of attacks detected by Bro to determine Bro’s ability
to scale to handle the load burst.

Load is generated by a configurable number of cURL-
based [36] HTTP clients in the form of a continuous
sequence of POST requests to a webserver. The re-
quests contain SQL injection exploits; an attack com-
prises 31 consecutive requests. Each client is configured
to generate 50 requests/second. Throughout the experi-
ment (for 120 seconds), 30 clients generate a base load.
We inject a load burst 45 seconds into the experiment by
introducing an additional 30 clients and 10 UDP flows
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Figure 9: Eliminating hotspots with FreeFlow

(1 Mbps each) that do not contain attacks. The load burst
lasts 45 seconds, after which the additional client and
UDP traffic ceases.

We compare three scenarios: a single Bro instance that
handles the entire load burst, a pair of Bro replicas that
share load (flows are assigned to replicas in a round-robin
fashion), and Bro running with FreeFlow. The FreeFlow
scenario begins with a single replica and FreeFlow is
configured to create a new replica and split flows and
state between them when the number of flows handled
by the replica exceeds 60. Similarly, it is configured
to merge flows and state and destroy a replica when the
number of flows handled by a replica drops below 40.

As shown in Figure 8, until the load burst at t = 45s, all
three configurations have a 100% detection rate. Dur-
ing the load burst, the performance of the single replica
reduces drastically because packets are dropped and at-
tacks are missed. The two replica cluster does not expe-
rience any degradation as it has enough capacity and the
load is well balanced between the two replicas.

The FreeFlow version of Bro behaves in the same man-
ner as a single replica, until the load burst is detected
around t = 45s. While partitioned state is being split to a
new replica, packets are dropped and attacks are missed.
However, the detection rate quickly rises because the two
replicas have enough capacity for the load burst. After
the load burst (t = 85s), FreeFlow detects a drop in load,
so merges partitioned state and destroys one of the repli-
cas. The FreeFlow version of Bro continues to detect
attacks at the base load with a single replica. FreeFlow
therefore enables Bro to handle the load burst without
wasting resources by running two replicas throughout the
entire experiment.
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5.2 Hotspot Elimination

In this experiment, we demonstrate FreeFlow’s ability to
eliminate hotspots that arise when the load distribution
across middleboxes becomes skewed. For the purpose of
this discussion, we define a hotspot as the degradation in
network performance due to high CPU or network band-
width utilization at the middlebox.

We use the compute-bound middlebox application de-
scribed in Section 4.2 under load from 1 Mbps UDP
flows. We define our scale-out policy to create a new
replica once the number of flows in a replica reaches
100 (totaling 100 Mbps per replica). Flows are gradu-
ally added to the system every 500 ms up to a total of
101 flows. After scaling out, the system has two repli-
cas: one with 100 flows and another with just one flow.

As expected, the replica handling 100 flows experiences
much higher load than the other replica. The result-
ing hotspot is reflected by highly erratic packet laten-
cies experienced by the clients, shown in Figure 9 and
Figure 10. Figure 9 shows the maximum latency, while
Figure 10 shows the fluctuations in the average latency
during the last 40s of the experiment. FreeFlow splits
the flows evenly among the two replicas thereby re-
distributing the load and alleviating the hotspot. Ulti-
mately, FreeFlow achieves a 26% reduction in the av-
erage maximum latency during the hotspot, with a 73%
lower standard deviation.

Irrespective of flow duration and traffic patterns, without
FreeFlow’s ability to balance flows, an over-conservative
scale-out policy may be used to ensure hotspots do not
occur, leading to low utilization and wasted resources.
By balancing flows, FreeFlow enables less conservative
scale-out policies leading to higher overall utilization.
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Figure 11: Scaling in with FreeFlow

5.3 Efficient Consolidation

In this experiment, we show how FreeFlow’s ability to
statefully merge flows between two or more replicas can
be used to consolidate resources during low load and
improve overall system utilization. We measure how
quickly FreeFlow can scale in compared to a standard
kill-based technique, in which a replica is killed only
when all its flows have expired. We also measure the
average system utilization per live replica during scale
in, shown in Figure 11.

We start with 4 replicas running the compute-bound mid-
dlebox application (§4.2), handling 50 UDP flows of
1 Mbps each. One flow expires every 500 ms according
to a best case or worst case scenario.

In the best case scenario, the first 50 flows expire from
the first replica in the first 25 seconds, enabling the
kill-based technique to destroy the replica. The sec-
ond 50 flows expire from the second replica in the next
25 seconds, enabling the second replica to be destroyed,
and so on. In this case, the average system utilization re-
mains high throughout the scale-in process, with a saw-
tooth pattern as shown in Figure 11.

In the worst case scenario, flows expire from replicas in
a round-robin fashion. In a kill-based system, each of the
4 replicas contains one or more flows until the very end
of the experiment, preventing the system from destroy-
ing replicas. This results in steadily degrading average
system utilization over the duration of the experiment.

On the other hand, even in the worst case, FreeFlow can
destroy a replica every 25 seconds. To accomplish this,
FreeFlow is configured with a scale-in policy that trig-
gers once the average number of flows per replica falls
below 50. When scaling in, FreeFlow kills a replica af-
ter merging its state and flows with the remaining repli-
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cas. Subsequently, in the worst case, FreeFlow maintains
average system utilization close to that of the kill-based
strategy in the best case scenario and improves the av-
erage system utilization by up to 43% in the worst case
scenario. Based on the the time at which the first replica
was killed in the worst case scenario, FreeFlow can scale
in 50% faster than the standard kill-based system.

FreeFlow does impact the performance of flows during
the experiment; in particular, packet drops are caused by
flow migrations that happen when a replica is merged.
However, performance impact is low: the average packet
drop rate per-flow was 0.9%.

5.4 Migrating Application Flow State

Flow state migration is a fundamental unit of operation
in FreeFlow, when splitting or merging partitioned state
between replicas. Figure 12 shows the impact on TCP
throughput during flow migration compared to a baseline
where no migration is performed. We use the Iperf [37]
benchmark to drive traffic on a single TCP stream be-
tween the client and the server, through the compute-
bound middlebox. We perform two flow migrations: one
at 20th and another at 40th second, respectively. When
sampled at 1 second intervals, we observe a 14 – 31%
drop in throughput during the migration period, lasting
for a maximum of 1 second.5

We further study the overhead of flow migration on a

5Due to Iperf’s limitation on the minimum reporting interval, (1 sec-
ond), we are unable to calculate the exact duration of the performance
impact.
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Figure 14: Packet drop rate during flow migration

single UDP flow using the packet modifier middlebox
application (§4.2). For these experiments, the flows are
10 seconds in duration and the migration is initiated af-
ter three seconds from the start of the flow. The impact
of a single flow migration on end-to-end latency for dif-
ferent flow rates is shown in Figure 13. We observe a
maximum of 1 ms increase in latency during flow migra-
tion. The latency fluctuations last for a very short period
of time (500 ms). Figure 14 shows the overall packet
drop rate for the entire duration of the flow. The overall
packet drop rate is less than 1% including any disrup-
tion caused by the migration. Figure 15 shows the im-
pact on throughput as observed by the client, when the
flow migration occurs. The plotted throughput is based
on a 50 ms moving window. As the load on the network
increases, there is an increase in throughput loss due to
flow migration. However, the drop in throughput occurs
only for a brief period of time and quickly ramps up to
pre-migration levels.

6 Related Work

Split/Merge relies on the ability to identify per-flow state
in middleboxes. The behavior and structure of middle-
boxes has been characterized through the use of mod-
els [12]. In other work, state in middleboxes has been
identified as global, flow-specific, or ephemeral (per-
packet) [30]. On a single machine granularity, MLP [31],
HILTI [26], and multi-threaded Snort [21, 22] all exploit
the fact that flow-related processing rarely needs access
to data for other flows or synchronization with them.
CoMb [23] exploits middlebox structure to consolidate
heterogeneous middlebox applications onto commodity
hardware, but does not address the issue of scaling, par-
allelism, or elasticity.

Clustering techniques have traditionally been used to
scale-out middleboxes. The NIDS Cluster [28] is a clus-
tered version of Bro [19] that is capable of performing
coordinated analysis of traffic, at large scale. By expos-
ing policy layer state and events as serializable state [27],
individual nodes are able to obtain a global view of the
system state. The NIDS Cluster cannot scale dynami-
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Figure 15: Throughput overhead of flow migration
(50 ms window)

cally and statefully, as it lacks the ability to migrate lower
layer (event engine) flow state and their associated net-
work flows across replicas.

FreeFlow leverages OpenFlow in its Split/Merge-aware
SDN. Load balancing has been implemented in an SDN
using OpenFlow with FlowScale [25], and wildcard rules
can accomplish load balancing in the network while re-
ducing load on the controller [32]. The Flowstream ar-
chitecture [8] includes modules—for example, VMs—
that handle flows and can be migrated, relying on Open-
Flow to redirect network traffic appropriately. However,
Flowstream does not characterize external state within an
application. Olteanu and Raiciu [18] similarly attempt to
migrate per-flow state between VM replicas without ap-
plication modifications.

There are many ways in which different types of appli-
cations are dynamically scaled in the cloud [29]. Knauth
and Fetzer [13] describe scaling up general applica-
tions using live VM migration [6] and oversubscription.
Amazon’s Autoscaling [34] automatically creates or de-
stroys VMs when user-defined thresholds are exceeded.
SnowFlock [14] provides sub-second scale-out using a
VM fork abstraction. These approaches do not enable
balancing of existing load between instances, potentially
resulting in load imbalance [33].

7 Conclusion

We have described a new abstraction, Split/Merge,
and a system, FreeFlow, that enables transparent, bal-
anced elasticity for stateful virtual middleboxes. Using
FreeFlow, middleboxes identify partitioned state, which
can be split among replicas or merged together into a sin-
gle replica. At the same time, FreeFlow partitions the
network to ensure packets are routed to the appropriate
replica. As networks become increasingly virtualized,
FreeFlow addresses a need for elasticity in middleboxes,
without introducing the configuration complexity of run-
ning a cluster of independent middleboxes. Further, as
virtual servers become increasingly mobile, utilizing live
VM migration across or even between data centers, the
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ability to migrate flows—or split and merge them be-
tween replicas—will become even more important.
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Abstract
This paper presents PinPoint, a technique for localizing
rogue interfering radios that adhere to standard proto-
cols in the inhospitable ISM band without any cooper-
ation from the interfering radio. PinPoint is designed
to be incrementally deployed on top of existing 802.11
WLAN infrastructure, and used by network administra-
tors to identify and troubleshoot sources of interference
which may be disrupting the network. PinPoint’s key con-
tribution is a novel algorithm that accurately computes
the line of sight angle of arrival (AoA) and cyclic sig-
nal strength indicator (CSSI) of the target interfering sig-
nal at all APs, even when the line of sight (LoS) com-
ponent is buried by stronger multipath components, inter-
ference and noise. PinPoint leverages this algorithm to
design an optimization technique, which can localize in-
terfering radios and simultaneously identify the type of in-
terference. Unlike several localization techniques which
require extensive pre-deployment calibration (e.g. RF-
Fingerprinting), PinPoint requires very little calibration
by the network administrator, and uses a novel algorithm
to self-initialize its bearings, even if the locations of some
AP are initially unknown and are oriented randomly. We
implement PinPoint on WARP software radios and de-
ploy in an indoor testbed spanning an entire floor of our
department. We compare PinPoint with the best known
prior RSSI [8, 11] and MUSIC-AoA based approaches
and show that PinPoint achieves a median localization
error of 0.97 meters, which is around three times lower
compared to the RSSI [8, 11] and MUSIC-AoA based ap-
proaches.

1 Introduction

Interference is the number one cause for poor wireless
performance. All of us have had anecdotal experiences,
where, even though the AP is quite close, we experience
poor performance and more often that not, interference is
to blame. Yet, in spite of these pervasive problems, we of-
ten know very little about where this interference is com-
ing from. We do not know the nature of the interfering ra-
dio (e.g. whether it is another WiFi network, Bluetooth or
Zigbee), neither do we know where it is located. Without
such localization, troubleshooting performance problems
becomes hard.

One might imagine that we could leverage the extensive
prior work [4, 8, 11, 15, 20, 21, 22, 23, 24, 25] that has

tackled indoor localization. However, none of it is appli-
cable to localizing interfering radios. First, most of them
are RSSI based and work typically with WiFi, i.e. they
measure the RSSI of the WiFi signal from multiple van-
tage points, and then leverage propagation models and tri-
angulation techniques to localize. However, when local-
izing interference, the source could often be a non-WiFi
radio. Further, its unlikely we can get a good estimate of
the interfering signals RSSI because there could be mul-
tiple signals present from concurrent transmitting radios.
Another class of RSSI techniques requires extensive RF
fingerprinting of the indoor environment. However these
techniques do not work under interference either since
the RSSI fingerprints will be distorted when there are
multiple concurrent transmissions. Further, these tech-
niques are expensive to deploy since they require con-
stant and recurring site fingerprinting. Another class of
techniques [16, 17, 18, 19, 24] use non-RSSI based tech-
niques such as range-finding and time of arrival, however
all of them require modifications to and cooperation from
the client radio (e.g in the form of special beaconing hard-
ware), which is untenable when we are trying to localize
an interferer not under our control.

In this paper we present PinPoint, a system that com-
putes the nature as well as the location of the interfering
radio(s) with sub-meter accuracy. PinPoint is robust, it
can localize each interfering radio even when multiple in-
terfering radios may be transmitting concurrently. Fur-
thermore, PinPoint’s accuracy is at least two times better
as compared to RSSI based techniques even when no in-
terference is present. Hence even though PinPoint’s de-
sign is motivated by the scenario of localizing interfer-
ence, it provides a general indoor localization technique
that works across a wide variety of scenarios. The system
consists of an indoor AP infrastructure with PinPoint ca-
pability, of which a small subset ( 3−5 per floor of a large
department building) are anchor APs that already know
their absolute indoor location. The PinPoint APs work
together to detect and localize interfering radios. Pin-
Point assumes no co-operation from the interfering radio,
works with legacy client radios, and it does not assume
any knowledge of the protocol, power or the spectrum at
which interfering radios are transmitting. Further, Pin-
Point does not require any expensive calibration or sur-
veying, either at installation or in subsequent operation.
We believe this combination of accuracy, robustness and
generality is a first.

PinPoint’s key contribution is a novel algorithm that ac-
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Figure 1: PinPoint Architecture: PinPoint is deployed incrementally on top of existing WLAN infrastructure. PinPoint first
leverages DOF [2] to identify and separate out multiple sources of interference. PinPoint then uses this information to build a novel
algorithm which detects the LOS AoA, even when it is buried by stronger multipath reflections. Finally, PinPoint leverages the
LOS AoA at individual APs by aggregating all of the measurements at a central server and solving an optimization algorithm which
triangulates the source of interference.

curately computes the LoS AoA and the signal strength
(CSSI) of only the target interfering radio signal at all
APs where the LoS component is at least barely percep-
tible (i.e. its signal strength is at least −10dB relative to
the strongest path). Once the LoS AoA and the corre-
sponding CSSI is estimated at a few of the APs, PinPoint
runs an optimization algorithm based on triangulation to
compute the exact location. Computing the LoS AoA and
CSSI in practice, however, is challenging because of two
inherent environmental factors. First, since we have no
control over the interfering radios, the APs could be re-
ceiving signals that consist of contributions from multi-
ple interfering radios, potentially using different physical
layer protocols. Second, radio signals bounce off walls
and other objects, and create numerous multi-path com-
ponents that arrive at the AP at a variety of angles. Often,
the strongest component of the received signal will be a
reflection and the LoS component might be weak due to
obstructions. Hence, PinPoint’s algorithm has to disen-
tangle the LoS AoA and CSSI in spite of these factors
that make the signal look like it is coming at the AP from
a variety of sources and a variety of angles.

Our key insight is that both multipath and angles of
arrival manifest themselves as relative delays between
copies of the same signal arriving at an AP from the tar-
get radio. For example, since the LoS component will
have the shortest path to the AP, it will arrive before any
reflected component. Similarly, a signal arriving at a par-
ticular AoA at an AP, will arrive at slightly different times
at the different antennas in a multiple antenna AP be-
cause the signal has to travel slightly different distances.
We design novel algorithms based on cyclostationary sig-
nal analysis [2, 1] that can exploit these relative delays.
Specifically we isolate the LoS component by finding the
relative delay between the first time we see a signal and

when its reflection arrives. Next, we find the relative de-
lays at which the isolated LoS component arrives at differ-
ent antennas at the AP, and from that infer the AoA of the
LoS component. The cyclostationary signal analysis also
allows us to accurately infer the signal strength of the tar-
get interfering radio without much contribution from the
noise and signal sources that do not bear the same cyclic
signature as the interfering radio, we will refer to this as
CSSI in the rest of the paper.

PinPoint’s main conceptual contributions are novel al-
gorithms to accurately, efficiently and robustly extract
these relative delays and LoS AoAs and CSSI measure-
ments from noisy interfered signals. As far as we are
aware, no prior localization technique has been able to
isolate and compute accurate LoS estimates in the pres-
ence of severe multipath and interference. We imple-
ment PinPoint using standard WARP software radios [6]
equipped with 4 antennas as the RF hardware. We evalu-
ate PinPoint using testbed experiments in an indoor en-
vironment with typical multipath and interference and
compare it against the state of the art RSSI based ap-
proach [8, 11] and MUSIC-AoA algorithm. We find that:

• PinPoint is significantly more accurate than both the
RSSI and MUSIC-AoA approaches. In our testbed
experiments PinPoint’s median error is 0.97 me-
ters, while the RSSI and MUSIC-AoA approaches
achieve median errors of 3.35 meters and 2.94 me-
ters respectively.

• PinPoint is even more accurate when there is no sec-
ondary interference and a single target radio is be-
ing localized, it achieves a median error of 0.83 me-
ters, while the RSSI and MUSIC-AoA approaches
achieve 2.32 meters and 2.9 meters respectively.
Thus even though PinPoint’s original design goal
was to localize interference, it provides a general and
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accurate technique for all localization problems.
• PinPoint works accurately even if the AP deploy-

ment is sparse. In our testbed, by default we used five
APs to cover an entire floor (this was the number rec-
ommended by our network manager to provide WiFi
coverage for the floor). However, we found that even
if we used only three APs, PinPoint still achieves a
median error of 1.76 meters, thus providing good ac-
curacy even in sparse deployments.

Finally, while PinPoint has significant advantages over
RSSI based approaches, it does require that the APs per-
form extra DSP computation to calculate LoS AoAs and
CSSIs. While this does not require any extra RF hardware
(such as filters, synchronization circuitry etc), it does re-
quire extra compute horsepower at the APs. RSSI based
approaches do not, they can directly use the RSSI estimate
from the AP. We believe this cost is modest, in fact, Cisco
has started adding similar interference detection (but not
localization) capability to its enterprise APs, and given the
unique features PinPoint provides, the extra cost is quite
reasonable.

2 PinPoint: Overview

Fig. 1 shows the overall PinPoint architecture. PinPoint
assumes that it is deployed on multiple antenna APs (4
antennas are sufficient in our current prototype). Further,
we assume that a small number of the APs (3-5) act as an-
chor nodes and know their absolute location. Both these
assumptions are easily satisfied, almost all new AP de-
ployments use MIMO APs with at least four antennas [7],
and finding the location at the time of deployment for a
few APs (e.g. the ones near a window where GPS works)
is relatively straightforward.

To localize interfering radios, PinPoint has to deal with
two major challenges

• Most likely, we are not going to have a priori knowl-
edge about the interfering radios. We cannot assume
we know their transmit power, the frequencies or
even the protocol they are using (e.g. WiFi, Blue-
tooth, Zigbee etc). Further, we cannot ask these ra-
dios to send special beacon packets for localization
when we need them to. Consequently existing RSSI
based techniques are difficult to apply, under inter-
ference even measuring the RSSI of an individual
radio’s signal is hard.

• In indoor environments, where PinPoint is likely to
be employed, a localization system has to deal with
multipath effects and the lack of strong LoS paths
between the radios and the APs. Specifically, an in-
terfering radio may not have a visual LoS path to any
AP (e.g. the AP is outside your office). Further, in
the ISM band radio signals will bounce off walls and

other objects and arrive at the AP from multiple di-
rections.

PinPoint deals with both these challenges and is more
accurate than any existing localization system under these
scenarios. At a high level, PinPoint’s localization algo-
rithm proceeds with the following steps:

1. Identify the source of interference: PinPoint takes
the received signal and first identifies the nature of
the interfering radio (e.g. whether it is WiFi, Blue-
tooth or Zigbee). To do so, PinPoint builds upon
prior work (DOF) in interference identification [2]
to discriminate between the signals of different in-
terference types.

2. Compute the Line of Sight Angle of Arrival (LoS
AoA) For Each Interfering Source: PinPoint next
computes all the AoAs at which the interfering ra-
dio’s signal is arriving at an AP. PinPoint uses a novel
technique to compute the AoA of only the LoS com-
ponent of a radio signal, even when the LoS path is
obstructed. PinPoint does not compute AoA corre-
sponding to the non-LoS paths, which are not useful
for localization, thus reducing computation power
compared to methods like SAGE [5].

3. Compute the Cyclic Signal Strength Indicator
(CSSI) for each interfering Source: PinPoint also
computes the signal strength of only the interfering
sources that have been identified in step 1.

4. Localize the interfering radio: PinPoint then col-
lects the LoS AoA and CSSI measurements from
multiple APs in the deployment, and runs a triangu-
lation based optimization algorithm to compute the
location of the interfering radio. Note that this re-
quires that we know the location of the APs them-
selves in advance, however requiring that the opera-
tor measures the absolute location of all the APs dur-
ing deployment is cumbersome. Instead, PinPoint
leverages the above techniques to localize the APs
themselves at the time of deployment. PinPoint only
requires that we know the location of a few (typi-
cally 3-5 suffice) anchor APs at the time of deploy-
ment. Such computed AP locations are then used in
the localization of interfering radios.

For step 1, PinPoint builds on prior work (DOF) in in-
terference identification based on cyclostationary signal
analysis [2], while this paper designs novel algorithms for
the other three steps. In the next section, we describe how
the first three steps above are performed, followed by a
discussion of the localization algorithms in Sections 4 and
5.
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Figure 2: Obstructed LOS and Multipath: The LOS path,
even when it is obstructed, is the first to impinge on the AP. But
when there are reflected paths which are stronger (NLOS sce-
nario), they can mask the LOS component reflections. PinPoint
applies novel techniques to detect this LOS component, even
when it is >10dB weaker than the reflected paths.

3 Design: Computing LoS AoA and CSSI

PinPoint’s design is based on the insight that multipath ef-
fects and different AoAs manifest themselves in relative
delays at which the signal arrives at the AP. For example,
a multipath environment shown in Fig. 2 results in signal
reflections, and thus the AP receives multiple copies of the
signal at different delays depending on the relative delay
between the different paths. However, the LoS component
(even if it passes through an obstruction) will have the
shortest path to the AP and hence will arrive first, assum-
ing the obstruction does not completely block the signal.
It may be weak however, relative to some unobstructed
multipath reflection. Thus there will be a relative delay
between the LoS component (which might be relatively
quite weak) and the first multipath reflection component.

Similarly, different angles of arrival manifest them-
selves as relative delays at which the same signal arrives
at different antennas. Fig. 3 demonstrates the idea for a
linear multiple antenna array. Since the antenna #1 is a bit
further away than the antenna #2 for the given AoA, the
signal hitting the antenna #2 will take a little bit longer to
hit the antenna #1 and so on. Thus if one knew the relative
delay that a signal component took between impinging on
two consecutive antennas, we can infer the AoA of that
signal component.

Based on the above geometrical insights, we invent a
novel algorithm for identifying the angle of arrival of the
line of sight component of a signal. The algorithm pro-
ceeds in two steps

• First, it isolates the component of the signal that cor-
responds to the LoS path by leveraging the insight
that this will be very likely the first component to
arrive at the AP.

• Next, it repeats the above step at each antenna at
the AP, and then correlates the isolated LoS compo-
nents across all the antennas with each other to infer
their relative delay, and thus the AoA corresponding
to that component. By construction, this will corre-
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Figure 3: Uniform Linear Array: The delays/phase shifts ex-
perienced at each antenna is proportional to the AoA.

spond to the AoA of the LoS component.

Our first goal therefore is to isolate the LoS compo-
nent of the signal by exploiting the insight that it will be
the first to arrive at the AP. However, there are several
challenges to accomplish this step. First, the AP does not
know the interfering signal, as it does not know what data
is encoded, what rate it is sent at, what modulation is used
and so on. Hence relying on such properties to identify the
LoS component is not possible. Second, the LoS compo-
nent may be too weak due to obstructions, or interfered
by other signals.

To tackle this challenge, PinPoint exploits signatures
that result from hidden repeating patterns in the signal ob-
tained by cyclostationary signal analysis. The signatures
are robust as they can be detected even when the signal is
very weak [1], or even when it is interfered with [1]. As
discussed before, PinPoint builds on DOF [2], an interfer-
ence identification system based on cyclostationary signal
analysis.

PinPoint then designs novel algorithms that leverage
these cyclostationary signatures to determine the LoS AoA
and CSSI, even in severely obstructed environments dom-
inated by multipath components or under heavy interfer-
ence. PinPoint exploits the knowledge of the signal types
to correlate known signatures with the received signals.
Note that this does not imply that we know the interfering
signal’s contents, only that we know how the underlying
structure of the signal has patterns independent of the in-
formation that the signal is carrying.

In the following section, we’ll describe the above pro-
cess in detail. We will begin by providing a quick primer
on how the hidden repeating patterns within wireless sig-
nals can be leveraged to form unique signatures for every
signal type [2]. We will then explore how these signatures
can be exploited to determine the LOS AoA and CSSI.

3.1 Multipath Signal Model
We start with a more formal description of how both mul-
tipath and different angles of arrival manifest themselves
as relative delays between copies of the same signal arriv-
ing at the AP. This description is well known, but serves
to set up the context in which PinPoint operates.
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The scattering caused by the indoor environment
causes each signal to traverse multiple paths to our APs.
The multipath arrivals are shifted and scaled copies of the
same signal, occurring at varying angles and delays. We
can explicitly model the total signal impinging on a single
antenna at our AP as

y1(t) =
L

∑
k=1

sk(t)+n1(t) (1)

where L is the number of multipath components, n1(t)
represents additive noise at the antenna, and

sk(t) = αks(t −dk)e2πi fc(t−dk) (2)

represents each multipath component, where s(t) is the
transmitted signal, αk ∈ R is the attenuation for each ar-
riving path, dk is the time delay of each path, and fc is the
carrier frequency used in the transmission.

Assuming each AP has multiple antenna, the delays in
propagation paths between each of the antennas enables
us to measure the varying angles of each multipath com-
ponent. The delay is a function of the antenna arrange-
ment and for exposition simplicity, we consider a Uniform
Linear Array (ULA), which is an array that has all of its
antennas on a line with equal half-wavelength ( λ

2 ) spac-
ing between the antennas. In the ULA configuration, the
signal arriving at the ith antenna has a difference in prop-
agation path that results in a time delay of (i− 1)λ sinθ

2c ,
where c is the speed of propagation through the medium.
The output of the antenna array in response to the L mul-
tipath signals can be expressed as,

y1(t) = ∑L
k=1 sk(t)+n1(t)

y2(t) = ∑L
k=1 sk(t)e j2π fc

λ sinθk
2c +n2(t)

...

yM(t) = ∑L
k=1 sk(t)e j2π fc(M−1) λ sinθk

2c +nM(t)

This can be written is vector form as,

y(t) =
L

∑
k=1

sk(t)a(θk)+n(t), (3)

where y(t) ∈ CM is the received vector, n(t) ∈ CM is the
noise vector, and a(θ) is the steering vector of the array
given by

a(θ) =
[
e0 e j2π fc

λ sinθk
2c . . . e j2π fc(M−1) λ sinθk

2c

]T
.

3.2 Leveraging Knowledge of Signal Type
PinPoint builds on DOF [2], an interference identifica-
tion system that leverages the hidden and repeating pat-
terns that are unique and necessary for operation and are

Figure 4: Binning in Time/AoA: The CCCF embeds both the
delay and AoA of every arriving propagation path - as shown
above the residual function (eq. 7) peaks at the angles and rela-
tive delays of each path. By searching for the first peak with the
minimum delay, we can detect the LOS component’s AoA.

present in all wireless protocols. DOF builds on prior
work in cyclostationary signal analysis [1] and leverages
the following idea from that work: if a signal has a re-
peating pattern, then if we correlate the received signal
against itself delayed by a fixed amount, the correlation
will peak when the delay is equal to the period at which
the pattern repeats. Specifically, let’s denote the raw sig-
nal samples we are receiving by x[n]. Consider the fol-
lowing function

Rα
x (τ) =

∞

∑
n=−∞

x(n)x∗(n− τ)e− j2παn (4)

For an appropriate value of τ corresponding to the time
period between the repeating patterns, the above value
will be maximized, since the repeating patterns in x[n] will
be aligned. Further, these peak values occur only at peri-
odic intervals in n. Hence the second exponential term
e− j2παn is in effect computing the frequency α at which
this hidden pattern repeats. We define such a frequency as
a pattern frequency, and (4) is known as the Cyclic Auto-
correlation Function (CAF) [1] at a particular pattern fre-
quency α and delay τ . The CAF will exhibit a high value
only for delays and pattern frequencies that correspond to
repeating patterns in the signal.

Because each wireless protocol utilizes a different set
of parameters (encoding, modulation, etc.), each proto-
col exhibits a unique set of repeating patterns and there-
fore have unique signature CAFs. Hence, DOF uses ma-
chine learning heuristics to uniquely identify different sig-
nal types. We omit the details of how DOF accomplishes
this for brevity and refer the reader to [2] for a more de-
tailed description. For our purposes it suffices to know
that PinPoint uses DOF to identify the signal type.

5
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Figure 5: Data clustering/mining for LOS AoA when the received power differences between the LOS path and the strongest
multipath is (A) -10dB (B) 0dB (C) 10dB: The direct LOS AoA is arriving at 35◦, while the strongest multipath component is
arriving at −10◦. You can see that even when the direct LOS component is more than 10dB weaker than the strongest multipath
component in (A), PinPoint is still able to detect the LOS AoA. When the LOS AoA is stronger, it is of course easier to detect and
PinPoint does well in these scenarios as expected.

3.3 Line of Sight AoA Identification
The challenge is to identify the LOS component (s1(t))
and its corresponding AoA (θ1) even when it is signifi-
cantly weaker than the multipath components. To do this,
PinPoint leverages what is already known - specifically
the type of interfering source and thus the pattern frequen-
cies at which the signatures repeat, enabling us to create
a test signature. PinPoint has a set of test signatures cor-
responding to the expected set of interfering radios (e.g.
one signature for 802.11, another for ZigBee, etc.) which
exhibit features at the corresponding pattern frequencies
for each protocol. Note that these signatures do not as-
sume that the data in the target interfering signal is known,
they are merely creating a dummy signal which has the
same repeating patterns as the identified signal type. Fur-
ther, there is a different test signature for each pattern fre-
quency. In other words since WiFi exhibits hidden re-
peating patterns at several pattern frequencies, there is a
separate test signature for each pattern frequency in WiFi.

Once the type has been identified by DOF, it is cross
correlated against the corresponding signature for a par-
ticular pattern frequency. Specifically, we can calculate
the cross correlation between our target signal yi(t) and
our test signature sT (t) using the following function [10]:

Rα
yisT

(τ) =
∞

∑
t=−∞

yi(t)s∗T (t − τ)e−i2παt (5)

Unlike the CAF, the Cyclic Cross Correlation Func-
tion (CCCF) peaks at values of τ corresponding to the
relative delays between the multipath components. The
reason is because the multipath signal is a linear combi-
nation of copies of the same signal shifted in time due
to reflections. When the test signature is aligned with
one of the multipath components, in effect the hidden re-
peating patterns in the signature and the received signal
align and the CCCF peaks. Thus the first peak in the

CCCF will be for the signal component that is received
first, i.e. likely the LoS component, the next peak is for
the first reflected component and so on. The relative dis-
tance between the peaks thus corresponds to the relative
delays between multipath components. The benefit of us-
ing the CCCF is that it provides robust detectable peaks
even when the received signal is very weak or interfered
with, because the hidden repeating patterns allow us to
integrate and eliminate the uncorrelated noise and inter-
ference to produce a robust peak.

When we apply the CCCF to the all signals of the an-
tenna array, we obtain a function which is dependent on
the pattern characteristics (τ), the delay between the mul-
tipath components (dk), and the angles at which each path
impinges (θk)

Rα
yisT

(τ) =
L

∑
k=1

βkRα
sT sT

(τ −dk)a(θk), (6)

where βk = αke−πiαdk e−2πi fcdk .

We leverage this fact to form a residual function which
is a function of both the delay and the angle of arrival:

resα
k (τ,θ) =

M

∑
m=1

∣∣∣∣∣
Rα

ymsT
(τ)

Rα
yksT

(τ)
− am(θ)

ak(θ)

∣∣∣∣∣
2

, k = {1, ...,M}.
(7)

Observe that in (6), the delays (τ) at which the func-
tion typically peaks at are shifted by the physical propaga-
tion delay experienced by each multipath component dk.
Thus when τ = dk, the first term in the residual function,
Rα

ymsT
(τ)

Rα
yksT

(τ) , will become the ratio of the steering vectors, as

βk and Rα
sT sT

(τ) are canceled because the patterns in the
signal are identical to the ones in the signature. The sec-
ond term then cancels with the first when the value of θ
matches the value of each multipath’s AoA.

6
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We can leverage this insight to form an optimization
problem that computes the LoS AoA. Specifically, if we
solve

θ̂1 = argmax
{(τ,θ):τmin≤τ≤τmax,θmin≤θ≤θmax}

1

∑α ∑M
k=1 resα

k (τ,θ)
(8)

where [τmin,τmax] and [θmin,θmax] are the range of interest
for the unknown variables τ and θ respectively. The out-
put of the above optimization is an estimate of the AoA of
the LoS component, with the relative delay between the
LoS component and the first multipath component. Fig. 4
shows the result of this optimization.

3.3.1 Mining Multiple Measurements Across Time

The above optimization provides a noisy estimate of LoS
AoA and its relative delay. In order to minimize the uncer-
tainty, PinPoint performs the optimization (8) separately
over multiple packets received from the same source. By
running PinPoint over time for different sequences of
data, we can build sets of relative delay and AOA pairs.
We found empirically that these sets can be clustered to
find an accurate estimate of the LoS AoA, if it exists and
is perceptible (i.e. if it has a signal strength of at least -10
dB). However, if the LoS component is extremely weak
(less than -10dB signal strength) perhaps because of a
strong obstruction, we found that the computed relative
delays and AoAs do not cluster and are all over the place.
PinPoint leverages this insight to eliminate signals where
a perceptible LoS component does not exist.

Algorithmically, we use a clustering technique based
on Gaussian mixture models. Results of this clustering
for various scenarios are shown in Fig. 5. After clus-
tering, PinPoint checks if there are multiple clusters, and
then calculates the mean and standard deviation for each
cluster. Prioritizing the minimization of false positives,
we discarded clusters which did not possess a minimum
number of data points and clusters with AoA standard de-
viation above a certain threshold.These steps are not nec-
essary for the operation of PinPoint but helps to fine-tune
the AoA estimates. Of the remaining clusters, the mean
AoA corresponding to the cluster which has the smallest
relative delay is declared to be θ1, the AoA of the direct
LOS component.

3.4 Computing the Cyclic Signal Strength
Indicator (CSSI)

PinPoint leverages cyclostationary analysis to compute
the signal strength of only the target interfering radios.
This is different from traditional RSSI, those techniques
will not work in our context because in the presence of
interference those techniques cannot measure the RSSI of

the different constituent signals making up the interfer-
ence. PinPoint on the other hand can leverage its ability
to isolate the target interfering signal using cyclostation-
ary signal analysis (the CAF and the CCCF functions),
and then use the correlation values themselves as a proxy
for the relative strength of that signal arriving at differ-
ent APs. Note that the stronger the target signal , the
higher the correlation value. Hence instead of trying to
measure the agggregate signal strength, we can simply
use the correlation values at different APs to represent the
strength contributed by only the target interfering radio.
We call this correlation value cyclic signal strength indi-
cator (CSSI).

Plugging the relative delay of the LOS component τ
into eq. (5) and taking the magnitude of Rα

yisT
(τ) gives us

a value that is a proxy of the signal strength of the target
radio, which PinPoint can use to further constrain its lo-
calization search as we’ll show in the next section. Note
that for localization we do not need to know the actual
RSSI as long as the value we use as a proxy exhibits the
same attenuation pattern as RSSI. PinPoint’s localization
only needs to compare the relative RSSI across multiple
APs, and for that the proxy computed above suffices.

4 Initializing PinPoint

PinPoint collects the LoS AoA and RSSI measurements
from multiple APs in the enterprise deployment, and runs
a triangulation based optimization algorithm to compute
the location of the interfering radio.

The challenge is that the above process implicitly as-
sumes that we know the location of the APs themselves.
However, enterprise WiFi networks often consist of tens
to potentially several hundreds of APs. Providing the pre-
cise location of each AP is cumbersome since GPS signals
are unreliable indoors and orientation is similarly tricky
since most APs are not equipped with compasses. At best,
the position and orientation information that is gathered
for the central controller will certainly not be optimized
and most likely will be ill-defined. Given that each AP
could potentially have a varying frame of reference, and
an imprecise knowledge of its own location - the ability
to measure LOS AoA components is useless in localizing
an interfering radio.

To overcome the calibration problems associated with
a large scale deployment of APs, PinPoint leverages the
LOS AoA measurement capability to first localize and ori-
ent the APs themselves. By doing so, PinPoint minimizes
the burden placed on the network administrator as they
no longer have to ensure that all of the APs are perfectly
positioned and oriented. We do assume however that we
know the location and orientation of a small number (typ-
ically 3-5 per floor) of APs (referred to as anchor APs),
either via GPS or manual calibration by the network ad-

7
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ministrator. Note that this requirement is not unusual and
is relatively easy to satisfy, for example, it is possible to
localize a few APs that are near a window with GPS .
Further, this is a one-time requirement at the time of in-
stallation, and does not require repeated surveying unlike
some prior techniques [12, 13, 14].

To demonstrate how a typical enterprise network would
be calibrated, we consider a deployment which consists of
n APs. We assume that l of the APs (the anchor APs) al-
ready know their locations and orientations. We define
N (i) as the set of neighboring APs within the detection
range of the ith AP. Each AP is equipped with ULA and
has ability to measure AoA αi j relative to its own axis
from neighboring APs in N (i). The orientation hi of
each AP is the angle made by its axis to the x-axis. If
the estimate of the orientation and location [hi xi yi] of
the ith AP and the location of the jth AP [x j y j], where
j ∈ N (i), are known, estimate of the AoA ᾱi j, can be
computed as ᾱi j = Ψ([hi (x j −xi) (y j −yi)]

T ). Where the
function Ψ : R3 → R computes angle formed by the vec-
tor [x y]T with the axis of an ULA located at the origin
that has orientation h.

We form penalty Φ(αi j − ᾱi j) for each AP pairs i and
j that are in communication range of each other. Here
Φ : R → R is a penalty function of the form Φ(u) =
|u|p,where p ≥ 1 [3, §6.1.2], for the residue between the
measured angle αi j and the estimated angle ᾱi j .

The ith AP can also compute cyclic RSSI pi j for signal
arriving from the neighboring jth AP, where j ∈ N (i).
Given distance di j between the ith and the jth AP, the
cyclic RSSI can be computed using standard path loss
model as p̄i j = βi − 10γi logdi j. Where βi is a constant
that is dependent on the environment of the ith AP and
γi is the path loss exponent. Since exact distance di j is
not known a priori, we form penalty Φ(pi j − p̄i j) for each
AP pairs i and j that are in communication range of each
other.

To find the location of APs, we solve the following op-
timization problem,

minimize ∑
i
(∑

j
Φ(αi j − ᾱi j)+λ ∑

j
Φ(pi j − p̄i j))

subject to [hn+k xn+k yn+k] = [ck ak bk],k = {1, . . . , l}
Ψ([hi (x j − xi) (y j − yi)]

T ) = ᾱi j,
p̄i j = βi −10γi logdi j,
i = {1, . . . ,n+ l}, j ∈ N (i)

(9)
where the variables are x,y,h,β ,γ with dimension Rn+l .
The problem data a,b and c with dimension Rl are the
known x-location, y-location, and the orientation of the
anchor APs. And the data αi j and pi j are the AoA
and cyclic RSSI measurements by each APs. The above
optimization problem is non-convex therefore we solve
it approximately using Sequential Convex Programming
(SCP) [26]. At each iteration of SCP we will fit the non-

convex function Ψ and p̄i j to some convex function within
a trust region and then solve the resulting convex opti-
mization problem to obtain a locally optimal solution. At
the end of each iteration step, trust region will be updated
and the convergence of the algorithm will be evaluated.

5 Interference Localization

Once the APs have been calibrated, the respective lo-
cations and orientations of every AP in the network is
known. Localizing an interfering radio is now relatively
straightforward. PinPoint leverages its knowledge of the
signal type, direct line of sight AoA and cyclc RSSI to
localize sources of interference.

In order to localize an interfering radio, PinPoint re-
lies on the local measurements from APs near the source
of interference. These APs measure the LOS AoA and
cyclic RSSI and send the measurement results back to a
central server. The server then aggregates the data, av-
erages it over time to weed out noisy measurements, and
triangulates the source of interference with the following
optimization problem to find the location of the target ra-
dio.

minimize ∑
j

Φ(α jm − ᾱ jm)+λ ∑
j

Φ(p jm − p̄ jm

subject to [h j x j y j] = [c j a j b j],
Ψ([h j (xm − x j) (ym − y j)]

T ) = ᾱ jm,
p̄ jm = β j −10γ j logd jm, j ∈ N (m)

(10)
where the interference radio whose location [xm ym]

T has
to be estimated is seen by Nm = |N (m)| APs. x,y with
dimension RNm+1 and h ∈ RNm are the optimization vari-
ables. The problem data c,a,b with dimension RNm are
the estimated orientations and locations of the APs that
detect the interference radio. Although this problem for-
mulation is similar to the problem (9), the size of opti-
mization variable in this case is much smaller than the size
of the optimization variable in problem (9). As a result,
interfering radio sources can be localized within seconds,
enabling network operators to quickly diagnose and trou-
bleshoot sources of interference within their networks.

6 Experimental Evaluation

In this section, we evaluate the localization accuracy of
PinPoint in an indoor testbed and determine how different
factors such as calibration offsets, signal SNRs, and over-
lapping sources of interference effect performance. Be-
low we first summarize our findings:

• PinPoint is robust and accurate, it’s median error
is 0.97m, around three times lower than the 3.35m
and 2.94m median error for RSSI and MUSIC-AoA

8
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Figure 6: Testbed Setup for PinPoint Experiments: 4 of the
APs were situated in locations where GPS signals were obtain-
able, and 2 among them are randomly selected as anchor nodes
were selected for each experiment. Red circles indicate potential
locations where interfering WiFi, Bluetooth and Zigbee radios
are placed.

based approaches in our testbed across all scenarios
(with and without interference). Further, PinPoint
is significantly better in the tail, its 80th percentile
error is approximately 1.75m whereas for the RSSI
and MUSIC-AoA based approaches it can be as high
as 7m. Note that PinPoint can localize even though
it has no information about the target radio, such as
protocol, transmit power, spectrum used, data for-
mats etc. Several prior RSSI based approaches re-
quire such a priori information to work accurately.

• PinPoint is even more accurate when there is no
interference (median error of 0.83m), whereas the
RSSI and MUSIC-AoA based approaches achieve
2.32m and 3.06 respectively. Thus even though Pin-
Point is designed to localize interference, it provides
a general and accurate localization technique for all
scenarios. In scenarios where there is interference,
PinPoint’s median error is 1.05m, while the RSSI ap-
proach worsens to a median error of more than 4m
because it is unable to accurately measure RSSI un-
der interference.

• PinPoint achieves its high accuracy assuming typical
WiFi AP densities (we used the same deployment lo-
cations as the ones used by our WiFi network man-
ager). Further, we found that even if AP density is
reduced, i.e. instead of the 5 APs used to cover the
full floor of 15000 sq. ft. we use only 3 APs, Pin-
Point can still localize accurately achieving a median
error of 1.76m.

Compared Approaches: We compare PinPoint against
the state of the art RSSI based approach [8, 11, 14]. Fur-
ther, to make a fair comparison, we allow the RSSI based
approach to know the interferer transmit power, even
though in practice this may be hard to achieve since the in-
terfering radio could be using a different modulation for-
mat (e.g. Bluetooth, Zigbee) and whatever transmit power
it is capable of without the AP knowing it. Note that we
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Figure 7: Overall CDF of Localization Error for PinPoint,
RSSI, and MUSIC-AoA: PinPoint achieves a median error of
0.97 meters while both the RSSI and MUSIC-AoA only manage
median errors of 3+ meters, and are worse in the 90th percentile
- with errors of 10+ meters.

do not compare against any approach that requires modi-
fying the clients since one of our design goals is to make
our technique work with legacy clients. Neither do we
compare against any approach that requires extensive RF
fingerprinting of the environment since our design goal is
to allow quick and one-time deployment of the system.

Second, we also do not compare directly against a
recently proposed approach that uses AoA measure-
ments [15] . This technique uses a modified version of
the MUSIC algorithm [9] to compute all the AoAs of sig-
nals at an AP, and then runs a heuristic to compute the
location of the radio after collecting measurements from
multiple APs. However, the published prior work assumes
APs equipped with 8 antennas. In this evaluation however
we equip APs only with 4 antennas because, in our opin-
ion we do not see WiFi APs with more than 4 antennas
being widely available and deployed, most new deploy-
ments over the next few years are expected to be with
4 antenna APs. This is due to two reasons, first MIMO
throughput benefits are marginal beyond 4 antennas [7]
and second the space occupied by an antenna is a ma-
jor concern in many large scale deployments (e.g. an 8
antenna AP would span at least 3-4 feet assuming half
wavelength spacing in the ISM band).
Setup: We evaluate PinPoint in the testbed environment
shown in Fig. 6 which covers one floor of our depart-
ment building and spans nearly 15000 sq. ft. We checked
with our network manager the number of APs he would
deploy for such a setting, and used the number he sug-
gested (5 APs) as our baseline. Five APs to cover one
floor is a common number and thus represents typical AP
density. Of these 3 of the APs are manually localized
and calibrated, while the rest of the APs are calibrated
using PinPoint’s self initialization algorithm. We also
hand measure every location and orientation to determine
the ground truth, however these are not used to perform

9
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Figure 8: Comparison of Localization Results without In-
terference: PinPoint’s ability to identify the LOS component’s
AoA helps mitigate the impact of multipath, improving perfor-
mance relative to MUSIC-AoA and RSSI even when additional
interference does not exist.

the actual localization unless mentioned otherwise. Three
types of radio interferers (802.11g, Bluetooth, 802.15.4
ZigBee) are placed at random static locations within the
testbed and transmit with bursty traffic patterns which are
representative of typical operation. Traces are gathered at
each AP and the aggregate data is processed for localiza-
tion.

6.1 Interference Localization Results

Overall Localization Performance: We start by exam-
ining the overall localization error that PinPoint achieves.
For all experiments in this section, in each trial we at-
tempt to localize one of the three radios (802.11g, Zigbee
and Bluetooth) that are randomly placed in the testbed.
Note that all of them could be transmitting concurrently,
and other WiFi interference from the department network
may also be present. Fig. 7 plots the CDF of errors for
all of the interference localization trials. The curves show
the performance for the three compared techniques - Pin-
Point, RSSI, and MUSIC-AoA.

PinPoint can localize an interfering radio to within a
median error of 0.97 meters, the RSSI and MUSIC-AoA
approaches can only manage median errors of 3.35 and
2.94 meters respectively, i.e. at least three times worse
than PinPoint. There are two reasons for PinPoint’s ac-
curacy. First, PinPoint is inherently more accurate since
it can disentangle and infer the LoS component’s AoA
even in severe multipath environments. Second, it is able
to disentangle the target radio’s signal and infer its CSSI
even when there are other concurrent interfering transmis-
sions. Neither the RSSI or MUSIC-AoA based approach
possess these features.

To show that PinPoint’s benefits are not primarily de-
rived from its ability to disentangle the target radio’s sig-
nal from interference, we show the performance of all
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Figure 9: Comparison of Localization Results with Interfer-
ence:.PinPoint’s ability to utilize the cyclic RSSI enables it to
discriminate between the signal strengths of different interfer-
ing sources, allowing it to maintain its performance even when
there are multiple sources of interference.

three approaches when only the target radio is transmit-
ting and no other concurrent transmissions are present.
Fig. 8 shows the results. PinPoint has the best accuracy
of 0.83m, while the RSSI and MUSIC-AoA approaches
exhibit median errors of 2.32 and 2.98 meters respec-
tively. The reason is PinPoint’s ability to identify the LoS
component’s AoA, which the other two techniques do not
possess and consequently their performance suffers in the
harsh multipath environments that we find in indoor de-
ployments. We therefore believe that even though Pin-
Point’s initial design motivation was to localize interfer-
ence for network management, it is a general localization
technique that can be applied in a wide variety of scenar-
ios to different applications.

In Fig. 9 we plot the performance of the three tech-
niques with one additional interference source transmit-
ting concurrently with the target source. PinPoint main-
tains sub-meter accuracy, while the RSSI approach per-
forms poorly (median error of 4 meters and often tail er-
rors as high as 15 meters). The MUSIC-AoA approach
is less sensitive, its median error stays near 2.9 meters.
The RSSI approach suffers because it cannot accurately
measure RSSI of the target radio’s signal alone under in-
terference. The MUSIC-AoA approach uses the MUSIC
algorithm which is robust to interference when it comes
to computing the AoAs, and therefore maintains its per-
formance.
Effect of AP Density: Intuitively, AP density affects lo-
calization accuracy since more measurements help miti-
gate the effects of uncertainty in the LoS AoA and CSSI
measurements from individual APs. Fig. 10 plots the im-
pact of AP density which we vary by reducing the number
of APs in the testbed. As expected the median error in-
creases as fewer APs are deployed to 1.76m when 3 APs
are used to cover the entire floor. We note that this accu-
racy is still better than the RSSI and AoA approaches with
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Figure 10: Impact of AP Density on PinPoint Localization:
PinPoint performs well even in sparse AP deployments, achiev-
ing a median error of 1.76m even when only 3 APs are used to
cover the entire floor.

5 APs. At 2 APs however, the error is significantly worse
(around 6m). As a rule of thumb, and this agrees with in-
tuition, we found that target radios need to be visible to at
least three APs to achieve good accuracy.
Impact of AP self-calibration: In Fig. 11 we measure
the impact of PinPoint’s AP self calibration technique on
overall localization error. Specifically, we allow each AP
to know its ground truth location and orientation and then
compute the overall localization error for interfering ra-
dios. As we can see, there is virtually no difference in
the median error, the difference is less than 5 centime-
ters. PinPoint’s AP self-calibration performs well enough
to provide very good performance that is close to the case
when all APs are manually calibrated.

6.2 Performance of LOS Identification

Next, we examine how well PinPoint can disentangle the
LoS component’s AoA from multipath and interference.
As we discussed in the design, this process has two steps:
first the relative delay and angle for several packets are
determined. Next, PinPoint determines whether or not a
LOS component actually exists and determines how re-
liable the estimate actually is by using clustering tech-
niques. If the LOS component is too weak to reliably
detect, based on how large the standard deviation of the
LoS cluster is, PinPoint discards the measurement so that
it does not skew the subsequent localization if it is not a
direct LOS path. If a sufficiently strong path exists, then it
estimates the AoA and the CSSI measurement. We eval-
uate the accuracy of the AoA measurement alone, since
there is no way of knowing the ground truth CSSI mea-
surement reliably because it varies with time for every
measurement.
Method: In this experiment, we statically place a sin-
gle source of WiFi 802.11 interference within an indoor
office environment. The interfering source transmits con-
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Figure 11: Comparison of Localization with Different Cal-
ibration Procedures: PinPoint’s localization performance with
self-calibrated AP locations and orientations performs just as
well as PinPoint’s localization performance when it is optimally
calibrated by hand.

tinuously at a constant average power. Measurements are
then performed at various locations within the office, with
the locations selected in such a way that different types of
propagation paths from the source to the APs are tested.

In order to determine the ground truth for the LOS
propagation path, we equip each source and receiver with
compasses and annotate the placement of each with re-
spect to landmarks in the office (wall corners, poles, etc.).
We then calculate the AoA that the direct LOS path should
traverse from the interference source to the receiver and
use it as the benchmark for our algorithm.
Compared Approach: We compare PinPoint’s LOS
AoA identification against the standard algorithm used to
measure AoAs, the MUSIC algorithm [9]. Since MU-
SIC computes all AoAs and cannot explicitly compute the
LoS path’s AoA, the heuristic we use is that the compo-
nent with the strongest signal is the LoS AoA for MUSIC.
Clearly this will not work in many scenarios, but this is
the best heuristic we could come up with for comparison
since it will be accurate when a strong LoS path exists.
Analysis of AoA Estimation: First, we show in Fig. 12
the CDF of the estimation error across all experimental
runs. We can see that PinPoint’s LOS detection achieves
an accuracy of ±20◦ more than 65% of the time, sig-
nificantly outperforming MUSIC. Notice that while Pin-
Point’s performance degrades gracefully, MUSIC’s per-
formance drops sharply at a certain point (e.g. at the 70%
mark on the CDF).
AoA Estimation in LOS vs. NLOS scenarios: In or-
der to dive a little deeper, Fig. 13 plots the data from
the previous graph in two separate groups differentiated
by whether a dominant LOS path is present (solid lines)
or not (dotted lines). When there is an obvious physical
LOS component with no obstruction between the inter-
fering source and the receiver, we can see that both al-
gorithms perform quite similarly. But even in these sce-
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Figure 12: Overall CDF of AoA error for PinPoint and MU-
SIC: PinPoint’s ability to detect the LoS AoA is demonstrated
as its median AoA error is more than 25 degrees better than MU-
SIC.

narios where the LOS component is the dominant path,
MUSIC sometimes locks onto the weaker multipath com-
ponent, causing sharp drop offs in performance which are
seen at the tails of Fig. 13

The dotted lines in Fig. 13 show the performance of
PinPoint and MUSIC when the LOS is physically ob-
structed. While the performance of PinPoint is only
slightly worse, MUSIC is unable to correctly identify the
LOS path’s AoA because the secondary multipath reflec-
tions become stronger than the direct LOS path. Their
performance degrades rapidly and are unable to reliably
detect the LOS AoA.

7 Related Work

RSSI modeling based systems like EZ [8] assume that
they get GPS locations from the users while they are walk-
ing. This training data consisting of RSSI measurements
is collected at various points with a hand held mobile de-
vice across different points in the floor plan and is used
to create a RSS model of the entire network. EZ achieves
a median error of 2m. Another approach WiFiNet [11]
also uses the RSSI for localizing the source of interfer-
ence. This approach uses the off the shelf hardware to
build the localization system and achieve errors of <4m.
Both of these are the most recent and the best perform-
ing approaches based on RSSI modeling, other prior such
approaches include [20] [21] [22] [23]. While these
RSSI based methods have the attractive property of being
simple and deployable on current WiFi APs, they cannot
localize interference and neither are they accurate due to
the inherent inaccuracy of standard RSSI as a predictor of
physical distance in a rich indoor multipath environment
with interference.

Other RSSI based localization systems like HORUS
[12] , RADAR [13], and PINLOC [14] require signifi-
cant pre-deployment effort in RF-fingerprinting. HORUS
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Figure 13: AoA Error breakdown for LOS and NLOS Sce-
narios: PinPoint is still able to identify the LOS component
reliably when it is > 10dB weaker than the strongest multipath
reflection, while MUSIC’s performance suffers in NLOS scenar-
ios from locking onto stronger multipath components.

achieves median error of 0.7m, RADAR achieves median
error of 1.3 m and PINLOC achieves localization gran-
ularity in 1mx1m box with 90% accuracy. All such ap-
proaches rely on the precomputed fingerprint which can
become obsolete if location of some of the APs changes
or if the environment changes. Fingerprinting is time con-
suming and expensive and has to be done periodically.
Pinpoint requires no fingerprinting, and lightweight cal-
ibration of a few anchor APs at deployment. Since Pin-
point can self-calibrate the remaining APs, any changes
in AP locations or the environment can be easily handled.
Thus PinPoint is easy to deploy and maintain.

A recently proposed AoA based localization algo-
rithm [15] achieves high accuracy of 0.36 m using ULA
with 8 antennas. The algorithm weights the received AoA
(calculated with a variant of MUSIC) by the power of the
received signal. In [15], they cannot distinguish the LOS
or NLOS component of the received signal, and therefore
might suffer in low SNR NLOS scenarios as we saw in
Sec. 6. Further, these techniques require 8 antennas at
each AP, which is unrealistic for standard WiFi deploy-
ments. Other examples of the AoA based techniques are
[24] [25] but these share the same shortcomings as above
and generally do not provide good accuracy.

8 Conclusion

PinPoint’s design highlights how one can solve interfer-
ence localization tasks by leveraging the rich information
hidden in RF signals. This paper designs novel signal
processing algorithms and applies them to solve practi-
cal systems problems. We believe the RF signals flying
around us can be mined for many more practical appli-
cations, including mapping, context detection and so on,
and our future work aims to explore novel signal process-
ing algorithms to build such applications.
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Abstract
As manufacturers continue to improve the energy effi-

ciency of battery-powered wireless devices, WiFi has be-

come one of—if not the—most significant power draws.

Hence, modern devices fastidiously manage their radios,

shifting into low-power listening or sleep states when-

ever possible. The fundamental limitation with this ap-

proach, however, is that the radio is incapable of trans-

mitting or receiving unless it is fully powered. Unfor-

tunately, applications found on today’s wireless devices

often require frequent access to the channel.

We observe, however, that many of these same ap-

plications have relatively low bandwidth requirements.

Leveraging the inherent sparsity in Direct Sequence

Spread Spectrum (DSSS) modulation, we propose a

transceiver design based on compressive sensing that al-

lows WiFi devices to operate their radios at lower clock

rates when receiving and transmitting at low bit rates,

thus consuming less power. We have implemented our

802.11b-based design in a software radio platform, and

show that it seamlessly interacts with existing WiFi de-

ployments. Our prototype remains fully functional when

the clock rate is reduced by a factor of five, potentially

reducing power consumption by over 30%.

1 Introduction

Smartphones and other battery-powered wireless devices

are becoming increasingly popular platforms for all man-

ner of network applications. As a result, the energy usage

of the radios on these devices is a source of consider-

able concern. Unsurprisingly, a large number of tech-

niques have been proposed to help manage the power

consumption of both cellular and WiFi devices. Focus-

ing particularly on the WiFi domain, the basic approach

has been to implement extremely low-power listening or

sleep modes, and transition the devices into operational

mode as little as possible [12, 18, 27]. The fundamental

limitation with such approaches, however, is that the ra-

dio is incapable of transmitting or receiving unless it is

fully powered. Unfortunately, recent studies have shown

that a wide variety of popular applications make frequent

and persistent use of the network [21], frustrating at-

tempts to keep the WiFi chipset in a power-efficient state.

Transitioning in and out of sleep mode adds significant

overhead, both in terms of time and energy. In particular,

in addition to the costs associated with powering up the

transceiver, once awake the WiFi chipset still needs to

participate in the CSMA channel access scheme which

frequently results in the device spending significant time

in idle listening mode waiting for its turn to access the

channel [18, 39]. Moreover, once a device is done trans-

mitting or receiving, it will remain in a tail state for some

period of time in anticipation of subsequent transmis-

sions [18, 21]. To amortize these costs, the 802.11 PSM

specification has nodes wake up at the granularity of the

100-ms AP beacon interval when they do not have pack-

ets to transmit. (Indeed, the popular Nexus One wakes

up only every 300 ms [18].) Hence, while useful for bulk

data transfers [12] or situations where traffic pattens can

be predicted precisely [24], PSM-style power saving ap-

proaches are often ineffective for applications that need

to send or receive data frequently [39].

In this paper, we consider an alternative to the tra-

ditional on/off model. Instead, we explore a technique

that reduces the power consumption of the WiFi chipset

across all of its operating modes: i.e., not just sleep

and listen, but send and receive as well. Our approach

leverages the excess channel capacity provided by many

WiFi networks when compared to the bandwidth de-

mands of most smartphone applications. Traditionally,

when faced with low-demand clients, system designers

have used excess channel capacity to improve reception

rates by introducing redundant coding and/or reducing

transmission power. For example, 802.11n specifies a

wide variety of link rates, ranging from 1 to 150 Mbps

and beyond. The lower link rates use more robust encod-

ing and signaling schemes that can be decoded at lower

signal-to-noise ratios (SNRs). These schemes translate

into longer range or the ability to decrease transmission

power which, along with the potential for power savings

at the sender, can increase spatial reuse. We observe that

one can instead turn excess channel capacity into an op-

portunity to save power at the receiver.

Our power savings comes from operating the WiFi

chipset at a lower clock rate. Zhang and Shin demon-

strated a wireless receiver that can be downclocked

yet still detect packets [39]. We show how to allow

transceivers to remain downclocked during reception and

transmission as well. We propose a receiver design based

on recent advances in compressive sensing [33] that takes
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advantage of the inherent sparsity of the Direct Sequence

Spread Spectrum (DSSS) modulation used by 802.11b.

With our design, clients with low demand can operate

their radios at a reduced clock rate while continuing to

communicate with commercial WiFi devices.

We have implemented a prototype of our 802.11b-

based design, called SloMo, in the Sora software ra-

dio platform. We show that SloMo seamlessly com-

municates with multiple vendors’ commercial chipsets

using standard 802.11b frames. Our measurements of

frame reception rates demonstrate that SloMo remains

fully functional even when the clock rate is reduced by

more than a factor five. Our trace-based simulations

across a range of popular smartphone applications show

that SloMo reduces WiFi power consumption by up to

30–34% on the iPhone 4S and Nexus S, respectively.

Moreover, SloMo outperforms two other proposed ap-

proaches, U-APSD and E-MiLi, in almost all cases.

2 Related work

There has been a great deal of work on improving the

energy efficiency of WiFi devices. These efforts can be

broadly classified into three categories: 1) improvements

to 802.11 PSM, 2) systems that duty cycle the WiFi de-

vice, and 3) attempts to decease transmit power.

Efficient power save modes. Most approaches rely

on placing the device in a low-power sleep mode when-

ever possible. The two basic alternatives are to coor-

dinate these periods of sleep between the access point

and the device, either through periodic polling (as with

the 802.11 PSM standard) or deliberate scheduling [27].

Others have proposed dynamically adjusting sleep pe-

riods based upon a client’s traffic pattern [2, 16]. Re-

searchers have previously noted the disparity between

modern 802.11 link speeds and the traffic demands

of many clients. µPM suggests powering down low-

demand WiFi clients between individual frame transmis-

sions [17], relying upon 802.11 devices retransmitting

unacknowledged frames to limit losses. Catnap [12] ex-

tends this approach by estimating bottleneck throughput

and scheduling client wake-ups based upon the predicted

availability of data from the wide-area network.

One challenge with these approaches is that, when

awake, a WiFi device must participate in the channel

contention process. Studies have shown that this pro-

cess can consume considerable amounts of energy, espe-

cially in dense deployments where nodes are in range of

multiple APs. SleepWell coordinates sleep cycles among

neighboring APs to decrease contention during wake-

ups, thereby increasing client power efficiency [18].

Finally, even otherwise-effective power saving mech-

anisms implemented by the WiFi chipset can be overrid-

den by applications in many popular frameworks [4, 5]:

some apps prevent the WiFi device from entering PSM

mode, forcing the WiFi card to stay awake in an effort to

improve performance [9, 35]. Because SloMo decreases

power consumption across all WiFi states, it can still re-

duce energy consumption in these cases.

Device duty cycling. Others take a more drastic ap-

proach: rather than entering low-power sleep modes,

they identify times when it is possible to simply turn a

WiFi device off entirely. One early system, SPAN [7],

turns off entire nodes in multi-hop ad hoc wireless net-

works if the connectivity of the network can be preserved

without them. In more general environments, systems

have been designed to keep WiFi powered down by de-

fault, and use an out-of-band signal to asynchronously

alert the device of pending data [1, 31]. Since smart-

phones may frequently be outside the coverage area of

a WiFi AP, the only reason to keep the WiFi transceiver

powered is to determine when coverage returns. Many

systems have attempted to reclaim this energy by instead

duty cycling WiFi radios based upon predictions of WiFi

availability. These predictions are variously based upon

the detection of nearby Bluetooth devices [3] or cell tow-

ers [26], or historical device movement patterns [20].

Limited transmit power. Finally, a direct approach

to decreasing WiFi power draw while transmitting is to

reduce radiated energy. WiFi transceivers can leverage

transmit power control to emit signals using sub-mW en-

ergy when the SNR is high. Unfortunately, despite the

obvious attractiveness of such an approach, studies have

repeatedly shown that adjusting transmit power has little

impact on the total power draw of commercial 802.11 de-

vices due to the limited power consumption of the power

amplifier relative to the rest of the electronics [15, 22].

Downclocking. We take a radically different ap-

proach by enabling the radio to communicate while in a

low-power state. Our efforts are inspired by previous ob-

servations that radios can conserve power by operating

at lower clock rates. Researchers have argued that de-

vices could dynamically adjust their sampling rate based

upon the frequencies contained within the observed sig-

nal [11], but their approach is not directly applicable to

the encoding schemes employed by WiFi. In the context

of WiFi, recent proposals argue that next-generation sys-

tems should support multiple channel widths and adapt

their instantaneous channel width based on the offered

load [6] (although stations operating in different band-

widths cannot decode each other’s transmission and the

17-ms switching overhead makes co-existence challeng-

ing), and develop mechanisms to detect packet arrivals

in a downclocked state [39]. Downclocking a receiver

through dynamic frequency scaling has been applied in

the wireline context in the past [29], but we are not aware

of any similar schemes in the wireless domain.
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Figure 1: A simplified WiFi card architecture.

3 Motivation

As wireless link speeds continue to increase, mobile de-

vices are increasingly likely to want to use only a small

fraction of the channel capacity. With WiFi, however,

use of the network is an all-or-nothing affair in terms of

power: if a transceiver is not fully powered, no data can

be sent or received.

3.1 The potential of downclocking

The power consumption of a CMOS computing device

is proportional to its clock rate [25]. Not surprisingly,

dynamic frequency scaling (DFS) has long been used

as a technique to save power in a variety of computing

domains [36]. Fundamentally, the same rules apply to

wireless transceivers: downclocking the radio hardware

can result in significant power savings. The challenge

in downclocking radio equipment, however, is that the

Nyquist theorem dictates that to successfully receive a

signal, the receiver must sample the channel at twice the

bandwidth of the signal [30]. In practice, today’s WiFi

devices are designed in such a way that the frequency of

the entire radio pipeline is gated by the sampling rate.

Figure 1 shows a typical WiFi transceiver architecture.

The analog baseband signal is first processed by a base-

band filter to confine the signal to the desired band. It

is then sampled by an analog-to-digital converter (ADC)

and data samples are passed to the baseband proces-

sor, which decodes the signal and uploads the recovered

frame to the host. The entire radio card is driven by

a common crystal oscillator, which feeds the frequency

synthesizer and the phase locked loop (PLL). The fre-

quency synthesizer generates the center frequency for

RF operation while the PLL serves as the clock source

for the ADC and baseband processor. For a 22-MHz

802.11b channel, the radio runs at 44 MHz (or faster).

As a result, the channel sampling rate directly de-

termines the permissible clocking rate—and power

consumption—of the WiFi card. Previous studies have

shown that the power consumption of popular WiFi

chipsets (e.g., from Atheros and Netgear) does indeed

vary with frequency [6, 39], although the precise rela-

tionship depends on what the device is doing (sending

frames, receiving frames, or idling) and differs across

chipsets. As an example, Table 1 shows the reported en-

ergy consumption of a popular WiFi chipset while oper-

ating at various clock rates [39].

Not surprisingly, the power savings are sub-linear

(40% savings while receiving packets at a 25% clock

Clock rate 25% 50% Full rate

Idle 640 mW 780 mW 1200 mW

Rx 980 mW 1440 mW 1600 mW

Tx 1210 mW 1460 mW 1710 mW

Table 1: Power draw of the Atheros 5414 WiFi chipset in the

LinkSys WPC55AG NIC at various clock rates [39].

rate), but they are still substantial. However, current de-

vices were not designed to be downclocked. Hence, it is

unlikely they are optimized to be power-efficient at fre-

quencies other than their target operating point.

3.2 Downclocked transmission

It is not obvious that downclocking a radio would be ben-

eficial while transmitting data: the lower the data rate,

the longer the transmission takes. Hence, in theory one

should transmit as fast as possible and place the radio

back into low-power mode as soon as transmission is

complete. Alternatively, one could realize similar sav-

ings by transmitting at a low data rate and scaling back

the transmission power. These approaches, however, pre-

sume that the frequency and/or power of the transceiver

can be adjusted efficiently.

Moreover, even if the device only receives data, the

802.11 specification requires that it transmit an ACK

frame to confirm receipt of the data frame—and the

ACK frame must be sent within a strict, 20-µs inter-

frame time (SIFS). As with reception, Nyquist requires

that the transceiver operate at twice the signal bandwidth

to transmit the standard Barker sequence. While some

chipsets, such as the MAXIM 2831, are able to switch

back to full clock rate in time to transmit an ACK frame,

others take substantially longer (e.g., an Atheros 5414

takes roughly 125 µs to switch clock rates [39]). In such

cases, to realize the benefits of downclocked reception,

the transceiver needs to transmit at a slower clock rate an

ACK frame that a standard-compliant WiFi transmitter

will accept. (The Rx power draws in Table 1 assume the

device remains downclocked for ACK transmissions.)

The potential benefits of downclocked transmission go

even further when considering the energy spent on clear

channel assessment (CCA) when a node attempts to gain

access to the channel. Previous studies have shown that

CCA is the dominant power drain when there is a high

contention level in the network [18, 39]. Most commer-

cial WiFi chipsets implement the carrier sensing com-

ponent of CCA, i.e., determining whether the channel is

free, using energy detection, which can be conducted at

virtually any clock rate. Moreover, modern WiFi cards

seem to be more power proportional when in this so-

called idle listening state. As shown in Table 1, the mea-

sured Atheros chipset consumes 47% less power in idle

listening mode when downclocked by a factor of 4.
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However, once the channel is detected to be idle, a

WiFi station needs to attempt to transmit a frame within

very short order (as little as 50 µs depending on its cur-

rent back-off interval). Given the switching times of

commodity chipsets, these timing requirements suggest

that WiFi devices are likely to need to perform carrier

sensing and frame transmission at the same clock rate.

In other words, in order to perform CCA while down-

clocked, the WiFi device must be prepared to transmit

while downclocked as well.

3.3 Network impacts

Clearly, downclocked nodes have the potential to realize

significant power savings. An obvious concern, however,

is that the lower bitrate transmissions require more air-

time, thereby decreasing overall network performance,

or, worse, increasing the energy consumption of other

nodes in the WiFi network and negating the gains real-

ized by the downclocked node. While certainly possi-

ble in theory—or even in practice for highly congested

networks [34]—its likelihood depends both on the back-

ground usage level in the network and the communica-

tion patterns of the downclocked node.

For example, for VoIP applications the typical packet

size is roughly 40 bytes, implying that a VoIP node’s

air time usage is dominated by inter-frame spacing and

channel contention resolution rather than data transmis-

sion or reception [34]. Hence, a VoIP flow’s impact on

network throughput is likely to be negligible regardless

of the bitrate (clock rate) the node chooses to employ. In

other scenarios, however, where the downclocked node is

transmitting or receiving large packets, or the network is

already reaching maximum capacity, the impact may be

noticeable. We observe that both the station and the AP

could detect and address such situations. In particular, an

AP can monitor the current traffic load on the network,

number of PSM clients, and any other pertinent informa-

tion. For severely congested networks, the downclocked

operation may not be allowed. In practice, for most of

the popular smartphone apps we have studied, the im-

pact on free channel airtime is limited (≤ 16%, see Sec-

tion 6.3). Moreover, many networks are lightly loaded.

For example, a study of our department’s wireless net-

work found that 60% of all frames are transmitted with-

out contention—i.e., the initial back-off counters expire

without needing to wait for other channel activity [8].

4 Downclocked 802.11b

In this section we describe the design of SloMo, our

prototype downclocked radio for 802.11b. SloMo can

fully interoperate with standard-compliant WiFi devices

(i.e., 802.11a/b/g/n/ac) at both 1 and 2-Mbps DSSS rates,

with no modifications to the access point. While these

data rates are admittedly modest, we show later that

they suffice for many popular applications. Further, the

802.11b rates remain widely supported in both deployed

WiFi networks and the upcoming 802.11ac chipsets (e.g.,

Broadcom 4335) and routers (e.g., Cisco EA6500). In-

deed, due to its robust communication range and low

cost, 802.11b is the only supported WiFi mode in some

special-purpose devices [13, 14, 37].

4.1 Reception

Our receiver design is based upon an observation that

the process of direct-sequence spread spectrum (DSSS)

modulation, as employed by the 802.11b standard, bares

a great similarity to a recently proposed compressive

sensing (CS) decoding scheme. DSSS and complemen-

tary code keying (CCK) are the two modulation tech-

niques specified in the IEEE 802.11b standard. When

the data rate is 1 or 2 Mbps, only DSSS modulation is

employed. The difference between the 1 and 2-Mbps

encodings lies in whether the quadrature component of

the carrier frequency is used: they employ binary phase

shift keying (BPSK) and quadrature phase shift keying

(QPSK), respectively. To ease our explanation, we will

focus our discussion on the 1-Mbps BPSK scenario; the

methods can be similarly applied to 2-Mbps QPSK en-

coding as we demonstrate.

In their recent breakthrough, Tropp et al. observe that

it is possible to employ compressive sensing to decode

digital signals while sampling at rates far below the

Nyquist rate, provided the signal is sparse in the fre-

quency domain [33]. Their approach mixes the sparse

signal they wish to decode with a high-rate chip sequence

to spread its signal band. They show that in many cases

the information contained in a sub-band of the resulting

spread signal turns out to be sufficient for recovering the

original signal.

DSSS modulation is analogous to the first stage of this

process: the baseband signal is also spread over a wide

range of bandwidth. Though the spreading in 802.11b

is designed to increase the signal to noise ratio (SNR)

at the receiver, it also provides the opportunity to apply

compressive sensing by only looking at part of the band

when SNR is not an issue.

4.1.1 DSSS modulation

The transmission chain of a standard 802.11b imple-

mentation can be summarized as four steps: scrambling,

modulation, spreading and pulse shaping. The data is

initially “scrambled” by XORing it with a fixed pseudo-

random sequence—to avoid long runs of ones or zeros—

before being modulated (using BPSK in the 1 Mbps

case). The modulated baseband signal is then “spread”

by replacing each bit with an 11-chip Barker sequence to

expand the signal. The spreading process serves several

4
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Figure 2: Original and modified baseband Rx processing chain. Compared to the original Rx chain, the modified chain adds an

additional integrate-and-dump component and replaces the De-spreading part with the CS decoder.

purposes. First, it enlarges the spectrum of the original

baseband signal by 11× to make it more robust to chan-

nel noise. Secondly, due to the unique properties of a

Barker sequence, it enables the receiver to more easily

synchronize with the transmitted signal. In particular, a

Barker sequence has low auto-correlation except when

precisely aligned with itself, so receivers can easily de-

termine when they have correctly synchronized with the

incoming chip sequence.
Mathematically, one can consider the DSSS spreading

process as computing an 11-chip signal, C, for each bit,
C = M · bi, where bi is a 2 × 1 sparse vector (b1 =
[0 1]T corresponds to a 1 and b0 = [1 0]T for a 0), and
the Barker sequence M is given by

M =

[

+1− 1 + 1 + 1− 1 + 1 + 1 + 1− 1− 1− 1

−1 + 1− 1− 1 + 1− 1− 1− 1 + 1 + 1 + 1

]T

Note that the two rows of M are simply inverses of each

other; hence, both Barker sequences have identical auto-

correlation magnitudes—they just result in either posi-

tive or negative correlation.

Subsequently, the pulse shaping stage ensures that the

resulting signal spectrum shape conforms to the IEEE

802.11b specification. In particular, the shaped signal

has a bandwidth of 22 MHz; therefore, a minimum sam-

pling rate of 44 MHz is required to meet the Nyquist

sampling criteria at the receiver side.

Conversely, Figure 2 presents a high-level description

of an 802.11b receiver baseband processing chain. A

matched filter recovers the chip values. In particular, the

matched filter correlates the incoming chip samples with

the Barker sequence to locate where the bit boundary is,

i.e., the first chip in the bit. Once the signal is synchro-

nized, it is sampled every chip time. Therefore, over the

course of a single bit duration, 11 sample values will be

collected corresponding to the 11-chip Barker sequence.

This chip sequence is “de-spread” by once again corre-

lating it with the Barker sequence to determine whether

a 1 or 0 was encoded, resulting in (hopefully) the orig-

inal 1-Mbps bit stream which is then de-scrambled by

XORing with the same scrambler sequence.

4.1.2 Compressive sensing

We implement compressive sensing using an integrate-

and-dump sampler as suggested by Tropp et al. [33].

We extend the match filter by introducing an integrate-

and-dump stage, which accumulates the output from the

matched filter for multiple chip durations, allowing for

a lower sampling rate than the standard 11 MHz. The

radio can then be downclocked appropriately to achieve

a desired compression ratio: sampling is performed on

the accumulated output (as opposed to each chip) and

the discrete samples—which contain multiple chips—are

fed to the rest of the receiver chain.

We can formalize the DSSS sampling process de-

scribed in the previous subsection as extracting a sample

Y from the received signal, C̃ (which is the transmitted

DSSS signal C encoded as described above but distorted

by the channel), with the diagonal sampling matrix H:

Y = HC̃. (1)

In a standard receiver operating at full clock rate, H is an

11×11 identity matrix which simply samples each chip

exactly once. Y is then correlated with the Barker se-

quence M to determine the transmitted bit.

With an integrate-and-dumper sampler, the measure-

ments can be viewed as a linear combination of the orig-

inal chip values. For example, suppose only 3 measure-

ments are desired (i.e., a downclocking ratio of 3/11).

The measurements can be viewed as substituting a com-

pressive measurement matrix into Equation 1:

Ĥ =





1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1





Here, our sampling matrix has only three rows because

we intend to sample each bit’s Barker sequence only

three times. Because 11 cannot be evenly divided by 3,

the integrate-and-dump sampler needs to accommodate

varied accumulation length. (We relax this assumption

in a later subsection.) In this particular example, to re-

duce the clock rate by 11/3=3.67×, we choose to take

two samples of 4 chips and one of 3. Once the compres-

sive samples are obtained, the baseband logic can be re-

engineered to work with the compressed measurements.

For example, Davenport et al. show the following deci-

sion rule1 can be used [10]:

di = (Y −HMbi)
T(HH

T)−1(Y −HMbi).

1The middle term (pre-whitened matrix) of Davenport’s decision

rule is actually (HMM
T
H

T) because they assume the basis matrix

M is applied during decoding after the signal has been received. In our

DSSS modulation scheme, the matrix is applied during transmission,

so we can drop it from our rule.

5
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If d0 < d1, the bit is decoded as 0, and 1 otherwise.

Our proposed receiver baseband processing chain is also

presented in Figure 2. Since only a single bit is decoded

at a time, the decision rule can be simplified as

di = Y
T(HH

T)−1(HMbi). (2)

4.2 Transmission

Recall from the previous section that one of the key roles

of the Barker sequence is to allow the receiver’s matched

filter to identify the beginning of the bit sequence. In

particular, given 802.11b’s 11-bit Barker sequence, a bit

boundary is within the next 10 samples of any chip.

Hence, the matched filter simply correlates the chip sam-

ples at each of these 11 positions. Because of the auto-

correlation properties of the Barker sequence, the start

of the bit sequence is clearly indicated by a correlation

peak. In theory, the Barker code’s correlation maximum

is 11× larger than the second maximum. However, when

a signal is transmitted over the air, it may get distorted

and noise is added. Hence, real receivers never use a

peak criteria as high as 11; on the contrary, commer-

cial WiFi cards use much lower thresholds as our exper-

iments reveal.2

Based on this observation regarding the decoding

threshold, we design “Barker-like” sequences whose

auto-correlation properties are not as strong as regu-

lar Barker sequences, but are still likely to satisfy the

matched filter’s threshold to allow the receiver to prop-

erly identify the bit boundary. Similarly, our sequences

have the property that, when correlated with a properly

aligned 802.11b Barker sequence, they can be success-

fully decoded. (Recall that de-spreading is only per-

formed on properly aligned chip sequences.) Again, they

do not have perfect correlation with the true Barker se-

quence, but sufficiently high enough to either exceed the

threshold for 1s, or low enough to pass for 0s.

The key feature of our Barker-like sequences is that

they are shorter than the original Barker sequence, yet

transmitted over the same time interval. As a result,

each chip in our Barker-like sequence lasts longer than

a standard Barker chip. The exact number of chips in

the sequence—and, thus, the chip duration—can be cho-

sen to match an intended downclock rate. We omit the

detailed mathematical steps involved to search for these

sequences. At a high level, we use correlation peak-to-

average ratio as a close approximation to decide how

good the code sequence is. Figure 3 shows some ex-

amples of the Barker-like sequences we obtain, and how

they compare to the original 11-chip Barker sequence.

To operate at a particular downclocked rate of m/11,

we select a Barker-like sequence of length m to use for

2For example, Sora [32] decides the maximum value is a peak if the

maximum value is at least twice the second maximum.
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Figure 3: Spreading sequences of various lengths, including the

802.11-standard 11-chip Barker sequence and the Barker-like

sequence used by SloMo when downclocked accordingly.

spreading. Because the radio is downclocked, each chip

will last (11/m)× as long as a standard chip3, and the

signal will be more narrow than usual.

4.3 Practical design considerations

In the previous description of our compressive sensing

based receiver, we assume 1) that the bit boundary is

known, 2) compressive measurements are only taken

over chips belonging to the same bit, and 3) the num-

ber of chips to be integrated varies (as reflected in the

measurement matrix given in Section 4.1.2). Here, we

first relax the latter two requirements and then return to

address the former.

4.3.1 Fixed-length integrate-and-dump

Rather than have variable-length integration periods, an

alternative is to have a fixed integration length l and oc-

casionally integrate fractions of a chip value into a mea-

surement. For example, the following measurement ma-

trix (which we employ when the clock is operated at 4/11

of the original rate) serves as a concrete example:

H =









1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0.5 0 0
0 0 0 0 0 0 0 0 0.5 1 1









Note that the third and fourth samples each integrate a

fraction of the 9th chip. Alternatively, if integrating a

fraction of the chip turns out to be challenging, we could

integrate a fixed number of chips and extend the decod-

ing to multiple bits group.

At a raw data bit rate of 1 Mbps, Nyquist requires

a minimum of two measurements per 11-bit chip se-

quence; we cannot downclock the receiver a full 11×.

Hence, the useful range of integration lengths is between

2 and 5 chips. Since 11 is a prime number, for any inte-

gration length k (2 ≤ k ≤ 5), the number of compressed

samples is not an integer for a single bit. In fact, we

need to perform compressive sensing over a minimum of

11k chips to produce an integer number of measurements

3Except when m = 2 where the two chips last for 6 and 5×, re-

spectively, which we found to be more reliable than two chips of 5.5×.
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(i.e., 11 measurements). Therefore, rather than decoding

one bit at a time, we jointly decode k bits in a group—

which exactly corresponds to 11k chips.

4.3.2 Synchronization

Symbol synchronization is a fairly standard technique

and is often implemented in hardware [23]. Unfortu-

nately, locating the bit boundary is slightly more chal-

lenging when using compressive sensing. After pass-

ing through the integrate-and-dump circuit, the com-

pressed measurements no longer exhibit the excellent

auto-correlation property provided by the original Barker

sequence. Therefore, the standard correlation and peak

searching-based method described in the previous sec-

tion no longer suffices.

Recall that we are decoding our sample stream in

groups of k bits at a time, where each bit consists of 11

chips, but our integrate-and-dump sampler has reduced

these chips by a factor of k. Hence, we are always de-

coding exactly 11 samples at once. If we knew where to

start decoding, the first compressed measurement would

correspond to the sum of the first k chips of the first bit.

Rather than trying to identify the bit boundaries ahead of

time, we observe that 11 is a prime number, so one and

only one alignment with the sample stream will produce

successful decodings—all others will never align regard-

less of the downclocking factor k.

Because we have no idea which one of the 11 com-

pressed measurements starts a group, we store the de-

coding results for each possible position simultaneously.

For implementation purposes, we keep 11 bit arrays (B0-

B10). Suppose the incoming compressed measurements

are labeled S0, S1, · · ·; we decode S0 − S10 and store

the result in B0, S1 − S11 to B1, S2 − S12 to B2, · · ·,
S10∗j+i − S10∗j+i+10 to Bi (0 ≤ i, j,≤ 10). Each in-

coming compressed measurement will complete the de-

coding of one of the 11 bit arrays. Meanwhile, we look

for the fixed bit pattern of the Start of Frame Delimiter

(SFD) among the 11 stored bit arrays. Once the SFD is

identified in one of the arrays, we know the correct bit

boundary and we only need to keep decoding in one of

the arrays.

While the synchronization operation can be conducted

in parallel, we implement the process in a single soft-

ware thread in SloMo as the synchronization stage only

lasts for the duration of the preamble (72 µs and 144 µs

for short and long preambles, respectively). The SFD

is guaranteed to be found within this well-defined time

bound (or equivalently, a fixed number of decoded bits)

for any valid frame. If no SFD is detected after a rea-

sonable amount of time, the synchronization process is

aborted and we start to search for the next packet.

4.4 Interacting with existing networks

Because SloMo requires modifications only to the down-

clocked wireless node and is entirely 802.11b-compliant,

it is fully compatible with existing WiFi deployments.

No changes need to be made to the access point or other

devices on the network to support SloMo. In this sec-

tion, we discuss how SloMo interacts with a standard

802.11b/g/n basestation, as well the potential interac-

tions with other client nodes due to its use of 802.11b

(as opposed to 11g or 11n).

4.4.1 Rate selection

When operating in downclocked mode, a SloMo node

can only decode frames encoded using DSSS—in par-

ticular, it is not able to use CCK encoding (i.e., 5.5 and

11-Mbps 802.11b frames) or communicate at 802.11g/n

rates. Fortunately, the 802.11b standard includes mecha-

nisms for the SloMo node to convey these constraints to

the AP. If the SloMo node is currently connected to an

AP, before it goes into downclocked mode it can trans-

mit a re-association request frame to inform the AP it

only supports 1 and 2 Mbps. Even if a SloMo node

fails to notify the AP of the supported rate change, most

APs employ a dynamic transmission rate adjustment al-

gorithm that will throttle the sending rate until it suc-

cessfully communicates with the SloMo station: when

the AP fails to receive an ACK for frames it transmits at

a higher data rate, it will retry at a lower rate and eventu-

ally step down to 1 or 2 Mbps.

4.4.2 Protocol interactions

While SloMo devices must operate at 802.11b speeds, it

is clearly desirable to ensure that other network nodes

can continue to transmit at 11g or 11n rates if they are

so capable. The concern in such environments is that

the SloMo node cannot decode such frames, and might

cause collisions. Luckily, collisions are straightforward

to avoid. 802.11b specifies three different clear channel

assessment methods: energy detection, frame detection,

or a combination of the two. An 802.11b-compliant de-

vice can implement whichever method it chooses. Re-

lying on energy detection alone as its CCA method, our

SloMo node could co-exist with any other 11g/n node

in the network without requiring them to turn on pro-

tection mode to minimize the impact of throughput loss

due to slower 11b rates. This approach may require the

network operator to manually turn off protection mode

on the AP if SloMo nodes are the only possible set of

802.11b clients.

Additionally, because 11b and 11g employ different

inter-frame timings (for example, the slot time is 20 µs

and 9 µs for 11b and 11g with protection mode off, re-

spectively), one might be concerned about the potential

7
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unfairness in channel access contention. We could mod-

ify the inter-frame timings for SloMo nodes to ensure

fair channel access, but we observe that the standard

settings penalize the SloMo node, not the other nodes,

and the SloMo node is unlikely to have high demand for

the channel given it has elected to go into downclocked

mode. Hence, we have not deployed this change on our

prototype.

5 Prototype

To assess the feasibility of our approach, we implement

a prototype CS-based 802.11b transceiver architecture

in Microsoft Sora, a fully programmable software de-

fined radio [32]. We show that compressive sensing

achieves similar packet reception rates as standard WiFi

under reasonable network conditions, even when clock

rates are reduced by a factor of five. We also show that

downclocked transmission using short “Barker-like” se-

quences is feasible when communicating with standard

WiFi devices.

5.1 Implementation

To allow maximum generality of their radio platform, the

Sora architecture differs from the typical WiFi chipset

design discussed previously. Rather than implementing

a matched filter in hardware and sampling thereafter, the

Sora radio board has a fixed sampling rate of 44 MHz and

passes the raw data samples directly to the processing

pipeline. The matched filter and decoding stages are all

implemented in software.

We modified the Sora code by adding the integrate-

and-dump sampler in the receiver chain and re-design

the bit decoding algorithm as described by Equation 2.

We have implemented both versions of the integrate-

and-dump sampler. Since Sora’s clock rate is fixed at

44 MHz, we are unable to downclock it while transmit-

ting. Instead, we emulate downclocked transmission by

repeating data samples to effectively simulate a slower

clock. We then employ a root-raised-cosine filter for

pulse shaping. Since Sora does not have an on-board au-

tomatic gain control (AGC) circuit, we have to realize the

AGC in software. Finally, to compensate for the clock

oscillator difference between transmitter and receiver, we

also implement the phase tracking component to ensure

correct decoding of multiple-bit groups.

5.2 Experimental configuration

We conduct most of our experiments using two nodes, a

Sora node running our SloMo implementation and a lap-

top with a commercial WiFi device. The Sora hardware

is a Shuttle XPC SX58J3 machine with 8 CPU cores con-

figured with a Sora radio control board and an Ettus Re-

search XCVR2450 radio transceiver. It runs Windows

XP modified to support the baseline Sora software and

our SloMo modifications. The laptop is a Lenovo T410

with 2 CPU cores running Ubuntu 10.04 with an Intel

6200 WiFi card. We operate the Sora node and laptop as

an ad-hoc network for flexibility. By default we perform

our experiments using the 1-Mbps link rate of 802.11b

(experiments using 2-Mbps link rates double application

throughput as expected).

To experiment with different network conditions, we

varied the distance and path between the nodes. We fixed

the location of the SloMo node in a room, and moved the

laptop to various locations inside the building.

5.3 Downclocked reception

We start by evaluating downclocked reception in isola-

tion using compressive sensing (CS). We transmit pack-

ets using the commercial WiFi device on the laptop to our

experimental Sora node, which receives them using CS

with a configurable decoding clock rate. For each clock

rate and location, we transmit 1,000 UDP packets (each

1,000-bytes long) paced to allow the network to settle

between transmissions. We repeat each experiment 10

times to account for variations. We perform the experi-

ment across a wide range of clock rates, and in different

locations that result in a variety of network conditions.

In each case we record the fraction of transmitted pack-

ets successfully received and decoded using CS on the

Sora node, and also report the corresponding SNR value

for each location.

Figure 4(a) shows that downclocked reception oper-

ates nearly as well as standard WiFi across a wide range

of decoding clock rates. Each point is the average of 10

runs, and the error bars show the standard deviation. A

clock rate of 100% corresponds to standard WiFi pro-

cessing as the baseline, and smaller rates correspond to

more aggressive use of compressive sensing with lower

power requirements. When the SNR is good (≥48 dB),

packet reception using compressive sensing is nearly

equivalent to standard WiFi, even for very low clock rates

of 18–36%. Recall from Section 3.1 that downclocking

at such rates corresponds to more than 40% savings in

power consumption for a popular WiFi chipset.

Unfortunately, our ability to evaluate SloMo down-

clocked reception performance for a wider range of

SNRs is limited by the Sora platform. We observe that

Sora has a rather narrow dynamic range in terms of re-

ceiver sensitivity and exhibits a sharp cut-off behavior

when the SNR is around 46 dB, likely due to the lack

of hardware automatic gain control. While operating in

this regime, Sora’s standard WiFi implementation only

achieves a 53% reception rate, and compressive sensing

delivers 73% of that performance at the lowest clock rate.
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(b) SloMo → WiFi (small packets)
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(c) SloMo → WiFi (large packets)

Figure 4: Frame reception rates at SloMo Sora node (commercial WiFi device) for packets sent by commercial WiFi device (SloMo

Sora node) using downclocked compressive sensing reception (downclocked “Barker-like” transmission). As a baseline, the 100%

clock rate corresponds to using the default 802.11b implementation.

5.4 Downclocked transmission

Next we evaluate downclocked transmission in isola-

tion using the shorter “Barker-like” sequences. We send

packets from our experimental Sora node using down-

clocked transmission to the commercial WiFi device on

the laptop, and record the fraction of transmitted packets

successfully received and decoded by the commercial de-

vice. We use the same methodology as with compressive

sensing: 10 runs of 1,000 UDP packets at each combi-

nation of downclock rate and network location. We also

experiment with two packet sizes. The first is a small

packet size of 60 bytes, corresponding to apps sending

small data packets and sending ACKs in response to a

packet received using compressive sensing. The second

is a larger packet size of 1,000 bytes.

Figures 4(b) and 4(c) show the results for down-

clocked transmission for small and large packets, respec-

tively. Compared to downclocked reception with com-

pressive sensing, we note that the operational SNR range

is much larger; commercial WiFi cards have much better

receiver sensitivity than Sora.

Focusing on results relative to the commercial WiFi

baseline, however, shows that downclocked transmission

using shorter “Barker-like” sequences more strongly de-

pends on network conditions, clock rate and packet size.

A clock rate of 100% transmits using the full Barker se-

quence in standard WiFi, and smaller rates correspond to

transmission using increasingly shorter Barker-like se-

quences (Figure 3); the lowest transmission clock rate

is 20%, which corresponds to transmitting with just two

chips (Section 4.2). As shown in Figure 4(b), with small

packet sizes downclocked transmission is nearly as good

as standard WiFi for moderate and good network con-

ditions (≥ 26 dB) for nearly all downclock rates (at the

lowest 20% clock rate, reception rates are 10–20% below

the baseline). With larger packets sizes, as shown in Fig-

ure 4(c), downclocked transmission continues to do well

for the majority of clock rates. Note that downclocked

rates of 73% and 82% underperform other clock rates by

7–10% when the SNR is moderate or low (≤26 dB). This

variation is due to how well a “Barker-like” sequence

approximates the original Barker sequence; a longer se-

quence (higher clock rate) does not necessarily yield bet-

ter correlation results. As with small packets, the lowest

clock rate of 20% substantially degrades reception rela-

tive to the baseline, pushing the limit of downclocking.

Overall, when SNR is poor (≤ 13 dB), downclocked

reception rates are on average 10% less than the stan-

dard WiFi implementation; otherwise, the packet recep-

tion rates are approximately the same. These results indi-

cate that downclocked transmission is feasible for a wide

range of SNR scenarios, especially transmitting ACKs at

the same downclocked rate used to receive data frames.

5.5 Further prototype experiments

We performed additional experiments with the SloMo

prototype, which we summarize for space considera-

tions. First, we combined downclocked reception and

transmission to evaluate the quality of Skype VoIP com-

munication using SloMo. We found that downclocked

VoIP using SloMo only significantly degrades call qual-

ity when network conditions are poor, as expected,

but otherwise delivers equivalent Mean Opinion Scores

(MOS) for calls. To stress SloMo’s downclocking im-

plementation, we also evaluated application throughput

at both 1 Mbps and 2 Mbps link rates using iperf

with 1,000-byte UDP packets. The 1-Mbps results track

the packet reception results in Figure 4(a) very closely.

SloMo can also take full advantage of 2-Mbps link rates

under stable network conditions: application throughputs

at 2 Mbps are double those at 1 Mbps. Finally, in addi-

tion to evaluating SloMo with the Intel WiFi card, we

also performed similar throughput experiments between

the Sora node running SloMo and a Macbook Pro lap-

top with an Apple Airport Extreme WiFi card using the

Broadcom BCM43xx firmware. Both downclocked re-

9
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ception and transmission performed as expected between

SloMo and the Macbook.

6 Trace-based energy evaluation

Our experiments with the SloMo implementation

demonstrate the feasibility and performance of down-

clocked 802.11 communication. Next we evaluate the

potential energy savings when using downclocking in the

context of contemporary smartphones and popular apps.

6.1 Methodology

Since we could not directly measure the power consump-

tion of a downclocked WiFi chipset in an actual smart-

phone, we construct a power model based on measure-

ments of a real device. We also collect MAC-layer packet

traces of a variety of real apps running on two differ-

ent smartphones. We use these packet traces to infer

the instantaneous power state of the smartphones’ WiFi

chipsets and compute the total energy cost for each phone

based on the power model.

6.1.1 WiFi power model

Similar to Mittal et al. [19], we parameterize our smart-

phone WiFi power model on the measurements of a

Nexus One reported by Manweiler and Choudhury [18].

When actively transmitting and receiving frames, a WiFi

chipset must be in a high power state. Once a network

transfer completes, the card moves to the idle state. If

there is no network activity for a while, the card transi-

tions to the light sleep mode. The light sleep state still

consumes a significant amount of power in anticipation

of efficiently waking up for incoming traffic. On the

Nexus One, the light sleep tail time is roughly 500 ms;

if no further network activity occurs, the card returns to

the deep sleep state. Table 2 summarizes the model pa-

rameters we used. Most are reproduced from [18, 19];

the downclocked values marked with an asterix are esti-

mated as follows.

WiFi power consumption falls into two parts, the ana-

log front-end Pa and the digital processing logic Pd. In

the sleep state, the digital logic part is turned off. Given

the description of the two sleep modes, we infer that

the power difference between them is due to the ana-

log front end remaining functional in light sleep mode

but turned off in deep sleep mode. Therefore, we use

the light sleep state power as an estimate for the ana-

log power consumption Pa. We then estimate the down-

clocked power consumption as proportional to the full

digital power consumption Pd/α, where α is the clock

scaling ratio. When downclocking by a factor of 4, for

4We observe the Nexus One employing a variety of beacon wakeup

periods (2.5,5,10 ms) on the power measurement trace obtained from

the authors of [18]; we use 2.5 ms in our model to be conservative.

Parameter
Full Clock /

Downclocked (1/4)

Beacon Interval (ms) 100 / 100

Beacon Wakup Period (ms)4 2.5 / 2.5

Light Sleep Tail time (ms) 500 / 500

Deep Sleep Power (mW) 10 / 10

Light Sleep Power (mW) 120 / 120

Beacon Wakeup Power (mW) 250 / 185*

Idle Power (mW) 400 / 260*

Rx Power (mW) 600 / 360*

Tx Power (mW) 700 / 460*

Table 2: WiFi Power Characteristics

instance, α at best would be 4 as well. Since it is likely

that a practical implementation would experience subop-

timal scaling, we conservatively choose α = 2 to obtain

a lower bound estimate. Note also that the analog part

Pa for Tx is greater than Rx since transmission includes

an additional power amplifier component. We use the

difference between Rx and Tx power (100 mW) from

the measurements in previous work to approximate the

power consumption of the amplifier.

6.1.2 Smartphone app traces

To comprehensively evaluate the benefits of SloMo, we

sampled a wide range of popular smartphone apps (each

has at least 5 million downloads). These nine apps in-

clude familiar Internet services like Facebook and Gmail,

as well as smartphone-specific services like Pocket

Legends (a real-time massively multiplayer game) and

TuneIn Radio (a streaming audio service). They differ

significantly in the way they interact with the network,

spanning interactive real-time traffic to content prefetch-

ing to intensive data rates.

We collect high fidelity WiFi packet traces [28] by

configuring two MacBook Pro laptops as sniffer nodes in

the vicinity of the smartphone and the AP, respectively,

and merge the two traces to minimize frame losses. To

eliminate bias due to starting and closing the app, we

only record a trace when an app is in steady state. Each

such capture session lasts for 200 seconds. Finally, to

avoid tying our conclusions to a particular smartphone

platform, we conduct our experiments on the Google

Samsung Nexus S (Nexus) and the Apple iPhone 4S

(iPhone). We collected the traces with 4–5 other WiFi

devices concurrently using the network, and we emulated

a typical SNR scenario where the AP and the wireless

station are in the same building but different rooms (i.e.,

no line-of-sight between the two). Since WiFi devices

signal the AP of their intention to sleep and wake up, we

are able to faithfully recreate the power state transitions

of the WiFi cards on the smartphones using the captured

network traces.

10
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Figure 5: Energy cost of various apps under 802.11 PSM and SloMo. For each app, the upper bar corresponds to the breakdown of

energy consumption under 802.11 PSM while the lower bar corresponds to SloMo. The number at the end of the bar group shows

the relative energy saving of SloMo over PSM, the higher the better. We also report the bi-directional MAC layer data rate.
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Figure 6: PDFs of the IFT for a selected set of apps on Neuxs

S. We remove the inter frame time (SIFS) between DATA and

ACK frame for better presentation. IFTs larger than a sleep

period are also removed.

6.2 SloMo energy consumption

Figures 5 and 6 combined show the energy and timing

behavior of the apps. Figure 5 compares the network

energy costs of the apps by power state when using stan-

dard 802.11 PSM (top bar) and when using downclocked

communication with SloMo (bottom bar). To empha-

size energy consumption, we assume SloMo operates at

2 Mbps and the data rates for PSM are the ones reported

by the packet capture software. The graphs show results

for running the apps on both the Nexus and iPhone. The

trends for both phones are similar, but since the iPhone

has shorter idle tail times (30–90 ms in our traces versus

220 ms for the Nexus) the benefits of SloMo are smaller

for the iPhone than the Nexus.

Figure 5 shows that a wide range of popular apps ben-

efit from SloMo, but they do so for different reasons. To

provide insight into the different app behaviors, Figure 6

shows the PDFs of the inter-frame times (IFTs) for four

distinctive apps.

Energy consumption in the first group of apps (Skype

Voice, Pocket Legends, TuneIn Radio) is dominated

by time spent in the idle listening state. Since WiFi

cards still consume substantial energy while idle (Table

2), downclocking significantly reduces idle state energy

consumption [39]. And since these apps have low data

rates, the energy saved during idle listening far exceeds

the additional energy consumed for slower data transmis-

sion and reception, resulting in energy savings of 30–

34% overall on the Nexus. Although these apps have low

data rates, their network behavior prevents them from

entering sleep mode while idle and makes them rela-

tively power-hungry: As real-time apps, they send and

receive packets at frequencies that keep the WiFi card

awake in constant active mode (CAM). Figure 6 shows

that Skype Voice exchanges packets roughly every 10

ms, and that the Pocket Legend client exchanges game

updates with its server as a burst of packets every 100

ms (the peak near 100 µs is the IFT between packets in

a burst). TuneIn Radio similarly keeps the WiFi card

awake for frequent incoming packets (curve not shown

for clarity).

The next group of apps (Facebook, Gmail, Instagram)

interact with the network much more intermittently at

human time scales. Users navigate through the app and

download bursts of content, with pauses in between (e.g.,

11
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Instagram had an average pause time of 1.5 seconds). For

such apps, the WiFi card wakes up intermittently when

downloading content, and transitions first to idle and then

to sleep mode during the longer pause times. Even so,

SloMo can still reduce energy consumption during the

idle tail time after intermittent network activity and, to a

minor effect, during the sleep states. Again, the benefits

of downclocking and saving energy during these states

outweigh (by 19–26%) the additional energy spent trans-

mitting and receiving at low data rates.

Angry Birds is a good example of many “offline” free

apps. Although the game itself does not require network

interaction, the embedded ads in the free version cause

the app to have similar network characteristics as Face-

book and Instagram. The app has intermittent network

activity uploading user information and downloading tai-

lored ads, but after each interaction the WiFi card enters

the idle state before transitioning to sleep. As a result,

Angry Birds spends over 95% of its network energy in

the idle tail time, which can account for 65–75% of the

entire app energy consumption [21]. (Although the data

rate of Angry Birds is just 14% of Instagram, it consumes

comparable network energy.) Once again downclocking

can substantially reduce energy consumption in the idle

state for a 25% savings overall.

Although a music streaming service, Pandora differs

from the previous apps in that it prefetches entire songs

at a time. In our trace, it downloads a song in the first 10

seconds and has very little network activity for the next

60 seconds. With this behavior, Pandora already uses the

network efficiently. Although SloMo does reduce energy

consumption by downclocking during the idle and sleep

states, it correspondingly increases it for reception and

on balance only marginally improves total consumption.

Finally, Skype Video exhibits a similar tradeoff as

Pandora. The energy saved by SloMo in downclocking

during idle time is matched by the energy expended in

using the network at low data rates. In terms of network

energy, Skype Video is a wash. As we discuss below,

however, SloMo is a poor choice for this kind of app be-

cause of the channel airtime it consumes.

6.3 Network impact

Given that SloMo trades off data rates for energy con-

sumption, it is also important to consider the overall net-

work impact due to the use of slower data rates by SloMo

in terms of channel airtime. As discussed in Section 3.3,

an app might save itself energy by downclocking but un-

duly impact other devices on the network by consuming

more airtime using lower data rates.

Figure 7 shows the channel airtime breakdown of the

apps on the Nexus S. It compares the time spent in the

states when the apps use standard 802.11 PSM (top bar)

and SloMo (bottom bar). The number to the right of
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Figure 7: Comparing the timing breakdown for various apps

under 802.11 PSM (upper bar) and SloMo on Google Nexus S

(lower bar). The number at the end of the bar group shows the

free channel airtime contraction ratio, the lower the better with

1.0 as the minimum.

each paired bar denotes the contraction in free channel

airtime for using SloMo with the app. For instance, the

free channel airtime for Skype Voice using PSM divided

by the free channel airtime using SloMo is 1.15. The

graph shows that downclocking with SloMo does cause

the apps to spend more time in actively transmitting

and/or receiving. For all apps except Skype Video, the

impact on free channel airtime is modest, with contrac-

tions ranging between 1.02–1.15. With the much higher

data rates of Skype Video, though, using SloMo causes

the app to spend most of its time receiving and transmit-

ting data, greatly reducing the free channel airtime com-

pared to PSM. The channel airtime results for the iPhone

4S are very similar (the largest contraction ratio is 1.16

for apps other than Skype Video).

6.4 Alternative approaches

So far we have compared SloMo with current WiFi

implementations using PSM. As the traces revealed,

though, a critical source of network energy consumption

is the tail time of the idle state. Of course, other solu-

tions have been proposed to address this issue as well.

As a final evaluation, we compare SloMo with two other

approaches, U-APSD [38] and E-MiLi [39], from indus-

try standards and the research community, respectively.

U-APSD. When traffic patterns are periodic, pre-

dictable, and symmetric, such as real-time VoIP traf-

fic, the Unscheduled Automatic Power Save Delivery

(U-APSD) optimization (defined by the 802.11e stan-

dard [38]) could allow devices to enter the sleep state

immediately after network activity and avoid the stan-
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Figure 8: Comparing energy consumption among PSM, E-

MiLi and SloMo on the Nexus trace set.

dard tail time in the idle state. Based upon the U-APSD

specification, we emulated its use5 for the Skype Voice

and Video apps using the Nexus traces and estimate im-

pressive energy savings of 56% and 44%, respectively,

compared with savings of 30.5% and 3.2% using SloMo.

Although clearly better in the ideal case of Skype, as

noted by others [24] U-APSD is not a general optimiza-

tion because its effectiveness depends greatly on the de-

gree of symmetry in the traffic. For real-time apps where

the traffic pattern is asymmetric, such as Pocket Legends

and TuneIn Radio in our examples, U-APSD would not

apply. Further, U-APSD is not suitable for intermittent

traffic, such as with the Facebook and Gmail apps, which

could lead to unnecessary energy waste due to frequent

polling of the AP [27].

E-MiLi. E-MiLi redesigns the addressing mechanism

of WiFi devices, enabling receivers to determine whether

traffic is addressed to them without leaving a low-power

listening state [39]. We emulate the use of E-MiLi on

our Nexus app traces based upon the WiFi power model

and measurements reported by the E-MiLi authors.6 To

facilitate the comparison, we apply the E-MiLi power

model to SloMo in contrast to our previous experiments.7

Figure 8 compares the network energy consumption of

PSM, SloMo and E-MiLi on the Nexus apps traces (re-

sults were similar for the iPhone traces). Across all apps,

downclocking with SloMo saves on average 37.5% en-

ergy relative to the default PSM, about 10% more than

the 27.7% savings achieved with E-MiLi. For the ini-

tial three real-time apps, both SloMo and E-Mili obtain

comparable savings. For the others, SloMo performs sig-

nificantly better than E-Mili, while E-MiLi performs sig-

nificantly better on Skype Video.

5We attempted to purchase U-APSD compliant APs and WiFi cards

to experiment with a real implementation, but could not find a hard-

ware, OS, and driver combination that enabled its use in practice.
6We measure a WiFi card (Atheros AR9380) from the same manu-

facturer as the published E-MiLi results to obtain details regarding the

power consumption of the sleep state not reported in the E-MiLi paper.

The card wakes up at every beacon interval and stays awake for 20 ms

before going back to sleep.
7As a result, the SloMo energy savings are 10–20% larger relative

to PSM compared to the results presented in Figure 5(a).

7 Conclusion

Downclocked 802.11 reception and transmission using

compressive sensing is both beneficial and practical.

Analysis of the network traffic of a wide range of pop-

ular smartphone apps shows that downclocking has the

potential to reduce WiFi power consumption on contem-

porary smartphones by 30%. And our SloMo prototype

shows the practicality of implementing downclocking on

WiFi clients that communicate seamlessly with unmod-

ified commercial WiFi hardware. While SloMo demon-

strates that compressive-sensing techniques are effective

for the DSSS encoding used by 802.11b, consumer de-

vices are increasingly employing the higher-rate encod-

ings of 802.11a/g/n. Since the OFDM-based modula-

tion scheme used by these protocols does not share the

same inherent spectral sparsity, a tantalizing challenge

going forward is to what extent alternative techniques

can achieve the same goals for these modulations.
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Abstract

It is well-known that the time taken for disseminating a
large data object over a wireless sensor network is dom-
inated by the overhead of resolving the contention for
the underlying wireless channel. In this paper, we pro-
pose a new dissemination protocol called Splash, that
eliminates the need for contention resolution by exploit-
ing constructive interference and channel diversity to ef-
fectively create fast and parallel pipelines over multiple
paths that cover all the nodes in a network. We call this
tree pipelining. In order to ensure high reliability, Splash
also incorporates several techniques, including exploit-
ing transmission density diversity, opportunistic over-
hearing, channel-cycling and XOR coding. Our evalua-
tion results on two large-scale testbeds show that Splash
is more than an order of magnitude faster than state-of-
the-art dissemination protocols and achieves a reduction
in data dissemination time by a factor of more than 20
compared to DelugeT2.

1 Introduction

A data dissemination protocol, like Deluge [14], is a
fundamental service required for the deployment and
maintenance of practical wireless sensor networks be-
cause of the need to periodically re-program sensor
nodes in the field. Existing data dissemination proto-
cols employ either a contention based MAC protocol like
CSMA/CA [6, 5, 7, 10, 12, 30, 18, 14] or TDMA [17]
for resolving the multiple access problem of the wireless
channel. As there is a large amount of data that needs
to be disseminated to all the nodes in the network, there
is often severe contention among the many transmissions
from many nodes. Existing MAC protocols incur signif-
icant overhead in contention resolution, and it has been
shown that Deluge can take as long as an hour to program
a 100-node sensor network [27].

In this paper, we propose a new data dissemination
protocol, called Splash, that completely eliminates con-

tention overhead by exploiting constructive interference.
Splash is scalable to large, multi-hop sensor networks
and it is built upon two recent works: Glossy [9] and
PIP [24]. Glossy uses constructive interference in prac-
tical sensor networks to enable multiple senders to trans-
mit the same packet simultaneously, while still allow-
ing multiple receivers to correctly decode the transmit-
ted packet. Like Glossy, we eliminate the overhead in-
curred in contention resolution by exploiting construc-
tive interference. Raman et al. showed in PIP that a
pipelined transmission scheme exploiting channel diver-
sity can avoid self interference and maximize channel
utilization for a single flow over multiple hops by ensur-
ing that each intermediate node is either transmitting or
receiving at any point of time. Splash uses constructive
interference to extend this approach to tree pipelining,
where each level of a dissemination tree serves as a stage
of the pipeline.

While the naive combination of synchronized and
pipelined transmissions achieves substantial gains in the
data dissemination rate by maximizing the transmission
opportunities of the senders, it also creates a significant
reliability issue at the receivers. First, in order to im-
prove efficiency, we need to use a large packet size (i.e. at
least 64 bytes). However, increasing packet size reduces
the reliability of constructive interference as the number
of symbols to be decoded correctly increases [9]. Sec-
ond, channel quality varies significantly among different
channels, and there are typically only a small number of
available channels that are of sufficiently good quality. If
a poor channel is chosen for a stage of the pipeline, the
pipeline transmission may be stalled.

Splash includes a number of techniques to improve
the packet reception rate. (1) We improve the reception
rates over all receivers by exploiting transmitter density
diversity by varying the number of transmitters between
transmission rounds. When the sets of transmitters are
varied, the sets of receivers that can decode the synchro-
nized transmissions correctly also change. Hence, differ-
ent sets of nodes are likely to correctly decode packets
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during different transmission rounds. The challenge is
to maximize the differences among different transmis-
sion rounds. (2) We increase reception opportunities by
incorporating opportunistic overhearing which involves
early error detection and channel switching. A node in
Splash identifies a corrupted packet on-the-fly during its
reception and switches its channel to overhear the same
packet when it is being forwarded by its peer nodes in
the dissemination tree. (3) We exploit channel diversity
to improve packet reception ratio by varying the chan-
nels used between different transmission rounds. This
is particularly important since the use of the same bad
channel can stall the pipeline transmission consistently.
(4) Finally, we utilize a simple XOR coding scheme to
improve packet recovery by exploiting the fact that most
receivers would have already received most of the pack-
ets after two transmission rounds.

We implemented Splash in Contiki-2.5 and we eval-
uated the protocol on the Indriya testbed [3] with 139
nodes and the Twist testbed [13] with 90 nodes. We com-
pare Splash to both Deluge [14] in Contiki and to the
much improved DelugeT2 implemented in TinyOS. As
we use DelugeT2 as a baseline, it allows us to compare
Splash to many of the existing dissemination protocols in
the literature as most of them are also compared to Del-
uge. Our results show that Splash is able to disseminate
a 32-kilobyte data object in about 25 seconds on both the
testbeds. Compared to DelugeT2, Splash reduces dis-
semination time on average by a factor of 21, and in the
best case, by up to a factor of 57.8. This is significantly
better than MT-Deluge [10], the best state-of-the-art dis-
semination protocol, which achieves a reduction factor
of only 2.42 compared to Deluge.

The dissemination performance of our current imple-
mentation of Splash achieves a network-wide goodput of
10.1 kilobits/sec per node for a multihop network of 139
nodes with up to 9 hops. Splash’s goodput is higher than
that of all the network-wide data dissemination proto-
cols [6, 5, 7, 10, 12, 30, 18, 14, 17] previously proposed
in the literature. Splash’s performance is comparable to
Burst Forwarding [8], the state-of-the-art pipelined bulk
transfer protocol over TCP for sensor networks, which
is able to achieve a goodput of up to 16 kilobits/sec, but
only for a single flow over a single multihop path.

Finally, Splash is also significantly more compact than
DelugeT2 in terms of memory usage. Splash uses 9.63
and 0.68 kilobytes less ROM and RAM respectively than
DelugeT2. Given that it is not uncommon for sensor de-
vices to have only about 48 and 10 kilobytes of ROM and
RAM respectively, these are significant savings in mem-
ory, that will be available for use by sensor applications.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the related work. Section 3 presents
our measurement study of constructive interference on a

practical testbed. We present Splash and the details of its
implementation in Section 4. Section 5 presents our eval-
uation results on the Indriya and Twist testbeds. Finally,
we conclude in Section 6.

2 Related Work

In their seminal work on Glossy [9], Ferrari et al. showed
that constructive interference is practical in wireless sen-
sor networks. They observed that there is a high proba-
bility that the concurrent transmissions of a same packet
will result in constructive interference if the temporal
displacement among these transmissions is smaller than
0.5 microsecond. The implementation of Glossy is able
to meet this requirement and a small packet can be
flooded to all nodes with deterministic delays at the relay
nodes which allows accurate network-wide synchroniza-
tion. Glossy is designed to flood a single packet at a time,
e.g., a control packet. On the other hand, a dissemination
protocol needs to achieve bulk transfer of large packets,
which introduces a new set of problems such as the need
for 100% reliability, pipelining, channel switching, and
scalability in terms of both network size and construc-
tive interference.

The scalability of constructive interference was re-
cently studied by Wang et al. [28]. They showed that
the reliability of constructive interference decreases sig-
nificantly when the number of concurrent transmitters
increases, where reliability is defined as the probability
that a packet that is concurrently transmitted by multi-
ple transmitters will be decoded correctly at a receiver.
While [28] is the first work to study this problem, it is
based on theory and simulations, and does not include
any experimental evaluation. Our empirical results show
that the scalability problem highlighted is actually more
severe in practice. Wang et al. also proposed Spine Con-
structive Interference based Flooding (SCIF) to mitigate
the scalability problem, but the correctness of SCIF as-
sumes many conditions that are hard to achieve in prac-
tice. For example, length of a network cell is half of
the radio communication range. In contrast, our strat-
egy for handling the scalability problem is a fully prac-
tical solution based on collection tree protocols such as
CTP [11] and the observation that typically more than
50% of nodes in a collection tree are leaf nodes even at
the lowest transmission power where the underlying net-
work is connected [4].

A key challenge in implementing pipelining over a
multihop path is self interference: a node’s next packet
can interfere with its immediate previously forwarded
packet. There are two common solutions. First, we can
introduce inter-packet gaps such that the previous packet
would be out of the interference range before attempting
to transmit the next packet [15]. However, this method
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would drastically reduce the end-to-end throughput as a
long gap of 5 packet transmission times is required for a
single flow in practice [15]. Moreover, in the case where
multiple data flows are active, this method is ineffective
because of inter-flow interference. The second solution
is to exploit channel diversity [23, 24, 8]. However, we
observe that this approach ignores two practical issues
that can severely degrade the performance of its packet
pipeline. First, although the IEEE 802.15.4 standard de-
fines 16 non-overlapping channels, the number of chan-
nels of usable quality is typically much smaller in prac-
tice because of various factors, e.g., interference from
WiFi channels [21]. Second, the approach ignores the
fact that links for routing are typically chosen on the best
available channel, and the performance of other chan-
nels on such links can be poor in practice. These two
issues can severely degrade the performance by stalling
the packet pipeline.

As dissemination is a fundamental service in sensor
networks, there are numerous protocols in the litera-
ture [6, 7, 10, 12, 18, 14, 17]. Typically, they are epi-
demic approaches incorporating special techniques in or-
der to reduce the incurred overhead. Such techniques
include Trickle suppression [20], network coding [12],
exploiting link qualities [6], virtual machines [19], etc.
While existing protocols differ in their techniques, they
all share a common feature that they employ a MAC pro-
tocol like CSMA/CA or TDMA for contention resolu-
tion, and typically their dissemination times are in the
order of minutes for disseminating full images in prac-
tical networks. Our goal in this paper is to completely
eliminate contention overhead by exploiting constructive
interference and we show that by doing so, we can re-
duce the dissemination time by an order of magnitude
compared to existing approaches.

3 Measurement Study

To understand the behavior of simultaneous transmis-
sions in real-world setups, we conducted a measurement
study of constructive interference on the Indriya [3] wire-
less sensor testbed. In particular, we studied the scalabil-
ity of simultaneous transmissions and correlation among
packet receptions across different nodes decoding such
transmissions.

We used the code from the Glossy [9] project in our
experiments, our experimental methodology is similar to
that adopted by Ferrari et al. in [9]. An initiator node
broadcasts a packet to a set of nodes which in turn for-
ward the received packet concurrently back to the initia-
tor. This results in constructive interference at the initia-
tor, where we measured the reliability of the reception.
Since our goal is to use constructive interference for the
dissemination of large objects, we used the maximum

packet size of 128 bytes in our experiments. In addi-
tion, the payload of each packet was randomized. Our
experiments were carried out on the default Channel 26,
unless specified otherwise. Channel 26 is one of the only
two ZigBee channels that does not overlap with the com-
monly used WiFi channels [21].

3.1 Scalability

In Fig. 1, we plot the reliability of packet reception
against the number of concurrent transmitters for three
randomly chosen initiators on three different floors of the
Indriya testbed. In each experiment, both the initiator
and the randomly chosen set of concurrent transmitters
were located on the same floor. We recorded over 1,000
packet transmissions on each floor on Channel 26. We
see from Figs. 1(a) and 1(b) that reliability generally de-
creases when there are more concurrent transmitters.

In fact, it had been shown by Wang et al. [28]
through analytical model and simulation that the reliabil-
ity of constructive interference decreases when the num-
ber of concurrent transmitters increases, due to the in-
crease in the probability of the maximum time displace-
ment across different transmitters exceeding the required
threshold for constructive interference. Our measure-
ments suggest that the highlighted problem is more se-
vere in practice, and even a small number of three to five
concurrent transmitters can significantly degrade the re-
ception at a receiver.

However, it is sometimes possible for an increase in
the number of concurrent transmitters to result in im-
proved reception reliability. In particular, we see in
Fig. 1(c) that by adding a sixth node, the reliability in-
creases from about 37% to 100%. This is likely caused
by the capture effect since the sixth node was located
some 2 meters away from and within line of sight of the
initiator.

This suggests that the impact of the number of trans-
mitters (transmission density) on reception reliability
does not follow a fixed trend like what was predicted by
Wang et al. [28]. But depends also on the positions of
the concurrent transmitters relative to the receiver. So,
instead of attempting to determine the optimal transmis-
sion density, we can try to transmit at both high and low
transmission densities to improve reception reliability.

3.2 Receiver Correlation

In existing dissemination protocols, it is common for
a node to attempt to recover missing packets from its
neighbors. It is hence important for us to understand
the correlation of the packets received by neighboring
receivers. While Srinivasan et al. had previously investi-
gated the correlation of packets received by the receivers
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Figure 1: Plot of reliability against the number of concurrent senders.

in a sensor network [26], they did not study the correla-
tion in the presence of constructive interference.

To this end, we set up an experiment involving 21
nodes spanning an area of 30m × 30m on the 3rd floor of
Indriya. One node was designated as the initiator node,
ten nodes were randomly chosen to serve as relays, and
the remaining ten were used as receivers. The initiator
broadcasts a packet once every second over a duration of
four hours and the relay nodes forward the packet con-
currently, which results in constructive interference at the
various receiver nodes. As Srinivasan et al. had earlier
shown that WiFi interference is the most likely reason
for correlations in packet reception [26], we repeated this
experiment on two separate channels: Channel 26, which
is non-overlapping with the WiFi channels occupied in
the building where Indriya is deployed, and Channel 22,
which overlaps with an occupied WiFi channel.

We investigated the correlation among the packet re-
ceptions at the receiver nodes (R) by computing the
Pearson’s correlation coefficient at a granularity of one
packet. We present the coefficient values for Channels
26 and 22 in Table 1. Note that as a coefficient matrix
corresponding to a channel is symmetric, we represent
data corresponding to the two channels in a single table
(matrix). The values in the lower half of the table (below
the diagonal) correspond to Channel 26 and the upper
half corresponds to Channel 22.

As expected, for Channel 26, which does not overlap
with an occupied WiFi channel, the correlation coeffi-
cients are small. This suggests that the packet recep-
tions across different receivers are effectively indepen-
dent. On the other hand, for Channel 22, which over-
laps with an occupied WiFi channel, the coefficients are
relatively large, indicating that there is significant corre-
lation in the reception at the various receivers. Our re-
sults suggest that it might be hard for a node to recover
missing packets from its neighbors if a noisy channel like
Channel 22 is used, since many neighboring nodes would
likely be missing the same packets.

Table 1: Correlation coefficients observed on Channel 26
(lower half) and Channel 22 (upper half).

R 1 2 3 4 5 6 7 8 9 10
1 1.0 .56 .62 .64 .57 .58 .60 .52 .55 .58
2 .04 1.0 .52 .63 .51 .54 .46 .53 .50 .55
3 0.0 -.02 1.0 .55 .48 .56 .46 .44 .46 .49
4 .05 .23 0.0 1.0 .61 .61 .52 .63 .59 .68
5 .04 .07 .01 .13 1.0 .51 .52 .51 .61 .53
6 .03 .09 -.01 .13 .03 1.0 .46 .48 .50 .53
7 .03 .12 0.0 .16 .06 .09 1.0 .45 .49 .47
8 .02 .11 -.01 .17 .06 .11 .13 1.0 .49 .66
9 .02 .03 .01 .06 .08 .02 .05 .02 1.0 .49
10 .02 .10 0.0 .15 .10 .09 .17 .21 .05 1.0

4 Splash

In this section, we describe Splash, a new data dissemi-
nation protocol for large data objects in large sensor net-
works that completely eliminates contention overhead by
exploiting constructive interference and pipelining.

Raman et al. proposed PIP (Packets in Pipeline) [24]
for transferring bulk data in a pipelined fashion over a
single path of nodes over multiple channels. They ex-
ploit channel diversity to avoid self interference by hav-
ing each intermediate node use a different channel to re-
ceive packets. A key insight of this pipeline approach
is that at any point in time, an intermediate node is ei-
ther transmitting or receiving packets and this achieves
the maximal utilization of air time.

Splash can be considered as an extension of PIP’s ap-
proach that incorporates three key innovations to support
data dissemination to multiple receivers over multiple
paths:

1. Tree pipelining which exploits constructive inter-
ference to effectively create parallel pipelines over
multiple paths that cover all the nodes in a network.
In our approach, a collection tree is used in the re-
verse direction for dissemination which in turn al-
lows us to mitigate the scalability problem of the
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Figure 2: Illustration of pipelining over a tree.

constructive interference and to minimize the differ-
ences that exist among the performance of different
channels.

2. Opportunistic overhearing from peers by exploiting
multiple pipelines, which provides each node with
more chances of receiving a packet.

3. Channel cycling that increases the chance of reusing
a good channel while avoiding interference. Dif-
ferent channels are used at different stages of the
pipeline between different transmission rounds to
avoid stalling of the pipeline in case a bad channel
is inadvertently chosen.

In the rest of this section, we discuss in detail various
components of Splash and some of its implementation
details.

4.1 Tree Pipelining

Splash is the first protocol to exploit constructive inter-
ference to support pipelining over a dissemination tree
in which each level of the tree acts as one stage of the
pipeline. This is illustrated in Fig. 2.

In the first cycle (see Fig. 2(a)), the root node (level
zero) transmits the first packet P1. The receivers at the
first level, which are synchronized upon receiving P1,
will simultaneously forward P1 in the second cycle so
that these simultaneous transmissions interfere construc-
tively at the nodes on the second level (see Fig. 2(b)). In
the third cycle (see Fig. 2(c)), while nodes at the second
level forward P1 to the third level, the root node simulta-
neously transmits the second packet P2. Note that these
simultaneous transmissions of different packets do not
interfere with each other as each level of the tree is con-
figured to transmit/receive packets on a different channel.
In Fig. 2(c), P2 is transmitted on the receiving channel of

the first-level nodes while P1 is transmitted on a differ-
ent receiving channel for the third-level nodes. Note also
that a third-level node will receive transmissions from
several second-level nodes, instead of just one. We have
omitted some of the transmission arrows in Fig. 2(c) to
reduce clutter.

This results in a tree-based pipeline in which pack-
ets are disseminated in a ripple-wave-like fashion from
the root. Except for the root node (which only trans-
mits), all the nodes are either transmitting or receiving at
all times once the pipeline is filled (see Fig. 2(d)). This
allows Splash to achieve maximum possible end-to-end
throughput.

The tree structure is needed to allow Splash to coor-
dinate transmissions and channel assignment, also to en-
sure that each transmission is forwarded to every node in
the network. Splash uses an underlying collection pro-
tocol like CTP [11] to derive its tree structure. We be-
lieve that our approach would incur minimal overhead as
a CTP-like collection protocol is an integral part of most
sensor network applications and we can make use of its
existing periodic beacons in order to build the dissemina-
tion tree. Moreover, as CTP-like protocols are typically
data-driven and they are designed to build stable trees by
preferring stability over adaptability [1], diverting some
of its periodic beacons for another use will not affect the
stability of its data collection tree.

In practice, collection protocols often attempt to use
the best links on the best channel (typically Channel
26) to build a tree. However, the performance of the
other channels on such links is often not comparable to
that of the best channel. So, if a dissemination tree is
built using the default channel, the link quality on the
same transmitter-receiver pair may be good on the de-
fault channel but poor on a different channel. On the
other hand, building the dissemination tree on the poorest
channel is also not a viable option since the network may
not even be connected on such channels. Our approach
therefore is to use the best channel (Channel 26) to build
the dissemination tree at a lower transmission power but
to use the maximum transmission power during dissem-
ination. Our hypothesis is that the performance of dif-
ferent channels at the maximum transmission power is
likely be comparable to that of the best channel at a lower
transmission power.

Opportunistic Overhearing. In the transmission
pipeline, each node is either receiving or transmitting.
When a node is unable to successfully decode a trans-
mission, it will be unable to relay the packet to the next
stage. In such instances, instead of idling, such a node
can switch to listening mode and attempt to recover the
missing packet by overhearing the transmissions of its
peers on the same level of the dissemination tree. This
means that each node effectively has two opportunities
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Figure 3: Packet format used in Splash.

to receive a given packet.
The decision to overhear transmissions has to be made

before a node has completely received and decoded a
packet, because to achieve constructive interference, a
node needs to start calibrating its radio for transmission
even before the packet to be transmitted is completely
read from the radio hardware buffer. By the time a node
completely reads, decodes and identifies packet corrup-
tion, its peers would have started calibrating their ra-
dio for transmission, and they begin transmissions before
the node can switch over to overhearing mode which in-
volves calibrating the radio for reception.

In order to address this issue, we add two bytes of par-
ity information of the data payload bytes that are located
before the last 12 bytes of the packet as the time required
to receive these 12 bytes is the minimum amount of time
necessary for verifying packet corruption and to either
switch channel for overhearing in the case of corruption
or to calibrate the radio for synchronous transmissions
otherwise. Fig. 3 depicts format of a Splash packet with
its default data payload size of 64 bytes. The parity of
the first 54 bytes of data is computed and inserted in the
header. This allows a receiving node to detect any cor-
ruption in these bytes as soon as it receives the 54th data
byte. If bit corruption is detected by the parity check, the
reception of the current packet is aborted and the node
immediately switches its channel to the receiving chan-
nel of its next hop nodes so that it can attempt to overhear
the same packet while it is being forwarded by its peers
in the next cycle. If corruption occurs within the last 12
bytes of the packet, the packet will not be recoverable
with opportunistic overhearing.

4.2 Channel Cycling & Channel Assign-
ment

Channel Cycling. It is well-known that the quality of
channels is a function of both temporal and spatial vari-
ations. To ensure that nodes do not keep using the same
(poor) channel, we use a different channel assignment
between different rounds of dissemination in order to re-
duce the impact of the bad channels. In the case where
the root transmits the same packet twice, by incorpo-
rating opportunistic overhearing and channel cycling, a
node can potentially receive a packet 4 times, and pos-
sibly over 4 different channels. If the reception on one
of the channels is bad, the packet could possibly be suc-

C1 C2 C2 C3 C3 C4 C4C1

C1 C2 C3 C4

2 3 4 5 6 7 8

Splash

PIP

1 2 3 4Root

1Root

Figure 4: Channel assignment.

cessfully decoded on one of the remaining channels.

We coordinate channel switching between different
dissemination rounds of Splash by transmitting a small 7-
byte control packet. After every round of dissemination,
the control packet is flooded from the root node over the
tree pipeline by exploiting constructive interference 20
times. We do so because while there is a probability of
some nodes not receiving this packet if we flood it only
once, it has been shown that the probability that a node
will receive such a small control packet over construc-
tive interference is more than 0.999999 for ten retrans-
missions on Channel 26 [9]. We flood 20 times for good
measure because we do not always use a channel that is
as good as Channel 26. Also, we can afford to do so be-
cause flooding the packet 20 times takes only a few tens
of milliseconds. After the completion of these 20 floods,
a node that received the control packet at least once will
switch to a pre-assigned channel on which it is expected
to receive data packets in the next dissemination round.
If a node still fails to receive the control packet, a timeout
is used and the node recovers any missing data packets
during local recovery.

Channel Assignment. In Fig. 4, we illustrate the
channel assignment strategies for PIP and Splash using
only four channels (C1, C2, C3, and C4). There are two
key advantages of our assignment strategy. First, it al-
lows more efficient channel cycling than PIP’s method
by allowing to cycle good channels in pairs on consecu-
tive pipeline stages. Second, it supports a longer pipeline
if interference extends to several hops as observed in a
deployment on the Golden Gate Bridge [15]. However,
in our strategy, we need to ensure that we do not use pairs
of adjacent channels on consecutive pairs of stages as ad-
jacent channels interfere with each other [29].

In our current implementation of Splash, we choose
the ZigBee channels in such a way that they are either
non-overlapping or only partially overlapping with the 3
most commonly used WiFi channels (channels 1, 6 and
11). On the testbeds which have network diameters not
more than 9 hops, we observed that Splash’s channel as-
signment strategy needs only four such ZigBee channels
to avoid any interference.
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4.3 Exploiting Transmission Density Di-
versity

We had shown in Section 3.1 that the effect of the num-
ber of transmitters (transmission density) on reception
reliability for constructive interference does not follow
a fixed trend but depends on the positions of the concur-
rent transmitters relative to the receiver.

Our key insight is that we can exploit diversity in
transmission density to improve reliability, not by at-
tempting to determine the optimal number of transmit-
ters, but by transmitting the full data object twice using
different transmission densities. In the first round, data
is disseminated over the dissemination tree but only non-
leaf nodes are asked to transmit. Since typically more
than 50% of nodes in a tree are leaf nodes even at the
lowest transmission power where the underlying network
is connected [4], the number of concurrent transmitters is
significantly reduced. In the second round, transmissions
are made by all the nodes at each level of the tree. By us-
ing more transmitters, some nodes which were not reach-
able in the first round might now be reached. Moreover,
a higher node density is also helpful in specific cases be-
cause of the capture effect as we discussed in Section 3.1.

4.4 XOR Coding

After two rounds of dissemination using different trans-
mission densities, we observed in our experiments (see
Section 5) that a considerable percentage of the nodes
(about 50%) received most but not all the disseminated
packets. This is a bad situation for local recovery be-
cause even though the number of missing packets may
be small, there would be significant wireless contention
if too many nodes attempted to recover the missing pack-
ets locally from their neighbors. This would significantly
reduce the gain achieved through constructive interfer-
ence by the first two rounds of dissemination.

While it is possible to perform a few more rounds of
simple dissemination, we found that the potential gain
was limited. This is because the missing packets are dif-
ferent among the different nodes and the root has no way
of efficiently determining which exact packets are miss-
ing. If all packets are disseminated again, the overhead
is very high with minimal gain.

This motivated us to use a third round of dissemination
based on XOR coding instead. XOR coding is best suited
for recovering missing packets if a node already has most
of the packets and only a small portion is missing. As-
sume that a node already has a fraction p of the total
packets. If the degree of the XOR packet is n (i.e. the
coded packet is constructed by performing an XOR op-
eration on n packets), then the likelihood that the packet
is useful (i.e. that the receiving node had earlier received

n−1 out of the n packets successfully) is n(1− p)pn−1.
This likelihood is maximized when n = −1

ln(p) . We found
in our experiments that p is about 95% after the first two
rounds of dissemination, so in our current implementa-
tion, we set n = 20 ≈ −1

ln(0.95) .
In the third round, the payload in each packet is the

result of 20 randomly chosen packets XORed together.
To minimize the overhead, we do not indicate the iden-
tities of the packets used in the XOR operations in the
packet header. Instead, we use the sequence number of
the packet as a seed for choosing these packets based
on a predefined pseudo-random function. This allows a
receiver to decode packets without any additional over-
head. In addition, like the first round of dissemination,
only non-leaf nodes participate in forwarding XORed
packets in the third round.

Naively, it might seem like it is sufficient to send
1
20 = 5% of the total number of packets. However, we
found empirically (see Section 5.2) that such an approach
is not sufficient to achieve a high packet recovery rate.
Instead we send all the original packets with each orig-
inal packet XORed with 19 randomly chosen packets.
This ensures that every single packet is retransmitted at
least once, and it also means that the third dissemination
round is equivalent to the first two rounds in length.

We also considered using a fountain or rateless code
during the “regular” dissemination rounds instead of in-
troducing a third round of simple XOR-coded dissemi-
nation. However, we decided not to do so because of the
associated decoding costs. In the experiments with Rate-
less Deluge [12], the decoding process can easily take
more than 100 seconds for a 32-kilobyte data object. In
comparison, Splash can disseminate the same object in
about 25 seconds with simple XOR coding.

4.5 Local Recovery

After three rounds of dissemination, typically about 90%
of the nodes would have downloaded the complete data
object and most of the remaining nodes would have
downloaded most of the object. This makes local recov-
ery practical. Local recovery also allows the nodes to
exploit spatial diversity and non-interfering nodes in dif-
ferent parts of the network can simultaneously recover
the missing packets from their neighbors.

We implement a very simple CSMA/CA-based local
recovery scheme on the default Channel 26. As Splash
uses an underlying collection tree protocol to build its
dissemination tree, a node will have link quality esti-
mates for its neighboring nodes. A node with missing
packets will send a bit vector containing information on
the missing packets to a neighbor, starting with the one
with the best quality link. If this neighbor has any of
the missing packets, it will forward these packets to the
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requesting node; if not, the requesting node will ask the
next neighbor. If a node reaches the end of its neighbor
list and it still has missing packets, it will start query-
ing its neighbors afresh. Because the network is fully
connected, this local recovery procedure is guaranteed
to converge. Also, as most (about 90%) nodes already
have the full data object, it converges quickly (see Sec-
tion 5.2).

4.6 Implementation Challenges

The key requirement for constructive interference is that
nodes have to transmit the same packet at the same time.
Glossy satisfies this requirement as a set of nodes receiv-
ing a packet are synchronized to the SFD (Start Frame
Delimiter) interrupt from the radio hardware (Chip-
Con2420 (CC2420)) signalling the end of the reception
of a packet. Splash is built upon the source code for
Glossy [9]. The challenge is to transform the Glossy
code into a dissemination protocol while retaining its ca-
pability to perform synchronized transmissions.

Channel Switching. First, we added the capability for
switching channels for the pipelining operations. Upon
receiving a packet, a node switches its channel to that
of its next hop nodes, transmits the received packet, and
then switch back to its receiving channel to listen for the
next packet. Channel switching for transmission has to
be performed only after completely receiving an incom-
ing packet and before submitting the transmit request to
the radio for forwarding the received packet. The time
taken for channel switching cannot vary too much across
nodes as such variations desynchronize their submission
of the transmit request.

On the other hand, as the clocks of microcontrollers
are not synchronized across nodes, the time taken for
channel switching can vary from node to node. Our
goal is to minimize such variations by enabling chan-
nel switching by executing only a minimal number of
instructions between the completion of the reception of a
packet and the submission of the request for its transmis-
sion (forwarding).

The operation of channel switching involves writing to
the frequency control register of the radio hardware and
then calibrating the radio for transmission. The action
of writing to a register in turn involves enabling the SPI
(Serial Peripheral Interface) communication by pulling
down a pin on the radio, communicating the address of
the register to be written, writing into the register and
finally disabling the SPI access. Similarly, radio calibra-
tion involves enabling the SPI, transmitting a command
strobe requesting for calibration and disabling the SPI.
While the actual operations of calibration and register
access take more or less constant time, enabling the SPI
twice, once for the register access and another time for

transmitting the command strobe can add to the variabil-
ity and cause desynchronization. In order to avoid this,
we exploit the multiple SPI accesses capability of the
CC2420 radio which allows register access and to send
strobes continuously without having to re-enable the SPI.
Using this feature, we enable the SPI only once at the be-
ginning of a channel switching operation.

We further minimize the number of in-between in-
structions to be executed by splitting the channel switch-
ing into two phases. In the first phase, we enable the SPI
access and communicate the address of the frequency
control register to the radio. In the second phase, we
write into the register and transmit the command strobe
to start transmit calibration. The number of in-between
instructions is minimized by the fact that we overlap the
first phase with the packet reception by the hardware.
This way we execute only the second phase between the
completion of the reception of a packet and the submis-
sion of the request for its transmission.

Accessing External Flash. Another important re-
quirement for a dissemination protocol is that the data
object has to be written into the external flash because
typical sensor devices only have a small amount of RAM.
In Splash, since a node is always either transmitting or
receiving a packet at any given point of time, flash ac-
cess has to be overlapped with a radio operation, so we
write a packet to the flash while it is being transmitted by
the radio. As flash access is faster than the radio trans-
mission rate [8], the write operation completes before the
radio transmission and does not cause any synchroniza-
tion issues.

Handling GCC Compiler Optimizations. Although
the arrival of the SFD interrupt indicating completion of
the reception of a packet is synchronized across nodes,
its service delay varies from node to node. The key im-
plementation feature of Glossy is that each node executes
a different number of “nop” assembly instructions based
on its interrupt service delay so that all the nodes sub-
mit a request to the radio hardware at the same time for
forwarding the received packet.

The most challenging problem faced during imple-
mentation is the fact that the optimization feature of the
GCC compiler affects the service delay for the SFD in-
terrupt (perhaps for some other interrupts too). Without
enabling compiler optimizations, the resulting binary (a
collection application coupled with Splash) was too large
to fit into a sensor device. However, with optimizations
enabled, minor changes to parts of the code could change
the service delay, making it difficult to set the number of
“nop” instructions to be executed. However, this issue
can be handled as changes to the code will change the
minimum duration required for servicing the SFD inter-
rupt. While it is tedious, we can account for this change
by measuring the minimum service delay after making a
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change that affects the service delay. The same proce-
dure was followed in the development of Glossy.

5 Performance Evaluation

In this section, we present the results of our evaluations
carried out on the Indriya [3] and Twist [13] testbeds.

Indriya is a three-dimensional sensor network with
139 TelosB nodes spanning three floors of a building
at the National University of Singapore. We compare
Splash against TinyOS’s DelugeT2, the de facto stan-
dard data dissemination protocol for sensor networks.
For Splash, a low power setting of -10 dBm is used to
build the dissemination tree and the maximum transmis-
sion power of 0 dBm is used for dissemination. For
DelugeT2, we use the maximum transmission power of
0 dBm on Channel 26. We disseminate a 32-kilobyte
data object for both Splash and DelugeT2.

Splash has a data payload of 64 bytes in every packet.
We will show in Section 5.3 that the performance of Del-
ugeT2 varies depending on the packet size, but there is no
clear relationship between packet size and performance.
Also, the impact of packet size is relatively insignificant.
In this light, we adopted the default payload size of 22
bytes for DelugeT2 in our experiments on Indriya, un-
less otherwise stated.

The Twist sensor testbed is deployed at the Berlin
University and currently it has 90 Tmote Sky devices.
The experimental settings on Twist are similar to that
on Indriya, except for the following differences: first,
we use a lower transmission power of -15 dBm to build
the dissemination tree for Splash, as Twist is a much
smaller deployment than Indriya. Second, instead of us-
ing TinyOS’s DelugeT2, we use Contiki’s Deluge. This
is because to execute TinyOS’s DelugeT2, we need to ex-
ecute some tools on a machine connected to base-station
nodes (root nodes) which is difficult in a case of a remote
testbed like Twist. We retain default settings of Contiki’s
Deluge including 0 dBm transmission power and Chan-
nel 26. Moreover, its default payload size of 64 bytes is
also retained as Twist is a smaller deployment with stable
links of good quality.

We execute Splash as a part of Contiki collection pro-
tocol [16] and Splash accesses the collection protocol’s
data in order to build the dissemination tree. We exe-
cute DelugeT2 as a part of TinyOS collection protocol,
CTP [11] by coupling the DelugeT2 with the TinyOS’s
standard “TestNetwork” application with its default set-
tings. We also compare Splash against DelugeT2 run-
ning as a standalone golden image (GI) without CTP.
Note that the standalone version is seldom used in prac-
tice, as a dissemination protocol is only useful when cou-
pled with a real application.

5.1 Summary of Testbed Results

The summary of our results on Indriya and Twist are
shown in Tables 2 and 3 respectively. For each exper-
imental run, we randomly picked a node as the root of
the dissemination tree. In the tables, “size” indicates
the depth of the Splash’s dissemination tree, and R1, R2
and R3 indicate the average reliability per node after the
first, second and third rounds of dissemination respec-
tively. By reliability, we refer to the fraction of the data
object that has been successfully downloaded by a node.
NR3−100% is the proportion of nodes that have 100% of
the disseminated data object after the third round. Recall
that XOR coding is employed in the third dissemination
round. Rlr indicates the average reliability per node af-
ter local recovery. TSplash is the time taken for Splash to
complete the dissemination, i.e. when every node in the
network has successfully downloaded the entire data ob-
ject. Similarly, TDelugeT 2+CTP, TDelugeT 2GI , and TDeluge
are the corresponding times taken for DelugeT2 with
CTP, DelugeT2 as standalone golden image, and Con-
tiki’s Deluge respectively, to complete the dissemination.

Indriya Testbed. We observe from Table 2 that on av-
erage Splash takes about 25 seconds (see TSplash) to com-
plete the dissemination of a 32-kilobyte object, while
DelugeT2 coupled with CTP takes about 524 seconds.
Splash reduces dissemination time by an average factor
of 21.06 (93.68% reduction). Splash also outperforms
DelugeT2 running as a standalone golden image by a
factor of 12.43 (89.2% reduction). One obvious draw-
back of DelugeT2 is that there is a large variation in its
dissemination time, ranging from 209 seconds to 1300
seconds. This is likely due to variations in the conditions
of the default Channel 26 since DelugeT2 uses a fixed
channel. By using multiple rounds of dissemination, op-
portunistic overhearing, and channel cycling, Splash is
more resilient to variations in the channel conditions. In
particular, a node in Splash has the potential to receive a
packet up to 6 times, and more importantly, on up to 6
different channels. If the quality of one or two channels
is bad, a packet can potentially be successfully decoded
on one of the other remaining channels.

We also observe that the dissemination time for Del-
ugeT2 as golden image is usually less than DelugeT2
with CTP. This is because dissemination traffic in the
latter case has to contend with CTP’s application traf-
fic. While Splash relies on Contiki’s Collection Protocol
to build its dissemination tree, like Glossy [9], Splash
disables all the interrupts other than the Start Frame De-
limiter interrupt during its three rounds of dissemination
where constructive interference is exploited. This means
that any underlying application will be temporarily sus-
pended and most of the Splash’s traffic will be served ex-
clusively without interference from any application traf-
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Table 2: Summary of results for 139-node Indriya testbed.

Splash DelugeT2
Tree No. size R1 R2 R3 NR3−100% Rlr TSplash TDelugeT2+CT P TDelugeT2GI

[hops] [%] [%] [%] [%] [%] [sec] [sec] [sec]
1 5 84.54 97.23 98.47 91.30 100.00 22.49 1300 924
2 6 86.52 96.91 98.58 92.03 100.00 22.61 286 160
3 7 76.68 94.62 97.80 86.23 100.00 23.18 209 286
4 7 88.02 96.12 97.78 92.75 100.00 23.74 218 158
5 9 76.97 93.65 96.69 81.88 100.00 23.86 649 180
6 7 76.73 95.27 98.16 89.86 100.00 25.98 610 160
7 7 80.75 93.51 96.98 89.13 100.00 26.25 365 379
8 7 83.57 94.43 96.01 87.68 100.00 26.89 377 277
9 5 82.46 95.26 97.47 85.51 100.00 28.09 676 313
10 8 84.28 94.92 96.70 86.23 100.00 28.39 550 216

Average 82.05 95.19 97.46 88.26 100.00 25.15 524 305.3

Table 3: Summary of results for 90-node Twist testbed.

Splash Deluge
Tree No. size R1 R2 R3 NR3−100% Rlr TSplash (for a 32KB file) TDeluge (for a 2KB file)

[hops] [%] [%] [%] [%] [%] [sec] [sec]
1 4 90.58 97.09 99.22 94.38 100.00 20.07 356.60
2 4 81.08 94.70 99.31 92.13 100.00 20.19 431.48
3 4 86.53 96.19 98.00 91.01 100.00 22.79 351.67
4 4 78.64 94.10 98.12 84.09 100.00 23.37 518.19
5 4 81.42 93.95 97.98 89.89 100.00 23.41 467.00
6 4 78.04 93.55 96.82 85.39 100.00 26.66 439.81
7 4 83.90 95.18 97.54 89.89 100.00 26.79 345.28
8 4 83.70 93.64 96.45 84.27 100.00 27.32 388.68
9 6 81.58 93.35 97.02 85.39 100.00 27.45 484.10
10 5 80.78 93.09 97.11 85.39 100.00 29.25 397.59

Average 82.62 94.48 97.76 88.18 100.00 24.73 418.04

fic. On the other hand, because DelugeT2 is built on
TinyOS services, it is not possible to completely dis-
able all the interrupts during its execution. DelugeT2 as
golden image provides us with the baseline performance
without interference from application traffic. Note that
application suspension in Splash is not a problem as
most sensor applications have no real-time requirements.
Moreover, interrupts are re-enabled long before the com-
pletion of dissemination, before starting the round of lo-
cal recovery that dominates the dissemination time (see
Fig. 7). Applications are suspended for only about 8.2
seconds while disseminating the 32-kilobyte object.

Twist Testbed. As shown in Table 3, Splash’s per-
formance on Twist is similar to that on Indriya. It takes
about 25 seconds on average to complete the dissemi-
nation of a 32-kilobyte object. On the other hand, be-
cause the Contiki implementation of Deluge is less effi-
cient, it takes about 418 seconds to disseminate a much
smaller object of 2 kilobytes. Note that Contiki Del-
uge is a thin implementation with minimal function-
ality that allows only minimal changes to its settings.
Hence, Splash is able to significantly outperform Con-
tiki’s Deluge even when disseminating a data object that
is 16 times larger. Splash effectively achieves a network-
wide goodput of above 10 kilobits/sec per node on both

Indriya and Twist testbeds, which is higher than that
of all existing network-wide data dissemination proto-
cols [6, 5, 7, 10, 12, 30, 18, 14, 17] in the literature.

Memory Consumption. Splash not only outperforms
DelugeT2 in terms of speed, it is also much more effi-
cient than DelugeT2 in terms of memory usage. Splash
requires only 11.38 kilobytes of ROM and 0.13 kilobytes
of RAM whereas DelugeT2 requires 21.01 and 0.81 kilo-
bytes of ROM and RAM respectively. Hence, Splash
uses 9.63 kilobytes of ROM and 0.68 kilobytes of RAM
less than DelugeT2. Given that it is not uncommon for
sensor devices to have only about 48 and 10 kilobytes of
ROM and RAM respectively, these are significant sav-
ings in memory, that will be available for use by sensor
applications.

Comparison to Existing Protocols. Because we were
not able to obtain the code for the state-of-the-art dissem-
ination protocols ECD [6] and MT-Deluge [10], we used
an indirect method to compare Splash against them and
other existing dissemination protocols [5, 12, 30, 18]. It
turns out that these protocols are all evaluated against
Deluge and so we have a convenient common baseline
with which to compare against without having to im-
plement and evaluate them individually. We present the
relative performance of Splash to these protocols in Ta-
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Table 4: Comparison of Splash to existing protocols.

Protocol No. of File Reduction
nodes size [KB] factor

MNP ([18], 2005) 100 5 1.21
MC-Deluge ([30], 2005) 25 24.3 1.6

Rateless Deluge ([12], 2008) 20 0.7 1.47
ReXOR ([5], 2011) 16 4 1.53

ECD ([6], 2011) 25 10 1.44
MT-Deluge ([10], 2011) 20 0.7 2.42

Splash 139 32 21

ble 4. In the fourth column, we present the reduction
factor achieved by each of these algorithms compared to
Deluge. It is evident that Splash’s performance is signif-
icantly better than that of the state-of-the-art protocols.
Not only is Splash faster by an order of magnitude, but
we also achieve this improvement on a larger testbed and
with a bigger file than all the previous algorithms. Note
also that most of the results for the existing protocols in
Table 4 are compared against classical Deluge (Deluge
2.0 of TinyOS 1), which is in fact slower than DelugeT2,
against which we have compared Splash.

Energy Consumption. Duty cycling is typically
adopted by applications that transmit a data packet once
in a while, and not for dissemination that involves trans-
fer of large amounts of data [25]. As duty-cycled trans-
missions involve a large overhead such as the transmis-
sion of a long preamble before sending every packet [22],
they make dissemination significantly more expensive in
terms of both time and energy. This drives most of the
dissemination protocols in the literature [14, 12, 5, 6, 10,
30] to keep the radio awake during dissemination as re-
quired in Splash. Therefore, energy consumption is di-
rectly proportional to the dissemination time. This means
Splash reduces energy consumption by the same factor
by which it reduces dissemination time.

5.2 Contribution of Individual Techniques

In order to achieve a high reliability, Splash incorporates
four key techniques: (1) XOR coding; (2) transmission
density diversity; (3) opportunistic overhearing; and (4)
channel cycling. We now evaluate the contribution of
these techniques together with local recovery.

XOR Coding. We employ XOR coding in the third
round of dissemination. The goal of using XOR coding
is to significantly increase the number of nodes that suc-
cessfully receive the entire file so that local recovery will
be much more efficient. We present the proportion of
nodes that achieve a reliability of 100% before and af-
ter the third round of XORed dissemination on Indriya
in Table 5. The largest improvement was observed for
the fifth tree where the use of XOR coding increases the
percentage of nodes having the full object from 9.42% to
81.88%. On average, the number of nodes with the full

Table 5: Proportion of nodes with 100% reliability before
and after the third round of XOR coding on Indriya.

Tree No. Before XOR After XOR
1 57.25 91.30
2 50.72 92.03
3 21.74 86.23
4 33.33 92.75
5 9.42 81.88
6 26.09 89.85
7 23.91 89.13
8 47.10 87.68
9 51.45 85.51

10 48.55 86.23
Avg. 36.96 88.26

data object is more than doubled. Similar results were
observed on the Twist testbed.

To validate our hypothesis that XOR’s effectiveness
comes from helping the nodes that already have most of
the packets, we plot in Fig. 5(a) the average number of
nodes per tree found in the three different bins of reliabil-
ity for Indriya, namely <90%, between 90% and 100%,
and 100%. We see that before the third dissemination
round, there are about 20 nodes in the first bin with relia-
bility less than 90% and 67 nodes in the second bin with
reliability between 90% and 100%. XOR coding is able
to move most of these nodes in the first 2 bins into the
third bin with 100% reliability. In particular, XOR cod-
ing can reduce the size of the second bin from 67 to 7, to
give a total of 122 nodes in the 100% bin. Similar results
were observed on the Twist testbed.

For the 32-kilobyte file that we used in our experi-
ments, we XOR coded and transmitted each of the 500
packets (with a packet payload size of 64 bytes) consti-
tuting the file. One pertinent question is whether we can
do with fewer packets since an XORed packet already
contains the information of 20 packets. In Fig. 5(b),
we present a plot of NR3−100% against the number of
XOR coded packets transmitted, averaged over five ex-
perimental runs on different dissemination trees. Note
that only about 37% of the nodes have downloaded the
whole file after the first two rounds of dissemination. It is
clear from Fig. 5(b) that 100 packets is not enough, and
that there is a significant improvement in NR3−100% as
we transmit more coded packets until about 400 packets.
From 400 to 500 packets, we obtain only a small increase
of about 2% in NR3−100% (about 3 nodes). While the im-
provement is small, since local recovery over CSMA/CA
can be expensive, we decide to transmit all the 500 coded
packets for completeness since the extra 100 transmis-
sions take only an extra 0.56 seconds.

Transmission Density Diversity. To understand the
effectiveness of our attempt to exploit transmission den-
sity diversity, we disseminate a 32-kilobyte data object
without the leaf nodes transmitting (Round-1). Imme-
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Figure 5: Contributions of XOR coding and transmission density diversity.

Table 6: Performance of Splash with and without oppor-
tunistic overhearing.

With overhearing Without overhearing
No. Nlrpkts NR3−100% TSplash Nlrpkts NR3−100% TSplash

[sec] [sec]
1 1860 78.99 28.28 5536 79.71 44.07
2 1433 89.13 23.64 2415 84.06 36.19
3 1876 89.13 27.00 2531 85.51 34.98
4 420 93.48 21.94 1529 90.58 24.73
5 1356 90.58 22.68 1131 83.33 26.75

Avg. 1389 88.26 24.71 2628.4 84.64 33.34

diately after that, the object is disseminated again but
with all the nodes transmitting (Round-2). Finally, we
repeated the transmission without the leaf nodes trans-
mitting (Round-3). This approach allows us to determine
whether a node gains from a low transmission density or
a node gains from a high transmission density. The same
channel assignment is used for all three rounds.

We run this experiment five times on a dissemination
tree. As an illustration, we present the reliability ob-
served on four nodes in each of the three rounds of an ex-
perimental run in Fig. 5(c). Nodes 1 and 2 benefit from a
low transmission density (without leaves) as the achieved
reliability is higher in the first and third rounds of dissem-
ination. On the other hand, nodes 3 and 4 benefit from
a high transmission density with all nodes transmitting.
On average, we found that 38.7% of the nodes benefit
from a low transmission density and achieve higher reli-
ability than that for the higher transmission density. The
proportion of nodes that benefit from a high transmission
density is lower, about 18.1% achieve higher reliability at
the higher transmission density compared to that for the
lower transmission density. Nevertheless, the key insight
is that by varying the number of transmitters between
transmission rounds, different sets of nodes will correctly
decode packets over different transmission rounds.

Opportunistic Overhearing. Table 6 compares the
performance of Splash with and without opportunistic
overhearing on five dissemination trees on Indriya. The
table shows the total number of packets to be recovered

during local recovery (Nlrpkts) together with NR3−100%

and TSplash. We found that TSplash is increased by 8.6 sec-
onds on average when opportunistic overhearing is not
employed. Quite clearly, this is because the number of
corrupted/missed packets Nlrpkts is typically larger when
there is no overhearing, as observed on the first four of
the five considered trees. In the case of the fifth tree,
we found that overhearing did not lead to a smaller num-
ber of corrupted/missed packets Nlrpkts. However, Splash
with overhearing is still faster because the proportion
of nodes that have downloaded the full data object af-
ter 3 dissemination rounds (NR3−100%) is larger. In other
words, overhearing helps not just by increasing the like-
lihood that packets are transmitted successfully, it also
helps by ensuring that more nodes have downloaded the
complete file.

Channel Cycling. In order to evaluate the effective-
ness of channel cycling, we compare Splash with channel
cycling against Splash without channel cycling i.e., by
using the same channel assignment in all three dissemi-
nation rounds. We plot the resulting performance for five
dissemination trees on Indriya in Table 7. Without chan-
nel cycling, there is a drop in both reliability (R3) and
the percentage of nodes having the full data object after
the third round of dissemination (NR3−100%). In addi-
tion to better average-case performance, we also see that
channel cycling can significantly reduce the variance in
performance. We see that TSplash varies between 22.49 s
and 28.39 s with channel cycling, while it varies between
26.24 s and 45.08 s without.

Local Recovery. After three rounds of dissemination,
about 88% of the nodes would have successfully received
the entire data object on average on both of the testbeds
(see Column NR3−100% in Tables 2 and 3). In Fig. 6,
we plot the CDF of the reliability of those nodes that
did not successfully receive the complete file after three
rounds of dissemination. We see that among these nodes,
only about 3% and 1% have less than 10% of the data
on Indriya and Twist respectively. About 40% have at
least 90% of the data object. In Fig. 7, we present the
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Table 7: Performance of Splash with and without channel
cycling.

With cycling Without cycling
No. R3 NR3−100% TSplash R3 NR3−100% TSplash

[sec] [sec]
1 96.98 89.13 26.25 92.33 76.81 45.08
2 98.16 89.86 25.98 95.56 86.23 26.24
3 96.69 81.88 23.86 92.15 73.19 34.79
4 98.47 91.30 22.49 91.86 79.71 34.58
5 96.70 86.23 28.39 95.61 85.51 31.51

Avg. 97.40 87.68 25.39 93.50 80.29 34.44
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Figure 6: Distribution of the reliability of nodes with re-
liability less than 100%.

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 10  15  20  25  30

Ti
m

e 
(s

ec
s)

File size (KB)

completion time
local recovery
3 rounds time

Figure 7: Breakdown of completion time for different
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time taken for local recovery for data objects of different
sizes on Indriya. We also present the time taken for the
first three rounds of dissemination and the completion
time on the same graph. As expected, the time spent in
the first three rounds increases linearly with the object
size whereas time taken for local recovery is not strictly
linear due to the variations in the number of packets to be
recovered and the randomness involved in CSMA/CA.

5.3 Effect of Packet Size

It is well-known that the reliability of constructive inter-
ference decreases as packet size increases [9, 28]. To
justify our choice of 64 bytes for the Splash payload,
we compare the performance of Splash for the default
payload size against the maximum possible payload size
of 117 bytes (which results in a maximum-sized packet

Table 8: Performance of Splash for two different payload
sizes.

64 bytes 117 bytes
R1 R2 R3 NR3−100% R1 R2 R3 NR3−100%

85.12 96.82 98.68 92.03 78.19 91.60 94.47 78.26
86.35 96.64 98.30 91.30 80.58 92.04 93.52 78.99
89.41 96.90 98.83 93.48 81.91 94.65 96.45 82.61
84.64 96.20 97.67 88.41 78.96 92.59 95.20 82.61
84.49 96.99 98.29 89.13 72.08 87.54 90.35 70.29
86.00 96.71 98.35 90.87 78.34 91.68 94.00 78.55
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Figure 8: Comparison of Splash against DelugeT2 con-
figured with different payload sizes on Indriya.

of 128 bytes) for five dissemination trees on Indriya
in Table 8. As expected, reliability decreases with the
larger payload size, so we set the default payload size for
Splash to 64 bytes.

It is known that the performance of DelugeT2 varies
with packet size [2], so in order to compare Splash fairly
to DelugeT2, we also investigated the performance of
DelugeT2 for different payload sizes. We constructed 10
random dissemination trees on Indriya, and on each of
them we disseminated a 32-kilobyte object using Splash
and DelugeT2 configured with payload sizes of 22 bytes
(default), 64 bytes, and the maximum value of 107 bytes.
We ensured that Splash and the three versions of Del-
ugeT2 were executed back-to-back on each of the dis-
semination trees so as to minimize the temporal varia-
tions in channel conditions across these executions. The
results are shown in Fig. 8. For DelugeT2, we found
that while there was some variation in the average dis-
semination times depending on the payload size and the
payload size that achieves the best performance depends
on the actual network conditions, the differences in per-
formance are not significant, at least not when compared
to the dissemination times achieved by Splash.
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6 Conclusion

We propose Splash, a fast and scalable dissemination
protocol for wireless sensor networks, that exploits con-
structive interference and channel diversity to achieve
speed and scalability. To achieve high reliability, Splash
incorporates the use of transmission density diversity,
opportunistic overhearing, channel-cycling, and XOR
coding. We demonstrated with experiments on two large
multihop sensor networks that Splash can achieve an or-
der of magnitude reduction in dissemination time com-
pared to state-of-the-art dissemination protocols.
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Abstract

The cellular system is the world’s largest network, pro-
viding service to over five billion people. Operators of
these networks face fundamental trade-offs in coverage,
capacity and operating power. These trade-offs, when
coupled with the reality of infrastructure in poorer areas,
mean that upwards of a billion people lack access to this
fundamental service. Limited power infrastructure, in
particular, hampers the economic viability of wide-area
rural coverage.

In this work, we present an alternative system for
implementing large-scale rural cellular networks. Rather
than providing constant coverage, we instead provide
virtual coverage: coverage that is only present when
requested. Virtual coverage powers the network on-
demand, which reduces overall power draw, lowers the
cost of rural connectivity, and enables new markets.

We built a prototype cellular system utilizing virtual
coverage by modifying a GSM base station and a set
of Motorola phones to support making and receiving
calls under virtual coverage. To support the billions of
already-deployed devices, we also implemented a small
radio capable of adding backwards-compatible support
for virtual coverage to existing GSM handsets. We
demonstrate a maximum of 84% power and cost savings
from using virtual coverage. We also evaluated virtual
coverage by simulating the potential power savings
on real-world cellular networks in two representative
developing counties: one in sub-Saharan Africa and one
in South Asia. Simulating power use based on real-
world call records obtained from local mobile operators,
we find our system saves 21-34% of power draw at
night, and 7-21% during the day. We expect even
more savings in areas currently off the grid. These
results demonstrate the feasibility of implementing such
a system, particularly in areas with solar or otherwise-
intermittent power sources.

1 Introduction

No recent technology has had a greater impact on
economic development than mobile phones, which
comprise the largest networks on Earth and cover over
five billion subscribers [18]. Unfortunately, many people
still lack this fundamental service. Although it is difficult
to know the total number of potential users currently
without coverage, it is likely more than a billion.

Nearly 95% of this uncovered population live in rural
areas without grid power [12]. The primary reason for
their lack of service is economic; operators are unwilling
to make the large infrastructure investments (or pay the
large operating costs) required to operate in areas without
enough users to cover expenses. Contacts in rural areas
have reported prices between five hundred thousand to
one million USD for the installation of a cell tower in
an area without existing power or network [25]. Our
theory of change is simple: by reducing the cost of
infrastructure we make mobile phones viable for new
areas and users. With lower costs, we believe operators
will naturally extend their reach into more rural areas,
and new rural entrants become economically viable.

Recent advances have dramatically lowered the price
of cellular equipment [23] and backhaul networks [26].
Unfortunately, power remains a fundamental cost in any
deployment, dominating both the capital and operating
costs of rural cellular networks. The International
Telecommunications Union has indicated that 50% of
the OPEX cost for a rural network is power [17].
Commercial equipment providers have attempted to
address this fact [2, 28, 33], reducing the power
consumption of small-scale cellular equipment to less
than 90 watts. Unfortunately, further reducing power
draw is impossible without causing service interruptions;
the power amplifier quickly dominates total power used
(65%-84% of total draw) and is directly tied to coverage
radius and capacity. Each watt of power drawn is
another watt needing generation (usually diesel [12]) and
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storage; a severe limitation with expensive rural power.
One obvious way to save more power is to turn off

portions of the network for a period of time (typically
at night). This is common in rural and developing
regions [17]. For instance, in the Punjab province
of Pakistan, citizens were without grid power for over
eighteen hours a day [1]. Unfortunately, this means that
users cannot make important calls (such as emergency
calls, a critical use case [15]) while the network is off.

Our solution, virtual coverage, resolves this concern.
Virtual coverage also powers down individual cellular
towers, but only when not in use, which we demonstrate
to be a substantial fraction of the time. When network
is needed, as signaled by a user initiating or receiving a
call, the power is restored and the tower is available for
communications. This design allows us to save a large
amount of power in the largest networks on Earth while
still providing consistent coverage at all times.

Specifically, individual cellular towers are powered-
down (i.e., in “idle” mode) during periods of prolonged
idleness. Although powering down a tower is concep-
tually simple, waking one is much harder; when a user
wishes to make an outbound call, they are able to wake
the network by sending a burst from either a modified
GSM phone (our Wake-up Phone) or via a small,
low-cost, push-button transmitter (our Wake-up Radio,
functionally similar to a garage-door opener). Mobile-
terminated calls require no changes to user behavior;
the tower simply turns on and holds the call until the
requested user connects. This solution also benefits from
economies of scale by leveraging existing handset and
radio equipment.

We implemented this design by modifying a Range
Networks 5150 2G GSM base transceiver station (BTS).
We first show that “idle” mode saves between 65% to
84% of the power on a BTS, depending on the coverage
and capacity required. We also demonstrate that the
user’s experience is not dramatically affected, with the
setup of all calls increasing by only two seconds for the
Wake-up Phone and an average of at most 25 seconds in
standard, unmodified phones using the Wake-up Radio.
We show that an installation using virtual coverage in a
low-density area could operate with less than one-sixth
of the solar panels, batteries, and price of a traditional
setup. Lastly, we demonstrate that a virtual coverage
network’s power requirements scale sub-linearly with the
total number of calls. This allows smaller operators to
invest in their network as it grows, rather than with one
large capital expenditure, reducing their risk.

In addition, we simulated the use of our technology
in two existing developing world cellular networks. We
gathered a week of tower-level call activity from one
country in sub-Saharan Africa (roughly 15 million calls)
and one country in South Asia (roughly 35 million

calls). Using these records, we calculated the exact
amount of “idle time” (time where no calls were active)
in each network and combined them with estimates of
the power draw for each tower. We show that, by
utilizing virtual coverage, we could reduce the network
power draw by 34% at night (21% during the day)
for our South Asian operator. In sub-Saharan Africa,
where towers are more heavily utilized, we are able
to save 21% of the power at night (and just 7%
during the day). Although this simulation uses only
existing networks, we expect calling patterns in currently
unserved areas to have more available idle time and
thus, power savings. This reduction in operating power
would dramatically reduce the operating cost of an
off-grid, renewable powered, rural wide-area cellular
network, enabling cheaper, greener telecommunications
for people currently without network connectivity.

Summary of contributions:
• The concept of Virtual Coverage: on demand wide-

area cellular networking;
• A working cellular base station implementing virtual

coverage using OpenBTS;
• The implementation of a handset capable of waking

a virtual coverage enabled BTS;
• The design and implementation of a low-cost wake-

up radio capable of waking the network, for
supporting existing handsets;

• A technical evaluation of virtual coverage, showing
“idle” power savings, user experience impact, and
sub-linear growth in power needs as a function of
total calls; and

• An in situ evaluation of the potential power savings
based on trace data from all the cellular towers
operated by both an sub-Saharan African and South
Asian telecommunication firm.

2 Design

Our system is targeted at a specific set of users: those
in rural areas too sparse or poor to support traditional
cellular infrastructure. This encompasses more than a
billion people, in both developed and developing areas.
We start with use cases that inform our design.

Alaska Large swaths of rural America live in areas
without network coverage. Often these are agricultural
or mountainous areas where the population density is too
low or coverage too difficult to warrant the (expensive)
deployment. One example is Hatcher Pass in South
Central Alaska. Though surrounded by large towns
(Palmer, Wasilla, and Houston), the mountains are too
far from these population centers for network coverage,

2
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especially in the valleys that define the range.
Our system would enable lightweight, autonomous,

solar-powered cellular equipment that can be easily
deployed on a central mountain top, providing “on
demand” network coverage for travelers in need of
communication. As communications in these areas
will be rare, we want to enable wide-area coverage,
amortizing the cost of deploying and maintaining the
cellular equipment.

Uganda Another primary use case is in the developing
world, where potentially billions of wireless consumers
live in areas without coverage. This is almost always
in rural areas, as the high population density of cities
(despite the low per capita earnings) ensures that wireless
providers will see a return on their investment. Similarly,
even though the population in rural areas may be higher
in the developing world than in the rural U.S., their lower
income discourages investment.

One potential target for virtual coverage is rural
Uganda. One example is city of Mpigi, an hour
from the capital of Kampala. As a major trading
hub, multiple carriers provide coverage in the center of
town. However, in the hills less than 20 kilometers
away, there’s no coverage at all. Heimerl et al. [15]
showed how populations in these areas manage to
communicate with their limited cellular coverage. They
found that users heavily valued emergency services,
and were unwilling to accept a fully asynchronous
telecommunication system for this reason. Thus we
aim for low-cost but continuous operation, explicitly
supporting emergency services.

2.1 Design Goals

With the above use cases in mind, we have generated a
set of design goals:
• Enable solar-powered cellular infrastructure capable

of wide-area coverage;
• Provide continuous network availability (with a small

start-up delay) to support emergency communica-
tions;

• Reduce infrastructure cost, enabling coverage for
areas currently too poor or sparse for traditional
cellular; and

• Utilize existing economies of scale by building off
of existing GSM handsets and base stations and
minimizing hardware changes.

We also note that our design explicitly does not
support mobile handoff, nor does it ensure that wake-
up requests are made in good faith. We address these
concerns in Section 7.

3 Background

Cellular telephony is an enormous field, with multiple
standards deployed across nearly every nation. In this
section, we detail the specific wireless standards and
hardware most suited to virtual coverage.

3.1 Cellular Telephony
The 2G (GSM) standard was officially launched in
Finland in 1991. Subsequent 3G (UMTS) and 4G (LTE)
standards first appeared in 2001 and 2009, respectively.
As the standards progressed, the effective bit-rate for
channels increased, primarily to support high-bandwidth
data services such as streaming video.

Unfortunately, these superior encodings are more
sensitive to errors and loss [29], which limits their
propagation and usefulness in rural areas. With this in
mind, most 3G/4G deployments are smaller in scale,
primarily targeting dense urban areas. The 2G GSM
standard, especially in the lower 900-MHz band, delivers
the most consistent network propagation.

For these reasons, the 2G standard is still present in
almost all commercial cellular hardware. Similarly, it is
also present in almost all cellular handsets, with many
brand new handsets in the developing world supporting
only the 2G standard.

There have been recent advances in open-source GSM
telephony, specifically the OpenBTS [23] project. This
is an open implementation of the 2G GSM standard. As
such, this is the wireless technology we use to prototype
virtual coverage. However, there is no fundamental
difficulty applying Virtual Coverage to 3G/4G networks.

3.2 Cellular Base-Station Hardware
In a modern software-defined GSM base station there are
three core pieces of hardware that draw power, while the
rest is passive. These pieces are the computer, the radio,
and the power amplifier. Figure 1 shows our base station.

Unlike many other wireless systems (like 802.11),
GSM coverage range is inherently limited by the uplink
power (phone to BTS) and not the tower’s transmit
power. The handset must be able to reach the tower,
and increasing our broadcast power does not make that
any easier. Though there is equipment on the BTS that
improves this slightly, any transmit amplifications over
10W will not improve the range of the system; the GSM
standard sets the maximum handset power to be 2W.

However, past the 10W limit, increasing the transmit
power does allow for more communications at the same
range. The extra power can amplify other channels,
increasing the totally capacity of the tower. Table 1
provides an example.

3
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Range (km) Capacity (Calls)
2W Tower 7 7
10W Tower 35 7
50W Tower 35 35

Table 1: Range Networks [28] cellular tower propagation
and capacity specifications.

In any such wide-area setup (greater than 1 kilometer),
the amplifier will dominate the power consumed by
the unit. A 10W amplifier draws 45W of power
(65% of the total) in a low-capacity BTS. A 50W
amplifier draws 130W (84% of the total) for a high-
capacity, 35 concurrent call, BTS. This amplifier
operates continuously, amplifying the beacon channel.

Because of these properties, any attempt to save power
in a wide-area cellular network must change the behavior
of the power amplifier [3]. Unfortunately, this will
also affect the user experience; amplification is the
mechanism by which the tower broadcasts long distances
and increases capacity. This is the core problem we
address with virtual coverage: meaningfully covering a
sparse population is currently energy-intensive.

4 System Implementation

Enabling virtual coverage requires a holistic rethinking
of the base station itself. First, the BTS must be modified
to enable programmatic control of the power amplifier.
This will allow us to enter an “idle” mode in which the
power amplifier is turned off. As a byproduct of this, the
network is unavailable during this period.

Second, we must implement a mechanism for allowing
users to wake the cellular tower remotely and promptly,
thus enabling coverage on demand. We implemented two
models of virtual coverage wake up: 1) implementing
software-only handset modifications to send special
wake-up bursts, and 2) developing a custom autonomous
low-cost radio that sends the same message, allowing the
system to work with existing, unmodified handsets. After
detection of this burst, the network exits the idle state and
resumes normal operation.

4.1 Enabling Low-Power Modes in Cellu-
lar Infrastructure

Virtual coverage requires the base station to have a low-
power mode when the network is not in use. There are
two core changes needed create a low-power mode for a
GSM base station. First, the hardware must be modified
to provide a mechanism for programmatic control of the
power amplifier, the primary power draw. Second, the
software must actually cease broadcasting during idle
times while still listening to detect wake-up bursts.

Figure 1: Our Range Networks GSM BTS.

Hardware Figure 1 shows the internals of our revised
Range Networks 5150 cellular base station. The key
pieces of equipment are the radio, computer, duplexer,
and power amplifier (PA). We added a USB-controlled
high-current switch and connected it directly to the
power amplifier, allowing us to control the PA’s status
via serial commands from the computer. When the BTS
enters idle mode, the PA is turned off.

Software There are two key software modifications.
First, we implement the idle mode and drop all
transmissions (including the beacon) while the power
amplifier is off. Second, we implement a mechanism for
the BTS to receive wake-up signals from user radios.

We implemented idle mode with a service that sends
messages to the switch controlling the power amplifier.
This daemon, which has access to the GSM and switch
state, controls entering and exiting idle mode. Instead of
naively returning to idle when all calls have terminated,
we use a number of heuristics to improve the user
experience. First, we require that the network be active
for a minimum of 90 seconds, approximately double
what we found to be the worst-case time necessary for
a handset to connect to and communicate with the tower
(i.e., camping) (Table 3). This ensures that all handsets
waiting to camp will have ample time to do so should
a tower return from idle mode. Second, the BTS only
transitions to idle if there has been no cellular traffic
for 30 seconds. This enables serialized actions, e.g.,
redialing a dropped call.

Originally, we had hoped to provide a “low coverage
mode” (i.e., signal transmission without amplification),

4
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where the BTS could still provide coverage for people
physically near the radio. In testing, however, we
discovered that the radio must be disabled when in idle,
even to the exclusion of transmitting with the amplifier
in pass-through mode. If the BTS broadcasts (even
at low power), handsets nearby will attempt to camp
(a process near-all handsets perform automatically and
periodically). As our burst-detection is a simple power
measurement, this legitimate network traffic would be
indistinguishable from wake-up bursts.

The BTS provides two primary functions: incoming
(mobile-terminated) and outgoing (mobile-originated)
calls. Mobile-originated calls are simple. The tower
must be in active mode, as only a camped handset
can initiate a call. Mobile-terminated calls are more
complicated. If the tower is “active” when it receives a
call, the call is simply routed to the appropriate handset.
If the tower is “idle”, the caller either leaves a voicemail
(and the tower remains “idle”) or they are put on hold and
the tower immediately wakes and waits for the handset
to camp. According to our measurements (Table 3),
this can be up to 40 seconds (with most being under 25
seconds). When the handset eventually camps, the callee
is immediately connected to the caller by bridging to the
held call or initiating a new call if they hung up.

The basic mechanism for detecting bursts is imple-
mented in the transceiver of the radio. If the radio
is in idle mode, any high enough power burst on the
tower’s Absolute Radio Frequency Channel Number
(ARFCN, basically just the frequency the tower listens
and transmits on) will cause a message to be sent to
the daemon, waking the system. The power required
depends on the current noise level as determined by the
transceiver. This technique is similar to ones used in
sensor networks [13].

As OpenBTS utilizes voice-over-IP (VoIP) as it’s
interconnect, there are no changes required to any other
network services. Were we to interconnect using more
traditional protocols (i.e., SS7/MAP) the name database
(HLR) would have to allow longer registrations from
users on virtual coverage enabled BTSs. This is the only
change required for inter-operation.

With this system, we are able to provide on-demand
voice services for rural networks at the cost of increased
call-connection latency. SMS and data traffic are
assumed to sync during periods of active voice traffic.

4.2 Waking Up in Virtual Coverage

Virtual coverage is not just a change in the cellular tower;
it also requires a device capable of sending a “wake
up” message. As mentioned in the previous section, we
implemented two mechanisms for sending this message:
from a handset or via an autonomous radio.

4.2.1 Cellular Handset

We have implemented our base station wake-up
mechanism using an osmocomBB compatible mobile
phone. We call this the Wake-up Phone (WUP).
OsmocomBB [24] is an open-source GSM baseband
software implementation, which simplifies changes to
the GSM protocol. However, every GSM handset should
be able to send a wake-up burst with a software change
from the manufacturer. The mechanism for waking up
the BTS is sending a burst packet on the BTS’s ARFCN.
The BTS, though not transmitting, receives this message
and exits the idle state, allowing the handset to camp.

Each BTS broadcasts its ARFCN number (as well as
the ARFCNs of similar nearby towers) on the beacon
channel, which details the exact frequency used to
communicate with the BTS. A handset periodically
scans the network for towers to camp on, and gathers
these numbers. In our system, the handset stores these
numbers when the network idles, and then uses them
to send “wake up” messages (as above) during periods
without network availability.

Mobile-Originated (MO) Call In order to initiate a
call, the Wake-up Phone will transmit “wake up” bursts
on a selected set of ARFCNs. These ARFCNs are
either a list of previously detected base stations or
a static configured list. The “wake up” packets are
random packets that are transmitted on the selected
ARFCN. After transmission, handset scans for a tower
broadcasting on the ARFCN just awoken, instead of
scanning the whole cellular band (as in normal cell
selection). If discovered, the handset camps to this tower
and the user is able to communicate.

If a WUP is unsuccessful in camping to the recently
awakened base station, the handset will proceed to the
next ARFCN in its list, if any, and perform similar
operations. This mechanism repeats until the handset
is successfully camped or it runs out of available
ARFCNs. At this point it will default back to the
standard GSM protocol, which scans the entire band
looking for available towers.

Mobile-Terminated (MT) Call As stated above, when
the BTS receives a mobile-terminated call it immediately
exits idle mode and waits for the handset to camp. The
WUP scans the stored ARFCNs much more frequently
(10:1), reducing the average time to camp. However,
this does not affect the worst case analysis, which is 7s.
When found, the phone camps and the call is connected.

4.2.2 Wake-up Radio

We have also designed and implemented a system
to wake-up our BTS, the Wake-up Radio (WUR),
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Figure 2: Prototype implementation of WUR.

Component Draw (W) % (10W) % (50W)
Computer 12W 17.4% 7.8%
Radio 12W 17.4% 7.8%
10W Amp 45W 65.2%
50W Amp 130W 84.4%

Table 2: Power draw of the components of our Range
Networks 5150 BTS.

nicknamed the garage door opener. The WUR transmits
wake-up bursts, similar to our modified GSM handset,
on a specific ARFCN.

The radio is designed to be both cheap and low power.
The primary user interface is just a single button. When
pressed, this button triggers a burst on the configured
ARFCN. The radio produces a signal at approximately
500mW, the minimum power required for a handset in
the GSM standard. The WUR uses an on-board battery
pack, but provides interfaces for other power sources
(e.g., solar) as well. The WUR, with two AAA batteries
is capable of 5000+ bursts. The WUR can be configured
to produce different ARFCNs with dip switches.

The WUR is only needed for mobile-originated com-
munications. For mobile-terminated communications,
the tower simply wakes and waits for the recipient’s
handset to camp.

5 Technical Evaluation

5.1 BTS Power Savings
We begin by evaluating the performance of a single
modified Range Networks 5150 BTS. This unit has two
power amplifiers available: 10 Watt and 50 Watt. The
10W unit supports just one channel and seven concurrent
calls. It is commonly used for low-density areas. The
50W unit is designed for denser areas, produces up to
five channels, and is capable of providing 35 concurrent
calls. Both towers cover up to 35 kilometers, depending
on configuration and geography. Areas with buildings or
dense foliage will have worse signal propagation.

Model Time (Avg) Time (Max)
WUP (2G) (MT) 2s 7s
WUP (2G) (MO) 2s 2s
HTC Dream (3G) 12.1s 41.8s
Samsung Nexus S (3G) 23.6s 37.6s
Nokia 1202 (2G) 10.8s 14.6s

Table 3: Measurements on how long a handset has to
wait, on average, to camp to a specific tower. This is the
additional connect time if the network is idle.

Table 2 shows the relative power draw for each
component of the BTS. As expected, the power amplifier
dominates the overall power draw, consuming 65% of the
power for a 10W unit and 84% for a 50W.

In our system, we added a USB-controlled switch
to programmatically control the power amplifier. This
switch draws negligible power (less than 1W). We also
saw no change in the power draw of the computer, as
expected with the BTS handling no calls in “idle” mode.
As such, we are able to reduce the overall power draw of
our BTS by over 65%.

5.2 Handsets
Wake-up Radio With the wake-up radio (WUR), the
user has access to a device tuned to the particular
frequency of their local cellular tower. Depending on
local cost and logistic constraints, this device can be
either widely deployed as an attachment to each local
user’s individual cellular phone, or singly deployed at
some central location as a “phone booth”. The user
presses the button, sending the wake-up message to the
tower, taking the station out of idle mode. When the
tower wakes, it broadcasts a beacon signaling its location
and ownership.

Traditional GSM handsets periodically scan the
airwaves looking for beacons. As such, a user’s handset
will eventually camp to the newly awoken BTS. We
measured the time to camp, after waiting to ensure
the initial network search failed, for three different
handsets: the Samsung Nexus S (Android), the HTC
Dream (Android), and the Nokia 1202 (Symbian S30)
over thirteen trials. The results are shown in Table 3.
The first two phones are quad-band 3G phones, meaning
that they scan a wider band than a dual-band 2G-only
feature phone (e.g., our Nokia 1202) commonly used in
developing regions.

Users must wait for their handsets to camp in order
to communicate using the network. Our results mean
that using the WUR increases the setup time for all
calls by a maximum of approximately 40 seconds. The
average wait measured is less than 25 seconds. Both
the maximum and average time to camp are highly
dependent on the specific phone used. Though this
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(a) (b) (c) (d)
Figure 3: Solar Power (a), Battery Power (b), Individual Batteries (c), and total spending (d) required to operate a
virtual coverage tower at a certain amount of idleness for a week in an area with 5 hours of sun. Note that 0% idle is
equivalent to a traditional tower.

potential wait is a nontrivial amount of time, we believe
this is acceptable to rural users who have limited
alternatives for communication.

Wake-up Phone In the embedded solution, the WUP
is able to camp on the BTS almost immediately after
sending the wake-up burst. Since the same hardware
device both delivers the burst and camps to the tower,
the timing of the two tasks can be optimized for minimal
delay. We measured the amount of time needed to
register with the BTS 1 and found that, in all cases, it
took exactly two seconds from wake-up burst to “camped
normally”. This is shown in Table 3. The practical
impact of this result is that, with a virtual coverage
network, every mobile-originated communication takes
two seconds longer to set up when the BTS starts idle.

For mobile-terminated calls, the handset does not
generate the wake-up burst and must instead listen
for a cellular beacon. Fortunately, the handset still
knows what cellular towers are in the area. Instead
of periodically scanning the entire band (as in standard
GSM), we can scan just the beacons that are present in
the area. This again takes no more than two seconds.
Other operating system functions occasionally delay this
scan, causing a maximum wait time of seven seconds.

5.3 Deployment Example
To begin to understand the impact of virtual coverage
in a real-world situation, we calculate the approximate
amount of infrastructure (solar panels and batteries)
required to support a 50W (drawing 155W) cellular
station year-round using only solar power.

We first frame our “real-world situation”: Providing
winter-time network coverage in the South Asian country
profiled in our later evaluation. During this time period,
the country receives 5 hours of usable sun [10], as
solar panels deliver minimal power when the sun is on
the horizon. Using this, we are able to calculate the
amount of power optimally tiled solar panels generate.

1GSM state A1 T RY ING RPLMN to C3 CAMPED NORMALLY

We assume an operating temperature of 40 degrees
Fahrenheit and 24V batteries. Batteries are priced at 442
USD for 200 Amp-Hours and solar panels are priced at
1.07 USD per Watt. Lastly, the BTS draws 155W at
full power (3720 Watt-hours/day) and 25W at idle (600
Watt-hours/day). As there is often inclement weather, we
calculate the requirements for powering the station over
a week without any power generation. The results are
shown in figure 3.

The actual impact of virtual coverage is large; a
completely idle tower requires one sixth of the batteries,
solar panels, and total infrastructure cost of a traditional
tower. As expected, these variables scale linearly with
increasing idleness. We later (Section 6.3) show that
idleness scales sub-linearly with respect to total calls
(and thus users), meaning that the price of infrastructure
required to support a virtual coverage tower scales sub-
linearly with the total number of calls handled. Contrast
this with a traditional cellular tower that must install the
same amount of solar panels and batteries regardless of
the number of calls and users serviced.

We wish to note that these costs are not only monetary.
A single traditional BTS wanting week-long backup
requires a kilowatt of solar panels and seventeen deep-
cycle batteries (each weighing 68 pounds!). This
equipment will be hiked into rural areas, an enormous
load. Compare that with a virtual coverage station in an
80% idle area. There, just 300W of solar panels and 6
batteries must go up the hill. Lastly, virtual coverage
also allows for growth; as an area moves from 80% to
70% idleness, new batteries and panels can be installed.

6 Real-World Evaluation

In addition to the micro-benchmarks just presented,
it is important to understand how our system would
perform in situ. For although we’ve demonstrated that
our modified base station saves power and provides a
consistent user experience, it requires periods of idle
time in individual base stations, and this important
variable is not known.
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To resolve this, we use traces from existing cel-
lular networks to provide a “worst case” analysis of
virtual coverage’s benefits to areas without coverage.
Specifically, we run two simulations using log data
obtained from two mobile telecommunications firms in
developing countries. Our simulations calculate the
amount of power that the operator would save if they
implemented our system of virtual coverage, based on
actual patterns of idleness. Although these networks
service millions of users (and not the rural areas we
target), we show that our technology has the potential
to save substantial amounts of power by utilizing the
available idle time. 2

6.1 Data

To assist in evaluating our research question, we
acquired data from two large mobile telecommunications
operators, one in sub-Saharan Africa and one in South
Asia. The data we utilize contains a detailed log of tower
activity over the span of one week, including information
on: the start time of each mobile-originated and mobile-
terminated call, the duration of the call (in seconds), and
the approximate location of each tower. Note that all
cellular activity is per-tower and not per-cell. We do
not know how many cells were located on each tower; a
negative bias as our system is capable of idling per-cell.

Although we are contractually bound not to disclose
the identity of the mobile operators whose data we
analyze, some basic facts are relevant.

Sub-Saharan Africa (SSA) The first operator’s data
comes from a sub-Saharan African nation. Towers in
this country are heavily utilized, although overall mobile
phone penetration during the week we analyze was
roughly 20 percent. We observe 15 million calls from
a representative random sample of approximately 150
unique towers. There are an average of 90000 calls per
tower, with a median of near 70000.

South-Asia (SA) The second operator’s data comes
from a large country in South Asia. Mobile penetration
here was roughly 55 percent during the week we analyze,
but average tower utilization was lower than SSA. We
observe 35 million calls from a representative random
sample of around 5000 unique towers. There are an
average of 6000 calls per tower, with a median of 4000.

2It is worth noting that we do not advocate replacing existing
telecommunications networks with our equipment. As stated above,
we are designing for autonomous rural networks. However, we believe
it is an instructive demonstration of the value of virtual coverage.

6.2 Analysis

Combining the call log data with our user experience
extensions (Section 4.1), we determine the amount of
time where the network can be put into an “idle” mode
while still providing complete cellular service to all
users. We separately compute results during daytime
(6am-6pm) and nighttime (6pm-6am), as user behavior
and power generation are different during these periods.

We begin by determining the relative amount of
idleness in the cellular network by using the detailed logs
to determine when users initiate actions on the network.
Of course, the network cannot power down for every idle
period; users must have time to camp on the network and
they may wish to communicate multiple times without
having to wake the tower up repeatedly. With this in
mind, we instead model a realistic user experience of the
network. In this model, we assume the tower will remain
awake for some time after a logged call in case a new call
is placed or received. In our network, the towers remain
active for 30 seconds following any user-initiated action.
Each tower must also stay available for a minimum of
90 seconds at a time; this ensures that any phones within
virtual coverage range waiting to initiate an action have
enough time to detect and connect to the network (noting
that the prior section found a maximum of 42 seconds
to camp when scanning in disconnected mode). Any
idle periods seen in the logs greater than 24 hours are
removed from consideration (rather than being “idle”),
as they are almost certainly a power outage. We found
18 such periods in SSA (in 25000 hours of coverage) and
59 such periods in SA (in 940000 hours).

6.3 Results: Idleness

Figure 4 shows the relative amount of idleness vs total
number of calls per base station in both sub-Saharan
Africa and South Asia. We note that the amount of idle
time in the network (rural or urban) scales sub-linearly
with the total number of calls. Fitting a logarithmic
trend line (occupied time vs number of calls) results in
y =−0.077ln(x)+1 for SSA, and y =−2.04ln(x)+2.8
for SA. This result means that each new call causes
less occupied network time than the last, on average.
This makes sense; as the number of calls on a tower
increases, the amount of overlapping network activity
also increases. Overlapping calls have zero marginal cost
(in terms of power), and so we see this sub-linear benefit.
This result, combined with our previous result showing
that the cost of power infrastructure scales linearly with
the idle percentage (Section 5.3) means that virtual
coverage allows infrastructure cost to scale sub-linearly
with the total number of calls serviced, and presumably
the number of users serviced. As a byproduct of this
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(a) (b)
Figure 4: The idle time for both South Asia (a) and sub-
Saharan Africa (b).

(a) (b)

Figure 5: The difference in day and night idle time for
each of the cellular towers in SA (a) and SSA (b), sorted
by difference.

result; rural entrepreneurs can invest in more power
infrastructure as demand grows, rather than requiring a
large capital expenditure during installation.

Figure 5 next compares the day and night idle time in
the network. This comparison is done for each BTS in
the study, and over five thousand towers are difficult to
represent graphically. To resolve this, we instead graph
the difference between the night and day idle time. For
instance, a tower that is idle 25% at night and 5% during
the day would be represented by a point at (.25-.05)=.2.

For sub-Saharan Africa, we see more idle time at
night. Over 98% of the towers are more idle at night
than during the day. This result is diminished in South
Asia, with just under 89% of the towers being more
idle at night than during the day. We believe this is
primarily due to a differential pricing scheme used in SA
to encourage nighttime communications.

These results suggest that we should target night idle
periods for saving power. This also works well with
solar, since night power requires storage and thus costs
considerably more due to both lower efficiency (10–20%
loss), and the ongoing cost of battery replacement.

Lastly, our data also demonstrates the enormous
amount of idle time available in these networks at night.
86% of the towers in SA are over 20% idle at night, while
53% of those in SSA pass the same metric. There is
a significant opportunity for virtual coverage to reduce
power consumption expenditures in both networks.

6.4 Results: Power Savings
We begin by noting the power measurements in
Section 5.1. These measurements indicate that high-

(a) (b)

Figure 6: Comparison of the power saved by every BTS
in SA (a) and SSA (b) by using virtual coverage.

Power Draw Savings %
SA Original 1483 kW 0%
SA Day 584 kW 21.3%
SA Night 488 kW 34.3%
SA Total 1071 kW 27.7%

Table 4: The final results of our network simulation in
South Asia. There are always significant power savings.

capacity towers (greater than 7 concurrent calls) require
larger amplifiers, drawing 155W at full power and 25W
at idle (a savings of 84%). Smaller capacity towers
(supporting less than 7 concurrent calls) draw 70W at
full power and 25 at idle (a savings of 65%). We use
these measurements, combined with the measures of the
maximum number of concurrent calls observed on each
tower, to estimate the power draw of each individual BTS
on both networks.

Figure 6 shows the results of this calculation. Each
tower’s original power draw (yellow) is compared
directly against the same tower using virtual coverage
(blue). There is significant power savings in each
network. We now move to calculate the exact amount
of power saved.

Tables 4 and 5 show the final results if we sum
the power drawn (and saved) by all tower equipment
observed. Using virtual coverage, we are able to reduce
the total night power budget by 34% for our South Asian
network, and 21% in sub-Saharan Africa. During the
day, when solar power is more available, we found that
the network power draw could be reduced by 21% in
South Asia, and just 7% in sub-Saharan Africa.

We wish to remind the readers that this analysis is
on two existing cellular networks with broad coverage

Power Draw Savings %
SSA Original 45.6 kW 0%
SSA Day 21 kW 7.2%
SSA Night 18 kW 20.7%
SSA Total 39 kW 13.9%

Table 5: The final results of our network simulation
of the sub-Saharan Africa network. Significantly more
power is saved at night.
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on nation-wide scales. Our system is designed to
provide a mechanism for covering parts of the world
currently without coverage, and gathering call records
from such a place is impossible. We hope this proxy
measurement, demonstrating massive possible power
savings in networks that are economically feasible is a
suitable demonstration that there would be similar (likely
better) savings in areas currently without network.

These power savings (34% SA, 21% SSA), when
combined with our earlier technical evaluation showing
limited impact on the user experience (adding an average
of 25 seconds to each call) and sublinear scaling of power
infrastructure cost with regards to total calls, demonstrate
a compelling system. It is low-cost, low-power, and well-
suited for wide-area cellular communications in off-grid
areas dependent on renewable energy sources.

7 Discussion

Data/SMS Services An obvious critique of our work
is that we do not actively support SMS or data services
on the base stations. In particular, as presented we do not
wake up base stations for those messages alone.

SMS as a protocol already incorporates delay-
handling, and functions asynchronously with respect
to sender and recipient. There exist opportunities to
improve SMS user experience in a virtual coverage cell.
For instance, the carrier could set a maximum message
delay: if a tower receives a message for one of its
handsets when idle, the tower must activate and deliver
the message within one hour. This has the potential to
limited wasted active network time and the carrier is free
to establish this interval based on their own preferences.

If a user requests data service while the tower is idle,
the BTS can handle this in a similar fashion to placing
a phone call: the tower is sent a wake-up burst (via
either phone handset or wake-up radio). If idle time
is significantly reduced by data requests (e.g., by data-
channel apps seeking updates from the web), users can be
incentivized to turn off these features when negotiating
service rates with the provider.

Mobility As stated in Section 2, we explicitly avoid
the issue of mobility in this paper. Our equipment is
designed to create “islands” of coverage, simplifying
the architecture dramatically. It is assumed that a rural
virtual coverage cell will not intersect any other covered
region. However, as this work moves forward, we
recognize that the issue of mobility should be addressed.

The GSM tower broadcasts not only its own ID, but
also those of nearby towers. This helps in two ways.
First, a handset can try waking up towers in succession
to increase its chances of successfully waking a BTS,
at the cost of extra delay. Second, during a call the

handset could try to wake-up nearby towers proactively,
either due to low signal from the current tower or just
in case. Once awake hand-off to neighboring towers
works as usual. Finally, on higher-end phones, a GPS-
indexed database could inform the handset of exactly
what tower(s) to wake in a specific location.

Inter-operation with existing infrastructure The
GSM specification assumes constant coverage; a by-
product of a system designed for developed, urban
areas with strong power infrastructure. Virtual coverage
changes this, turning cellular towers into dynamic
agents. The interaction of these networks is complex.

Our system handles this already: Modified handsets
always connect and call through existing static systems if
possible: we are only capable of waking a tower if we are
not attached to any existing tower. This is done primarily
to save power; the static tower is on (whether or not it
fields an additional call), but we’d prefer to keep our local
tower idle. Similarly, if the other tower is dynamic but
active, we’d prefer to send two calls through the powered
tower, rather than waking an idle tower.

Security The system, as designed, has no mechanism
for authenticating users before they wake the BTS. This
means that one dedicated attacker could launch a power-
based denial of service (DOS) attack by constantly
sending the wake-up bursts to the tower. For example,
a dedicated user may DOS the tower to leverage an
information asymmetry they have developed.

The two mechanisms for waking up the BTS have
different trade-offs for preventing such DOS attacks. For
the WUR it is impossible to identify the user sending the
wake-up burst, as the device is totally separate from the
phone. Instead, we could add a cost to the use of the
physical radio; perhaps by placing it in a phone-booth-
like structure and charging a fee. This way, DOSing the
tower could be made prohibitively expensive.

For the modified handset, we can identify the users by
changing the protocol slightly. Currently, users send the
burst, camp, and then wait. They must choose separately
to make a call. We can instead enforce that the user
must make a call (or any communication) immediately
after camping to the station. This would allow us to
know who did the waking. Unfortunately, this is still
susceptible to another, similar attack; a user could send
the wake-up burst and immediately pull the battery. In
this case, we could modify the BTS to note there has
been no traffic and immediately re-enter the idle state,
reducing the impact of the attack.

Lastly, it is possible to send identifying information,
such as the IMSI (unique SIM ID), in the burst message.
This would allow us to charge users for waking the tower
and prevent DOS attacks. We leave this to future work.
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8 Related Work

Virtual coverage utilizes ideas first developed for shorter-
range wireless sensor networks to save power in wide-
area cellular networks. It also makes use of the recent
advances in open-source telephony to implement these
power-saving techniques. Lastly, our focus is on the
problem of rural connectivity.

8.1 Saving Power

As the world goes “green”, reducing power consumption
has become a critical goal of system designers [4].
Researchers (and system implementers) have focused on
many different mechanisms for saving power, including
disabling specific pieces of hardware. Gobriel et al. [11]
investigated how to save power by utilizing the “idle
time” in data center networks. Zheng et al. [34] used
asynchronous wake-up mechanisms to save power in
ad-hoc wireless networks. Wake-on-Wireless-LAN [21,
30] enables behavior similar to wake-on-LAN [22]
across wireless networks. We similarly save power by
utilizing idle time and a wake-up mechanism in cellular
networks. However, the potential power savings in rural
GSM cellular networks far outweigh smaller wireless
deployments, as the range and power consumption of
cellular networks are orders of magnitude larger.

8.2 Sensor Networks

Efficient use of power is of critical importance in
wireless sensor networks due to battery-based operation.
The core technique we use to save power in cellular
networks is very similar to one developed by Gu et
al. [13] for wireless sensor networks. Other researchers
have explored similar designs [7]. As in our system,
the nodes sit idle until communication is needed, and
wake each other up using large radio bursts that are
distinguishable from noise through some mechanism.
Similarly, other researchers also created standalone
devices for creating wake-up signals [8]. This is
unsurprising, as these technologies inspired our design.
The key differences are in scale, intent, and mechanisms.

8.3 GSM/Cellular

The OpenBTS project [23] is a full-featured GSM base
station using software-defined radios. It bridges GSM
handsets to voice-over-IP systems, enabling cheaper,
lower-power cellular equipment. The OsmocomBB
project [24] is an open-source GSM handset, capable of
interfacing with any 2G GSM station. Our research is
built on these two pieces of technology that enable us to

modify the GSM standard and implement a low-power
GSM telephony solution.

Lin et al. investigated multihop cellular networks [20]
to broaden the range of GSM cellular towers. In their
solution, each handset could potentially act as a router for
other handset’s messages, directing them to a centralized
base station. Others expanded this idea, investigating
how one might property incentivize users to share their
cellular connections [19]. Our work utilizes a different
mechanism, virtual coverage, to achieve the goal of
increased effective network range. These two designs
are not mutually exclusive. A solution using both could
have a dramatic impact on rural telephony.

A few groups have explicitly investigated reducing
power consumption in cellular networks. Bhaumik et
al. [5] proposed varying the size of cells; saving power
by turning a subset of the cellular towers off during times
of low load. Peng et al. [27] took these ideas even
farther, demonstrating significant over-provisioning in
cellular networks. Unfortunately, their proposed method
for saving power is not possible in most rural areas as
there is often just one tower providing service.

8.4 Developing Regions/Rural Networks

Network connectivity in developing and rural areas is an
area of active research [6]. Wireless telecommunications
are a common idiom [31], as the cost of deploying
these networks is significantly less than traditional wired
networks in areas with limited infrastructure. Re-
searchers have investigated long-distance wireless [26]
and sustainability in these areas [32].

Seeing the need for rural cellular communications,
commercial providers have begun to develop products
optimized for these areas. Both Vanu [33] and Range
Networks [28] have developed “low power” 2G cellular
equipment capable of running off of entirely renewable
energy and using only around 90 watts of power.
Altobridge’s [2] lite-site product varies its capacity in
order to save power. As all of these products provide
constant network coverage (rather than virtual coverage),
they cannot reduce their power draw below 90 watts.

The rural/urban divide is also an area of active
work. Eagle et al. [9] investigated how calling patterns
changed as users migrated between rural and urban areas.
Heimerl et al. [14, 15, 16] researched how users in
developed, developing, urban, and rural areas viewed
and made use of their cellular infrastructure. He found
that rural users had a better understanding of network
properties, including coverage patterns. This work
informs our decision to include users in network power
provisioning, as we expect them to quickly understand
and make use of the basic primitives provided by our
system.
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Figure 7: Installing the Village Base Station in rural
Papua, Indonesia.

9 Future Work

We’re currently deploying the Village Base Station [14],
complete with virtual coverage, in rural Papua, Indonesia
(Figure 7). This is a longitudinal study investigating not
only the impact of virtual coverage, but also the general
feasibility of off-grid, off-network, rural, community-
owned and supported cellular installations. We hope to
have this work completed by mid 2013.

10 Conclusion

The positive impact of mobile phones on the poor is one
of the great ongoing success stories of development, with
more users and more impact than any other advanced
technology. The arrival of low-cost devices, and even
low-cost smart phones, make mobile phones the best
platform for current and future interventions, including
mobile banking, education, health care, and governance.
Yet much of the rural world lacks coverage due to the
high cost of infrastructure in rural areas; reaching the
next billion+ users will be much harder now that most
urban areas have coverage.

In this work we presented virtual coverage, a
mechanism for dramatically reducing the power draw
of cellular infrastructure in rural areas. This is done
by introducing an “idle” mode to the network, similar
to work done in wireless sensor networks. Instead of
providing constant coverage (wasted in times of low
communication, such as at night), we provide coverage

only when needed. A user demonstrates their need
to communicate with one of two mechanisms. First,
we modified the baseband of a cellular phone to send
a “wake up” message when a user wants coverage.
Second, recognizing that modifying the baseband of the
billions of cellular phones already deployed is likely
infeasible, we developed a custom low-cost radio capable
of producing the same signal. These changes utilize
existing manufacturing economies, requiring just a small
hardware modification to the BTS, a software change to
the handset, and the manufacturing of a $14 device.

We validated this design by implementing the system
and demonstrating the power savings. We showed that,
with proper use, our equipment saves between 65%-
84% of the power at idle. We measured the impact
on users, who would see an average of less than 25
seconds added to any call. Users of our custom firmware
would see just two seconds delay. We showed that a
virtual coverage installation could be built with one-sixth
of the power infrastructure of a traditional tower. We
demonstrated that the power requirements for a virtual
coverage tower scale sub-linearly with the total number
of calls (and presumably callers) serviced. This allows
smaller operators to invest in their network as it grows,
rather than having the entire expenditure be up front.

We also simulated both an sub-Saharan African and
South Asian cellular carrier using our system. We found
that we are able to save 34% of the night power (21%
during the day) in South Asia. For the denser sub-
Saharan African country, we can save 21% of the power
at night and 7% during the day. This reduction in power
consumption enables more use of solar power and makes
cellular system more economically viable in rural areas
far from grid power or network.

11 Code

All of our software and hardware designs are open
source. Our modified versions of OpenBTS, Osmo-
comBB, and the schematics for the Wake-up Radio are
in the following repositories:
• https://github.com/kheimerl/openbts-vbts
• https://github.com/kheimerl/osmocom-bb-vbts
• https://github.com/kheimerl/VBTS

All of our systems can be run on open hardware,
primarily the Ettus USRP line of products.
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Abstract
The datacenter network is shared among untrusted ten-
ants in a public cloud, and hundreds of services in a
private cloud. Today we lack fine-grained control over
network bandwidth partitioning across tenants. In this
paper we present EyeQ, a simple and practical system
that provides tenants with bandwidth guarantees as if
their endpoints were connected to a dedicated switch.
To realize this goal, EyeQ leverages the high bisection
bandwidth in a datacenter fabric and enforces admission
control on traffic, regardless of the tenant transport pro-
tocol. We show that this pushes bandwidth contention
to the network’s edge, enabling EyeQ to support end-
to-end minimum bandwidth guarantees to tenant end-
points in a simple and scalable manner at the servers.
EyeQ requires no changes to applications and is deploy-
able with support from the network available today. We
evaluate EyeQ with an efficient software implementation
at 10Gb/s speeds using unmodified applications and ad-
versarial traffic patterns. Our evaluation demonstrates
EyeQ’s promise of predictable network performance iso-
lation. For instance, even with an adversarial tenant with
bursty UDP traffic, EyeQ is able to maintain the 99.9th
percentile latency for a collocated memcached applica-
tion close to that of a dedicated deployment.

1 Introduction
In the datacenter, we seek to virtualize the network for
its tenants, as has been done for compute and storage.
Ideally, a tenant running on shared physical infrastruc-
ture should see the same range of control- and data-path
capabilities on its virtual network, as it would see on a
dedicated physical network. This vision has been in full
swing for some years in the control plane [1, 2]. An
early innovator in the control plane was Amazon Web
Services, where a tenant can create a “Virtual Private

Cloud” [1] with their IP addresses without interfering
with other tenants. In the data plane, there has been little
comparable progress.

To make comparable progress, we posit that the
provider should present a simple performance abstrac-
tion of a dedicated switch connecting a tenant’s end-
points [3], independent of the underlying physical topol-
ogy. The endpoints may be anywhere in the datacenter,
but a tenant should be able to attain full line rate for any
traffic pattern between its endpoints, constrained only by
endpoint capacities. Bandwidth assurances to this tenant
should suffer no negative impact from the behavior and
churn of other tenants in the datacenter. This abstraction
has been a consistent ask of enterprise customers consid-
ering moving to the cloud, as the enterprise mission de-
mands a high degree of infrastructure predictability [4].

Is this abstraction realizable? EyeQ described in this
paper attempts to deliver this abstraction for every ten-
ant. This requires three key components of which EyeQ
provides the final missing piece.

First, with little to no knowledge of tenant com-
munication patterns, promising bandwidth guarantees
to endpoints requires smart endpoint placement in a
network with adequate capacity (for the worst case).
Hence, topologies with bottlenecks between server–
server (“east–west”) traffic are undesirable. Fortu-
nately, recent proposals [5, 6, 7] have demonstrated cost-
effective means of building “high bisection bandwidth”
network topologies. These topologies are realizable in
practice (§2.3), and substantially lower the complexity
of endpoint placement (§3.5) as server–server capac-
ity is more uniform. Second, utilizing this high bisec-
tional bandwidth requires effective traffic load balanc-
ing schemes to mitigate network hotspots. While today’s
routing protocols (e.g. Equal-Cost Multi-Path [8]) do a
reasonable job of utilizing available capacity, there has
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Figure 1: EyeQ’s sender module (SEM) and receiver module
(REM) work in a distributed fashion by exchanging feedback
messages, to iteratively converge to bandwidth guarantees.

been continuous improvements on this front [9, 10, 11].
The third (and missing) piece, is a bandwidth arbi-

tration mechanism that schedules tenant flows in accor-
dance with the bandwidth guarantees, even with misbe-
having or malicious tenants. Today, TCP’s congestion
control shares bandwidth equally across flows and is ag-
nostic to tenant requirements, and thus falls short of pre-
dictably sharing bandwidth across tenants.

EyeQ, the main contribution of this paper, is a pro-
grammable bandwidth arbitration mechanism for the
datacenter network. Our design is based on the key in-
sight that by relieving the network’s core of persistent
congestion, we can partition bandwidth in a simple and
distributed manner, completely at the edge. EyeQ uses
server-to-server congestion control mechanisms to parti-
tion bandwidth locally at senders and receivers. The de-
sign is highly scalable and responsive and ensures band-
width guarantees are met even in the presence of highly
volatile traffic patterns. The congestion control mecha-
nism pushes overloads back to the sources, while drain-
ing traffic at maximal rates. This ensures that network
bandwidth is not wasted.
The EyeQ model. EyeQ allows administrators to con-
figure a minimum and a maximum bandwidth to a
VM’s Virtual Network Interface Card (vNIC). The lower
bound on bandwidth permits a work-conserving alloca-
tion among vNICs collocated on a physical machine.
The EyeQ arbitration mechanism. We explain the dis-
tributed mechanism using the example shown in Fig-
ure 1. VMs of tenants A and B are given a minimum
bandwidth guarantee of 2Gb/s and 8Gb/s respectively.
The first network flow F1 starts at VM A1 destined for
A2. In the absence of contention, it is allocated the full
line rate of 10Gb/s. While F1 is in progress, a second
flow F2 starts at B1 destined for B2, creating congestion
at server j. The Receiver EyeQ Module (REM) at j de-
tects this contention for bandwidth, and uses end-to-end

feedback to rate limit F1 to 2Gb/s, and F2 to 8Gb/s. Now,
suppose flow F3 starts at VM B1 destined for B3. The
Sender EyeQ Module (SEM) at server i′ partitions its link
bandwidth between F2 and F3 equally. Since this lowers
the rate of F2 at server j to 5Gb/s, the REM at j will allo-
cate the spare 3Gb/s bandwidth to F1 through subsequent
feedback. In this way EyeQ recursively and distributedly
schedules bandwidth across a network, to simultaneously
maximize utilization, and meet bandwidth guarantees.

EyeQ is practical; the SEM and REM shim layers
enforce traffic admission control without awareness of
application traffic demands, traffic patterns, or transport
protocol behavior (TCP/UDP) and without requiring any
more support from network switches than what is already
available today. We demonstrate this through extensive
evaluations on real applications.

In summary, our main contributions are:

• The design of EyeQ that simultaneously achieves
predictable and work-conserving bandwidth arbitra-
tion in a scalable fashion, completely from the net-
work edge (host network stack, hypervisor, or NIC).

• An open implementation of EyeQ in software that
scales to high line rates.

• An evaluation of EyeQ’s feasibility at 10Gb/s on
real applications.

The rest of the paper is organized as follows. We de-
scribe the nature of EyeQ’s guarantees and discuss in-
sights about network contention from a production clus-
ter (§2) that motivate our design. We then delve into
the design (§3), our software implementation (§4), and
evaluation (§5) using micro- and macro-benchmarks. We
summarize related work (§6) and conclude (§7).

We are committed to making our work easily avail-
able for reproducibility. Our implementation and evalua-
tion scripts are online at http://jvimal.github.
com/eyeq.

2 Predictable Bandwidth Partitioning
The goal of EyeQ is to schedule network traffic across
a datacenter network such that it meets tenant endpoint
bandwidth guarantees over short intervals of time (e.g.,
a few milliseconds). In this section, we define this no-
tion of bandwidth guarantees more precisely and explain
why bandwidth guarantees need to be met over short
timescales. Then, we describe the key insight that makes
EyeQ’s simple design possible: The fact that the net-
work’s core in today’s high bisection bandwidth data-
center networks can be kept free of persistent congestion.
We show measurements from a Windows Azure produc-
tion storage cluster that validate this claim.

2
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Figure 2: The UDP tenant bursts for 5ms and sleeps for 15ms, which even at 100ms timescales seems benign (2.5Gb/s or 25%
utilization). These finer timescale interactions put a stringent performance requirement on the reaction times of any isolation
mechanism, and mechanisms that react at large timescales may not see the big picture. EyeQ rate limits UDP over short timescales
and improves the TCP tenant’s median latency by over 10x. (There were no TCP timeouts in this experiment.)

2.1 EyeQ’s bandwidth guarantees
EyeQ provides bandwidth guarantees for every endpoint
(e.g., VM NIC) in order to mimic the performance of a
dedicated switch for each tenant. The bandwidth guar-
antee for each endpoint is configured at provision time.
The endpoints should be able to attain their guaranteed
bandwidth as long as their traffic does not oversubscribe
any endpoint’s capacity.1 For instance, if N VMs, each
with 1Gb/s capacity, attempt to send traffic at full rate to
a single 1Gb/s receiver, EyeQ only guarantees that the re-
ceiver (in aggregate) receives 1Gb/s of traffic. The excess
traffic is dropped at the senders. Hence, EyeQ enforces
traffic admissibility and only promises bandwidth guar-
antees for the bottleneck port (the receiver) and allocates
bandwidth across senders in a max-min fashion.

There are different notions for bandwidth guarantees,
ranging from exact rate and delay guarantees at the
level of individual packets [13], to approximate “average
rate” [14] guarantees over an acceptable interval of time.
As observed in prior work [14], exact rate guarantees re-
quire per-endpoint queues and precise packet scheduling
mechanisms [15, 16, 17] at every switch in the network.
Such mechanisms are expensive to implement and are
not available in switches today at a scale to isolate thou-
sands of tenants and millions of VMs [18]. Hence, with
EyeQ, we strive to attain average rate guarantees over an
interval of time that is as short as possible.

2.2 Rate guarantees at short timescales
Datacenter traffic has been found to be highly volatile
and bursty [5, 19, 20], leading to interactions at short

1This constraint is identical to what would occur with a dedicated
switch, and is sometimes referred to as a hose constraint [12].

timescales of a few milliseconds that adversely impact
flow throughput and tail latency [21, 22, 23]. This is ex-
acerbated by high network speeds and the use of shallow
buffered commodity switches in datacenters. Today, a
single large TCP flow is capable of causing congestion
on its path in a matter of milliseconds, exhausting switch
buffers [21, 24]. We refer the reader to [25] and our prior
work [26] that demonstrate how bursty packet losses can
adversely affect TCP’s throughput.

The prior demonstrations highlight an artifact of
TCP’s behavior, but such interactions can also affect end-
to-end latency, regardless of the transport protocol. To
see this, consider a multi-tenant setting with a TCP and
UDP tenant shown in Figure 2(a). Two VMs (one of each
tenant) collocated on a physical machine receive traffic
from their tenant VMs on other machines. Assume an
administrator divides 9Gb/s of the access link bandwidth
(at the receiver) between TCP and UDP tenants in the ra-
tio 2:1 (the spare 1Gb/s or 10% bandwidth headroom is
reserved to ensure good latency [22]). The UDP tenant
transmits at an average rate of 2.5Gb/s by bursting in an
ON-OFF fashion (ON at 10Gb/s for 5ms, OFF for 15ms).
The TCP client issues back-to-back 1-byte requests over
one connection and receives 1-byte responses from the
server collocated with the UDP tenant.

Figure 2(c) shows the latency distribution of the TCP
tenant with and without EyeQ. Though the average
throughput of the UDP tenant (2.5Gb/s) is less than its
allocated 3Gb/s, the TCP tenant’s median and 99th per-
centile latency increases by over 10x. This is because of
the congestion caused by the UDP tenant during the 5ms
bursts at line rate, as shown in Figure 2(b). When EyeQ
is enabled, it cuts off UDP’s bursts at short timescales.
We see that the latency with EyeQ is about 55µs, which

3
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Figure 3: Emerging datacenter network architectures are over-
subscribed only at the Top-of-Rack switches, which are con-
nected to a spine layer that offers uniform bandwidth between
racks. The over-subscription ratio is typically less than 3.

is close to bare-metal performance that we saw when run-
ning the TCP tenant without the UDP tenant.

Thus, any mechanism that only looks at average uti-
lization over large timescales (e.g., over 100 millisec-
onds) fails to see the contention happening at finer
timescales, which can substantially degrade both band-
width and latency for contending applications. To ad-
dress this challenge, EyeQ operates in the dataplane in
a distributed fashion, and uses a responsive rate-based
congestion control mechanism based on the Rate Con-
trol Protocol [27]. This enables EyeQ to quickly re-
act to congestion in 100s of microseconds. We believe
this timescale is short enough to at least protect tenants
from persistent packet drops caused by other tenants as
most datacenter switches have a few milliseconds worth
of buffering.

2.3 The Fat and Flat Datacenter Network
In this section, we show how the high bisection band-
width network architecture of a datacenter can simplify
the task of bandwidth arbitration, which essentially boils
down to managing network congestion wherever it oc-
curs. In a flat datacenter network with little to no flow ag-
gregation, congestion can occur everywhere, and there-
fore, switches need to be aware of thousands of tenants.
Configuring every switch as tenants and their VMs come
and go is unrealistic. We investigate where congestion
actually occurs in a datacenter.

An emerging trend in datacenter network architecture
is that the over-subscription ratio, typically less than 3:1,
exists only at the Top-of-Rack (ToR) switches (Figure 3).
Beyond the ToR switches, the network design eliminates
any structural bottleneck, and offers uniform high capac-
ity between racks in a cluster. To study where conges-
tion occurs in such a topology, we collected link utiliza-
tion statistics from Windows Azure’s production storage

Figure 4: Utilization trends observed in a cluster running a
multi-tenant storage service. The edge links exhibit higher peak
and variance in link utilization compared to core links.

cluster, whose network has a small oversubscription (less
than 3:1). Figure 4 plots the top 10 percentiles of link uti-
lization (averaged over 5 minute intervals) on edge and
core links using data collected from 20 racks over the
course of one week. The plot reveals two trends. First,
we observe that edge links have higher peak link utiliza-
tion. This suggests that persistent congestion manifests
itself more often, and earlier, on server ports than the
network core. Second, the variation of link utilization on
core links is smaller. This suggests that the network core
is evenly utilized and is free of persistent hot-spots.

The reason we observe this behavior is two fold. First,
we observed that TCP is the dominant protocol in our
datacenters [19, 21]. The nature of TCP’s congestion
control ensures that traffic is admissible, i.e., sources do
not send more traffic (in aggregate) to a sink than the bot-
tleneck capacity along the paths. In a high capacity fab-
ric, the only bottlenecks are at over-subscription points—
the server access links and the links between the ToRs
and Spines—provided packets are optimally routed at
other places. Second, datacenters today use Equal-Cost
Multi-Path (ECMP) to randomize routing at the level of
flows. In practice, ECMP is “good enough” to miti-
gate contention within the fabric, particularly when most
flows are short-lived. While the above link utilizations
reflect persistent congestion over 5 minute intervals, we
conducted a detailed packet-level simulation study, and
found that randomized per-packet routing can push even
millisecond timescale congestion to the edge (§5.3).

Thus, if (a) the network has high bisection bandwidth,
(b) the network employs randomized traffic routing, and
(c) traffic is admissible, persistent congestion only occurs
at the access links and not in the core. This observation
guides our design in that it is sufficient if per-tenant state
is pushed to the edge, where it is already available.

3 EyeQ Design
We now describe EyeQ’s design in light of the observa-
tions in the §2. For ease of exposition, we first abstract
the datacenter network as a single switch and describe
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how EyeQ ensures rate guarantees to each endpoint con-
nected to this switch. Then in §3.5, we explain how this
design fits in a network of switches. Finally, we describe
how endpoints that do not need guarantees can coexist.

If a single switch connects all servers, bandwidth con-
tention happens only at the first-hop link connecting the
sender to the switch, and the last-hop link connecting the
switch to the receiver. Therefore, any contention is local
to the servers, where the number of competing entities is
small (typically 8–32 services/VMs per server). To re-
solve local contention between endpoints, two features
are indispensable: (a) a mechanism that detects and ac-
counts for contention, and (b) a mechanism that enforces
rate limits on flows that violate their share. We now de-
scribe mechanisms to detect and resolve contention at
senders and receivers.

3.1 Detecting and Resolving Contention
Senders. Contention between transmitters at the sender
is straightforward to detect and resolve as the first point
of contention is the server NIC. To resolve this and
achive rate guarantees at the sender, EyeQ uses weighted
fair queueing, where weights are set proportional to the
endpoint’s minimum bandwidth guarantees.
Receivers. However, contention at the receiver first hap-
pens inside the switch, and not at the receiving server.
To see this, consider the example shown in Figure 2
where UDP generates highly bursty traffic that leads to
25% average utilization of the receiver link. When TCP
begins to transmit packets, the link utilization soon ap-
proaches 100%, and packets are queued up in the lim-
ited buffer space inside the switch. If the switch does
not differentially treat TCP and UDP packets, TCP’s re-
quest/response experiences high latency.

Unfortunately, neither the sender nor receiver server
has accurate, if any, visibility into this switch-internal
contention, especially at timescales it takes to fill the
switch packet buffers. These timescales can be very
small as datacenter switches have limited packet buffers.
Consider a scenario where two switch ports send data to
a common port that has 1MB buffer. If each port starts
sending at line rate, it takes just 800µs (at 10Gb/s) to fill
the shared buffer inside the switch.

Fortunately, the scenario in Figure 2 offers an in-
sight into the problem: contention happens when the
link utilization, at short timescales, approaches its capac-
ity. EyeQ therefore measures rate every 200µs and uses
this information to rate limit flows before they cause fur-
ther congestion. EyeQ stands to benefit if the network
can further assist in quickly detecting any congestion, ei-
ther using Explicit Congestion Notification (ECN) marks
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Figure 5: The design consists of a Sender EyeQ Module
(SEM) and Receiver EyeQ Module (REM) at every end-host.
The SEM consists of hierarchical rate limiters to enforce ad-
mission control, and a WRR scheduler to enforce minimum
bandwidth guarantees. The REM consists of rate meters that
detect and signal congestion. In tandem, the SEM and REM
achieve end-to-end flow control.

from a shared queue when buffers exceed a configured
queue occupancy, or using per-tenant dedicated queues
only on the access link. But EyeQ does not need per-
tenant network queues to function.
Resolving receiver contention. Unlike sender viola-
tion, performing both detection and rate limiting at the
receiver is not effective, as rate limiting at the receiver
can only control well-behaved TCP-like flows (by hav-
ing them back off via drops). Unfortunately, VMs may
use transport protocols such as UDP, which do not react
to any downstream drops. EyeQ implements receiver-
side detection, sender-side reaction. Specifically EyeQ
detects bandwidth violation at the receiver using per-
endpoint rate meters, and enforces rate limits at the
senders using per-destination rate limiters. These per-
destination rate limiters are programmed by congestion
feedback generated by the receiver (§3.4).

In summary, EyeQ’s design has two main components:
(a) a rate meter at receivers that sends feedback to (b) rate
limiters at senders. A combination of the above is needed
to address both contention at the receiver indicated using
feedback, as well as local contention at the sender. The
rate limiters work in a distributed fashion using a control
algorithm to iteratively converge to the ‘right’ rates.

3.2 Receiver EyeQ Module
The Receiver EyeQ Module (REM) consists of an RX
scheduler and rate meters for every endpoint. The rate
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meter is just as a byte counter that periodically (200µs)
tracks the endpoint’s receive rate, and invokes the RX
scheduler which computes a capacity for each endpoint
as Ci = Bi ×C/(∑ j∈A B j). Here, A is the set of active
VMs that are receiving traffic at non-zero rate, and Bi is
the minimum bandwidth guarantee to VM i. Rate me-
ters can be hierarchical; for example, a tenant can create
rate meters to further split its capacity Ci across tenants
communicating with it.

REM is clocked by incoming packets and measures
each tenant’s aggregate utilization every 200µs. A
packet arrival triggers a feedback to source of the current
packet. The feedback is a 16-bit value R computed by the
rate meter using a control algorithm. To avoid generating
excessive feedback, we send feedback only to the source
address of packet sampled every 10kB of received data.
This tends to choose senders that are communicating at
high rates over a period of time.

This sampling also restricts the maximum bandwidth
consumed by feedback. Since feedback packets are min-
imum sized packets (64 bytes), feedback traffic will not
consume more than 64Mb/s (on a 10Gb/s link). This
does not depend on the number of rate meters or senders
transmitting to a single machine. We call this feedback
packet a host-ACK, or HACK. The HACK is a special
IP packet that is never communicated to the tenant; we
picked the first unused IP protocol number (143) as a
‘HACK.’ The HACK encodes a 16-bit rate in its IPID
field. However, this feedback can also be piggybacked
on traffic to the source.

3.3 Sender EyeQ Module
To enforce traffic admission control, SEM uses multiple
rate limiters organized in a hierarchical fashion. To see
this hierarchy, consider the scenario in Figure 5. The
root WRR scheduler schedules packet transmissions so
that VM1 and VM2 get (say) equal share of the transmit
bandwidth. To further ensure that traffic does not con-
gest a destination, there are a set of rate limiters at the
leaf level, one per congested destination. Per-destination
rate limiters ensure that traffic to uncongested destina-
tions are not head-of-line blocked by traffic to congested
destinations. These per-destination rate limiters set their
rate dictated by HACKs from receivers (§3.4). EyeQ as-
sociates traffic to a rate limiter only when the destination
signals congestion through rate feedback. If a feedback
is not received within 100 milliseconds, the rate limiter
halves its rate until it hits 1Mb/s, to avoid congesting the
network if the receiver is unresponsive (e.g. due to fail-
ures or network partitions).

3.4 Rate Control Loop
The heart of EyeQ’s architecture is a rate control algo-
rithm that computes the rates at which senders should
converge to, to avoid overwhelming the receiver’s capac-
ity limits. The goal of this algorithm is to compute one
rate Ri to which all flows of a tenant destined to end-
point i should be rate limited. If N senders all send long-
lived flows, then Ri is simply Ci/N. In practice, N is
hard to estimate as senders are in a constant state of flux,
and not all of them may want to send traffic at rate Ri.
Hence, we need a mechanism that can compute Ri with-
out estimating the number of senders, or their demands.
This makes the implementation practical, and more im-
portantly, makes it possible to offload this functionality
in hardware such as programmable NICs [28].

The control algorithm (operating at each endpoint)
uses the measured receive rate yi and the endpoint’s al-
lowed receive capacity Ci (determined by the RX sched-
uler) to compute a rate Ri that is advertised to senders
communicating only with this endpoint. The basic idea
is that the algorithm starts with an initial rate estimate Ri,
and periodically corrects it based on observed yi; if the
incoming rate yi is too small, it increases Ri, and if yi is
larger than Ci, it decreases Ri. This iterative procedure to
compute Ri can be written as follows, taking care to keep
Ri positive:

Ri ← Ri

(

1−α · yi −Ci

Ci

)

The algorithm is a variant of the Rate Control Proto-
col (RCP) proposed in [27, 29], but there is an important
difference. RCP’s control algorithm operates on links in
the network to split the link capacity among every flow
in a max-min fashion. This achieves per-flow max-min
fairness, and therefore, RCP suffers from the same prob-
lems as TCP. Instead, we operate the control algorithm in
a hierarchical fashion. At the top level, the physical link
capacity is divided by the RX scheduler into multiple vir-
tual link capacities (Ci), one per VM, which isolates VMs
from one another. Next, we operate the above algorithm
independently on each virtual link.

The sensitivity of the algorithm is controlled by pa-
rameter α; higher values make the algorithm more ag-
gressive in adjusting Ri. The above equation can be an-
alyzed as follows. In the case where N flows traverse
a single congested link of unit capacity, the rate evo-
lution of R can be described in the standard form: 2

z[n+1] = bz[n](1− z[n]), where z[n] =
( b−1

b

) R[n]
R∗ , R∗ =

1
N , and b = 1+α . It can be shown that R∗ is the only sta-
ble fixed point of the above recurrence if 1 < b < 3, i.e.

2This is a standard non-linear one-dimensional dynamical system
called the Logistic Map.
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0 < α < 2. By linearizing the recurrence about its fixed
point, we can show that R[n]≈ R∗+(R[0]−R∗)(1−α)n.
Therefore the system converges linearly. In practice, we
found that high values of α lead to oscillations around
R∗ and therefore we recommend setting α conservatively
to 0.5, for which R[n] converges within 0.01% of R∗ in
about 30 iterations, irrespective of R[0].

Though EyeQ makes an assumption about conges-
tion free network core, ECN marks from network enable
EyeQ to gracefully degrade in the presence of in-network
congestion that can arise, for example, when links fail.
In the rare event of persistent in-network congestion, we
estimate the fraction of marked incoming packets as β
and reduce Ri proportionally: Ri ← Ri(1− β/2). This
term β aids in reducing the rate of transmitting endpoints
only in such transient cases. Though minimum band-
width guarantees cannot be met in this case, it prevents
starvation where one endpoint is completely dominated
by another. In this case, bottleneck bandwidth is shared
equally among all receiving endpoints.

We experimented with other control algorithms based
on Data Center TCP (DCTCP) [21] and Quantized Con-
gestion Notification (QCN) [30], and found that they
have different convergence and stability properties. For
example, DCTCP’s convergence was on the order of
100–150ms, whereas QCN converged within 20–30ms.
It is important that the control loop be fast and stable, to
react to bursts without over-reaching, and RCP converges
within a few milliseconds to the right rate. Since EyeQ
computes rates every 200µs, the worst case convergence
time (30 iterations) is 6ms. In practice, it is much faster.

3.5 EyeQ on a network
So far, we described EyeQ with the assumption that all
end-hosts are connected to a single switch. A few steps
must be taken to ensure EyeQ’s design is directly ap-
plicable to networks that have a little over-subscription
at the ToR switches (Figure 3). Clearly, if the policy is
to guarantee minimum bandwidth to each VM, the clus-
ter manager must ensure that capacity is not overbooked.
This becomes simpler in such networks, where the core
of the network is guaranteed to be congestion free, and
hence admission control must only ensure that:

• The access links at end-hosts are not over-subscribed:
i.e., the sum of bandwidth guarantees of VMs on a
server is less than 10Gb/s.

• The ToR’s uplink capacity is not over-subscribed: i.e.,
the sum of bandwidth guarantees of VMs under a ToR
switch is less than the switch’s total capacity to the
Spine layer.

The above conditions ensure that VMs are guaranteed
their bandwidth in the worst case when every VM needs
it. The remaining capacity can be used for VMs that
have no bandwidth requirements. Traffic from VMs that
do not need bandwidth guarantees are mapped to a low
priority, “best-effort” network class. This requires (i) a
one-time network configuration of a low priority queue,
which is easily possible in today’s commodity switches,
and (ii) end-hosts to mark packets so they can be classi-
fied to low priority network queues. This partitions the
available bisection bandwidth across a class of VMs that
need performance guarantees, and those that do not. As
we saw in §3.4, EyeQ gracefully degrades in the pres-
ence of network congestion that can happen due to over-
subscription, by sharing bandwidth equally among all re-
ceiving endpoints.

4 Implementation
EyeQ needs two components: rate limiters and rate me-
tering. These components can be implemented in soft-
ware, or hardware or a combination of two for optimum
performance. In this paper, we present a full-software
implementation of EyeQ’s mechanisms, addressing the
following challenges: (a) maintaining line rate perfor-
mance at 10Gb/s while reacting quickly to deal with con-
tentions at fine timescales, (b) co-existing with today’s
network stacks that use various offload techniques to
speed up packet processing. EyeQ uses a combination of
simple and well known techniques to reduce CPU over-
head. We avoid writing to data structures shared across
multiple CPUs to minimize cache misses. If sharing is
inevitable, we minimize updates of shared data as much
as possible through batching.

In untrusted environments, EyeQ is implemented in
the trusted codebase at the (hypervisor or Dom0) virtual
switch. In a non-virtualized, trusted environment, EyeQ
resides in the network stack as a shim layer above the
device driver. As a prototype, we implemented RX and
TX processing for a VMSwitch filter driver for Windows
Server 2008, and a kernel module for Linux which we
use for all our experiments in this paper. The kernel mod-
ule implements a queueing discipline (qdisc) in about
1900 lines of C code and about 700 lines of header files.
We implemented a simple hash table based IP based clas-
sifier to identify endpoints. EyeQ hooks into the RX dat-
apath using netdev rx handler register.

4.1 Receiver EyeQ Module
The REM consists of rate meters, a scheduler and a
HACK generator. A rate meter is created for each VM,
and tracks the VM’s receive rate in an integer. Clocked
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by incoming packets, the scheduler determines each end-
point’s allowed rate. The scheduler distributes the re-
ceive capacity among active endpoints, in accordance
with their minimum bandwidth requirements.

At 10Gb/s, today’s NICs use techniques such as Re-
ceive Side Scaling [31] to scale software packet process-
ing by load balancing interrupts across CPU cores. A sin-
gle, atomically updated byte counter in the critical path
is a bottleneck and limits parallelism. To avoid such inef-
ficiencies, we exploit the fact that today’s NICs use inter-
rupt coalescing to deliver multiple packets in a single in-
terrupt, and therefore batch counter updates over 200µs
time intervals. A smaller interval results in inaccurate
rate measurement due to tiny bursts, and a larger interval
decreases the rate meter’s ability to detect short bursts
that can cause interference. In a typical shallow buffered
ToR switch that has a 1MB shared buffer, it takes 800µs
to fill 1MB if two ports are sending at line rate to a com-
mon receiver. Thus, the choice of 200µs interval is to
balance the ability to detect short bursts, and measure
rate reasonably accurately.

4.2 Sender EyeQ Module
SEM consists of multiple TX-contexts, one per endpoint,
that are isolated from one another. The SEM classifies
packets to their corresponding TX-context. Each context
has one root rate limiter, and a hash table of rate limiters
keyed by IP destination d. The hash table stores the rate
control state (R(i)

d ). Recall that rate enforcement is done
hierarchically; leaf rate limiters enforce per-destination
rates determined by end-to-end feedback loop, and the
root rate limiter enforces a per-endpoint aggregate rate
determined by the TX scheduler.

Rate limiters to IP destinations are created only on a
need-to-rate limit basis. At start, packets to a destination
are rate limited only at the root level. A per-destination
rate limiter to a destination d is created, and added to the
hierarchy, only on receiving a congestion feedback from
the receiver d. Inactive rate limiters are garbage collected
every few seconds. The TX WRR scheduler executes ev-
ery 200µs and reassigns the total TX capacity to active
endpoints, i.e., those that have a backlog of packets wait-
ing to be transmitted in rate limiters.

Multi-queue rate limiter. The rate limiter is imple-
mented as a token bucket, which has an associated
linked-list (tail-drop) FIFO queue, a timer, a rate R and
some tokens. This simple design can be inefficient, as
a single queue rate limiter increases lock contention,
which degrades performance significantly, as the queue
is touched for every packet. Hence, we split the ideal
rate limiter’s FIFO queue into a per-CPU queue, and the

total tokens into a local token count (tc) on each CPU c.
The value tc is the number of bytes that Qc can transmit
without violating the global rate limit. Only if Qc runs
out of tokens to transmit the head of the queue, it grabs
the rate limiter’s lock to borrow all total tokens.

If the borrow fails due to lack of total tokens, the per-
CPU queue is throttled and appended to a per-CPU list
of backlogged queues. We found that having a timer for
every rate limiter was very expensive. Therefore, a sin-
gle per-CPU timer fires every 50µs and clocks only the
backlogged rate limiters on that CPU. Decreasing the fir-
ing interval increases the precision of the rate limiter, but
increases CPU overhead as it doubles the number of in-
terrupts per second. In practice, we found that 50µs is
sufficient. At 10Gb/s, at most 64kB can be transmitted
every 50µs without violating rate constraints.

The rate limiter’s per-CPU FIFO maximum queue size
is restricted to 128kB, beyond which it back-pressures
the network stack by refusing to accept more packets.
While a TCP flow responds to this immediate feedback
by stopping transmission, UDP applications may con-
tinue to send packets that will be dropped. Stopped TCP
flows will be resumed by incoming ACKs.

Rate limiter accuracy. Techniques such as large seg-
mentation offload (LSO) make it challenging to enforce
rates precisely. With default configuration, the TCP stack
can transmit data in 64kB chunks, which takes 51.2µs to
transmit at 10Gb/s. If a flow is rate limited to 1Gb/s,
the rate limiter would transmit one 64kB chunk every
512µs. This burstiness affects the accuracy with which
the rate meter measures rates. To limit burstiness, we
restrict the maximum LSO packet size to 32kB, which
enables reasonably accurate rate metering at 256µs in-
tervals. For rates less than 1Gb/s, the rate limiter se-
lectively disables segmentation offload by splitting large
packets into smaller chunks of at most the MTU (1500
bytes). This improves rate precision without incurring
much CPU overhead. Limiting the size of an LSO packet
also improves latency for short flows by reducing head of
line blocking at the NIC.

5 Evaluation
We evaluate EyeQ to understand the following aspects:

• Responsiveness: We stress EyeQ’s convergence times
against a large burst of UDP streams and find that
EyeQ converges within 5ms to protect a collocated
TCP tenant.

• CPU overhead: At 10Gb/s, we evaluate the main
overhead of EyeQ due to its rate limiters. We find it
outperforms the software rate limiters in Linux.
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Recall that EyeQ requires a number of rate limiters
that varies depending on the number of flows. In prac-
tice, the number of active flows (flows that have out-
standing data) is typically less than a few 100 on a ma-
chine [5]. Nevertheless, we evaluated EyeQ’s rate lim-
iters by creating 20000 long lived flows that are assigned
to a number of rate limiters in a round robin fashion.
As we increased the number of rate limiters connected
to the root (which is limited to 5Gb/s) from 1 to 1000
to 10000, we found that the CPU usage stays the same.
This is because the net work output (packets per second)
is the same in all cases, except for the (small) overhead
involved in book keeping rate limiters.

5.2 Macro Benchmarks
The micro-benchmarks show that EyeQ is efficient, and
responsive in mitigating congestion. In this section, we
explore the benefits of EyeQ on traffic characteristics
of two real world applications: a long data shuffle (e.g.
Hadoop) and memcached.

5.2.1 All-to-all data shuffle
To mimic a Hadoop job’s network traffic component, we
generate an all to all traffic pattern of a sort job using a
traffic generator.3 Hadoop’s reduce phase is bandwidth
intensive and job completion times depend on the avail-
ability of bandwidth [32]. In the sort workload of S TB
of data, using a cluster of N nodes involves roughly an
equal amount of data shuffle between all pairs; in ef-
fect, S

N(N−1) TB of data is shuffled between every pair of
nodes. We use a TCP traffic generator to create long lived
flows according to the above traffic pattern, and record
the flow completion times of all the N(N −1) flows. We
then plot the CDF of flow completion times for every job
to visualize its progress over time; the job is complete
when the last flow completes. We make no optimizations
to mitigate stragglers.

Multiple all-to-all shuffles. In this test, we run three
collocated all-to-all shuffle jobs. Each job has 16 work-
ers, one on each server in the cluster; and each server
has three workers, one of each job. Each job has a
varying degree of aggressiveness when consuming net-
work bandwidth; job Pi (i = 1,2,4) creates i parallel TCP
connections between each pair of its nodes, and each
TCP connection an transfers equal amount of data. The
jobs are all temporally and spatially collocated with each
other and run a common 1 TB sort workload.

Figure 8(a) shows that jobs that open more TCP con-

3We used a traffic generator as our disks could not sustain enough
write throughput to saturate a 10Gb/s network.

(a) Without EyeQ, job P4 creates 4 parallel TCP con-
nections between its workers and completes faster.

(b) With different minimum bandwidth guarantees,
EyeQ can directly affect the job completion times.

Figure 8: EyeQ’s ability to differentially allocate bandwidth
to all-to-all shuffle jobs can affect their completion times, and
can be done at runtime, without reconfiguring jobs.

nections complete faster. However, EyeQ provides flex-
ibility to explicitly configure job priorities, irrespective
of the traffic, or protocol behavior. Figure 8(b) shows
the job completion times if the lesser aggressive jobs are
given higher priority; the priority can be inverted, and the
job completion times reflect the change of priorities. The
job priority is inverted by assigning minimum bandwidth
guarantees Bi to jobs Pi that is inversely proportional to
their aggressiveness; i.e., B1 : B2 : B4 = 4 : 2 : 1. The final
completion time in EyeQ increases from 180s to 210s,
due to two reasons. First, EyeQ’s congestion detectors
maintain a 10% bandwidth headroom inorder to work at
the end hosts without network ECN support. Second, the
REM (§3.2) does not share bandwidth in a fine-grained,
per-packet fashion, but over a 200µs time window. This
leads to a small loss of utilization, when (say) P1 is allo-
cated some bandwidth but does not use it.

5.2.2 Memcached
Our final macro-evaluation is a scenario where a mem-
cached tenant is collocated alongside an adversarial UDP
tenant. The memcached tenant is a cluster consists of 16
processes: 4 memcached instances and 12 clients. Each
process is located on a different host. At the start of the
experiment, each cache instance allocates 8GB of mem-
ory, each client starts one thread per cache instance, and
each thread opens 10 permanent TCP connections to its
designated cache instance.
Throughput test. We generate an external load of
about 288k requests/sec load balanced equally across all
clients; at each client, the mean load is 6000 requests/sec
to each cache instance. The clients generate SET re-
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Latency percentiles (µs)
Scenario 50th 99th 99.9th
Bare 98 370 666
Bare+EyeQ 100 333 630
Bare+UDP 4127 0.89×106 1.1×106

Bare+UDP+EyeQ 102 437 750

Table 1: Latency of memcached SET requests at low load
(144k req/s). In all cases, the cluster throughput was the same,
but EyeQ protects memcached from bursty traffic, bringing the
99.9th percentile latency closer to bare-metal performance.

quests of 6kB values and 32B keys and record the latency
of each operation. We contrast the performance under
four cases. First, we dedicate the cluster to the mem-
cached tenant and establish baseline performance. The
cluster was able to sustain the external load of 288k re-
quests/sec. Second, we enable EyeQ on the same setup
and found that EyeQ does not affect total throughput.

Third, we collocate memcached with a UDP tenant,
by instantiating a UDP node on every end host. Each
UDP node sends half-a-second burst of data to one other
node (chosen in a round robin fashion), sleeping for half-
a-second between bursts. Thus, the average utilization
of UDP tenant is 5Gb/s. We chose this pattern as some
cloud providers today allow a VM to burst at high rates
for a few seconds before it is throttled. In this case,
we find that the cluster was able to keep up only with
269k requests/sec which caused many responses timed
out even though UDP tenant is consuming only 5Gb/s.
Finally, we set equal bandwidth guarantees (5Gb/s) to
both UDP and memcached tenant. We find that the clus-
ter is can sustain the demand of 288k requests/sec. This
shows that EyeQ is able to protect memcached tenant
from the bursty UDP traffic.

Latency test. We over-provisioned the cluster by halv-
ing the external load (144k requests/sec). When mem-
cached is collocated with UDP without EyeQ’s protec-
tion, we observed that the cluster was able to meet its
demand, but UDP was still able to affect the latency of
memcached requests, increasing the 99th percentile la-
tency by over three orders of magnitude. When enabled,
EyeQ was able to protect the memcached tenant from
fine-grained traffic bursts, and bring the 99.9th percentile
latency to 750µs. The latency is still more than bare
metal as the total load on the network is higher.

Takeaways. This experiment highlights a subtle point.
Though we pay a 10% bandwidth price for low latency,
EyeQ improves the net cluster utilization and tail latency
performance. In a real setup, an unsuspecting client
would pay money to spin up additional memcached in-
stances to cope with the additional load. While this

(a) Per-flow ECMP. (b) Per-packet ECMP.

Figure 9: Queue occupancy distribution at the edge and core
links, for two different routing algorithms. The maximum
queue size is 225kB (150 packets). Large queue sizes indi-
cate more congestion. In all cases, the network edge is more
congested even at small timescales (1ms).

does increase revenue for providers, we believe they can
earn more by using fewer resources to achieve the same
level of performance. In datacenters, servers account
for over 60% of the cost, but network accounts for only
10–15% [33]. With EyeQ, cloud operators can hope to
achieve better CPU packing without worrying about net-
work interference.

5.3 Congestion in the Fabric
In §2.3 we used link utilization from a production cluster
as evidence that network congestion happens more often
at the edge than the network core. These coarse-grained
average link utilizations over five minute intervals show
macroscopic trends, but it does not capture congestion
at packet timescales. Using packet-level simulations in
ns2 [34], we study the extent to which transient con-
gestion can be mitigated at the network core using two
routing algorithms: (a) per-flow ECMP and (b) a per-
packet variant of ECMP. In the per-packet variant, each
packet’s route is chosen uniformly at random among all
next hops [35]. To cope with packet reordering, we in-
crease TCP’s duplicate ACK threshold.

We created a full bisection bandwidth topology of
144x10GbE hosts, 9 ToRs and 16 Spines as in our dat-
acenters (Figure 3). Servers open TCP connections to
every other server and generate traffic at an average rate
of 10Gb/s×λ , where λ is the offered load. Each server
picks a random TCP connection to transmit data. Flow
sizes are drawn from a distribution observed in a large
datacenter [21]; the median, mean and 90th percentile
flow sizes are 19kB, 2.4MB, 133kB respectively. We set
queue sizes of all network queues to 150 packets and col-
lect queue samples every 1ms. Figure 9 shows queue oc-
cupancy percentiles at the edge and core when λ = 0.9.

Even at high load, we observe that the core links are
far less congested than the edge links. With per-packet
ECMP, the maximum queue occupancy is less than 50kB
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in the core links. All packet are dropped at the server
access links. In all cases, we observed that per-packet
ECMP practically eliminates in-network congestion ir-
respective of traffic pattern.

6 Related work
EyeQ’s goals fall under the umbrella of Network Qual-
ity of Service (QoS), which has a rich history. Early
QoS models [13, 36] and their implementations [15, 16,
36] focus on link-level and network-wide rate and de-
lay guarantees for flows between a source and destina-
tion. Protocols such as Resource Reservation Protocol
(RSVP) [37] reserve/relinquish resources across multi-
ple links using such QoS primitives. Managing network
state for every flow becomes untenable when there are
a lot of flows. This led to approaches that relax strict
guarantees for “average bandwidth,” [14, 38, 39] while
incurring lower state management overhead. A notable
candidate is Core-Stateless Fair Queueing (CSFQ) that
distributes state between the network core and the net-
work edge, relying on flow aggregation at edge routers.
In a flat datacenter network, tenant VMs are distributed
across racks for availability, and hence there is little to no
flow aggregation. OverQoS [40] provided an abstraction
of a controlled loss virtual link with statistical bandwidth
guarantees, between two nodes on an overlay network;
this “pipe” model requires customers to specify band-
width requirements between all communicating pairs, in
contrast to a hose model [12].

Among recent approaches, Seawall [18] shares bottle-
neck capacity across competing source VMs (relative to
their weights). This notion of sharing lacks predictabil-
ity, as a tenant can grab more bandwidth by launching
more source VMs. Oktopus [3] argues for predictabil-
ity by enforcing a static hose model using rate lim-
iters. It computes rates using a pseudo-centralized mech-
anism, where VMs communicate their pairwise band-
width consumption to a tenant-specific centralized coor-
dinator. This control plane overhead limits reaction times
to about 2 seconds. However, as we have seen (§2.2), any
isolation mechanism has to react quickly to be effective.
SecondNet [41] is limited to providing static bandwidth
reservations between pairs of VMs. In contrast to Okto-
pus and SecondNet, EyeQ supports both static and work
conserving bandwidth allocations.

The closest related work to EyeQ is Gatekeeper [42],
which also argues for predictable bandwidth allocation,
and uses congestion control to provide rate guarantees to
VMs. While the high level architecture is similar, Gate-
keeper lacks details on the system design, especially the
rate control mechanism, which is critical to providing

bandwidth guarantees at short timescales. Gatekeeper’s
evaluation is limited to static scenarios with long lived
flows. Moreover, Gatekeeper uses Linux’s hierarchical
token bucket, which incurs high overhead at 10Gb/s.

FairCloud [43] explored fundamental trade-offs be-
tween network utilization, min-guarantees and payment
proportionality, for a number of sharing policies. Fair-
Cloud demonstrated the effect of such policies with per-
flow queues in switches and CSFQ, which have limited
or no support in today’s commodity switches. However,
the minimum-bandwidth guarantee that EyeQ supports
conforms to FairCloud’s ‘Proportional-sharing on proxi-
mate links (PS-P)’ sharing policy, which, as the authors
demonstrate, outperform many other sharing policies.
NetShare [44] used in-network weighted fair queueing
to enforce bandwidth sharing among VMs. This ap-
proach, unfortunately, does not scale well due to the lim-
ited queues (8–64) per port.

The literature on congestion control mechanisms is
vast; however, the fundamental unit of allocation is still
per-flow, and therefore, the mechanisms are not ade-
quate for network performance isolation. We refer the
interested reader to [45] for a more comprehensive sur-
vey about recent efforts to address performance unpre-
dictability in datacenter networks.

7 Concluding Remarks
In this paper, we presented EyeQ, a platform to enforce
predictable network bandwidth sharing within the data-
center, using minimum bandwidth guarantees to end-
points. Our design and evaluation shows that a synthesis
of well known techniques can lead to a simple and scal-
able design for network performance isolation. EyeQ is
practical, and is deployable on today’s, and next genera-
tion high speed datacenter networks with no changes to
network hardware or applications. With EyeQ, providers
can flexibly and efficiently apportion network bandwidth
across tenants by giving each tenant endpoint a pre-
dictable minimum bandwidth guarantee, eliminating the
problem of accidental, or malicious traffic interference.
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Abstract

We present the first scalable, geo-replicated storage sys-
tem that guarantees low latency, offers a rich data model,
and provides “stronger” semantics. Namely, all client
requests are satisfied in the local datacenter in which
they arise; the system efficiently supports useful data
model abstractions such as column families and counter
columns; and clients can access data in a causally-
consistent fashion with read-only and write-only transac-
tional support, even for keys spread across many servers.

The primary contributions of this work are enabling
scalable causal consistency for the complex column-
family data model, as well as novel, non-blocking al-
gorithms for both read-only and write-only transactions.
Our evaluation shows that our system, Eiger, achieves
low latency (single-ms), has throughput competitive with
eventually-consistent and non-transactional Cassandra
(less than 7% overhead for one of Facebook’s real-world
workloads), and scales out to large clusters almost lin-
early (averaging 96% increases up to 128 server clusters).

1 Introduction

Large-scale data stores are a critical infrastructure com-
ponent of many Internet services. In this paper, we
address the problem of building a geo-replicated data
store targeted at applications that demand fast response
times. Such applications are now common: Amazon,
EBay, and Google all claim that a slight increase in
user-perceived latency translates into concrete revenue
loss [25, 26, 41, 50].

Providing low latency to the end-user requires two
properties from the underlying storage system. First, stor-
age nodes must be near the user to avoid long-distance
round trip times; thus, data must be replicated geographi-
cally to handle users from diverse locations. Second, the
storage layer itself must be fast: client reads and writes
must be local to that nearby datacenter and not traverse
the wide area. Geo-replicated storage also provides the
important benefits of availability and fault tolerance.

Beyond low latency, many services benefit from a
rich data model. Key-value storage—perhaps the sim-

plest data model provided by data stores—is used by a
number of services today [4, 29]. The simplicity of this
data model, however, makes building a number of in-
teresting services overly arduous, particularly compared
to the column-family data models offered by systems
like BigTable [19] and Cassandra [37]. These rich data
models provide hierarchical sorted column-families and
numerical counters. Column-families are well-matched
to services such as Facebook, while counter columns are
particularly useful for numerical statistics, as used by
collaborative filtering (Digg, Reddit), likes (Facebook),
or re-tweets (Twitter).

Unfortunately, to our knowledge, no existing geo-
replicated data store provides guaranteed low latency,
a rich column-family data model, and stronger consis-
tency semantics: consistency guarantees stronger than
the weakest choice—eventual consistency—and support
for atomic updates and transactions. This paper presents
Eiger, a system that achieves all three properties.

The consistency model Eiger provides is tempered by
impossibility results: the strongest forms of consistency—
such as linearizability, sequential, and serializability—
are impossible to achieve with low latency [8, 42] (that is,
latency less than the network delay between datacenters).
Yet, some forms of stronger-than-eventual consistency
are still possible and useful, e.g., causal consistency [2],
and they can benefit system developers and users. In addi-
tion, read-only and write-only transactions that execute a
batch of read or write operations at the same logical time
can strengthen the semantics provided to a programmer.

Many previous systems satisfy two of our three design
goals. Traditional databases, as well as the more re-
cent Walter [52], MDCC [35], Megastore [9], and some
Cassandra configurations, provide stronger semantics
and a rich data model, but cannot guarantee low latency.
Redis [48], CouchDB [23], and other Cassandra config-
urations provide low latency and a rich data model, but
not stronger semantics. Our prior work on COPS [43]
supports low latency, some stronger semantics—causal
consistency and read-only transactions—but not a richer
data model or write-only transactions (see §7.8 and §8
for a detailed comparison).

A key challenge of this work is to meet these three
goals while scaling to a large numbers of nodes in a
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single datacenter, which acts as a single logical replica.
Traditional solutions in this space [10, 12, 36], such as
Bayou [44], assume a single node per replica and rely on
techniques such as log exchange to provide consistency.
Log exchange, however, requires serialization through a
single node, which does not scale to multi-node replicas.

This paper presents Eiger, a scalable geo-replicated
data store that achieves our three goals. Like COPS,
Eiger tracks dependencies to ensure consistency; instead
of COPS’ dependencies on versions of keys, however,
Eiger tracks dependencies on operations. Yet, its mecha-
nisms do not simply harken back to the transaction logs
common to databases. Unlike those logs, Eiger’s oper-
ations may depend on those executed on other nodes,
and an operation may correspond to a transaction that
involves keys stored on different nodes.

Eiger’s read-only and write-only transaction algo-
rithms each represent an advance in the state-of-the-art.
COPS introduced a read-only transaction algorithm that
normally completes in one round of local reads, and two
rounds in the worst case. Eiger’s read-only transaction
algorithm has the same properties, but achieves them
using logical time instead of explicit dependencies. Not
storing explicit dependencies not only improves Eiger’s
efficiency, it allows Eiger to tolerate long partitions be-
tween datacenters, while COPS may suffer a metadata
explosion that can degrade availability.

Eiger’s write-only transaction algorithm can atomi-
cally update multiple columns of multiple keys spread
across multiple servers in a datacenter (i.e., they are
atomic within a datacenter, but not globally). It was de-
signed to coexist with Eiger’s read-only transactions, so
that both can guarantee low-latency by (1) remaining in
the local datacenter, (2) taking a small and bounded num-
ber of local messages to complete, and (3) never blocking
on any other operation. In addition, both transaction algo-
rithms are general in that they can be applied to systems
with stronger consistency, e.g., linearizability [33].

The contributions of this paper are as follows:

• The design of a low-latency, causally-consistent data
store based on a column-family data model, including
all the intricacies necessary to offer abstractions such
as column families and counter columns.

• A novel non-blocking read-only transaction algo-
rithm that is both performant and partition tolerant.

• A novel write-only transaction algorithm that atomi-
cally writes a set of keys, is lock-free (low latency),
and does not block concurrent read transactions.

• An evaluation that shows Eiger has performance com-
petitive to eventually-consistent Cassandra.

2 Background
This section reviews background information related to
Eiger: web service architectures, the column-family data
model, and causal consistency.

2.1 Web Service Architecture
Eiger targets large geo-replicated web services. These
services run in multiple datacenters world-wide, where
each datacenter stores a full replica of the data. For
example, Facebook stores all user profiles, comments,
friends lists, and likes at each of its datacenters [27].
Users connect to a nearby datacenter, and applications
strive to handle requests entirely within that datacenter.

Inside the datacenter, client requests are served by
a front-end web server. Front-ends serve requests by
reading and writing data to and from storage tier nodes.
Writes are asynchronously replicated to storage tiers in
other datacenters to keep the replicas loosely up-to-date.

In order to scale, the storage cluster in each datacen-
ter is typically partitioned across 10s to 1000s of ma-
chines. As a primitive example, Machine 1 might store
and serve user profiles for people whose names start with
‘A’, Server 2 for ‘B’, and so on.

As a storage system, Eiger’s clients are the front-end
web servers that issue read and write operations on behalf
of the human users. When we say, “a client writes a
value,” we mean that an application running on a web or
application server writes into the storage system.

2.2 Column-Family Data Model
Eiger uses the column-family data model, which provides
a rich structure that allows programmers to naturally ex-
press complex data and then efficiently query it. This
data model was pioneered by Google’s BigTable [19].
It is now available in the open-source Cassandra sys-
tem [37], which is used by many large web services
including EBay, Netflix, and Reddit.

Our implementation of Eiger is built upon Cassandra
and so our description adheres to its specific data model
where it and BigTable differ. Our description of the data
model and API are simplified, when possible, for clarity.

Basic Data Model. The column-family data model is
a “map of maps of maps” of named columns. The first-
level map associates a key with a set of named column
families. The second level of maps associates the column
family with a set composed exclusively of either columns
or super columns. If present, the third and final level of
maps associates each super column with a set of columns.
This model is illustrated in Figure 1: “Associations” are a
column family, “Likes” are a super column, and “NSDI”
is a column.

2



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 315

bool ←− batch_mutate ( {key→mutation} )
bool ←− atomic_mutate ( {key→mutation} )

{key→columns} ←− multiget_slice ( {key, column_parent, slice_predicate} )

Table 1: Core API functions in Eiger’s column family data model. Eiger introduces atomic_mutate and con-
verts multiget_slice into a read-only transaction. All calls also have an actor_id.

Alice 

Bob 

1337 

2664 

ID 

NYC 

LA 

Town 

-

3/2/11 

Alice 

3/2/11 

-

Bob 

9/2/12 

- 

Carol 

9/1/12 

-

NSDI 

-

-

SOSP 

Friends Likes 

User Data Associations 

Figure 1: An example use of the column-family data
model for a social network setting.

Within a column family, each location is repre-
sented as a compound key and a single value, i.e., “Al-
ice:Assocs:Friends:Bob” with value “3/2/11”. These
pairs are stored in a simple ordered key-value store. All
data for a single row must reside on the same server.

Clients use the API shown in Table 1. Clients can
insert, update, or delete columns for multiple keys with a
batch_mutate or an atomic_mutate operation; each
mutation is either an insert or a delete. If a column
exists, an insert updates the value. Mutations in a
batch_mutate appear independently, while mutations
in an atomic_mutate appear as a single atomic group.

Similarly, clients can read many columns for mul-
tiple keys with the multiget_slice operation. The
client provides a list of tuples, each involving a key,
a column family name and optionally a super column
name, and a slice predicate. The slice predicate can
be a (start,stop,count) three-tuple, which matches
the first count columns with names between start and
stop. Names may be any comparable type, e.g., strings
or integers. Alternatively, the predicate can also be a list
of column names. In either case, a slice is a subset of the
stored columns for a given key.

Given the example data model in Figure 1 for a social
network, the following function calls show three typical
API calls: updating Alice’s hometown when she moves,
ending Alice and Bob’s friendship, and retrieving up to
10 of Alice’s friends with names starting with B to Z.

batch_mutate ( Alice→insert(UserData:Town=Rome) )

atomic_mutate ( Alice→delete(Assocs:Friends:Bob),
Bob→delete(Assocs:Friends:Alice) )

multiget_slice ({Alice, Assocs:Friends, (B, Z, 10)})

Counter Columns. Standard columns are updated by
insert operations that overwrite the old value. Counter

User Op ID Operation

Alice w1 insert(Alice, “-,Town”, NYC)
Bob r2 get(Alice, “-,Town”)
Bob w3 insert(Bob, “-,Town”, LA)
Alice r4 get(Bob, “-,Town”))
Carol w5 insert(Carol, “Likes, NSDI”, 8/31/12)
Alice w6 insert(Alice, “Likes, NSDI”, 9/1/12)
Alice r7 get(Carol, “Likes, NSDI”)
Alice w8 insert(Alice, “Friends, Carol”, 9/2/12)

(a)

w3 

w6 
w5 

w8 

w1 

Logical Tim
e 

r4 
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A
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(b)
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A
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Op Dependencies

w1 -
w3 w1
w5 -
w6 w3 w1
w8 w6 w5 w3 w1

(d)

Figure 2: (a) A set of example operations; (b) the
graph of causality between them; (c) the correspond-
ing dependency graph; and (d) a table listing nearest
(bold), one-hop (underlined), and all dependencies.

columns, in contrast, can be commutatively updated us-
ing an add operation. They are useful for maintaining
numerical statistics, e.g., a “liked_by_count” for NSDI
(not shown in figure), without the need to carefully read-
modify-write the object.

2.3 Causal Consistency

A rich data model alone does not provide an intuitive and
useful storage system. The storage system’s consistency
guarantees can restrict the possible ordering and timing
of operations throughout the system, helping to simplify
the possible behaviors that a programmer must reason
about and the anomalies that clients may see.

The strongest forms of consistency (linearizability, se-
rializability, and sequential consistency) are provably in-
compatible with our low-latency requirement [8, 42], and
the weakest (eventual consistency) allows many possible
orderings and anomalies. For example, under eventual
consistency, after Alice updates her profile, she might not
see that update after a refresh. Or, if Alice and Bob are
commenting back-and-forth on a blog post, Carol might
see a random non-contiguous subset of that conversation.
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Fortunately, causal consistency can avoid many such
inconvenient orderings, including the above examples,
while guaranteeing low latency. Interestingly, the moti-
vating example Google used in the presentation of their
transactional, linearizable, and non-low-latency system
Spanner [22]—where a dissident removes an untrustwor-
thy person from his friends list and then posts politically
sensitive speech—only requires causal consistency.

Causal consistency provides a partial order over oper-
ations in the system according to the notion of potential
causality [2, 38], which is defined by three rules:

• Thread-of-Execution. An operation performed by a
thread is causally after all of its previous ones.

• Reads-From. An operation that reads a value is
causally after the operation that wrote the value.

• Transitive-Closure. If operation a is causally after
b, and b is causally after c, then a is causally after c.

Figure 2 shows several example operations and illustrates
their causal relationships. Arrows indicate the sink is
causally after the source.

Write operations have dependencies on all other write
operations that they are causally after. Eiger uses these
dependencies to enforce causal consistency: It does not
apply (commit) a write in a cluster until verifying that
the operation’s dependencies are satisfied, meaning those
writes have already been applied in the cluster.

While the number of dependencies for a write grows
with a client’s lifetime, the system does not need to track
every dependency. Rather, only a small subset of these,
the nearest dependencies, are necessary for ensuring
causal consistency. These dependencies, which have a
longest path of one hop to the current operation, tran-
sitively capture all of the ordering constraints on this
operation. In particular, because all non-nearest depen-
dencies are depended upon by at least one of the nearest,
if this current operation occurs after the nearest depen-
dencies, then it will occur after all non-nearest as well (by
transitivity). Eiger actually tracks one-hop dependencies,
a slightly larger superset of nearest dependencies, which
have a shortest path of one hop to the current operation.
The motivation behind tracking one-hop dependencies is
discussed in Section 3.2. Figure 2(d) illustrates the types
of dependencies, e.g., w6’s dependency on w1 is one-hop
but not nearest.

3 Eiger System Design
The design of Eiger assumes an underlying partitioned,
reliable, and linearizable data store inside of each data-
center. Specifically, we assume:

1. The keyspace is partitioned across logical servers.
2. Linearizability is provided inside a datacenter.

3. Keys are stored on logical servers, implemented
with replicated state machines. We assume that a
failure does not make a logical server unavailable,
unless it makes the entire datacenter unavaible.

Each assumption represents an orthogonal direction of
research to Eiger. By assuming these properties instead
of specifying their exact design, we focus our explanation
on the novel facets of Eiger.

Keyspace partitioning may be accomplished with con-
sistent hashing [34] or directory-based approaches [6,
30]. Linearizability within a datacenter is achieved by
partitioning the keyspace and then providing lineariz-
ability for each partition [33]. Reliable, linearizable
servers can be implemented with Paxos [39] or primary-
backup [3] approaches, e.g., chain replication [57]. Many
existing systems [5, 13, 16, 54], in fact, provide all as-
sumed properties when used inside a single datacenter.

3.1 Achieving Causal Consistency
Eiger provides causal consistency by explicitly check-
ing that an operation’s nearest dependencies have been
applied before applying the operation. This approach is
similar to the mechanism used by COPS [43], although
COPS places dependencies on values, while Eiger uses
dependencies on operations.

Tracking dependencies on operations significantly im-
proves Eiger’s efficiency. In the column family data
model, it is not uncommon to simultaneously read or
write many columns for a single key. With dependencies
on values, a separate dependency must be used for each
column’s value and thus |column| dependency checks
would be required; Eiger could check as few as one. In
the worst case, when all columns were written by dif-
ferent operations, the number of required dependency
checks degrades to one per value.

Dependencies in Eiger consist of a locator and a
unique id. The locator is used to ensure that any other
operation that depends on this operation knows which
node to check with to determine if the operation has been
committed. For mutations of individual keys, the locator
is simply the key itself. Within a write transaction the
locator can be any key in the set; all that matters is that
each “sub-operation” within an atomic write be labeled
with the same locator.

The unique id allows dependencies to precisely map
to operations and is identical to the operation’s times-
tamp. A node in Eiger checks dependencies by sending a
dep_check operation to the node in its local datacenter
that owns the locator. The node that owns the locator
checks local data structures to see if has applied the op-
eration identified by its unique id. If it has, it responds
immediately. If not, it blocks the dep_check until it ap-
plies the operation. Thus, once all dep_checks return, a
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server knows all causally previous operations have been
applied and it can safely apply this operation.

3.2 Client Library

Clients access their local Eiger datacenter using a client
library that: (1) mediates access to nodes in the local
datacenter; (2) executes the read and write transaction
algorithms; and, most importantly (3) tracks causality
and attaches dependencies to write operations.1

The client library mediates access to the local data-
center by maintaining a view of its live servers and the
partitioning of its keyspace. The library uses this infor-
mation to send operations to the appropriate servers and
sometimes to split operations that span multiple servers.

The client library tracks causality by observing a
client’s operations.2 The API exposed by the client li-
brary matches that shown earlier in Table 1 with the addi-
tion of a actor_id field. As an optimization, dependen-
cies are tracked on a per-user basis with the actor_id
field to avoid unnecessarily adding thread-of-execution
dependencies between operations done on behalf of dif-
ferent real-world users (e.g., operations issued on behalf
of Alice are not entangled with operations issued on
behalf of Bob).

When a client issues a write, the library attaches de-
pendencies on its previous write and on all the writes
that wrote a value this client has observed through reads
since then. This one-hop set of dependencies is the set of
operations that have a path of length one to the current
operation in the causality graph. The one-hop dependen-
cies are a superset of the nearest dependencies (which
have a longest path of length one) and thus attaching and
checking them suffices for providing causal consistency.

We elect to track one-hop dependencies because we
can do so without storing any dependency information
at the servers. Using one-hop dependencies slightly in-
creases both the amount of memory needed at the client
nodes and the data sent to servers on writes.3

3.3 Basic Operations

Eiger’s basic operations closely resemble Cassandra,
upon which it is built. The main differences involve
the use of server-supplied logical timestamps instead of
client-supplied real-time timestamps and, as described
above, the use of dependencies and dep_checks.

1Our implementation of Eiger, like COPS before it, places the client
library with the storage system client—typically a web server. Alterna-
tive implementations might store the dependencies on a unique node per
client, or even push dependency tracking to a rich javascript application
running in the client web browser itself, in order to successfully track
web accesses through different servers. Such a design is compatible
with Eiger, and we view it as worthwhile future work.

Logical Time. Clients and servers in Eiger maintain a
logical clock [38], and messages include a logical times-
tamp that updates these clocks. The clocks and times-
tamps provide a progressing logical time throughout the
entire system. The low-order bits in each timestamps are
set to the stamping server’s unique identifier, so each is
globally distinct. Servers use these logical timestamps to
uniquely identify and order operations.

Local Write Operations. All three write operations in
Eiger—insert, add, and delete—operate by replac-
ing the current (potentially non-existent) column in a
location. insert overwrites the current value with a
new column, e.g., update Alice’s home town from NYC
to MIA. add merges the current counter column with
the update, e.g., increment a liked-by count from 8 to 9.
delete overwrites the current column with a tombstone,
e.g., Carol is no longer friends with Alice. When each
new column is written, it is timestamped with the current
logical time at the server applying the write.

Cassandra atomically applies updates to a single row
using snap trees [14], so all updates to a single key in
a batch_mutate have the same timestamp. Updates to
different rows on the same server in a batch_mutate
will have different timestamps because they are applied
at different logical times.

Read Operations. Read operations return the current
column for each requested location. Normal columns
return binary data. Deleted columns return an empty
column with a deleted bit set. The client library
strips deleted columns out of the returned results, but
records dependencies on them as required for correct-
ness. Counter columns return a 64-bit integer.

Replication. Servers replicate write operations to their
equivalent servers in other datacenters. These are the
servers that own the same portions of the keyspace as the
local server. Because the keyspace partitioning may vary
from datacenter to datacenter, the replicating server must
sometimes split batch_mutate operations.

When a remote server receives a replicated add op-
eration, it applies it normally, merging its update with
the current value. When a server receives a replicated
insert or delete operation, it compares the times-
tamps for each included column against the current col-
umn for each location. If the replicated column is log-
ically newer, it uses the timestamp from the replicated
column and otherwise overwrites the column as it would
with a local write. That timestamp, assigned by the

2Eiger can only track causality it sees, so the traditional criticisms
of causality [20] still apply, e.g., we would not capture the causality
associated with an out-of-band phone call.

3In contrast, our alternative design for tracking the (slightly smaller
set of) nearest dependencies put the dependency storage burden on the
servers, a trade-off we did not believe generally worthwhile.
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datacenter that originally accepted the operation that
wrote the value, uniquely identifies the operation. If
the replicated column is older, it is discarded. This sim-
ple procedure ensures causal consistency: If one column
is causally after the other, it will have a later timestamp
and thus overwrite the other.

The overwrite procedure also implicitly handles con-
flicting operations that concurrently update a location. It
applies the last-writer-wins rule [55] to deterministically
allow the later of the updates to overwrite the other. This
ensures that all datacenters converge to the same value for
each column. Eiger could detect conflicts using previous
pointers and then resolve them with application-specific
functions similar to COPS, but we did not implement
such conflict handling and omit details for brevity.

Counter Columns. The commutative nature of counter
columns complicates tracking dependencies. In normal
columns with overwrite semantics, each value was writ-
ten by exactly one operation. In counter columns, each
value was affected by many operations. Consider a
counter with value 7 from +1, +2, and +4 operations.
Each operation contributed to the final value, so a read of
the counter incurs dependencies on all three. Eiger stores
these dependencies with the counter and returns them to
the client, so they can be attached to its next write.

Naively, every update of a counter column would in-
crement the number of dependencies contained by that
column ad infinitum. To bound the number of contained
dependencies, Eiger structures the add operations occur-
ring within a datacenter. Recall that all locally originating
add operations within a datacenter are already ordered
because the datacenter is linearizable. Eiger explicitly
tracks this ordering in a new add by adding an extra
dependency on the previously accepted add operation
from the datacenter. This creates a single dependency
chain that transitively covers all previous updates from
the datacenter. As a result, each counter column contains
at most one dependency per datacenter.

Eiger further reduces the number of dependencies con-
tained in counter columns to the nearest dependencies
within that counter column. When a server applies an
add, it examines the operation’s attached dependencies.
It first identifies all dependencies that are on updates
from other datacenters to this counter column. Then, if
any of those dependencies match the currently stored de-
pendency for another datacenter, Eiger drops the stored
dependency. The new operation is causally after any
local matches, and thus a dependency on it transitively
covers those matches as well. For example, if Alice reads
a counter with the value 7 and then increments it, her +1
is causally after all operations that commuted to create
the 7. Thus, any reads of the resulting 8 would only bring
a dependency on Alice’s update.
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Figure 3: Validity periods for values written to differ-
ent locations. Crossbars (and the specified numeric
times) correspond to the earliest and latest valid time
for values, which are represented by letters.

4 Read-Only Transactions

Read-only transactions—the only read operations in
Eiger—enable clients to see a consistent view of multiple
keys that may be spread across many servers in the local
datacenter. Eiger’s algorithm guarantees low latency be-
cause it takes at most two rounds of parallel non-blocking
reads in the local datacenter, plus at most one additional
round of local non-blocking checks during concurrent
write transactions, detailed in §5.4. We make the same
assumptions about reliability in the local datacenter as
before, including “logical” servers that do not fail due to
linearizable state machine replication.

Why read-only transactions? Even though Eiger
tracks dependencies to update each datacenter consis-
tently, non-transactional reads can still return an incon-
sistent set of values. For example, consider a scenario
where two items were written in a causal order, but read
via two separate, parallel reads. The two reads could
bridge the write operations (one occurring before either
write, the other occurring after both), and thus return
values that never actually occurred together, e.g., a “new”
object and its “old” access control metadata.

4.1 Read-only Transaction Algorithm
The key insight in the algorithm is that there exists a
consistent result for every query at every logical time.
Figure 3 illustrates this: As operations are applied in
a consistent causal order, every data location (key and
column) has a consistent value at each logical time.

At a high level, our new read transaction algorithm
marks each data location with validity metadata, and uses
that metadata to determine if a first round of optimistic
reads is consistent. If the first round results are not con-
sistent, the algorithm issues a second round of reads that
are guaranteed to return consistent results.

More specifically, each data location is marked with
an earliest valid time (EVT). The EVT is set to the
server’s logical time when it locally applies an opera-
tion that writes a value. Thus, in an operation’s accepting
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Figure 4: Examples of read-only transactions. The
effective time of each transaction is shown with a
gray line; this is the time requested for location 1 in
the second round in (b).

datacenter—the one at which the operation originated—
the EVT is the same as its timestamp. In other datacen-
ters, the EVT is later than its timestamp. In both cases,
the EVT is the exact logical time when the value became
visible in the local datacenter.

A server responds to a read with its currently visible
value, the corresponding EVT, and its current logical
time, which we call the latest valid time (LVT). Because
this value is still visible, we know it is valid for at least
the interval between the EVT and LVT. Once all first-
round reads return, the client library compares their times
to check for consistency. In particular, it knows all values
were valid at the same logical time (i.e., correspond to a
consistent snapshot) iff the maximum EVT ≤ the mini-
mum LVT. If so, the client library returns these results;
otherwise, it proceeds to a second round. Figure 4(a)
shows a scenario that completes in one round.

The effective time of the transaction is the minimum
LVT ≥ the maximum EVT. It corresponds both to a logi-
cal time in which all retrieved values are consistent, as
well as the current logical time (as of its response) at
a server. As such, it ensures freshness—necessary in
causal consistency so that clients always see a progress-
ing datacenter that reflects their own updates.

For brevity, we only sketch a proof that read transac-
tions return the set of results that were visible in their
local datacenter at the transaction’s effective time, EffT.
By construction, assume a value is visible at logical time
t iff val.EVT ≤ t ≤ val.LVT. For each returned value,
if it is returned from the first round, then val.EVT ≤
maxEVT ≤ EffT by definition of maxEVT and EffT, and
val.LVT ≥ EffT because it is not being requested in the
second round. Thus, val.EVT ≤ EffT ≤ val.LVT, and
by our assumption, the value was visible at EffT. If a
result is from the second round, then it was obtained by
a second-round read that explicitly returns the visible
value at time EffT, described next.

4.2 Two-Round Read Protocol
A read transaction requires a second round if there does
not exist a single logical time for which all values read

function read_only_trans(requests):
# Send first round requests in parallel
for r in requests
val[r] = multiget_slice(r)

# Calculate the maximum EVT
maxEVT = 0
for r in requests
maxEVT = max(maxEVT, val[r].EVT)

# Calculate effective time
EffT = ∞
for r in requests
if val[r].LVT ≥ maxEVT
EffT = min(EffT, val[r].LVT)

# Send second round requests in parallel
for r in requests
if val[r].LVT < EffT
val[r] = multiget_slice_by_time(r, EffT)

# Return only the requested data
return extract_keys_to_columns(res)

Figure 5: Pseudocode for read-only transactions.

in the first round are valid. This can only occur when
there are concurrent updates being applied locally to the
requested locations. The example in Figure 4(b) requires
a second round because location 2 is updated to value K
at time 12, which is not before time 10 when location 1’s
server returns value A.

During the second round, the client library issues
multiget_slice_by_time requests, specifying a read
at the transaction’s effective time. These reads are sent
only to those locations for which it does not have a valid
result, i.e., their LVT is earlier than the effective time. For
example, in Figure 4(b) a multiget_slice_by_time
request is sent for location 1 at time 15 and returns a new
value B.

Servers respond to multiget_slice_by_time reads
with the value that was valid at the requested logical time.
Because that result may be different than the currently
visible one, servers sometimes must store old values for
each location. Fortunately, the extent of such additional
storage can be limited significantly.

4.3 Limiting Old Value Storage
Eiger limits the need to store old values in two ways.
First, read transactions have a timeout that specifies
their maximum real-time duration. If this timeout fires—
which happens only when server queues grow pathologi-
cally long due to prolonged overload—the client library
restarts a fresh read transaction. Thus, servers only need
to store old values that have been overwritten within this
timeout’s duration.

Second, Eiger retains only old values that could be
requested in the second round. Thus, servers store only

7



320 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

values that are newer than those returned in a first round
within the timeout duration. For this optimization, Eiger
stores the last access time of each value.

4.4 Read Transactions for Linearizability
Linearizability (strong consistency) is attractive to pro-
grammers when low latency and availability are not strict
requirements. Simply being linearizable, however, does
not mean that a system is transactional: There may be no
way to extract a mutually consistent set of values from
the system, much as in our earlier example for read trans-
actions. Linearizability is only defined on, and used with,
operations that read or write a single location (originally,
shared memory systems) [33].

Interestingly, our algorithm for read-only transactions
works for fully linearizable systems, without modifica-
tion. In Eiger, in fact, if all writes that are concurrent with
a read-only transaction originated from the local datacen-
ter, the read-only transaction provides a consistent view
of that linearizable system (the local datacenter).

5 Write-Only Transactions
Eiger’s write-only transactions allow a client to atomi-
cally write many columns spread across many keys in the
local datacenter. These values also appear atomically in
remote datacenters upon replication. As we will see, the
algorithm guarantees low latency because it takes at most
2.5 message RTTs in the local datacenter to complete,
no operations acquire locks, and all phases wait on only
the previous round of messages before continuing.

Write-only transactions have many uses. When a user
presses a save button, the system can ensure that all of
her five profile updates appear simultaneously. Similarly,
they help maintain symmetric relationships in social net-
works: When Alice accepts Bob’s friendship request,
both friend associations appear at the same time.

5.1 Write-Only Transaction Algorithm
To execute an atomic_mutate request—which has iden-
tical arguments to batch_mutate—the client library
splits the operation into one sub-request per local server
across which the transaction is spread. The library ran-
domly chooses one key in the transaction as the coor-
dinator key. It then transmits each sub-request to its
corresponding server, annotated with the coordinator key.

Our write transaction is a variant of two-phase com-
mit [51], which we call two-phase commit with positive
cohorts and indirection (2PC-PCI). 2PC-PCI operates
differently depending on whether it is executing in the
original (or “accepting”) datacenter, or being applied in
the remote datacenter after replication.

There are three differences between traditional 2PC
and 2PC-PCI, as shown in Figure 6. First, 2PC-PCI has
only positive cohorts; the coordinator always commits
the transaction once it receives a vote from all cohorts.4

Second, 2PC-PCI has a different pre-vote phase that
varies depending on the origin of the write transaction. In
the accepting datacenter (we discuss the remote below),
the client library sends each participant its sub-request
directly, and this transmission serves as an implicit PRE-
PARE message for each cohort. Third, 2PC-PCI cohorts
that cannot answer a query—because they have voted but
have not yet received the commit—ask the coordinator if
the transaction is committed, effectively indirecting the
request through the coordinator.

5.2 Local Write-Only Transactions
When a participant server, which is either the coordina-
tor or a cohort, receives its transaction sub-request from
the client, it prepares for the transaction by writing each
included location with a special “pending” value (retain-
ing old versions for second-round reads). It then sends a
YESVOTE to the coordinator.

When the coordinator receives a YESVOTE, it updates
its count of prepared keys. Once all keys are prepared, the
coordinator commits the transaction. The coordinator’s
current logical time serves as the (global) timestamp and
(local) EVT of the transaction and is included in the
COMMIT message.

When a cohort receives a COMMIT, it replaces the
“pending” columns with the update’s real values, and
ACKs the committed keys. Upon receiving all ACKs, the
coordinator safely cleans up its transaction state.

5.3 Replicated Write-Only Transactions
Each transaction sub-request is replicated to its “equiv-
alent” participant(s) in the remote datacenter, possibly
splitting the sub-requests to match the remote key parti-
tioning. When a cohort in a remote datacenter receives a
sub-request, it sends a NOTIFY with the key count to the
transaction coordinator in its datacenter. This coordinator
issues any necessary dep_checks upon receiving its own
sub-request (which contains the coordinator key). The co-
ordinator’s checks cover the entire transaction, so cohorts
send no checks. Once the coordinator has received all
NOTIFY messages and dep_checks responses, it sends
each cohort a PREPARE, and then proceeds normally.

For reads received during the indirection window in
which participants are uncertain about the status of a

4Eiger only has positive cohorts because it avoids all the normal
reasons to abort (vote no): It does not have general transactions that
can force each other to abort, it does not have users that can cancel
operations, and it assumes that its logical servers do not fail.
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Figure 6: Message flow diagrams for traditional 2PC and write-only transaction. Solid boxes denote when
cohorts block reads. Striped boxes denote when cohorts will indirect a commitment check to the coordinator.

transaction, cohorts must query the coordinator for its
state. To minimize the duration of this window, before
preparing, the coordinator waits for (1) all participants
to NOTIFY and (2) all dep_checks to return. This helps
prevent a slow replica from causing needless indirection.

Finally, replicated write-only transactions differ in that
participants do not always write pending columns. If a lo-
cation’s current value has a newer timestamp than that of
the transaction, the validity interval for the transaction’s
value is empty. Thus, no read will ever return it, and it
can be safely discarded. The participant continues in the
transaction for simplicity, but does not need to indirect
reads for this location.

5.4 Reads when Transactions are Pending

If a first-round read accesses a location that could be
modified by a pending transaction, the server sends a
special empty response that only includes a LVT (i.e., its
current time). This alerts the client that it must choose
an effective time for the transaction and send the server a
second-round multiget_slice_by_time request.

When a server with pending transactions receives a
multiget_slice_by_time request, it first traverses its
old versions for each included column. If there exists a
version valid at the requested time, the server returns it.

Otherwise, there are pending transactions whose po-
tential commit window intersects the requested time and
the server must resolve their ordering. It does so by
sending a commit_check with this requested time to the
transactions’ coordinator(s). Each coordinator responds
whether the transaction had been committed at that (past)
time and, if so, its commit time.

Once a server has collected all commit_check re-
sponses, it updates the validity intervals of all ver-

sions of all relevant locations, up to at least the re-
quested (effective) time. Then, it can respond to the
multiget_slice_by_time message as normal.

The complementary nature of Eiger’s transactional al-
gorithms enables the atomicity of its writes. In particular,
the single commit time for a write transaction (EVT) and
the single effective time for a read transaction lead each
to appear at a single logical time, while its two-phase
commit ensures all-or-nothing semantics.

6 Failure
In this section, we examine how Eiger behaves under
failures, including single server failure, meta-client redi-
rection, and entire datacenter failure.

Single server failures are common and unavoidable
in practice. Eiger guards against their failure with the
construction of logical servers from multiple physical
servers. For instance, a logical server implemented with
a three-server Paxos group can withstand the failure of
one of its constituent servers. Like any system built on
underlying components, Eiger inherits the failure modes
of its underlying building blocks. In particular, if a log-
ical server assumes no more than f physical machines
fail, Eiger must assume that within a single logical server
no more than f physical machines fail.

Meta-clients that are the clients of Eiger’s clients (i.e.,
web browsers that have connections to front-end web tier
machines) will sometimes be directed to a different data-
center. For instance, a redirection may occur when there
is a change in the DNS resolution policy of a service.
When a redirection occurs during the middle of an active
connection, we expect service providers to detect it using
cookies and then redirect clients to their original data-
center (e.g., using HTTP redirects or triangle routing).
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When a client is not actively using the service, however,
policy changes that reassign it to a new datacenter can
proceed without complication.

Datacenter failure can either be transient (e.g., network
or power cables are cut) or permanent (e.g., datacenter
is physically destroyed by an earthquake). Permanent
failures will result in data loss for data that was accepted
and acknowledged but not yet replicated to any other
datacenter. The colocation of clients inside the datacenter,
however, will reduce the amount of externally visible
data loss. Only data that is not yet replicated to another
datacenter, but has been acknowledged to both Eiger’s
clients and meta-clients (e.g., when the browser receives
an Ajax response indicating a status update was posted)
will be visibly lost. Transient datacenter failure will not
result in data loss.

Both transient and permanent datacenter failures will
cause meta-clients to reconnect to different datacen-
ters. After some configured timeout, we expect service
providers to stop trying to redirect those meta-clients to
their original datacenters and to connect them to a new
datacenter with an empty context. This could result in
those meta-clients effectively moving backwards in time.
It would also result in the loss of causal links between the
data they observed in their original datacenter and their
new writes issued to their new datacenter. We expect that
transient datacenter failure will be rare (no ill effects),
transient failure that lasts long enough for redirection to
be abandoned even rarer (causality loss), and permanent
failure even rarer still (data loss).

7 Evaluation

This evaluation explores the overhead of Eiger’s stronger
semantics compared to eventually-consistent Cassandra,
analytically compares the performance of COPS and
Eiger, and shows that Eiger scales to large clusters.

7.1 Implementation
Our Eiger prototype implements everything described in
the paper as 5000 lines of Java added to and modifying
the existing 75000 LoC in Cassandra 1.1 [17, 37]. All of
Eiger’s reads are transactional. We use Cassandra con-
figured for wide-area eventual consistency as a baseline
for comparison. In each local cluster, both Eiger and
Cassandra use consistent hashing to map each key to a
single server, and thus trivially provide linearizability.

In unmodified Cassandra, for a single logical request,
the client sends all of its sub-requests to a single server.
This server splits batch_mutate and multiget_slice
operations from the client that span multiple servers,
sends them to the appropriate server, and re-assembles

the responses for the client. In Eiger, the client library
handles this splitting, routing, and re-assembly directly,
allowing Eiger to save a local RTT in latency and poten-
tially many messages between servers. With this change,
Eiger outperforms unmodified Cassandra in most set-
tings. Therefore, to make our comparison to Cassandra
fair, we implemented an analogous client library that han-
dles the splitting, routing, and re-assembly for Cassandra.
The results below use this optimization.

7.2 Eiger Overheads

We first examine the overhead of Eiger’s causal consis-
tency, read-only transactions, and write-only transactions.
This section explains why each potential source of over-
head does not significantly impair throughput, latency, or
storage; the next sections confirm empirically.

Causal Consistency Overheads. Write operations
carry dependency metadata. Its impact on throughput
and latency is low because each dependency is 16B; the
number of dependencies attached to a write is limited
to its small set of one-hop dependencies; and writes are
typically less frequent. Dependencies have no storage
cost because they are not stored at the server.

Dependency check operations are issued in remote
datacenters upon receiving a replicated write. Limiting
these checks to the write’s one-hop dependencies mini-
mizes throughput degradation. They do not affect client-
perceived latency, occuring only during asynchronous
replication, nor do they add storage overhead.

Read-only Transaction Overheads. Validity-interval
metadata is stored on servers and returned to clients
with read operations. Its effect is similarly small: Only
the 8B EVT is stored, and the 16B of metadata returned
to the client is tiny compared to typical key/column/value
sets.

If second-round reads were always needed, they would
roughly double latency and halve throughput. Fortu-
nately, they occur only when there are concurrent writes
to the requested columns in the local datacenter, which
is rare given the short duration of reads and writes.

Extra-version storage is needed at servers to handle
second-round reads. It has no impact on throughput or
latency, and its storage footprint is small because we
aggressively limit the number of old versions (see §4.3).

Write-only Transaction Overheads. Write transac-
tions write columns twice: once to mark them pending
and once to write the true value. This accounts for about
half of the moderate overhead of write transactions, eval-
uated in §7.5. When only some writes are transactional
and when the writes are a minority of system operations
(as found in prior studies [7, 28]), this overhead has a
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Latency (ms)
50% 90% 95% 99%

Reads
Cassandra-Eventual 0.38 0.56 0.61 1.13
Eiger 1 Round 0.47 0.67 0.70 1.27
Eiger 2 Round 0.68 0.94 1.04 1.85
Eiger Indirected 0.78 1.11 1.18 2.28
Cassandra-Strong-A 85.21 85.72 85.96 86.77
Cassandra-Strong-B 21.89 22.28 22.39 22.92

Writes
Cassandra-Eventual 0.42 0.63 0.91 1.67Cassandra-Strong-A
Eiger Normal 0.45 0.67 0.75 1.92
Eiger Normal (2) 0.51 0.79 1.38 4.05
Eiger Transaction (2) 0.73 2.28 2.94 4.39
Cassandra-Strong-B 21.65 21.85 21.93 22.29

Table 2: Latency micro-benchmarks.

small effect on overall throughput. The second write
overwrites the first, consuming no space.

Many 2PC-PCI messages are needed for the write-
only algorithm. These messages add 1.5 local RTTs to
latency, but have little effect on throughput: the messages
are small and can be handled in parallel with other steps
in different write transactions.

Indirected second-round reads add an extra local RTT
to latency and reduce read throughput vs. normal second-
round reads. They affect throughput minimally, however,
because they occur rarely: only when the second-round
read arrives when there is a not-yet-committed write-only
transaction on an overlapping set of columns that pre-
pared before the read-only transaction’s effective time.

7.3 Experimental Setup
The first experiments use the shared VICCI testbed [45,
58], which provides users with Linux VServer instances.
Each physical machine has 2x6 core Intel Xeon X5650
CPUs, 48GB RAM, and 2x1GigE network ports.

All experiments are between multiple VICCI sites.
The latency micro-benchmark uses a minimal wide-area
setup with a cluster of 2 machines at the Princeton, Stan-
ford, and University of Washington (UW) VICCI sites.
All other experiments use 8-machine clusters in Stanford
and UW and an additional 8 machines in Stanford as
clients. These clients fully load their local cluster, which
replicates its data to the other cluster.

The inter-site latencies were 88ms between Princeton
and Stanford, 84ms between Princeton and UW, and
20ms between Stanford and UW. Inter-site bandwidth
was not a limiting factor.

Every datapoint in the evaluation represents the me-
dian of 5+ trials. Latency micro-benchmark trials are
30s, while all other trials are 60s. We elide the first and
last quarter of each trial to avoid experimental artifacts.

Figure 7: Throughput of an 8-server cluster for write
transactions spread across 1 to 8 servers, with 1, 5,
or 10 keys written per server. The dot above each
bar shows the throughput of a similarly-structured
eventually-consistent Cassandra write.

7.4 Latency Micro-benchmark
Eiger always satisfies client operations within a local
datacenter and thus, fundamentally, is low-latency. To
demonstrate this, verify our implementation, and com-
pare with strongly-consistent systems, we ran an experi-
ment to compare the latency of read and write operations
in Eiger vs. three Cassandra configurations: eventual
(R=1, W=1), strong-A (R=3, W=1), and strong-B (R=2,
W=2), where R and W indicate the number of datacenters
involved in reads and writes.5

The experiments were run from UW with a single
client thread to isolate latency differences. Table 2 re-
ports the median, 90%, 95%, and 99% latencies from op-
erations on a single 1B column. For comparison, two 1B
columns, stored on different servers, were also updated
together as part of transactional and non-transactional
“Eiger (2)” write operations.

All reads in Eiger—one-round, two-round, and worst-
case two-round-and-indirected reads—have median la-
tencies under 1ms and 99% latencies under 2.5ms.
atomic_mutate operations are slightly slower than
batch_mutate operations, but still have median latency
under 1ms and 99% under 5ms. Cassandra’s strongly
consistent operations fared much worse. Configuration
“A” achieved fast writes, but reads had to access all dat-
acenters (including the ~84ms RTT between UW and
Princeton); “B” suffered wide-area latency for both reads
and writes (as the second datacenter needed for a quorum
involved a ~20ms RTT between UW and Stanford).

7.5 Write Transaction Cost
Figure 7 shows the throughput of write-only transactions,
and Cassandra’s non-atomic batch mutates, when the

5Cassandra single-key writes are not atomic across different nodes,
so its strong consistency requires read repair (write-back) and R>N/2.
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Parameter Range Default Facebook
50% 90% 99%

Value Size (B) 1-4K 128 16 32 4K
Cols/Key for Reads 1-32 5 1 2 128
Cols/Key for Writes 1-32 5 1 2 128
Keys/Read 1-32 5 1 16 128
Keys/Write 1-32 5 1
Write Fraction 0-1.0 .1 .002
Write Txn Fraction 0-1.0 .5 0 or 1.0
Read Txn Fraction 1.0 1.0 1.0

Table 3: Dynamic workload generator parameters.
Range is the space covered in the experiments; Face-
book describes the distribution for that workload.

keys they touch are spread across 1 to 8 servers. The ex-
periment used the default parameter settings from Table 3
with 100% writes and 100% write transactions.

Eiger’s throughput remains competitive with batch
mutates as the transaction is spread across more servers.
Additional servers only increase 2PC-PCI costs, which
account for less than 10% of Eiger’s overhead. About
half of the overhead of write-only transactions comes
from double-writing columns; most of the remainder is
due to extra metadata. Both absolute and Cassandra-
relative throughput increase with the number of keys
written per server, as the coordination overhead remains
independent of the number of columns.

7.6 Dynamic Workloads
We created a dynamic workload generator to explore the
space of possible workloads. Table 3 shows the range and
default value of the generator’s parameters. The results
from varying each parameter while the others remain at
their defaults are shown in Figure 8.

Space constraints permit only a brief review of these
results. Overhead decreases with increasing value size,
because metadata represents a smaller portion of message
size. Overhead is relatively constant with increases in the
columns/read, columns/write, keys/read, and keys/write
ratios because while the amount of metadata increases,
it remains in proportion to message size. Higher frac-
tions of write transactions (within an overall 10% write
workload) do not increase overhead.

Eiger’s throughput is overall competitive with the
eventually-consistent Cassandra baseline. With the de-
fault parameters, its overhead is 15%. When they are
varied, its overhead ranges from 0.5% to 25%.

7.7 Facebook Workload
For one realistic view of Eiger’s overhead, we param-
eterized a synthetic workload based upon Facebook’s
production TAO system [53]. Parameters for value sizes,

Figure 8: Results from exploring our dynamic-
workload generator’s parameter space. Each exper-
iment varies one parameter while keeping all others
at their default value (indicated by the vertical line).
Eiger’s throughput is normalized against eventually-
consistent Cassandra.

columns/key, and keys/operation are chosen from dis-
crete distributions measured by the TAO team. We show
results with a 0% write transaction fraction (the actual
workload, because TAO lacks transactions), and with
100% write transactions. Table 3 shows the heavy-tailed
distributions’ 50th, 90th, and 99th percentiles.

Table 4 shows that the throughput for Eiger is within
7% of eventually-consistent Cassandra. The results for
0% and 100% write transactions are effectively identical
because writes are such a small part of the workload. For
this real-world workload, Eiger’s causal consistency and
stronger semantics do not impose significant overhead.
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Ops/sec Keys/sec Columns/sec

Cassandra 23,657 94,502 498,239
Eiger 22,088 88,238 466,844
Eiger All Txns 22,891 91,439 480,904
Max Overhead 6.6% 6.6% 6.3%

Table 4: Throughput for the Facebook workload.

7.8 Performance vs. COPS
COPS and Eiger provide different data models and are
implemented in different languages, so a direct empirical
comparison is not meaningful. We can, however, intuit
how Eiger’s algorithms perform in the COPS setting.

Both COPS and Eiger achieve low latency around
1ms. Second-round reads would occur in COPS and
Eiger equally often, because both are triggered by the
same scenario: concurrent writes in the local datacenter
to the same keys. Eiger experiences some additional
latency when second-round reads are indirected, but this
is rare (and the total latency remains low). Write-only
transactions in Eiger would have higher latency than
their non-atomic counterparts in COPS, but we have also
shown their latency to be very low.

Beyond having write transactions, which COPS did
not, the most significant difference between Eiger and
COPS is the efficiency of read transactions. COPS’s read
transactions ("COPS-GT") add significant dependency-
tracking overhead vs. the COPS baseline under certain
conditions. In contrast, by tracking only one-hop de-
pendencies, Eiger avoids the metadata explosion that
COPS’ read-only transactions can suffer. We expect
that Eiger’s read transactions would operate roughly as
quickly as COPS’ non-transactional reads, and the sys-
tem as a whole would outperform COPS-GT despite
offering both read- and write-only transactions and sup-
porting a much more rich data model.

7.9 Scaling
To demonstrate the scalability of Eiger we ran the Face-
book TAO workload on N client machines that are fully
loading an N-server cluster that is replicating writes to
another N-server cluster, i.e., the N=128 experiment
involves 384 machines. This experiment was run on
PRObE’s Kodiak testbed [47], which provides an Emu-
lab [59] with exclusive access to hundreds of machines.
Each machine has 2 AMD Opteron 252 CPUS, 8GM
RAM, and an InfiniBand high-speed interface. The bot-
tleneck in this experiment is server CPU.

Figure 9 shows the throughput for Eiger as we scale N
from 1 to 128 servers/cluster. The bars show throughput
normalized against the throughput of the 1-server clus-
ter. Eiger scales out as the number of servers increases,
though this scaling is not linear from 1 to 8 servers/cluster.

Figure 9: Normalized throughput of N-server clus-
ters for the Facebook TAO workload. Bars are nor-
malized against the 1-server cluster.

The 1-server cluster benefits from batching; all opera-
tions that involve multiple keys are executed on a single
machine. Larger clusters distribute these multi-key oper-
ations over multiple servers and thus lose batching. This
mainly affects scaling from 1 to 8 servers/cluster (72%
average increase) and we see almost perfect linear scaling
from 8 to 128 servers/cluster (96% average increase).

8 Related Work

A large body of research exists about stronger consis-
tency in the wide area. This includes classical research
about two-phase commit protocols [51] and distributed
consensus (e.g., Paxos [39]). As noted earlier, protocols
and systems that provide the strongest forms of consis-
tency are provably incompatible with low latency [8, 42].
Recent examples includes Megastore [9], Spanner [22],
and Scatter [31], which use Paxos in the wide-area;
PNUTS [21], which provides sequential consistency on
a per-key basis and must execute in a key’s specified
primary datacenter; and Gemini [40], which provides
RedBlue consistency with low latency for its blue op-
erations, but high latency for its globally-serialized red
operations. In contrast, Eiger guarantees low latency.

Many previous system designs have recognized the
utility of causal consistency, including Bayou [44], lazy
replication [36], ISIS [12], causal memory [2], and
PRACTI [10]. All of these systems require single-
machine replicas (datacenters) and thus are not scalable.

Our previous work, COPS [43], bears the closest sim-
ilarity to Eiger, as it also uses dependencies to provide
causal consistency, and targets low-latency and scalable
settings. As we show by comparing these systems in
Table 5, however, Eiger represents a large step forward
from COPS. In particular, Eiger supports a richer data
model, has more powerful transaction support (whose al-
gorithms also work with other consistency models), trans-
mits and stores fewer dependencies, eliminates the need
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COPS COPS-GT Eiger

Data Model Key Value Key Value Column Fam
Consistency Causal Causal Causal

Read-Only Txn No Yes Yes
Write-Only Txn No No Yes

Txn Algos Use - Deps Logic. Time
Deps On Values Values Operations

Transmitted Deps One-Hop All-GarbageC One-Hop
Checked Deps One-Hop Nearest One-Hop

Stored Deps None All-GarbageC None
GarbageC Deps Unneeded Yes Unneeded
Versions Stored One Few Fewer

Table 5: Comparing COPS and Eiger.

for garbage collection, stores fewer old versions, and is
not susceptible to availability problems from metadata
explosion when datacenters either fail, are partitioned, or
suffer meaningful slow-down for long periods of time.

The database community has long supported consis-
tency across multiple keys through general transactions.
In many commercial database systems, a single primary
executes transactions across keys, then lazily sends its
transaction log to other replicas, potentially over the
wide-area. In scale-out designs involving data partition-
ing (or “sharding”), these transactions are typically lim-
ited to keys residing on the same server. Eiger does not
have this restriction. More fundamentally, the single pri-
mary approach inhibits low-latency, as write operations
must be executed in the primary’s datacenter.

Several recent systems reduce the inter-datacenter
communication needed to provide general transactions.
These include Calvin [56], Granola [24], MDCC [35],
Orleans [15], and Walter [52]. In their pursuit of general
transactions, however, these systems all choose consis-
tency models that cannot guarantee low-latency opera-
tions. MDCC and Orleans acknowledge this with options
to receive fast-but-potentially-incorrect responses.

The implementers of Sinfonia [1], TxCache [46],
HBase [32], and Spanner [22], also recognized the im-
portance of limited transactions. Sinfonia provides “mini”
transactions to distributed shared memory and TXCache
provides a consistent but potentially stale cache for a rela-
tional database, but both only considers operations within
a single datacenter. HBase includes read- and write-only
transactions within a single “region,” which is a subset of
the capacity of a single node. Spanner’s read-only trans-
actions are similar to the original distributed read-only
transactions [18], in that they always take at least two
rounds and block until all involved servers can guarantee
they have applied all transactions that committed before
the read-only transaction started. In comparison, Eiger is
designed for geo-replicated storage, and its transactions
can execute across large cluster of nodes, normally only
take one round, and never block.

The widely used MVCC algorithm [11, 49] and Eiger
maintain multiple versions of objects so they can provide
clients with a consistent view of a system. MVCC pro-
vides full snapshot isolation, sometimes rejects writes,
has state linear in the number of recent reads and writes,
and has a sweeping process that removes old versions.
Eiger, in contrast, provides only read-only transactions,
never rejects writes, has at worst state linear in the num-
ber of recent writes, and avoids storing most old versions
while using fast timeouts for cleaning the rest.

9 Conclusion
Impossibility results divide geo-replicated storage sys-
tems into those that can provide the strongest forms of
consistency and those that can guarantee low latency.
Eiger represents a new step forward on the low latency
side of that divide by providing a richer data model and
stronger semantics. Our experimental results demon-
strate that the overhead of these properties compared to
a non-transactional eventually-consistent baseline is low,
and we expect that further engineering and innovations
will reduce it almost entirely.

This leaves applications with two choices for geo-
replicated storage. Strongly-consistent storage is re-
quired for applications with global invariants, e.g., bank-
ing, where accounts cannot drop below zero. And Eiger-
like systems can serve all other applications, e.g., social
networking (Facebook), encyclopedias (Wikipedia), and
collaborative filtering (Reddit). These applications no
longer need to settle for eventual consistency and can
instead make sense of their data with causal consistency,
read-only transactions, and write-only transactions.
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Abstract

Highly modular data center applications such as Bing,
Facebook, and Amazon’s retail platform are known to
be susceptible to long tails in response times. Services
such as Amazon’s EC2 have proven attractive platforms
for building similar applications. Unfortunately, virtual-
ization used in such platforms exacerbates the long tail
problem by factors of two to four. Surprisingly, we find
that poor response times in EC2 are a property of nodes
rather than the network, and that this property of nodes is
both pervasive throughout EC2 and persistent over time.
The root cause of this problem is co-scheduling of CPU-
bound and latency-sensitive tasks. We leverage these ob-
servations in Bobtail, a system that proactively detects
and avoids these bad neighboring VMs without signifi-
cantly penalizing node instantiation. With Bobtail, com-
mon communication patterns benefit from reductions of
up to 40% in 99.9th percentile response times.

1 Introduction

Modern Web applications such as Bing, Facebook, and
Amazon’s retail platform are both interactive and dy-
namic. They rely on large-scale data centers with many
nodes processing large data sets at less than human-scale
response times. Constructing a single page view on such
a site may require contacting hundreds of services [7],
and a lag in response time from any one of them can
result in significant end-to-end delays [1] and a poor
opinion of the overall site [5]. Latency is increasingly
viewed as the problem to solve [17, 18]. In these data
center applications, the long tail of latency is of partic-
ular concern, with 99.9th percentile network round-trip
times (RTTs) that are orders of magnitude worse than
the median [1, 2, 29]. For these systems, one out of a
thousand customer requests will suffer an unacceptable
delay.

Prior studies have all targeted dedicated data centers.

In these, network congestion is the cause of long-tail be-
havior. However, an increasing number of Internet-scale
applications are deployed on commercial clouds such as
Amazon’s Elastic Compute Cloud, or EC2. There are
a variety of reasons for doing so, and the recent EC2
outage [21] indicates that many popular online services
rely heavily on Amazon’s cloud. One distinction between
dedicated data centers and services such as EC2 is the use
of virtualization to provide for multi-tenancy with some
degree of isolation. While virtualization does negatively
impact latency overall [24, 19], little is known about the
long-tail behavior on these platforms.

Our own large-scale measurements of EC2 suggest
that median RTTs are comparable to those observed in
dedicated centers, but the 99.9th percentile RTTs are up
to four times longer. Surprisingly, we also find that nodes
of the same configuration (and cost) can have long-tail
behaviors that differ from one another by as much as
an order of magnitude. This has important implications,
as good nodes we measured can have long-tail behav-
iors better than those observed in dedicated data cen-
ters [1, 29] due to the difference in network congestion,
while bad nodes are considerably worse. This classifica-
tion appears to be a property of the nodes themselves,
not data center organization or topology. In particular,
bad nodes appear bad to all others, whether they are
in the same or different data centers. Furthermore, we
find that this property is relatively stable; good nodes
are likely to remain good, and likewise for bad nodes
within our five-week experimental period. Conventional
wisdom dictates that larger (and therefore more expen-
sive) nodes are not susceptible to this problem, but we
find that larger nodes are not always better than smaller
ones.

Using measurement results and controlled experi-
ments, we find the root cause of the problem to be
an interaction between virtualization, processor sharing,
and non-complementary workload patterns. In particular,
mixing latency-sensitive jobs on the same node with sev-
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eral CPU-intensive jobs leads to longer-than-anticipated
scheduling delays, despite efforts of the virtualization
layer to avoid them. With this insight, we develop a sim-
ple yet effective test that runs locally on a newborn in-
stance and screens between good and bad nodes. We
measure common communication patterns [29] on live
EC2 instances, and we show improvement in long-tail
behavior of between 7% and 40%. While some limits
to scale remain, our system effectively removes this first
barrier.

2 Observations

Amazon’s Elastic Compute Cloud, or EC2, provides dy-
namic, fine-grained access to computational and storage
resources. Virtualization is a key enabler of EC2. We pro-
vide background on some of these techniques, and we de-
scribe a five-week measurement study of network latency
in several different EC2 data centers. Such latency has
both significant jitter and a longer tail than that observed
in dedicated data centers. Surprisingly, the extra long tail
phenomenon is a property of nodes, rather than topology
or network traffic; it is pervasive throughout EC2 data
centers and it is reasonably persistent.

2.1 Amazon EC2 Background
Amazon EC2 consists of multiple geographically sepa-
rated regions around the world. Each region contains sev-
eral availability zones, or AZs, that are physically iso-
lated and have independent failure probabilities. Thus,
one AZ is roughly equivalent to one data center. A ver-
sion of the Xen hypervisor [3], with various (unknown)
customizations, is used in EC2. A VM in EC2 is called an
instance, and different types (e.g., small, medium, large,
and extra large) of instances come with different perfor-
mance characteristics and price tags. Instances within the
same AZ or in different AZs within the same region are
connected by a high-speed private network. However,
instances within different regions are connected by the
public Internet. In this paper, we focus on network tail
latency between EC2 instances in the same region.

2.2 Measurement Methodology
Alizadeh et al. show that the internal infrastructure of
Web applications is based primarily on TCP [1]. But in-
stead of using raw TCP measurement, we use a TCP-
based RPC framework called Thrift. Thrift is popular
among Web companies like Facebook [20] and delivers a
more realistic measure of network performance at the ap-
plication level. To measure application-level round-trip-
times (RTTs), we time the completion of synchronous
RPC calls—Thrift adds about 60µs of overhead when

Figure 1: CDF of RTTs for various sized instances,
within and across AZs in EC2, compared to measure-
ments taken in a dedicated data center [1, 29]. While the
median RTTs are comparable, the 99.9th percentiles in
EC2 are twice as bad as in dedicated data centers. This
relationship holds for all types of EC2 instances plotted.

compared to TCP SYN/ACK based raw RTT measure-
ment. In addition, we use established TCP connections
for all measurement, so the overhead of the TCP three-
way handshake is not included in the RTTs.

2.3 Tail Latency Characterization
We focus on the tail of round-trip latency due to its dis-
proportionate impact on user experience. Other studies
have measured network performance in EC2, but they
often use metrics like mean and variance to show jitter
in network and application performance [24, 19]. While
these measurements are useful for high-throughput ap-
plications like MapReduce [6], worst-case performance
matters much more to applications like the Web that re-
quire excellent user experience [29]. Because of this, re-
searchers use the RTTs at the 99th and 99.9th percentiles
to measure flow tail completion times in dedicated data
centers [1, 29].
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We tested network latency in EC2’s US east region for
five weeks. Figure 1 shows CDFs for both a combina-
tion of small, medium, and large instances and for dis-
crete sets of those instances. While (a) and (b) show ag-
gregate measurements both within and across availability
zones (AZs), (c) shows discrete measurements for three
instance types within a specific AZ.

In Figure 1(a), we instantiated 20 instances of each
type for each plot, either within a single AZ or across two
AZs in the same region. We observe that median RTTs
within a single AZ, at ∼0.6ms, compare well to those
found within a dedicated data center at ∼0.4ms [1, 29],
even though our measurement method adds 0.06ms of
overhead. Inter-AZ measurements show a median RTT
of under 1ms. However, distances between pairs of AZs
may vary; measurements taken from another pair of AZs
show a median RTT of around 2ms.

Figure 1(b) shows the 99th to 100th percentile range of
(a) across all observations. Unfortunately, its results paint
a different picture of latency measurements in Amazon’s
data centers. The 99.9th percentile of RTT measurements
is twice as bad as the same metric in a dedicated data cen-
ter [1, 29]. Individual nodes can have 99.9th percentile
RTTs up to four times higher than those seen in such cen-
ters. Note that this observation holds for both curves; no
matter whether the measurements are taken in the same
data center or in different ones, the 99.9th percentiles are
almost the same.

Medium, large, and extra large instances ostensibly
offer better performance than their small counterparts.
As one might expect, our measurements show that ex-
tra large instances do not exhibit the extra long tail prob-
lem (< 0.9ms for the 99.9th percentile); but surprisingly,
as shown in Figure 1(c), medium and large instances are
susceptible to the problem. In other words, the extra long
tail is not caused by a specific type of instance: all in-
stance types shown in (c) are equally susceptible to the
extra long tail at the 99.9th percentile. Note that all three
lines in the figure intersect at the 99.9th line with a value
of around 30ms. The explanation of this phenomenon be-
comes evident in the discussion of the root cause of the
long tail problem in § 3.2.

To explore other factors that might create extra long
tails, we launch 16 instances within the same AZ and
measure the pairwise RTTs between each instance. Fig-
ure 2 shows measurement results at the 99.9th percentile
in milliseconds. Rows represent source IP addresses,
while columns represent destination IP addresses.

Were host location on the network affecting long tail
performance, we would see a symmetric pattern emerge
on the heat map, since network RTT is a symmetric mea-
surement. Surprisingly, the heat map is asymmetric—
there are vertical bands which do not correspond to re-
ciprocal pairings. To a large degree, the destination host

Figure 2: Heat map of the 99.9th percentile of RTTs,
shown for 16 small pairwise instances in milliseconds.
Bad instances, represented by dark vertical bands, are
bad consistently. This suggests that the long tail problem
is a property of specific nodes instead of the network.

controls whether a long tail exists. In other words, the ex-
tra long tail problem in cloud environments is a property
of nodes, rather than the network.

Interestingly, the data shown in Figure 2 is not entirely
bleak: there are both dark and light bands, so tail per-
formance between nodes varies drastically. Commonly,
RPC servers are allowed only 10ms to return their re-
sults [1]. Therefore, we refer to nodes that fulfill this ser-
vice as good nodes, which appear in Figure 2 as light
bands; otherwise, they are referred to as bad nodes. Un-
der this definition, we find that RTTs at the 99.9th per-
centile can vary by up to an order of magnitude between
good nodes and bad nodes. In particular, the bad nodes
we measured can be two times worse than those seen in
a dedicated DC [1, 29] for the 99.9th percentile. This is
because the latter case’s latency tail is caused by network
congestion, whose worst case impact is bounded by the
egress queue size of the bottleneck switch port, but the la-
tency tail problem we study here is a property of nodes,
and its worst case impact can be much larger than that
caused by network queueing delay. This observation will
become more clear when we discuss the root cause of the
problem in § 3.2.

To determine whether bad nodes are a pervasive prob-
lem in EC2, we spun up 300 small instances in each
of four AZs in the US east region. We measured all
the nodes’ RTTs (the details of the measurement bench-
marks can be found in § 5.1) and we found 40% to 70%
bad nodes within three of the four AZs.

3



332 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

Figure 3: CDF for the time periods during which in-
stances do not switch status between good and bad. This
shows that properties of instances generally persist.

Interestingly, the remaining AZ sometimes does not
return bad nodes; nevertheless, when it does, it returns
40% to 50% bad nodes. We notice that this AZ spans a
smaller address space of only three /16 subnets compared
to the others, which can span tens of /16 subnets. Also, its
available CPU models are, on average, newer than those
found in any of the other AZs; Ou et al. present simi-
lar findings [16], so we speculate that this data center is
newly built and loaded more lightly than the others. We
will discuss this issue further in conjunction with the root
cause analysis in § 3.

We also want to explore whether the long latency tail
we observe is a persistent problem, because it is a prop-
erty defined by node conditions rather than transient net-
work conditions. We conducted a five week experiment
comprised of two sets of 32 small instances: one set
was launched in equal parts from two AZs, and one set
was launched from all four AZs. Within each set, we
selected random pairs of instances and measured their
RTTs throughout the five weeks. We observed how long
instances’ properties remain static—either good or bad
without change—to show the persistence of our measure-
ment results.

Figure 3 shows a CDF of these stable time periods;
persistence follows if a large percentage of total instance
time in the experiment is comprised of large time peri-
ods. We can observe that almost 50% of the total instance
time no change has been witnessed, 60% of time involves
at most one change per day, and 75% of time involves at
most one change per 12 hours. This result shows that the
properties of long tail network latency are generally per-
sistent.

The above observation should be noted by the follow-
ing: every night, every instance we observe in EC2 expe-
riences an abnormally long latency tail for several min-
utes at midnight Pacific Time. For usually bad instances
this does not matter; however, usually good instances are
forced to change status at least once a day. Therefore, the

figures we state above can be regarded as overestimating
the frequency of changes. It also implies that the 50% in-
stance time during which no change has been witnessed
belongs to bad instances.

3 Root Cause Analysis

We know that the latency tail in EC2 is two to four times
worse than that in a dedicated data center, and that as a
property of nodes instead of the network it persists. Then,
what is its root cause? Wang et al. reported that network
latency in EC2 is highly variable, and they speculated
that virtualization and processor sharing make up the root
cause [24].

However, the coexistence of good and bad instances
suggests that processor sharing under virtualization is
not sufficient to cause the long tail problem by itself. We
will show in this section that only a certain mix of work-
loads on shared processors can cause this problem, and
we demonstrate the patterns of such a bad mix.

3.1 Xen Hypervisor Background

To fully understand the impact of processor sharing and
virtual machine co-location on latency-sensitive work-
loads under Xen, we must first present some background
on the hypervisor and its virtual machine scheduler. The
Xen hypervisor [3] is an open source virtual machine
monitor, and it is used to support the infrastructure of
EC2 [24]. Xen consists of one privileged virtual machine
(VM) called dom0 and multiple guest VMs called do-
mUs. Its VM scheduler is credit-based [28], and by de-
fault it allocates 30ms of CPU time to each virtual CPU
(VCPU); this allocation is decremented in 10ms inter-
vals. Once a VCPU has exhausted its credit, it is not al-
lowed to use CPU time unless no other VCPU has credit
left; any VCPU with credit remaining has a higher prior-
ity than any without. In addition, as described by Dun-
lap [8], a lightly-loaded VCPU with excess credit may
enter the BOOST state, which allows a VM to automati-
cally receive first execution priority when it wakes due
to an I/O interrupt event. VMs in the same BOOST state
run in FIFO order. Even with this optimization, Xen’s
credit scheduler is known to be unfair to latency-sensitive
workloads [24, 8]. As long as multiple VMs are sharing
physical CPUs, one VM may need to wait tens of mil-
liseconds to acquire a physical CPU if others are using it
actively. Thus, when a VM handles RPC requests, certain
responses will have to wait tens of milliseconds before
being returned. This implies that any VM can exhibit a
high maximum RTT.
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Figure 4: CDF of RTTs for a VM within controlled
experiments, with an increasing number of co-located
VMs running CPU-intensive workloads. Sharing does
not cause extra long latency tails as long as physical cores
outnumber CPU-intensive VMs, but once this condition
no longer holds, the long tail emerges.

3.2 Root Cause Explained
If processor sharing under virtualization does not always
cause the extra long tail problem, when does it? To an-
swer this question, we conduct five controlled experi-
ments with Xen.

On a four-core workstation running Xen 4.1, dom0 is
pinned to two cores while guest VMs use the rest. In all
experiments, five identically configured domUs share the
remaining two physical cores; they possess equal weights
of up to 40% CPU utilization each. Therefore, though
domUs may be scheduled on either physical core, none
of them can use more than 40% of a single core even if
there are spare cycles. To the best of our knowledge, this
configuration is the closest possible to what EC2 small
instances use. Note that starting from Xen 4.2, a config-
urable rate limit mechanism is introduced to the credit
scheduler [28]. In its default setting, a running VM can-
not be preempted if it has run for less than 1ms. To obtain
a result comparable to the one in this section using Xen
4.2 or newer, the rate limit needs to be set to its minimum
of 0.1ms.

For this set of experiments, we vary the workload
types running on five VMs sharing the local workstation.
In the first experiment, we run the Thrift RPC server in
all five guest VMs; we use another non-virtualized work-
station in the same local network to make RPC calls to
all five servers, once every two milliseconds, for 15 min-
utes. During the experiment, the local network is never
congested. In the next four experiments, we replace the
RPC servers on the guest VMs with a CPU-intensive
workload, one at a time, until four guest VMs are CPU-
intensive and the last one, called the victim VM, remains
latency-sensitive.

Figure 4 shows the CDF of our five experiments’ RTT
distributions from the 99th to the 100th percentile for
the victim VM. While four other VMs also run latency-

sensitive jobs (zero VMs run CPU-intensive jobs), the
latency tail up to the 99.9th percentile remains under
1ms. If one VM runs a CPU-intensive workload, this re-
sult does not change. Notably, even when the victim VM
does share processors with one CPU-intensive VM and
three latency-sensitive VMs, the extra long tail problem
is nonexistent.

However, the 99.9th percentile becomes five times
larger once two VMs run CPU-intensive jobs. This still
qualifies as a good node under our definition (< 10ms),
but the introduction of even slight network congestion
could change that. To make matters worse, RTT dis-
tributions increase further as more VMs become CPU-
intensive. Eventually, the latency-sensitive victim VM
behaves just like the bad nodes we observe in EC2.

The results of the controlled experiments assert that
virtualization and processor sharing are not sufficient to
cause high latency effects across the entire tail of the RTT
distribution; therefore, much of the blame rests upon
co-located workloads. We show that having one CPU-
intensive VM is acceptable; why does adding one more
suddenly make things five times worse?

There are two physical cores available to guest VMs;
if we have one CPU-intensive VM, the latency-sensitive
VMs can be scheduled as soon as they need to be, while
the single CPU-intensive VM occupies the other core.
Once we reach two CPU-intensive VMs, it becomes pos-
sible that they occupy both physical cores concurrently
while the victim VM has an RPC request pending. Un-
fortunately, the BOOST mechanism does not appear to let
the victim VM preempt the CPU-intensive VMs often
enough. Resulting from these unfortunate scenarios is an
extra long latency distribution. In other words, sharing
does not cause extra long latency tails as long as physi-
cal cores outnumber CPU-intensive VMs; once this con-
dition no longer holds, the long tail emerges.

This set of controlled experiments demonstrates that
a certain mix of latency-sensitive and CPU-intensive
workloads on shared processors can cause the long tail
problem, but a question remains: will all CPU-intensive
workloads have the same impact? In fact, we notice
that if the co-located CPU-intensive VMs in the con-
trolled experiments always use 100% CPU time, the
latency-sensitive VM does not suffer from the long tail
problem—its RTT distribution is similar to the one with-
out co-located CPU-intensive VMs; the workload we use
in the preceding experiments actually uses about 85%
CPU time. This phenomenon can be explained by the
design of the BOOST mechanism. Recall that a VM wak-
ing up due to an interrupt may enter the BOOST state if it
has credits remaining. Thus, if a VM doing mostly CPU-
bound operations decides to accumulate scheduling cred-
its, e.g., by using the sleep function call, it will also get
BOOSTed after the sleep timer expires. Then, it may mo-
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Figure 5: The relationship between the 99.9th percentile
RTT for the latency-sensitive workload and the CPU us-
age of the CPU-bound workload in the neighboring VM.

nopolize the CPU until its credits are exhausted without
being preempted by other BOOSTed VMs, some of which
may be truly latency-sensitive.

In other words, the BOOST mechanism is only effec-
tive against the workloads that use almost 100% CPU
time because such workloads exhaust their credits easily
and BOOSTed VMs can then preempt them whenever they
want. To study the impact of lower CPU usage, we con-
duct another controlled experiment by varying the CPU
usage of the CPU-intensive workload from 10% to 100%
and measuring the 99.9th percentile RTT of the latency-
sensitive workload. We control the CPU usage using a
command-line utility called cpulimit on a process that
otherwise uses 100% CPU time; cpulimit pauses the
target process periodically to adjust its average CPU us-
age. In addition, based on what we learned from the first
set of controlled experiments, we only need to use one
latency-sensitive VM to share a single CPU core with
one CPU-intensive VM and allocate 50% CPU time to
each one respectively.

Figure 5 shows the relationship between the 99.9th
percentile RTT of the latency-sensitive workload and the
CPU usage of the CPU-bound workload in the neighbor-
ing VM. Surprisingly, the latency tail is over 10ms even
with 10% CPU usage, and starting from 30%, the tail
latency is almost constant until 100%. This is because
by default cpulimit uses a 10ms granularity: given X%
CPU usage, it makes the CPU-intensive workload work
Xms and pause (100 − X)ms in each 100ms window.
Thus, when X < 30, the workload yields the CPU every
Xms, so the 99.9th percentiles for the 10% and 20% cases
are close to 10ms and 20ms, respectively; for X ≥ 30, the
workload keeps working for at least 30ms. Recall that the
default time slice of the credit scheduler is 30ms, so the
CPU-intensive workload cannot keep running for more
than 30ms and we see the flat line in Figure 5. It also
explains why the three curves in Figure 1(c) intersect at
the 99.9th percentile line. The takeaway is that even if a
workload uses as little as 10% CPU time on average, it
still can cause a long latency tail to neighboring VMs by

using large bursts of CPU cycles (e.g., 10ms). In other
words, average CPU usage does not capture the intensity
of a CPU-bound workload; it is the length of the bursts
of CPU-bound operations that matters.

Now that we understand the root cause, we will ex-
amine an issue stated earlier: one availability zone in the
US east region of EC2 has a higher probability of re-
turning good instances than the other AZs. If we break
down VMs returned from this AZ by CPU model, we find
a higher likelihood of newer CPUs. These newer CPUs
should be more efficient at context switching, which nat-
urally shortens the latency tail, but what likely matters
more is newer CPUs’ possessing six cores instead of
four, as in older CPUs that are more common in the
other three data centers. One potential explanation for
this is that the EC2 instance scheduler may not consider
CPU model differences when scheduling instances sen-
sitive to delays. Then, a physical machine with four cores
is much more likely to be saturated with CPU-intensive
workloads than a six-core machine. Hence, a data center
with older CPUs is more susceptible to the problem. De-
spite this, our root cause analysis always applies, because
we have observed that both good and bad instances oc-
cur regardless of CPU model; differences between them
only change the likelihood that a particular machine will
suffer from the long tail problem.

4 Avoiding the Long Tails

While sharing is inevitable in multi-tenant cloud com-
puting, we set out to design a system, Bobtail, to find
instances where processor sharing does not cause ex-
tra long tail distributions for network RTTs. Cloud cus-
tomers can use Bobtail as a utility library to decide on
which instances to run their latency-sensitive workloads.

4.1 Potential Benefits
To understand both how much improvement is possible
and how hard it would be to obtain, we measured the
impact of bad nodes for common communication pat-
terns: sequential and partition-aggregation [29]. In the
sequential model, an RPC client calls some number of
servers in series to complete a single, timed observation.
In the partition-aggregation model, an RPC client calls
all workers in parallel for each timed observation.

For the sequential model, we simulate workflow com-
pletion time by sampling from the measured RTT distri-
butions of good and bad nodes. Specifically, every time,
we randomly choose one node out of N RPC servers to
request 10 flows serially, and we repeat this 2,000,000
times. Figure 6 shows the 99th and 99.9th percentile val-
ues of the workflow completion time, with an increasing
number of bad nodes among a total of 100 instances.
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Figure 6: Impact of bad nodes on the flow tail comple-
tion times of the sequential model. Bobtail can expect to
reduce tail flow completion time even when as many as
20% of nodes are bad.

Interestingly, there is no difference in the tails of over-
all completion times when as many as 20% of nodes are
bad. But the difference in flow tail completion time be-
tween 20% bad nodes and 50% bad nodes is severe: flow
completion time increases by a factor of three at the 99th
percentile, and a similar pattern exists at the 99.9th per-
centile with a smaller difference. This means Bobtail is
allowed to make mistakes—even if up to 20% of the in-
stances picked by Bobtail are actually bad VMs, it still
helps reduce flow completion time when compared to
using random instances from EC2. Our measurements
suggest that receiving 50% bad nodes from EC2 is not
uncommon.

Figure 7 shows the completion time of the partition-
aggregation model when there are 10, 20, and 40 nodes
in the workloads. At modest scales, with fan-outs of 10
or even 20 nodes, there are substantial gains to be real-
ized by avoiding bad nodes. However, there is less room
for error here than in the sequential model: as the system
scales up, other barriers present themselves, and avoid-
ing nodes we classify as bad provides diminishing re-
turns. Understanding this open question is an important
challenge for us going forward.

4.2 System Design and Implementation
Bobtail needs to be a scalable system that makes accurate
decisions in a timely fashion. While the node property
remains stable in our five-week measurement, empirical
evidence shows that the longer Bobtail runs, the more
accurate its result can be. However, because launching
an instance takes no more than a minute in EC2, we
limit Bobtail to making a decision in under two minutes.
Therefore, we need to strike a balance between accuracy
and scalability.

A naive approach might be to simply conduct network
measurements with every candidate. But however accu-
rate it might be, such a design would not scale well to

handle a large number of candidate instances in parallel:
to do so in a short period of time would require sending
a large amount of network traffic as quickly as possible
to all candidates, and the synchronous nature of the mea-
surement could cause severe network congestion or even
TCP incast [23].

On the other hand, the most scalable approach in-
volves conducting testing locally at the candidate in-
stances, which does not rely on any resources outside
the instance itself. Therefore, all operations can be done
quickly and in parallel. This approach trades accuracy for
scalability. Fortunately, Figures 6 and 7 show that Bob-
tail is allowed to make mistakes.

Based on our root cause analysis, such a method exists
because the part of the long tail problem we focus on is
a property of nodes instead of the network. Accordingly,
if we know the workload patterns of the VMs co-located
with the victim VM, we should be able to predict if the
victim VM will have a bad latency distribution locally
without any network measurement.

In order to achieve this, we must infer how often long
scheduling delays happen to the victim VM. Because the
long scheduling delays caused by the co-located CPU-
intensive VMs are not unique to network packet process-
ing and any interrupt-based events will suffer from the
same problem, we can measure the frequency of large
delays by measuring the time for the target VM to wake
up from the sleep function call—the delay to process
the timer interrupt is a proxy for delays in processing all
hardware interrupts.

To verify this hypothesis, we repeat the five controlled
experiments presented in the root cause analysis. But in-
stead of running an RPC server in the victim VM and
measuring the RTTs with another client, the victim VM
runs a program that loops to sleep 1ms and measures the
wall time for the sleep operation. Normally, the VM
should be able to wake up after a little over 1ms, but co-
located CPU-intensive VMs may prevent it from doing
so, which results in large delays.

Figure 8 shows the number of times when the sleep
time rises above 10ms in the five scenarios of the con-
trolled experiments. As expected, when two or more
VMs are CPU-intensive, the number of large delays ex-
perienced by the victim VM is one to two orders of mag-
nitude above that experienced when zero or one VMs are
CPU-intensive. Although the fraction of such large de-
lays is small in all scenarios, the large difference in the
raw counts forms a clear criterion for distinguishing bad
nodes from good nodes. In addition, although it is not
shown in the figure, we find that large delays with zero
or one CPU-intensive VMs mostly appear for lengths of
around 60ms or 90ms; these are caused by the 40% CPU
cap on each latency-sensitive VM (i.e., when they are not
allowed to use the CPU despite its availability). Delays
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Figure 7: Impact of bad nodes on the tail completion time of the partition-aggregation model with 10, 20, and 40 nodes
involved in the workloads. At modest scales, with fan-outs of 10 or even 20 nodes, there are substantial gains to be
realized by avoiding bad nodes.

Figure 8: The number of large scheduling delays experi-
enced by the victim VM in controlled experiments with
an increasing number of VMs running CPU-intensive
workloads. Such large delay counts form a clear criterion
for distinguishing bad nodes from good nodes.

experienced in other scenarios are more likely to be be-
low 30ms, which is a result of latency-sensitive VMs pre-
empting CPU-intensive VMs. This observation can serve
as another clue for distinguishing the two cases.

Based on the results of our controlled experiments,
we can design an instance selection algorithm to pre-
dict locally if a target VM will experience a large num-
ber of long scheduling delays. Algorithm 1 shows the
pseudocode of our design. While the algorithm itself is
straightforward, the challenge is to find the right thresh-
old in EC2 to distinguish the two cases (LOW_MARK
and HIGH_MARK) and to draw an accurate conclusion as
quickly as possible (loop size M).

Our current policy is to reduce false positives, because
in the partition-aggregation pattern, reducing bad nodes
is critical to scalability. The cost of such conservatism is
that we may label good nodes as bad incorrectly, and as
a result we must instantiate even more nodes to reach a
desired number. To return N good nodes as requested by
users, our system needs to launch K ∗N instances, and
then it needs to find the best N instances of that set with
the lowest probability of producing long latency tails.

After Bobtail fulfills a user’s request for N instances
whose delays fall below LOW_MARK, we can apply the

Algorithm 1 Instance Selection Algorithm
1: num delay = 0
2: for i = 1 → M do
3: sleep for S micro seconds
4: if sleep time ≥ 10ms then
5: num delay++
6: end if
7: end for
8: if num delay ≤ LOW MARK then
9: return GOOD

10: end if
11: if num delay ≤ HIGH MARK then
12: return MAY USE NETWORK TEST
13: end if
14: return BAD

network-based latency testing to the leftover instances
whose delays fall between LOW_MARK and HIGH_MARK;
this costs the user nothing but provides further value us-
ing the instances that users already paid for by the hour.
Many of these nodes are likely false negatives which,
upon further inspection, can be approved and returned to
the user. In this scenario, scalability is no longer a prob-
lem because we no longer need to make a decision within
minutes. Aggregate network throughput for testing can
be thus much reduced. With this optimization, we may
achieve a much lower effective false negative rate, which
will be discussed in the next subsection.

A remaining question is what happens if users run
latency-sensitive workloads on the good instances Bob-
tail picked, but those VMs become bad after some length
of time. In practice, because users are running network
workloads on these VMs, they can tell if any good VM
turns bad by inspecting their application logs without any
extra monitoring effort. If it happens, users may use Bob-
tail to pick more good VMs to take the place of the bad
ones. Fortunately, as indicated in Figure 3, our five-week
measurement shows that such properties generally per-
sist, so workload migration does not need to happen very
frequently. In addition, Figures 6 and 7 also indicate that

8



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 337

Figure 9: Trade-off between false positive and false neg-
ative rates of the instance selection algorithm. Our sys-
tem can achieve a < 0.1 false positive rate while main-
taining a false negative rate of around 0.3. With the help
of network-based testing, the effective false negative rate
can be reduced to below 0.1.

even if 20% of instances running latency-sensitive work-
loads are bad VMs, their impact on the latency distribu-
tion of sequential or partition-aggregation workloads is
limited.

4.3 Parameterization
To implement Bobtail’s algorithm, we need to define
both its runtime (loop size M) and the thresholds for the
LOW_MARK and HIGH_MARK parameters. Our design in-
tends to limit testing time to under two minutes, so in
our current implementation we set the loop size M to be
600K sleep operations, which translates to about 100
seconds on small instances in EC2—the worse the in-
stance is, the longer it takes.

The remaining challenge we face is finding the
right thresholds for our parameters (LOW_MARK and
HIGH_MARK). To answer this inquiry, we launch 200
small instances from multiple availability zones (AZs)
in EC2’s US east region, and we run the selection al-
gorithm for an hour on all the candidates. Meanwhile,
we use the results of network-based measurements as the
ground truth of whether the candidates are good or bad.
Specifically, we consider the instances with 99.9th per-
centiles under 10ms for all micro benchmarks, which are
discussed in § 5.1, as good nodes; all other nodes are
considered bad.

Figure 9 shows the trade-off between the false positive
and false negative rates by increasing LOW_MARK from 0
to 100. The turning point of the solid line appears when
we set LOW_MARK around 13, which lets Bobtail achieve
a < 0.1 false positive rate while maintaining a false neg-
ative rate of around 0.3—a good balance between false
positive and false negative rates. Once HIGH_MARK is in-
troduced (as five times LOW_MARK), the effective false
negative rate can be reduced to below 0.1, albeit with the
help of network-based testing. We leave it as future work

to study when we need to re-calibrate these parameters.
The above result reflects our principle of favoring a

low false positive. Therefore, we need to use a relatively
large K value in order to get N good nodes from K ∗N
candidates. Recall that our measured good node ratio
for random instances directly returned by EC2 ranges
from 0.4 to 0.7. Thus, as an estimation, with a 0.3
false negative rate and a 0.4 to 0.7 good node ratio for
random instances from multiple data centers, we need
K ∗N ∗(1−0.3)∗0.4=N or K ≈ 3.6 to retrieve the num-
ber of desired good nodes from one batch of candidates.
However, due to the pervasiveness of bad instances in
EC2, even if Bobtail makes no mistakes we still need a
minimum of K∗N ∗0.4=N or K = 2.5. If startup latency
is the critical resource, rather than the fees paid to start
new instances, one can increase this factor to improve
response time.

5 Evaluation

In this section, we evaluate our system over two avail-
ability zones (AZs) in EC2’s US east region. These two
AZs always return some bad nodes. We compare the la-
tency tails of instances both selected by our system and
launched directly via the standard mechanism. We con-
duct this comparison using both micro benchmarks and
models of sequential and partition-aggregation work-
loads.

In each trial, we compare 40 small instances launched
directly by EC2 from one AZ to 40 small instances se-
lected by our system from the same AZ. The compar-
ison is done with a series of benchmarks; these small
instances will run RPC servers for all benchmarks. To
launch 40 good instances, we use K = 4 with 160 can-
didate instances. In addition, we launch four extra large
instances for every 40 small instances to run RPC clients.
We do this because, as discussed earlier, extra large in-
stances do not experience the extra long tail problem; we
therefore can blame the server instances for bad latency
distributions.

5.1 Micro Benchmarks
Our traffic models for both micro benchmarks and se-
quential and partition-aggregation workloads have inter-
arrival times of RPC calls forming a Poisson process. For
micro benchmarks, we assign 10 small instance servers
to each extra large client. The RPC call rates are set at
100, 200, and 500 calls/second. In each RPC call, the
client sends an 8-byte request to the server, and the server
responds with 2KB of random data. Meanwhile, both
requests and responses are packaged with another 29-
byte overhead. The 2KB message size was chosen be-
cause measurements taken in a dedicated data center in-

9
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Figure 10: Reduction in flow tail completion time in
micro benchmarks by using Bobtail in two availability
zones in EC2’s US east region. The mean reduction time
is presented with a 90% confidence interval.

dicate that most latency-sensitive flows are around 2KB
in size [1]. Note that we do not generate artificial back-
ground traffic, because real background traffic already
exists throughout EC2 where we evaluate Bobtail.

Figure 10 presents the reductions in completion times
for three RPC request rates in micro benchmarks across
two AZs. Bobtail reduces latency at the 99.9th percentile
from 50% to 65%. In micro benchmark and subsequent
evaluations, the mean of reduction percentages in flow
completion is presented with a 90% confidence interval.

However, improvements at the 99th percentile are
smaller with a higher variance. This is because, as shown
in Figure 1, the 99th percentile RTTs within EC2 are not
very bad to begin with (∼2.5ms); therefore, Bobtail’s im-
provement space is much smaller at the 99th percentile
than at the 99.9th percentile. For the same reason, net-
work congestion may have a large impact on the 99th
percentile while having little impact on the 99.9th per-
centile in EC2. The outlier of 200 calls/second in the
second AZ of Figure 10 is caused by one trial in the
experiment with 10 good small instances that exhibited
abnormally large values at the 99th percentile.

5.2 Sequential Model
For sequential workloads, we apply the workload model
to 20-node and 40-node client groups, in addition to the
10-node version shown in the micro benchmarks. In this
case, the client sends the same request as before, but the
servers reply with a message size randomly chosen from
among 1KB, 2KB, and 4KB. For each workflow, instead
of sending requests to all the servers, the client will ran-
domly choose one server from the groups of sizes 10, 20,
and 40. Then, it will send 10 synchronous RPC calls to
the chosen server; the total time to complete all 10 RPC
requests is then used as the workflow RTT. Because of
this, the workflow rates for the sequential model are re-
duced to one tenth of the RPC request rates for micro
benchmarks and become 10, 20, and 50 workflows per
second.

Figure 11 shows our improvement under the sequen-

Figure 11: Reduction in flow tail completion time for se-
quential workflows by using Bobtail in two availability
zones in EC2’s US east region. The mean reduction time
is presented with a 90% confidence interval.

tial model with different numbers of RPC servers in-
volved. Bobtail brings a 35% to 40% improvement to
sequential workloads at the 99th percentile across all ex-
periments, and it roughly translates to an 8ms reduction.
The lengths of the confidence intervals grow as the num-
ber of server nodes increases; this is caused by a rela-
tively smaller sample space. The similarity in the reduc-
tion of flow completion time with different numbers of
server nodes shows that the tail performance of the se-
quential workflow model only depends on the ratio of
bad nodes among all involved server nodes. Essentially,
the sequential model demonstrates the average tail per-
formance across all server nodes by randomly choosing
one server node each time with equal probability at the
client side.

Interestingly, and unlike in the micro benchmarks, im-
provement at the 99.9th percentile now becomes smaller
and more variable. However, this phenomenon does
match our simulation result shown in Figure 6 when dis-
cussing the potential benefits of using Bobtail.

5.3 Partition-Aggregation Model
For the partition-aggregation model, we use the same 10,
20, and 40-node groups to evaluate Bobtail. In this case,
the client always sends requests to all servers in the group
concurrently, and the workflow finishes once the slowest
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Figure 12: Reduction in flow tail completion time for
partition-aggregation workflows by using Bobtail in two
availability zones in EC2’s US east region. The mean re-
duction time is presented with a 90% confidence interval.

RPC response returns; servers always reply with 2KB of
random data. In other words, the RTT of the slowest RPC
call is effectively the RTT of the workflow. Meanwhile,
we keep the same workflow request rate from the micro
benchmarks.

Figure 12 shows improvement under the partition-
aggregation model with different numbers of RPC
servers involved. Bobtail brings improvement of 50% to
65% at the 99th percentile with 10 servers. Similarly to
the sequential workloads, the improvement at the 99.9th
percentile is relatively small. In addition, as predicted by
Figure 7, the reduction in tail completion time diminishes
as the number of servers involved in the workload in-
creases. To fully understand this phenomenon, we need
to compare the behaviors of these two workload models.

For sequential workloads with random worker assign-
ment, a small number of long-tail nodes have a modest
impact. Intuitively, each such node has a 1/N chance of
being selected for any work item and may (or may not)
exhibit long tail behavior for that item. However, when
this does happen, the impact is non-trivial, as the long de-
lays consume the equivalent of many “regular” response
times. So, one must minimize the pool of long-tail nodes
in such architectures but needs not to avoid them entirely.

The situation is less pleasant for parallel, scatter-
gather style workloads. In such workloads, long-tail
nodes act as the barrier to scalability. Even a relatively

low percentage of long-tail nodes will cause significant
slowdowns overall, as each phase of the computation
runs at the speed of the slowest worker. Reducing or even
eliminating long-tail nodes removes this early barrier to
scale. However, it is not a panacea. As the computation
fans out to more nodes, other limiting factors come into
play, reducing the effectiveness of further paralleliza-
tion. We leave it as future work to study other factors
that cause the latency tail problem with larger fan-out in
cloud data centers.

6 Discussion

Emergent partitions A naive interpretation of Bob-
tail’s design is that a given customer of EC2 simply
seeks out those nodes which have at most one VM per
CPU. If this were the case, deploying Bobtail widely
would result in a race to the bottom. However, not all
forms of sharing are bad. Co-locating multiple VMs run-
ning latency-sensitive workloads would not give rise to
the scheduling anomaly at the root of our problem. In-
deed, wide deployment of Bobtail for latency-sensitive
jobs would lead to placements on nodes which are ei-
ther under-subscribed or dominated by other latency-
sensitive workloads. Surprisingly, this provides value to
CPU-bound workloads as well. Latency-sensitive work-
loads will cause frequent context switches and reduc-
tions in cache efficiency; both of these degrade CPU-
bound workload performance. Therefore, as the usage
of Bobtail increases in a cloud data center, we expect
it will eventually result in emergent partitions: regions
with mostly CPU-bound VMs and regions with mostly
latency-sensitive VMs. However, to validate this hypoth-
esis, we would need direct access to the low-level work-
load characterization of cloud data centers like EC2.

Alternative solutions Bobtail provides a user-centric
solution that cloud users can apply today to avoid long la-
tency tails without changing any of the underlying infras-
tructure. Alternatively, cloud providers can offer their so-
lutions by modifying the cloud infrastructure and place-
ment policy. For example, they can avoid allocating more
than C VMs on a physical machine with C processors, at
the cost of resource utilization. They can also overhaul
their VM placement policy to allocate different types of
VMs in different regions in the first place. In addition,
new versions of the credit scheduler [28] may also help
alleviate the problem.

7 Related Work

Latency in the Long Tail Proposals to reduce net-
work latency in data centers fall into two broad cate-
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gories: those that reduce network congestion and those
that prioritize flows according to their latency sensitiv-
ity. Alizadeh et al. proposed to reduce switch buffer oc-
cupancy time by leveraging Explicit Congestion Notifi-
cation (ECN) to indicate the degree of network conges-
tion rather than whether congestion exists [1]. Follow-
up work further reduced the buffer occupancy time by
slightly capping bandwidth capacity [2]. Wilson et al.
and Vamanan et al. both argued that the TCP conges-
tion control protocols used in data centers should be
deadline-aware [26, 22]. Hong et al. designed a flow
scheduling system for data centers to prioritize latency-
sensitive jobs with flow preemption [10]. Zats et al. pro-
posed a cross-stack solution that combined ECN with
application-specified flow priorities and adaptive load
balancing in an effort to unify otherwise disparate knowl-
edge about the state of network traffic [29].

The above solutions focus on the component of long
tail flow completion times that is the result of the network
alone and, as such, are complementary to our approach.
We have shown that the co-scheduling of CPU-intensive
and latency-sensitive workloads in virtualized data cen-
ters can result in a significant increase in the size of the
long tail, and that this component of the tail can be ad-
dressed independently of the network.

The Xen Hypervisior and its Scheduler In § 3, we
discussed how Xen uses a credit-based scheduler [28]
that is not friendly to latency-sensitive workloads. Var-
ious characteristics of this credit scheduler have been
examined, including scheduler configurations [15], per-
formance interference caused by different types of co-
locating workloads [15, 12, 25], and the source of over-
head incurred by virtualization on the network layer [25].
Several designs have been proposed to improve the cur-
rent credit scheduler, and they all share the approach of
boosting the priority of latency-sensitive VMs while still
maintaining CPU fairness in the long term [9, 8, 11].
However, the degree to which such approaches will im-
pact the long tail problem at scale has yet to be studied.

Instead of improving the VM scheduler itself, Wood
et al. created a framework for the automatic migra-
tion of virtual machines between physical hosts in Xen
when resources become a bottleneck [27]. Mei et al.
also pointed out that a strategic co-placement of differ-
ent workload types in a virtualized data center will im-
prove performance for both cloud consumers and cloud
providers [14]. Our work adopts a similar goal of improv-
ing the tail completion time of latency-sensitive work-
loads for individual users while also increasing the over-
all efficiency of resource usage across the entire virtual-
ized data center. However, our solution does not require
the collaboration of cloud providers, and many cloud
customers can deploy our system independently.

EC2 Measurements Wang et al. showed that the net-
work performance of EC2 is much more variable than
that of non-virtualized clusters due to virtualization and
processor sharing [24]. In addition, Schad et al. found a
bimodal performance distribution with high variance for
most of their metrics related to CPU, disk I/O, and net-
work [19]. Barker et al. also quantified the jitter of CPU,
disk, and network performance in EC2 and its impact on
latency-sensitive applications [4]. Moreover, A. Li et al.
compared multiple cloud providers, including EC2, us-
ing many types of workloads and claimed that there is no
single winner on all metrics [13]. These studies only in-
vestigate the average and variance of their performance
metrics, while the focus of our study is on the tail of net-
work latency distributions in EC2.

Ou et al. considered hardware heterogeneity within
EC2, and they noted that within a single instance type
and availability zone, the variation in performance for
CPU-intensive workloads can be as high as 60% [16].
They made clear that one easy way to improve instance
performance is to check the model of processor assigned.
While selecting instances also represents the core of our
work, Bobtail examines dynamic properties of EC2 as
opposed to static configuration properties.

8 Conclusion

In this paper, we demonstrate that virtualization used in
EC2 exacerbates the long tail problem of network round-
trip-times by a factor of two to four. Notably, we find
that poor response times in the cloud are a property of
nodes rather than the network, and that the long latency
tail problem is pervasive throughout EC2 and persis-
tent over time. Using controlled experiments, we show
that co-scheduling of CPU-bound and latency-sensitive
tasks causes this problem. We present a system, Bobtail,
which proactively detects and avoids these bad neighbor-
ing VMs without significantly penalizing node instanti-
ation. Evaluations in two availability zones in EC2’s US
east region show that common communication patterns
benefit from reductions of up to 40% in their 99.9th per-
centile response times.
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Abstract
Unstructured storage and data processing using plat-

forms such as MapReduce are increasingly popular for
their simplicity, scalability, and flexibility. Using elastic
cloud storage and computation makes them even more at-
tractive. However cloud providers such as Amazon and
Windows Azure separate their storage and compute re-
sources even within the same data center. Transferring
data from storage to compute thus uses core data center
network bandwidth, which is scarce and oversubscribed.
As the data is unstructured, the infrastructure cannot au-
tomatically apply selection, projection, or other filter-
ing predicates at the storage layer. The problem is even
worse if customers want to use compute resources on one
provider but use data stored with other provider(s). The
bottleneck is now the WAN link which impacts perfor-
mance but also incurs egress bandwidth charges.

This paper presents Rhea, a system to automatically
generate and run storage-side data filters for unstructured
and semi-structured data. It uses static analysis of ap-
plication code to generate filters that are safe, stateless,
side effect free, best effort, and transparent to both stor-
age and compute layers. Filters never remove data that
is used by the computation. Our evaluation shows that
Rhea filters achieve a reduction in data transfer of 2x–
20,000x, which reduces job run times by up to 5x and
dollar costs for cross-cloud computations by up to 13x.

1 Introduction
The last decade has seen a huge increase in the use

of “noSQL” approaches to data analytics. Whereas in
the past the default data store was a relational one (e.g.
SQL), today it is possible and often desirable to store
the data as unstructured files (e.g. text-based logs)
and to process them using general-purpose languages
(Java, C#). The combination of unstructured storage and
general-purpose programming languages increases flexi-
bility: different programs can interpret the same data in

∗Work done while on internship from Rice University

different ways, and changes in format can be handled by
changing the code rather than restructuring the data.

This flexibility comes at a cost. The structure of the
data is now implicit in the program code. Most analytics
jobs use a subset of the input data, i.e. only some of the
data items are relevant and only some of the fields within
those are relevant. Since these selection and projection
operations are embedded in the application code, they
cannot be applied by the storage layer; rather all the data
must be read into the application code.

This is not an issue for dedicated data processing in-
frastructures where a single cluster provides both stor-
age and computation, and a framework such as MapRe-
duce, Hadoop, or Dryad co-locates computation with
data. However it is a problem when running such frame-
works in an elastic cloud. Cloud providers such as Ama-
zon and Windows Azure provide both scalable unstruc-
tured storage and elastic compute resources but these are
physically disjoint. There are many good reasons for this
including security, performance isolation, and the need to
independently scale and provision the storage and elastic
compute infrastructures. Both Amazon’s S3 [1] and Win-
dows Azure Storage [4, 39] follow this model of phys-
ically separate compute and storage servers within the
same data center. This means that bytes transferred from
storage to compute use core data center network band-
width, which is often scarce and oversubscribed [14] (see
also Section 4.1.1).

Our aim is to retain the flexibility of unstructured stor-
age and the elasticity of cloud storage and computation,
yet reduce the bandwidth costs of transferring redundant
or irrelevant data from storage to computation. Specif-
ically, we wish to transparently run applications written
for frameworks such as Hadoop in the cloud, but extract
the implicit structure and use it to reduce the amount
of data read over the data center network. Reducing
bandwidth will improve provider utilization, by allow-
ing more jobs to be run on the same servers, and improve
performance for customers, as their jobs will run faster.
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Our approach is to use static analysis on application
code to automatically generate application-specific filters
that remove data that is irrelevant to the computation.
The generated filters are then run (typically, but not nec-
essarily) on storage servers in order to reduce bandwidth.
Filters need to be safe and transparent to the application
code. They need to be conservative, i.e., the output of
the computation must be the same whether using filters
or not, and hence only data that provably cannot affect
the computation can be suppressed. Since filters are us-
ing spare computational resources on the storage servers,
they also need to be best-effort, i.e. they can be disabled
at any time without affecting the application.

Our Rhea system automatically generates and exe-
cutes storage-side filters for unstructured text data. Rhea
extracts both row filters which select out irrelevant rows
(lines) in the input, as well as column filters which
project out irrelevant columns (substrings) in the surviv-
ing rows.1 Both row and column filters are safe, trans-
parent, conservative, and best-effort. Rhea analyzes the
Java bytecode of programs written for Hadoop MapRe-
duce, producing job-specific executable filters.

Section 2 makes the case for implicit, storage-side fil-
tering and describes 9 analytic jobs that we use to moti-
vate and evaluate Rhea. Section 3 describes the design
and implementation of Rhea and its filter generation al-
gorithms. Section 4 shows that storage-to-compute band-
width is scarce in real cloud platforms; that Rhea filters
achieve substantial reduction in the storage-to-compute
data transfer and that this leads to performance improve-
ments in a cloud environment. Rhea reduces storage-to-
compute traffic by a factor of 2–20,000, job run times
by a factor of up to 5, and dollar costs for cross-cloud
computations by a factor of up to 13. Section 5 discusses
related work, and Section 6 concludes.

2 Background and Motivation
In this section we first describe the design rationale

for Rhea: the network bottlenecks that motivate storage-
side filtering, and the case for automatically generated
(implicit) filters. We finally describe the example jobs
that we use to evaluate Rhea.

2.1 Storage-side filtering
The case for storage-side filtering is based on two ob-

servations. First, compute cycles on storage servers are
cheap relative to core network bandwidth. Of course,
since this is not an explicitly provisioned resource, use
of such cycles should be opportunistic and best-effort.
Second, storage-to-compute bandwidth is a scarce re-
source that can be a performance bottleneck. Our mea-

1 For convenience we use the term “row” to refer to the input unit of
a Map process, and “column” to refer to the output of the tokenization
performed on the row input according to some user-specified logic.

surements of read bandwidth for Amazon EC2/S3 and
Windows Azure confirm this (Section 4.1.1) and are con-
sistent with earlier measurements [11, 12].

If data must be transferred across data centers or avail-
ability zones, then this will not only use WAN bandwidth
and impact performance, but also incur egress bandwidth
charges for the user. This can happen if data stored in dif-
ferent geographical locations need to be combined, e.g.,
web logs from East and West Coast servers. Some jobs
may need to combine public and private data, e.g. a pub-
lic data set stored in Amazon S3 [31] with a private one
stored on-premises, or a data set stored in Amazon S3
with one stored in Windows Azure Storage.

Our aim is to reduce network load, job run times, and
egress bandwidth charges through filtering for many dif-
ferent scenarios. When the storage is in the cloud, the
cloud provider (e.g. Amazon S3) could natively support
execution of Rhea filters on or near the storage servers.
In the case where the computation uses a compute clus-
ter provided by the same provider (e.g. Amazon EC2 in
the case of Amazon S3), the provider could even extract
and deploy filters transparently to the customer. For on-
premises (“private cloud”) storage, filters could be de-
ployed by the customer on the storage servers or near
them, e.g. on the same rack. If the provider does not
support filtering at the storage servers, filtering can still
be used to reduce WAN data transfers by running the fil-
ters in a compute instance located in the same data cen-
ter as the storage. In the latter case our evaluation shows
that the savings in egress bandwidth charges outweigh
the dollar cost of a filtering VM instance. Additionally,
the isolation properties of Rhea filters make it possible
for multiple users to safely share a single filtering VM
and thus reduce this cost.

2.2 Implicit filtering
Rhea creates filters implicitly and transparently using

static analysis of the programs. An alternative would be
to have the programmer do this explicitly. For exam-
ple a language like SQL makes the filtering predicates
and columns accessed within each row explicit. E.g.,
the “WHERE” clause in a SQL statement identifies the
filtering predicate and the “SELECT” statement for col-
umn selectivity. Several storage systems support explicit
column selectivity for MapReduce jobs, e.g. “slice pred-
icates” in Cassandra [3], “input format classes” in Ze-
bra [41], explicit filters in Pig/Latin [13], and RC-files in
Hive [34]. In such situations input data pre-filtering can
be performed using standard techniques from database
query optimization.

While extremely useful for this kind of query opti-
mization and reasoning, explicit approaches often pro-
vide less flexibility, as the application is tied to a specific
interface to the storage (SQL, Cassandra, etc). They are
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also less well-suited for free-format or semi-structured
text files, which have to be parsed in an application-
specific manner. This flexibility is one of the reasons that
platforms such as SCOPE [5] allow a mixture of SQL-
like and actual C# code. Eventually all code (including
the SQL part) is compiled down to .NET and executed.

Our aim in Rhea is to handle the general case where
programmers can embed application-specific column
parsing logic or arbitrary code in the mapper, without im-
posing any additional programmer burden such as hand-
annotating the code with filtering predicates. Instead,
Rhea infers filters automatically using static analysis of
the application byte code. Since Rhea only examines the
application code, it is applicable even when the format
of the data is not known a-priori, or the data does not
strictly conform to an input format (for instance tabu-
lar input data with occasionally occurring comment lines
starting with a special character).

2.3 Example analytics jobs
Our static analysis handles arbitrary Java byte code:

we have used over 160 Hadoop mappers from various
Hadoop libraries and other public and private sources
to test our tool and validate the generated filters (Sec-
tion 3.4). Of these, we present nine jobs for which data
were also available and use them to drive our evalua-
tion (Section 4). Here we describe these nine jobs. Note
that we do not include commonly-used benchmarks such
as Sort and WordCount, which are used to stress-test
MapReduce infrastructures. Neither of these has any se-
lectivity, i.e., the mapper examines all the input data, and
thus Rhea would not generate any filters for them. How-
ever, we do not believe such benchmarks are representa-
tive of real-world jobs, which often do have selectivity.
GeoLocation This publicly available Hadoop exam-
ple [24] groups Wikipedia articles by their geographical
location. The input data is based on a publicly avail-
able data set [23]. The input format is text, with each
line corresponding to a row and tab characters separat-
ing columns within the row. Each row contains a type
column which determines how the rest of the row is in-
terpreted; the example job only considers one of the two
row types, and hence rows of the other type can be safely
suppressed from the input.
Event log processing The next two jobs are based on
processing event logs from a large compute/storage plat-
form consisting of tens of thousands of servers. Users is-
sue tasks to the system, which spawn processes on multi-
ple servers. Resource usage information measured on all
these servers is written to two event logs: a process log
with one row per executed process, and an activity log
that records fine-grained resource consumption informa-
tion. We use two typical jobs that process this data. The
first, FindUserUsage, identifies the top-k users by total
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Figure 1: System architecture

process execution time. The second, ComputeIoVolumes,
is a join: it filters out failed tasks by reading the process
log and then computes storage I/O statistics for the suc-
cessful tasks from the activity log.
IT log reporting The next job is based on enterprise IT
logs across thousands of shared infrastructure machines
on an enterprise network. The sample job (IT Reporting)
queries these logs to find the aggregate CPU usage for a
specific machine, grouped by the type of user generating
the CPU load.
Web logs and ranking The last five jobs are from a
benchmark developed by Pavlo et al. [30] to compare
unstructured (MapReduce) and structured (DBMS) ap-
proaches to data analysis. The jobs all use syntheti-
cally generated data sets consisting of a set of HTML
documents that link to each other, a Rankings table that
maps each unique URL to its computed PageRank, and a
UserVisits table that logs user visits to each unique URL
as well as context information such as time-stamp, coun-
try code, ad revenue, and search context.

The first two jobs are variants of a SelectionTask (find
all URLs with page rank higher than X). The amount
of input data that is relevant to this task depends on the
threshold X . Thus we use two variants with thresholds
X1% and X10%, where approximately 1% of the URLs
have page rank higher than X1%, and 10% of the URLs
have page rank higher than X10%. The next two jobs are
based on an AggregationTask. They find total revenue
grouped by unique source IP, and total revenue grouped
by source network, respectively. Finally, the JoinTask
finds the average PageRank of the pages visited by the
source IP that generated the most revenue within a par-
ticular date range.

3 Design and Implementation
The current Rhea prototype is designed for Hadoop

MapReduce jobs. It generates executable Java filters
from the mapper class(es) for each job. It is important
to note that although Rhea filters are executable, run-
ning a filter is different from running arbitrary applica-
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tion code, for example running the entire mapper task on
the storage server. Filters are guaranteed to be safe and
side-effect free and thus can be run with minimal sand-
boxing, with multiple filters from different jobs or cus-
tomers co-existing in the same address space. They are
transparent and best-effort, and hence can be disabled
at any point to save resources without affecting the ap-
plication. They are stateless and do not consume large
amounts of memory to hold output, as is done by many
mappers. Finally, they are guaranteed never to output
more data than input. This is not true of mappers where
the output data can be larger than the input data [6].

Figure 1 shows the architecture of Rhea, which con-
sists of two components: a filter generator and a filter-
ing proxy. The filter generator creates the filters and up-
loads them to the filtering proxy, and also adds a trans-
parent, application-independent, client-side shim to the
user’s Hadoop job to create a Rhea-aware version of the
job. The Rhea-aware version of the job intercepts cloud
storage requests, and redirects them to the filtering proxy.
The redirected requests include a description of the filter
to be instantiated and a serialized cloud storage REST
request to access the job’s data. The serialized request
is signed with the user’s cloud storage provider creden-
tials when it is generated on the Hadoop nodes so the fil-
tering proxy holds no confidential user state. When the
filtering proxy receives the redirected request, it instanti-
ates the required filter, issues the signed storage request,
and returns filtered data to the caller. Thus Rhea filter-
ing is transparent to the user code, to the elastic compute
infrastructure, and to the storage layer, and requires no
sensitive user state. The proxy works with Amazon’s S3
Storage and Windows Azure Storage, and also has a local
file system back end for development and test use.

The filter generator takes the Java byte code of a
Hadoop job, and generates a row filter and a column fil-
ter for each mapper class found in the program. These
are encoded as methods on an extension of the corre-
sponding mapper class. The extended classes are shipped
to the filtering proxy as Java jar files and dynamically
loaded into its address space. The filter generator, and
the static analysis underlying it, are implemented using
SAWJA [18], a tool which provides a high-level stack-
less representation of Java byte code. In the rest of this
section we describe the static analysis used for row and
column filter generation.

3.1 Row Filters
A row filter in Rhea is a method that takes a single

record as input and returns false if that record does not
affect the result of the MapReduce computation, and true

otherwise. It can have false positives, i.e., return true for
records that do not affect the output, but it can not have
false negatives. The byte code of the filter is generated

from that of the mapper. Intuitively, it is a stripped-down
or “skeleton” version of the mapper, retaining only those
instructions and execution paths that determine whether
or not a given invocation will produce an output. Instruc-
tions that are used to compute the value of the output but
do not affect the control flow are not present in the filter.
As such, the row filter is completely independent of the
format of the input data and only depends on the predi-
cates that the mapper is using on the input.

Listing 1 shows a typical example: the mapper for
the GeoLocation job (Section 2.3). It tokenizes the in-
put value (line 7), extracts the first three tokens, (line 9–
11), and then checks if the second token equals the static
field GEO_RSS_URI (line 13). If it does, more process-
ing follows (line 14–26) and some value is output on
outputCollector; otherwise, no output is generated.

1 ... // class and field declarations

2 public void map(LongWritable key , Text value ,

3 OutputCollector <Text , Text > outputCollector ,

4 Reporter reporter) throws IOException {

5

6 String dataRow = value.toString ();

7 StringTokenizer dataTokenizer =

8 new StringTokenizer(dataRow , "\t");

9 String artName = dataTokenizer.nextToken ();

10 String pointTyp = dataTokenizer.nextToken ();

11 String geoPoint = dataTokenizer.nextToken ();

12

13 if (GEO_RSS_URI.equals(pointTyp )) {

14 StringTokenizer st =

15 new StringTokenizer(geoPoint , "�");

16 String strLat = st.nextToken ();

17 String strLong = st.nextToken ();

18 double lat = Double.parseDouble(strLat );

19 double lang = Double.parseDouble(strLong );

20 long roundedLat = Math.round(lat);

21 long roundedLong = Math.round(lang);

22 String locationKey = ...

23 String locationName = ...

24 locationName = ...

25 geoLocationKey.set(locationKey );

26 geoLocationName.set(locationName );

27 outputCollector.collect(geoLocationKey ,

28 geoLocationName );

29 } }

Listing 1: GeoLocation map job

Listing 2 shows the filter generated by Rhea for this
mapper. It also tokenizes the input (line 8) and performs
the comparison on the second token (line 12) (bcvar8
here corresponds to pointTyp in map). This test deter-
mines whether map would have produced output, and
hence filter returns the corresponding Boolean value.

Comparison of map and filter reveals two interest-
ing details. First, while map extracted three tokens from
the input, filter only extracted two. The third token
does not determine whether or not output is produced,
although it does affect the value of the output. The static
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1 public boolean filter (LongWritable bcvar1 ,

2 Text bcvar2 ,

3 OutputCollector bcvar3 ,

Reporter bcvar4) {

4

5 boolean cond = false;

6 String bcvar5 = bcvar2.toString ();

7 String irvar0 = "\t";

8 StringTokenizer bcvar6 =

9 new StringTokenizer(bcvar5 ,irvar0 );

10 String bcvar7 = bcvar6.nextToken ();

11 String bcvar8 = bcvar6.nextToken ();

12 boolean irvar0_1=

13 GEO_RSS_URI.equals(bcvar8 );

14

15 cond = (( irvar0_1 ?1:0) != 0);

16 if (!cond) return false;

17 return true;

18 }

Listing 2: Row filter generated for GeoLocation

analysis detects this and omits the extraction of the third
token. Second, map does substantial processing (line 14–
26) before producing the output. All these instructions
are omitted from the filter: they affect the output value
but not the output condition.

Row filter generation uses a variant of dependency
analysis commonly found in program slicing [17, 26,
36]. Our analysis is based on the following steps:

1. It first identifies “output labels”, i.e. program
points at which the mapper produces output, such as calls
to the Hadoop API including OutputCollector.collect

(line 28 of Listing 1). The generated filter must return
true for any input that causes the mapper to reach such
an output label (line 17 of Listing 2). This basic defini-
tion of output label is later extended to handle the use of
state in the mapper (Section 3.1.1).

2. The next step is to collect all control flow paths (in-
cluding loops) of the mapper that reach an output label.
Listing 1 contains a single control path that reaches an
output label through line 13 of Listing 1.

3. Next, Rhea performs a label-flow analysis (as a
standard forward analysis [29]) to compute a “flow
map”: for each program instruction, and for each vari-
able referenced in that instruction, it computes all other
labels that could affect the value of that variable.

4. For every path identified in Step 2, we keep only the
instructions that, according to the flow map from Step 3,
can affect any control flow decisions (line 6–13 of List-
ing 1, which correspond to line 6–16 of Listing 2 ). The
result is a new set of paths which contains potentially
fewer instructions per path – only the necessary ones for
control flow to reach the path’s output instruction.

5. Finally, we generate code for the disjunction of the
paths computed in Step 4, emitting return true state-
ments after the last conditional along each path. Techni-

cally, prior to this step we perform several optimizations,
for instance we merge paths when both the True and the
False case of a conditional statement can lead to output.
We also never emit code for a loop if the continuation of
a loop may reach an output instruction: in this case we
simply return true when we reach the loop header, in
order to avoid performing a potentially expensive com-
putation if there is possibility of output after the loop.

3.1.1 Stateful mappers

This basic approach described above guarantees that
the filter returns true for any input row for which the
original mapper would produce output, but neglects the
fact that map will be invoked on multiple rows, where each
invocation may affect some state in the mapper that could
affect the control flow in a subsequent invocation.

In theory this situation should not happen – in an ideal
world, mappers should be stateless, to allow the MapRe-
duce infrastructure to partition and re-order the mapper
inputs without changing the result of the computation.
However, in practice programmers do make use of state
(such as frequency counters and temporary data struc-
tures) for efficiency or monitoring reasons, and typically
via fields of the mapper class.

Consider for instance a mapper which increments a
counter for each input row and produces output only on
every n-th row. If we generate a filter that returns true for
every n-th row and run the mapper on the filtered data set
we will alarmingly have produced different output!

A simplistic solution to the problem would be to emit
(trivial) filters that always return true for any map which
depends on or modifies shared state. In practice, how-
ever, a surprising number of mappers access state and
we would still like to generate non-trivial filters for these.
Rhea does this by extending the definition of “output la-
bel” to include not only calls to the Hadoop API output
methods but also instructions that could potentially af-
fect shared state, such as method calls that involve mu-
table fields, field assignments and static methods, and
also accesses of fields that are set in some part of the
map method, and any methods of classes that could have
some global observable effect, such as java.lang.System

or Hadoop API methods. This ensures that the filter ap-
proximates the paths that could generate output in the
mapper with a set of paths that (i) do not in any way
depend on modifiable cross-invocation state; and (ii) do
not contain any instructions that could themselves affect
such shared state.

This simple approach is conservative but sound when
there is use of state. More interestingly, this approach
works well (i.e. generates non-trivial filters) with com-
mon uses of state. For example, in Listing 1, line 25
references the global field geoLocationKey. However, this
happens in the same control flow block where the actual
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1 public String select (LongWritable bcvar1 ,

2 Text bcvar2 ,

3 OutputCollector cvar3 , Reporter bcvar4) {

4 String bcvar5 = bcvar2.toString ();

5 String irvar0 = "\t";

6 StringTokenizer bcvar6

7 = StringTokenizer(bcvar5 ,irvar0 );

8 int i = 0;

9 String filler = computeFiller(irvar0 );

10 StringBuilder out = new StringBuilder ();

11 String curr , aux;

12 while (bcvar6.hasMoreTokens ()) {

13 curr = bcvar6.nextToken ();

14 if (i == 2 || i == 1 || i == 0) {

15 aux = curr;

16 } else {

17 aux = filler;

18 };

19 if (bcvar6.hasMoreTokens ()) {

20 out.append(aux). append(irvar0 );

21 }

22 else {

23 out.append(aux);

24 }

25 i++;

26 }

27 return out.toString (); }

Listing 3: Column selector generated for GeoLocation

output instruction is located (line 28). Consequently, the
generated filter is as precise as it could possibly be.

3.2 Column selection
So far we have described row filtering, where each in-

put record is either suppressed entirely or passed unmod-
ified to the computation. However, it is also valuable to
suppress individual columns within rows. For example,
in a top-K query, all rows must be examined to generate
the output, but only a subset of the columns are relevant.

The Rhea filter generator analyzes the mapper func-
tion to produce a column selector method that transforms
the input line into an output line with irrelevant column
data suppressed. Column filtering may be combined with
row filtering by using row filtering first and column se-
lection on the remaining rows.

The static analysis for column selection is quite dif-
ferent from that used for row filtering. In Hadoop, map-
pers split each row (record) into columns (fields) in an
application-specific manner. This is very flexible: it al-
lows for different rows in the same file to have different
numbers of columns. Mappers can also split the row into
columns in different ways, e.g., using string splitting, or
a tokenization library, or a regular expression matcher.
This flexibility makes the problem of correctly removing
irrelevant substrings challenging. Our approach is to de-
tect and exploit common patterns of tokenization that we
have encountered in many mappers. Our implementation
supports tokenization based on Java’s StringTokenizer

NOTREF STRING(v) SPLIT(t,sep)

TOK(t,sep,0) TOK(t,sep,1) ...

v=value.toString() t=v.split(sep)

t.nextToken() t.nextToken()

t = new StringTokenizer(v,sep)

Figure 2: Transition system for column selector analysis

class and the String.split() API, but is easily extensi-
ble to other APIs.

For the GeoLocation map function in Listing 1, Rhea
generates the column selector shown in Listing 3. The
mapper only examines the first three tokens of the input
(line 9–11 of Listing 1). The column selector captures
this by retaining only the first three tokens. The output
string is reassembled from the tokens after replacing all
irrelevant tokens with a filler value, which is dynamically
computed based on the separator used for tokenization.

Column filters always retain the token separators to
ensure that the modified data is correctly parsed by the
mapper. Dynamically computing the filler value allows
us to deal with complex tokenization, e.g., using regular
expressions. As a simple example, consider a comma-
separated input line "eve,usa,25". If the mapper splits
the string at each comma, this can be transformed to
"eve,,25". However, if using a regular expression where
multiple consecutive commas count as a single separa-
tor, "eve,,25" would be incorrect but "eve,?,25" would
be correct. The computeFiller function correctly gener-
ates the filler according to the type of separator being
used at run time.

The analysis assigns to each program point (label) in
the mapper a state from a finite state machine which
captures the current tokenization of the input. Figure 2
shows a simplified state machine that captures the use
of the StringTokenizer class for tokenization. Essentially
the input string can be in its initial state (NOTREF); it can
be converted to a String (STRING); or this string can either
have been split using String.Split (SPLIT) or converted
to a StringTokenizer currently pointing to the nth token
(TOK(_,_,n)).

The actual state machine used is slightly more com-
plex. There is also an error state (not shown) that cap-
tures unexpected state transitions. The TOK state can also
capture a non-deterministic state of the StringTokenizer:
i.e., we can represent that at least n tokens have been ex-
tracted (but the exact upper bound is not known). The set
of states is extended to form a lattice, which SAWJA’s
static analysis framework can use to map every program
point to one of the states.

Assuming that no error states have been reached, we
identify all program points that extract an input token that
is then used elsewhere in the mapper. The tokenizer state
at each of these points tells us which position(s) in the
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input string this token could correspond to. The union of
all these positions is the set of relevant token positions,
i.e. columns. The filter generator then emits code for the
column selector that tokenizes the input string, retains
relevant columns, and replaces the rest with the filler.

Since our typical use cases involve unstructured data
represented as Text values, we have focused on common
string tokenization input patterns. Other use models do
exist – for instance substring range selection – for which
a different static analysis involving numerical constraints
might be required [28]. Though entirely possible to de-
sign such analysis, we have focused on a few commonly
used models. Our static analysis is able to detect when
our parsing model is not directly applicable to the map-
per implementation, in which case we conservatively ac-
cept the whole input and we are only in a position to get
optimizations from row filtering.

Unlike row filtering, the presence of state in the map-
pers cannot compromise the soundness of the generated
column filters, since column filters that conservatively re-
tain all dereferenced tokens of the input, irrespectively of
whether these tokens will be used in the control flow or
to produce an output value, and whether different control
flow paths assume different numbers of columns present
in the input row.

3.3 Filter properties
Rhea’s row and filter columns guarantee correctness

in the sense that the output of the mapper is always the
same for both filtered and unfiltered inputs. In addition
we guarantee the following properties:

Filters are fully transparent Either row or column fil-
tering can be done on a row-by-row basis, and filtered
and unfiltered data can be interleaved arbitrarily. This al-
lows filtering to be best-effort, i.e. it can be enabled/dis-
abled on a fine-grained basis depending on available re-
sources. It also allows filters to be chained, i.e. inserted
anywhere in the data flow regardless of existing filters
without compromising correctness.

Isolation and safety Filters cannot affect other code run-
ning in the same address space or the external environ-
ment. The generated filter code never includes I/O calls,
system calls, dynamic class loads, or library invocations
that affect global state outside the class containing the
filter method.

Termination guarantees Column filters are guaranteed
to terminate as they are produced only from a short col-
umn usage specification that we extract from the mapper
using static analysis. Row filters may execute an arbi-
trary number of instructions and contain loops. Currently
we dynamically disable row filters that consume exces-
sive CPU resources. We could also statically guarantee
termination by considering loops to be “output labels”

that cause an early return of true, or use techniques to
prove termination even in the presence of loops [8, 15].

As explained previously, our guarantees for column
filters come with no assumptions whatsoever. Our row
filter guarantees are with respect to our “prescribed” no-
tion of state (system calls, mutable fields of the class,
static fields, dynamic class loading). A mathematical
proof of correctness would have to include a formaliza-
tion of the semantics of JVM, and the MapReduce pro-
gramming model. In this work we focus on the design
and evaluation of our proposal and so we leave the for-
mal verification as future work.

3.4 Applicability of static analysis
We collected the bytecode and source of 160 mappers

from a variety of projects available on the internet to
evaluate the applicability of our analysis. We ran these
mappers through our tools and manually inspected the
outputs to verify correctness. Approximately 50% of the
mappers resulted in non-trivial row filters; the rest are
always-true, due to the nature of the job or the use of
state early on in the control flow. A common case is the
use of state to measure and report the progress of input
processing. In this case, we have to conservatively ac-
cept all input, even though reporting does not affect the
output of the job. 26% of the mappers were amenable to
our column tokenization models (the rest used the whole
input, which often arises in libraries that operate on pre-
processed data, or use a different parsing mechanism).

In our experiments the tasks of (i) identifying the map-
pers in the job, (ii) performing the static analysis on the
mappers, (iii) generating filter source code, (iv) compil-
ing the filter, and (v) generating the Rhea-aware Hadoop
job, take a worst case time 4.8 seconds for a single map-
per job on an Intel Xeon X5650 workstation. The static
analysis part takes no more than 3 seconds.

In the next section we present the benefits of filtering
for several jobs for which we had input data and were
able to run more extensive experiments.

4 Evaluation
We ran two groups of experiments to evaluate the per-

formance of Rhea. One group of experiments evaluates
the performance within a single cloud data center, and
the other aims to evaluate Rhea when using data stored
in a remote data center.

4.1 Experimental setup
We ran the experiments, unless otherwise stated, on

Windows Azure. A challenge for running the experi-
ments within the data center is that we could not modify
the Windows Azure storage to support the local execu-
tion of the filters we generated. To overcome this, for the
experiments run in the single cloud scenarios, we used
the filters generated to pre-filter the input data and then
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stored it in Windows Azure storage. The bandwidth be-
tween the storage and the compute is the bottleneck re-
source, and this allows us to demonstrate the benefits of
using Rhea. We micro-benchmark the filtering engine to
demonstrate that it can sustain this throughput.

We use two metrics when measuring the performance
of Rhea, selectivity and run time. Selectivity is the pri-
mary metric and captures how effective the Rhea filters
are at reducing the data that needs to be transferred be-
tween the storage and compute. This is the primary met-
ric of interest to a cloud provider, as this reduces the
amount of data that is transferred across the core network
between the storage clusters and compute. The second
metric is run time, which is defined as the time to ini-
tialize and execute a Hadoop job on an existing cluster
of compute VMs. Reducing run time is important in it-
self, but also because cloud computing VMs are charged
per unit time, even if the VMs spend most of their time
blocked on the network. Hence any reduction in exe-
cution time is important to the customer. The jobs that
we run operated on a maximum input data set size of
100GB and all jobs ran in 15 minutes or less. Therefore,
with per-hour VM charging, Rhea would provide little
financial benefit when running a single job. However,
if cloud providers move to finer grained pricing models
or even per-job pricing models this will also have benefit;
alternatively the customer could run more jobs within the
same number of VM-hours and hence achieve cost sav-
ings per job. Unless otherwise stated, all graphs in this
section show means of five identical runs, with error bars
showing standard deviations.

To enable us to configure the experiments we mea-
sured the available storage-to-compute bandwidth for
Windows Azure compute and scalable storage infrastruc-
ture, and for Amazon’s infrastructure.

4.1.1 Storage-to-compute LAN bandwidth

The first set of experiments measured the storage-to-
compute bandwidth for the Windows Azure data cen-
ter by running a Hadoop MapReduce job with an empty
mapper and no reducer. Running this shows the maxi-
mum rate at which input data can be ingested when there
are no computational overheads at all. Each experiment
read at least 60 GB to amortize any Hadoop start-up over-
heads. We also ran the experiment on Amazon’s cloud
infrastructure to see if there were significant differences
in the storage-to-compute bandwidth across providers.

In the experiment we varied the number of instances
used, between 4 and 16. We ran with extra large in-
stances on both Amazon and Windows Azure, but also
compared the performance with using small instances
on Windows Azure. We found that bandwidth increases
with the number of mappers per instance up to 16 map-
pers per instance, so we used 16 mappers per instance.
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Figure 3: Storage-to-compute bandwidth in Windows
Azure and Amazon cloud infrastructures. Labels show
the provider, geographical location, and instance size
used in each experiment.

Figure 3 shows the measured storage-to-compute
transfer rate per compute instance. For Amazon the max-
imum per-instance ingress bandwidth is 230 Mbps, and
the total is almost constant independent of the number of
instances. For Windows Azure we observe that the peak
ingress bandwidth is 631 Mbps when using 4 extra large
instances. Contrary to the Amazon results, as the number
of instances is increased the observed throughput per in-
stance drops. Further, we observe that the small instance
size on Windows Azure has significantly less bandwidth
compared to the extra large instance.

Even in this best case (extra-large instances, no com-
putational load, and a tuned number of mappers), the rate
at which each compute instance can read data from stor-
age is well below a single network adapter’s bandwidth
of 1 Gbps. More importantly it is lower than the rate
at which most Hadoop computations can process data,
making it the bottleneck. Hence, we would expect that
reducing the amount of data transferred from storage to
compute will not only provide network benefits but also,
as we will show, run time performance improvements.

Based on these experiments, we run the experiments
using 4 extra large compute instances on Azure-EU-
North data center, each configured to run with 16 map-
pers per instance. This maximizes the bandwidth to the
job, which is the worst case for Rhea. As the bandwidth
becomes more constrained, through running on the Ama-
zon infrastructure, by using smaller instances, or a larger
number of instances the benefits of filtering will increase.

4.1.2 Job configuration
In all the experiments we use the 9 Hadoop jobs de-

scribed in Section 2.3. Figure 4 shows the baseline re-
sults for input data size for each of the jobs and the run
time when run in the Azure-EU-North data center with 4
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Figure 4: Input data sizes and job run times for the 9
example jobs when running on 4 extra large instances on
Windows Azure without using Rhea.
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Figure 5: Selectivity for the row, column and combined
filters for the 9 example jobs.

extra large compute instances without using Rhea. The
input data size for the jobs varies from 90 MB–100 GB
and the run times from 1–15 min. All but one job, Ge-
oLocation, have an input data size of over 35 GB. To
compare Rhea’s effectiveness across this range of job
sizes and run times, we show Rhea’s data transfer sizes
(Figure 5) and run times (Figure 6) normalized with re-
spect to the results shown in Figure 4.

4.2 In cloud
The first set of experiments are run in a single cloud

scenario: the data and compute are co-located in the
same data center. The first results explore the selectiv-
ity of the filters produced by Rhea.
Selectivity For each of the nine jobs we take the input
data and apply the row filter, the column filter, and the
combined row and column filters and measure the selec-
tivity. Selectivity is defined as the ratio of filtered data
size to unfiltered data size; e.g. a selectivity of 1 means
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Figure 6: Job run time when using the Rhea filters nor-
malized to the baseline execution time for the 9 example
jobs when running on 4 extra large instances on Windows
Azure.

that no data reduction happened. Figure 5 shows the se-
lectivity for row filters, for column filters, and the overall
selectivity of row and column filters combined.

Figure 5 shows several interesting properties of Rhea.
First, when using both row and column filtering across
all jobs we observe a substantial reduction in the amount
of input data transferred from the storage to the compute.
In the worst case only 50% of the data was transferred.
The majority of filters transferred only 25% of the data,
and the most selective one only 0.005%, representing a
reduction of 20,000 times the original data size. There-
fore, in general the approach provides significant gains.

We also see that for five jobs the column selectivity
is 1.0. In these cases no column filter was generated
by Rhea. In three cases, the row selectivity is 1.0. In
these cases, row filters were generated but did not sup-
press any rows. On examination, we found that the filters
were essentially a check for a validly formed line of in-
put (a common check in many mappers). Since our test
inputs happened to consist only of valid lines, none of
the lines were suppressed at run time. Note that a filter
with poor selectivity can easily be disabled at run time
without modifying or even restarting the computation.

Runtime Next we look at the impact of filtering on the
execution time of jobs running in Windows Azure.

Figure 6 shows the run time for the nine jobs when us-
ing the Rhea filters normalized to the time taken to the
baseline. For half the jobs we observe a speed up of over
a factor of two. For four of the remaining jobs we ob-
serve that the time taken is 75% or lower compared to the
baseline. The outlier in the GeoLocation example which,
despite the data selectivity being high, has an identical
run time. This is because the data set is small and the run
time setup overheads dominate.
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Figure 7: Input data rates achieved by filtering for row
and column filters in Java and declarative column filters
alone in two native filtering engines. Observe that two of
the jobs contain two mappers each, for which we mea-
sure filtering performance independently.

Filtering engine These experiments run with pre-filtered
data as we can not modify the Windows Azure storage
layer. Separately, we micro-benchmarked the through-
put of the filtering engine. Our goal is to understand if
filtering can become a bottleneck for the job and hence
slow down job run times. Although filtering still reduces
overall network bandwidth usage, we would disable such
filters to prevent individual jobs from slowing down.

Consider a modest storage server with 2 cores and a
1 Gbps network adapter. Assuming a server transmitting
at full line rate, the filters should process data at an input
rate of 1 Gbps or higher, to guarantee that filtering will
not degrade job performance. In practice, with a large
number of compute and storage servers, core network
bandwidth is the bottleneck and the server is unlikely to
achieve full line rate. The black bars in Figure 7 show the
filtering throughput per core measured in isolation, with
both input and output data stored in memory, and both
row and column filters enabled for all jobs. All the fil-
ters run faster than 500 Mbps per core (on an Intel Xeon
X5650 processor), showing that even with conservative
assumptions filtering will not degrade job performance.

We have also experimented with declarative rather
than executable column filters, which allows us to use
a fast native filtering engine (no JVM). Recall that the
static analysis for column filtering generates a descrip-
tion of the tokenization process (e.g. separator character,
regular expression) and a list of, e.g., integers that iden-
tify the columns that are dereferenced by the mapper. In-
stead of converting this to Java code, we encode it as a
symbolic filter which is interpreted by a fast generic en-
gine written in C. This engine is capable of processing
inputs 2.5-9x faster than the Java filtering engine (me-
dian 3.7x) (Figure 7). We have further optimized the C
engine using the SSE4 instruction set. The performance
increased to 5-17x faster than the Java filtering engine
(median 8.6). In addition to performance, the native en-
gine is small and self-contained, and easily isolated, but
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Figure 8: Job run times when using the Rhea filters nor-
malized to the baseline execution time for the 9 example
jobs fetching data across the WAN
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Figure 9: Dollar costs when using the Rhea filters nor-
malized to the baseline cost for the 9 example jobs fetch-
ing data across the WAN

it does not perform row filtering. For row filtering cur-
rently we still use the slower Java filtering engine: row
filters can perform arbitrary computations and we cur-
rently have no mechanism for converting them from Java
to a declarative representation.

The performance numbers reported in Figure 7 are per
processor core. It is straightforward to run in parallel
multiple instances of the same filter, or even different
filters. The system performance of filtering increases
linearly with the number of cores, assuming of course
enough I/O capacity for reading input data and network
capacity for transmitting filtered data.

4.3 Cross cloud with online filtering
There are several scenarios where data must be read

across the WAN. Data could be stored on-premise and
occasionally accessed by a computation run on an elas-
tic cloud infrastructure for cost or scalability reasons.
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Alternatively, data could be in cloud storage but com-
putation run on-premise: for computations that do not
need elastic scalability and with a heavy duty cycle,
on-premises computation is cheaper than renting cloud
VMs. A third scenario is when the data are split across
multiple providers or data centers. For example, a job
might join a public data set available on one provider
with a private data set stored on a different provider. The
computation must run on one of the providers and access
the data on the other one over the WAN.

WAN bandwidth is even scarcer than LAN bandwidth,
and using cloud storage incurs egress charges. Thus us-
ing Rhea reduces both LAN and WAN traffic if the data
are split across data centers. Since, we have already eval-
uated the LAN scenario, we will now evaluate the effects
of filtering WAN traffic with Rhea in isolation. To do this
we run the same nine jobs with the only difference being
that the computations are run in the Azure-US-West data
center and the storage is in the Azure-EU-North data cen-
ter2. Rhea filters are deployed in a single large compute
instance running as a filtering proxy in the Azure-EU-
North data center’s compute cluster.
Run time Figure 8 shows the run time when Rhea filter-
ing is used, normalized to the baseline run time with no
filtering. In general the results are similar to the LAN
case. In all cases the CPU utilization reported on the
filtering proxy was low (under 20% always). Thus the
proxy is never the bottleneck. In most cases the WAN
bandwidth is the bottleneck and the reduction in run time
is due to the filter selectivity. However, for very selective
filters (IT Reporting), the bottleneck is the data transfer
from the storage layer to the filtering proxy over the LAN
rather than the transfer from the proxy to the WAN. In
this case the run time reduction reflects the ratio of the
WAN egress bandwidth, to the LAN storage-to-compute
bandwidth achieved by the filtering proxy.
Dollar costs In the WAN case, dollar costs reduce both
for compute instances and also for egress bandwidth.
While Rhea uses more compute instances (by adding a
filtering instance) it significantly reduces egress band-
width usage. Figure 9 shows the bandwidth, compute,
and overall dollar costs of Rhea, each normalized to the
corresponding value when not using Rhea. We use the
standard Windows Azure charges of US$0.96 per hour
for an extra-large instance and US$0.12 per GB of egress
bandwidth. Surprisingly the compute costs also go down
when using Rhea, even though it uses 5 instances per job
rather than 4. This is because overall run times are re-
duced (again assuming per-second rather than per-hour
billing, since most of our jobs take well under an hour

2The input data sets for FindUserUsage and ComputeIOVolumes
are too large to run in a reasonable time in this configuration. Hence
for these two jobs we use a subset of the data, i.e. 1 hour’s event logs
rather than 1 day’s.

to run). Thus compute costs are reduced in line with
run time reductions and egress bandwidth charges in line
with data reduction. In general, we expect the effect
of egress bandwidth to dominate since computation is
cheap relative to egress bandwidth: one hour of compute
costs the same as only 8 GB of data egress. Of course, if
filtering were offered at the storage servers then it would
simply use spare computing cycles there and there would
be no need to pay for a filtering VM instance.

5 Related work
There is a large body of work optimizing the perfor-

mance of MapReduce, by better scheduling of jobs [21]
and by handling of stragglers and failures [2, 40]. We are
orthogonal to this work, aiming to minimize bandwidth
between storage and compute.

Pyxis is a system for automatically partitioning
database applications [7]. It uses profiling to identify op-
portunities for splitting a database application between
server and application nodes, so that data transfers are
minimized (like Rhea), but also control transfers are
minimized. Unlike Rhea, Pyxis uses state-aware pro-
gram partitioning. The evaluation has been done of
Java applications running against MySQL. Compared to
Rhea, the concerns are different: database applications
might be more interactive (with more control transfers)
than MapReduce data analytics programs; moreover in
our setting we consider partitioning to be just an op-
timization that can opportunistically be enabled or dis-
abled on the storage, even during the execution of a job
and hence we do not modify the original job and make
sure that the extracted filters are stateless. On the other
hand, the optimization problem that determines the parti-
tioning can take into account the available CPU budget at
the database nodes, a desirable feature for Rhea as well.

MANIMAL is an analyzer for MapReduce jobs [25].
It uses static analysis techniques similar to Rhea’s to gen-
erate an “index-generation program” which is run off-line
to produce an indexed and column-projected version of
the data. Index-generation programs must be run to com-
pletion on the entire data set to show any benefit, and
must be re-run whenever additional data is appended.
The entire data set must be read by Hadoop compute
nodes and then the index written back to storage. This is
not suitable for our scenario where there is limited band-
width between storage and compute. By contrast, Rhea
filters are on-line and have no additional overheads when
fresh data are appended. Furthermore, MANIMAL uses
logical formulas to encode the “execution descriptors”
that perform row filtering by selecting appropriately in-
dexed versions of the input data. Rhea filters can encode
arbitrary Boolean functions over input rows.

Hadoop2SQL [22] allows the efficient execution of
Hadoop code on a SQL database. The high-level goal
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is to transform a Hadoop program into a SQL query or,
if the entire program cannot be transformed, parts of the
program. This is achieved by using static analysis. The
underlying assumption is that by pushing the Hadoop
query into the SQL database it will be more efficient.
In contrast, the goal of Rhea is to still enable Hadoop
programs to run on a cluster against any store that can
currently be used with Hadoop.

Using static analysis techniques to unravel properties
of user-defined functions and exploit opportunities for
optimizations is an area of active research. In the SUDO
system [42], a simple static analysis of user-defined func-
tions determines whether they preserve the input data
partition properties. This information is used to opti-
mize the shuffling stage of a distributed SCOPE job. In
the context of the Stratosphere project [19], code analy-
sis determines algebraic properties of user-defined func-
tions and an optimizer exploits them to rewrite and fur-
ther optimize the query operator graph. The NEMO
system [16] also treats UDFs as open-boxes and tries
to identify opportunities for applying more traditional
“whole-program” optimizations, such as function and
type specialization, code motion, and more. This could
potentially be used to “split” mappers rather than “ex-
tract” filters, i.e. modify the mapper to avoid repeating
the computation of the filter. However this is very diffi-
cult to do automatically, and indeed with NEMO manual
modification is required to create such a split. Further,
it means that filters can no longer be dynamically and
transparently disabled since they are now an indispens-
able part of the application.

In the storage field the closest work is on Active
Disks [20, 32]. Here compute resources are provided di-
rectly in the hard disk and a program is partitioned to
run on the server and on the disks. A programmer is ex-
pected to manually partition the program, and the opera-
tions performed on the disk transform the data read from
it. Rhea pushes computation into the storage layer but it
does not require any explicit input from the programmer.

Inferring the schema of unstructured or semi-structure
data is an interesting problem, especially for mining web
pages [9, 10, 27]. Due to the difficulty of constructing
hand-coded wrappers, previous work focused on auto-
mated ways to create those wrappers, often with the use
of examples [27]. In Rhea, the equivalent hand-coded
wrappers are actually embedded in the code of the map-
pers, and our challenge is to extract them in order to gen-
erate the filters. Moreover, Rhea deals with very flexible
schemas (e.g. different rows may have different struc-
ture); our goal is not to interpret the data, but to extract
enough information to construct the filters.

Rhea reduces the amount of data transferred by filter-
ing the input data. Another approach to reduce the bytes
transferred is with compression [33, 35]. We have found

that compression complements filtering to further reduce
the amount of bytes transferred in our data sets. Com-
pression though requires changes to the user code, and
increases the processing overhead at the storage nodes.

Regarding the static analysis part of this work, there is
a huge volume of work on dependency analysis for slic-
ing from the early 80’s [36], to elaborate inter-procedural
slicing [17]. More recently, Wiedermann et al. [37, 38]
studied the program of extracting queries from impera-
tive programs that work on structured data that adhere
to a database schema. The techniques used are similar
as ours here – an abstract interpretation framework keeps
track of the used structure and the paths of the imperative
program that perform output or update the state. A key
difference is that Rhea targets unstructured text inputs,
so a separate analysis is required to identify the parts of
the input string that are used in a program. Moreover our
tool extracts programs in a language as expressive as the
original mapper – as opposed to a specialized query lan-
guage. This allows us to be very flexible in the amount of
computation that we can embed into the filter and push
close to the data.

6 Conclusions
We have described Rhea, a system that automatically

generates executable storage-side filters for unstructured
data processing in the cloud. The filters encode the im-
plicit data selectivity, in terms of row and column, for
map functions in Hadoop jobs. They are created by per-
forming static analysis on Java byte code.

We have demonstrated that Rhea filtering yields sig-
nificant savings in the data transferred between storage
and compute for a variety of realistic Hadoop jobs. Re-
duced bandwidth usage leads to faster job run times and
lower dollar costs when data is transferred cross-cloud.
The filters have several desirable properties: they are
transparent, safe, lightweight, and best-effort. They are
guaranteed to have no false negatives: all data used by
a map job will be passed through the filter. Filtering is
strictly an optimization. At any point in time the filter
can be stopped and the remaining data returned unfiltered
transparently to Hadoop.

We are currently working on generalizing Rhea to sup-
port other format such as binary formats, XML, and com-
pressed text, as well as data processing tools and run-
times other than Hadoop and Java.
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Abstract: This paper describes Salus, a block store that
seeks to maximize simultaneously both scalability and
robustness. Salus provides strong end-to-end correctness
guarantees for read operations, strict ordering guarantees
for write operations, and strong durability and availabili-
ty guarantees despite a wide range of server failures (in-
cluding memory corruptions, disk corruptions, firmware
bugs, etc.). Such increased protection does not come
at the cost of scalability or performance: indeed, Salus
often actually outperforms HBase (the codebase from
which Salus descends). For example, Salus’ active repli-
cation allows it to halve network bandwidth while in-
creasing aggregate write throughput by a factor of 1.74
compared to HBase in a well-provisioned system.

1 Introduction
The primary directive of storage—not to lose data—is
hard to carry out: disks and storage sub-systems can fail
in unpredictable ways [7, 8, 18, 23, 34, 37], and so can the
CPUs and memories of the nodes that are responsible for
accessing the data [33, 38]. Concerns about robustness
become even more pressing in cloud storage systems,
which appear to their clients as black boxes even as their
larger size and complexity create greater opportunities
for error and corruption.

This paper describes the design and implementation
of Salus,1 a scalable block store in the spirit of Ama-
zon’s Elastic Block Store (EBS) [1]: a user can request
storage space from the service provider, mount it like a
local disk, and run applications upon it, while the service
provider replicates data for durability and availability.

What makes Salus unique is its dual focus on scala-
bility and robustness. Some recent systems have provid-
ed end-to-end correctness guarantees on distributed stor-
age despite arbitrary node failures [13, 16, 31], but these
systems are not scalable—they require each correct node
to process at least a majority of updates. Conversely, s-
calable distributed storage systems [3, 4, 6, 11, 14, 20, 25,
30, 43] typically protect some subsystems like disk stor-
age with redundant data and checksums, but fail to pro-
tect the entire path from client PUT to client GET, leaving
them vulnerable to single points of failure that can cause
data corruption or loss.

Salus provides strong end-to-end correctness guaran-
tees for read operations, strict ordering guarantees for
write operations, and strong durability and availability

1Salus is the Roman goddess of safety and welfare

guarantees despite a wide range of server failures (in-
cluding memory corruptions, disk corruptions, firmware
bugs, etc), and leverages an architecture similar to scal-
able key-value stores like Bigtable [14] and HBase [6] to-
wards scaling these guarantees to thousands of machines
and tens of thousands of disks.

Achieving this unprecedented combination of robust-
ness and scalability presents several challenges.

First, to build a high-performance block store from
low-performance disks, Salus must be able to write d-
ifferent sets of updates to multiple disks in parallel. Par-
allelism, however, can threaten the basic consistency re-
quirement of a block store, as “later” writes may survive
a crash, while “earlier” ones are lost.

Second, aiming for efficiency and high availability at
low cost can have unintended consequences on robust-
ness by introducing single points of failure. For exam-
ple, in order to maximize throughput and availability for
reads while minimizing latency and cost, scalable stor-
age systems execute read requests at just one replica. If
that replica experiences a commission failure that causes
it to generate erroneous state or output, the data returned
to the client could be incorrect. Similarly, to reduce cost
and for ease of design, many systems that replicate their
storage layer for fault tolerance (such as HBase) leave
unreplicated the computation nodes that can modify the
state of that layer: hence, a memory error or an errant
PUT at a single HBase region server can irrevocably and
undetectably corrupt data (see §5.1).

Third, additional robustness should ideally not result
in higher replication cost. For example, in a perfec-
t world Salus’ ability to tolerate commission failures
would not require any more data replication than a scal-
able key-value store such as HBase already employs to
ensure durability despite omission failures.

To address these challenges Salus introduces three
novel ideas: pipelined commit, active storage, and scal-
able end-to-end verification.

Pipelined commit. Salus’ new pipelined commit pro-
tocol allows writes to proceed in parallel at multiple
disks but, by tracking the necessary dependency infor-
mation during failure-free execution, guarantees that, de-
spite failures, the system will be left in a state consistent
with the ordering of writes specified by the client.

Active storage. To prevent a single computation node
from corrupting data, Salus replicates both the storage
and the computation layer. Salus applies an update to the
system’s persistent state only if the update is agreed up-
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on by all of the replicated computation nodes. We make
two observations about active storage. First, perhaps sur-
prisingly, replicating the computation nodes can actual-
ly improve system performance by moving the computa-
tion near the data (rather than vice versa), a good choice
when network bandwidth is a more limited resource than
CPU cycles. Second, by requiring the unanimous con-
sent of all replicas before an update is applied, Salus
comes near to its perfect world with respect to over-
head: Salus remains safe (i.e. keeps its blocks consistent
and durable) despite two commission failures with just
three-way replication—the same degree of data replica-
tion needed by HBase to tolerate two permanent omis-
sion failures. The flip side, of course, is that insisting on
unanimous consent can reduce the times during which
Salus is live (i.e. its blocks are available)—but liveness
is easily restored by replacing the faulty set of computa-
tion nodes with a new set that can use the storage layer to
recover the state required to resume processing requests.

Scalable end-to-end verification. Salus maintains a
Merkle tree [32] for each volume so that a client can val-
idate that each GET request returns consistent and correct
data: if not, the client can reissue the request to another
replica. Reads can then safely proceed at a single replica
without leaving clients vulnerable to reading corrupted
data; more generally, such end-to-end assurances protec-
t Salus clients from the opportunities for error and cor-
ruption that can arise in complex, black-box cloud stor-
age solutions. Further, Salus’ Merkle tree, unlike those
used in other systems that support end-to-end verifica-
tion [19, 26, 31, 41], is scalable: each server only needs
to keep the sub-tree corresponding to its own data, and
the client can rebuild and check the integrity of the w-
hole tree even after failing and restarting from an empty
state.

We have prototyped Salus by modifying the HBase
key-value store. The evaluation confirms that Salus can
tolerate servers experiencing commission failures like
memory corruption, disk corruption, etc. Although one
might fear the performance price to be paid for Salus’
robustness, Salus’ overheads are low in all of our exper-
iments. In fact, despite its strong guarantees, Salus often
outperforms HBase, especially when disk bandwidth is
plentiful compared to network bandwidth. For example,
Salus’ active replication allows it to halve network band-
width while increasing aggregate write throughput by a
factor of 1.74 in a well-provisioned system.
2 Requirements and model
Salus provides the abstraction of a large collection of vir-
tual disks, each of which is an array of fixed-sized block-
s. Each virtual disk is a volume that can be mounted by
a client running in the datacenter that hosts the volume.
The volume’s size (e.g., several hundred GB to several
hundred TB) and block size (e.g., 4 KB to 256 KB) are
specified at creation time

A volume’s interface supports GET and PUT, which on
a disk correspond to read and write. A client may have
many such commands outstanding to maximize through-
put. At any given time, only one client may mount a
volume for writing, and during that time no other client
can mount the volume for reading. Different clients may
mount and write different volumes at the same time, and
multiple clients may simultaneously mount a read-only
snapshot of a volume.

We explicitly designed Salus to support only a single
writer per volume for two reasons. First, as demonstrated
by the success of Amazon EBS, this model is sufficient
to support disk-like storage. Second, we are not aware of
a design that would allow Salus to support multiple writ-
ers while achieving its other goals: strong consistency,2

scalability, and end-to-end verification for read requests.
Even though each volume has only a single writer at

a time, a distributed block store has several advantages
over a local one. Spreading a volume across multiple
machines not only allows disk throughput and storage
capacity to exceed the capabilities of a single machine,
but balances load and increases resource utilization.

To minimize cost, a typical server in existing storage
deployments is relatively storage heavy, with a total ca-
pacity of up to 24 TB [5, 42]. We expect a storage server
in a Salus deployment to have ten or more SATA disks
and two 1 Gbit/s network connections. In this configura-
tion disk bandwidth is several times more plentiful than
network bandwidth, so the Salus design seeks to mini-
mize network bandwidth consumption.

2.1 Failure model
Salus is designed to operate on an unreliable network
with unreliable nodes. The network can drop, reorder,
modify, or arbitrarily delay messages.

For storage nodes, we assume that 1) servers can
crash and recover, temporarily making their disks’ data
unavailable (transient omission failure); 2) servers and
disks can fail, permanently losing all their data (perma-
nent omission failure); 3) disks and the software that con-
trols them can cause corruption, where some blocks are
lost or modified, possibly silently [35] and servers can
experience memory corruption, software bugs, etc, send-
ing corrupted messages to other nodes (commission fail-
ure). When calculating failure thresholds, we only take
into account commission failures and permanent omis-
sion failures. Transient omission failures are not treated
as failures: in asynchronous systems a node that fails and
recovers is indistinguishable from a slow node.

In line with Salus’ aim to provide end-to-end robust-
ness guarantees, we do not try to explicitly enumerate
and patch all the different ways in which servers can
fail. Instead, we design Salus to tolerate arbitrary fail-

2More precisely, ordered commit (defined in §2.2) which for multi-
ple clients implies FIFO-compliant linearizability.

2



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 359

ures, both of omission, where a faulty node fails to per-
form actions specified by the protocol, such as send-
ing, receiving or processing a message; and of commis-
sion [16], where a faulty node performs arbitrary actions
not called for by the protocol. However, while we as-
sume that faulty nodes will potentially generate arbitrar-
ily erroneous state and output, given the data center en-
vironment we target we explicitly do not attempt to tol-
erate cases where a malicious adversary controls some
of the servers. Hence, we replace the traditional BFT
assumption that faulty nodes cannot break cryptograph-
ic primitives [36] with the stronger (but fundamentally
similar) assumption that a faulty node never produces
a checksum that appears to be a correct checksum pro-
duced by a different node. In practice, this means that
where in a traditional Byzantine-tolerant system [12] we
might have used signatures or arrays of message authen-
tication codes (MACs) with pairwise secret keys, we in-
stead weakly sign communication using checksums salt-
ed with the checksum creator’s well-known ID.

Salus relies on weak synchrony assumptions for both
safety and liveness. For safety, Salus assumes that clock-
s are sufficiently synchronized that a ZooKeeper lease is
never considered valid by a client when the server con-
siders it invalid. Salus only guarantees liveness during
synchronous intervals where messages sent between cor-
rect nodes are received and processed within some time-
out [10].
2.2 Consistency model
To be usable as a virtual disk, Salus tries to preserve
the standard disk semantics provided by physical disks.
These semantics allow some requests to be marked as
barriers. A disk must guarantee that all requests received
before a barrier are committed before the barrier, and al-
l requests received after the barrier are committed after
the barrier. Additionally, a disk guarantees freshness: a
read to a block returns the latest committed write to that
block.

During normal operation (up to two commission or
omission failures), Salus guarantees both freshness and
a property we call ordered-commit: by the time a re-
quest R is committed, all requests that were received
before R have committed. Note that ordered-commit e-
liminates the need for explicit barriers since every write
request functions as a barrier. Although we did not set
out to achieve ordered-commit and its stronger guaran-
tees, Salus provides them without any noticeable effect
on performance.

Under severe failures Salus provides the weaker prefix
semantics: in these circumstances, a client that crashes
and restarts may observe only a prefix of the committed
writes; a tail of committed writes may be lost. This se-
mantics is not new to Salus: it is the semantics familiar to
every client that interacts with a crash-prone server that
acknowledges writes immediately but logs them asyn-

chronously; it is also the semantics to which every other
geo-replicated storage systems we know of [11, 29, 31]
retreats when failures put it under duresse. The reason is
simple: while losing writes is always disappointing, pre-
fix semantics has at least the merit of leaving the disk in a
legal state. Still, data loss should be rare, and Salus falls
back on prefix semantics only in the following scenari-
o: the client crashes, one or more of the servers suffer at
the same time a commission failure, and the rest of the
servers are unavailable. If the client does not fail or at
least one server is correct and available, Salus continues
to guarantee standard disk semantics.

Salus mainly focuses on tolerating arbitrary failures of
server-side storage systems, since they entail most of the
complexity and are primarily responsible for preserving
the durability and availability of data. Client commission
failures can also be handled using replication, but this
falls beyond the scope of this paper.

3 Background
Salus’ starting point is the scalable architecture of H-
Base/HDFS, which Salus carefully modifies to boost ro-
bustness without introducing new bottlenecks. We chose
the HBase/HDFS architecture for three main reasons:
first, because it provides a key-value interface that can be
easily modified to support a block store; second, because
it has a large user base that includes companies such as
Yahoo!, Facebook, and Twitter; and third because, unlike
other successful large-scale storage systems with similar
architectural features, such as Windows Azure [11] and
Google’s Bigtable/GFS [14, 20], HBase/HDFS is open
source.

HDFS HDFS [39] is an append-only distributed file
system. It stores the system metadata in a NameNode
and replicates the data over a set of datanodes. Each file
consists of a set of blocks and HDFS ensures that each
block is replicated across a specified number of datan-
odes (three by default) despite datanode failures. HDFS
is widely used, primarily because of its scalability.

HBase HBase [6] is a distributed key-value store. It
exports the abstraction of tables accessible through a
PUT/GET interface. Each table is split into multiple re-
gions of non-overlapping key-ranges (for load balanc-
ing). Each region is assigned to one region server that is
responsible for all requests to that region. Region servers
use HDFS as a storage layer to ensure that data is repli-
cated persistently across enough nodes. Additionally, H-
Base uses a Master node to manage the assignment of
key-ranges to various region servers.

Region servers receive clients’ PUT and GET requests
and transform them into equivalent requests that are ap-
propriate for the append-only interface exposed by HDF-
S. On receiving a PUT, a region server logs the request
to a write-ahead-log stored on HDFS and updates its
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Fig. 1: The architecture of Salus. Salus differs from HBase in three
key ways. First, Salus’ block driver performs end-to-end checks to val-
idate the GET reply. Second, Salus performs pipelined commit across
different regions to ensure ordered commit. Third, Salus replicates re-
gion servers via active storage to eliminate spurious state updates. For
efficiency, Salus tries to co-locate the replicated region servers with the
replicated datanodes (DNs).

sorted, in-memory map (called memstore) with the new
PUT. When the size of the memstore exceeds a prede-
fined threshold, the region server flushes the memstore
to a checkpoint file stored on HDFS.

On receiving a GET request for a key, the region server
looks up the key in its memstore. If a match is found, the
region server returns the corresponding value; otherwise,
it looks up the key in various checkpoints, starting from
the most recent one, and returns the first matching value.
Periodically, to minimize the storage overheads and the
GET latency, the region server performs compaction by
reading a number of contiguous checkpoints and merg-
ing them into a single checkpoint.

ZooKeeper ZooKeeper [22] is a replicated coordina-
tion service. It is used by HBase to ensure that each key-
range is assigned to at most one region server.

4 The design of Salus
The architecture of Salus, as Figure 1 shows, bears con-
siderable resemblance to that of HBase. Like HBase,
Salus uses HDFS as its reliable and scalable storage lay-
er, partitions key ranges within a table in distinct regions
for load balancing, and supports the abstraction of a re-
gion server responsible for handling requests for the keys
within a region. As in HBase, blocks are mapped to their
region server through a Master node, leases are man-
aged using ZooKeeper, and Salus clients need to install
a block driver to access the storage system, not unlike
the client library used for the same purpose in HBase.
These similarities are intentional: they aim to retain in
Salus the ability to scale to thousands of nodes and tens
of thousands of disks that has secured HBase’s success.
Indeed, one of the main challenges in designing Salus
was to achieve its robustness goals (strict ordering guar-
antees for write operations across multiple disks, end-
to-end correctness guarantees for read operations, strong

availability and durability guarantees despite arbitrary
failures) without perturbing the scalability of the original
HBase design. With this in mind, we have designed Salus
so that, whenever possible, it buttresses architectural fea-
tures it inherits from HBase—and does so scalably. So,
the core of Salus’ active storage is a three-way replicated
region server (RRS), which upgrades the original HBase
region server abstraction to guarantee safety despite up
to two arbitrary server failures. Similarly, Salus’ end-to-
end verification is performed within the familiar archi-
tectural feature of the block driver, though upgraded to
support Salus’ scalable verification mechanisms.

Figure 1 also helps describe the role played by our
novel techniques (pipelined commit, scalable end-to-end
verification, and active storage) in the operation of Salus.

Every client request in Salus is mediated by the block
driver, which exports a virtual disk interface by convert-
ing the application’s API calls into Salus GET and PUT
requests. The block driver, as we saw, is the compo-
nent in charge of performing Salus’ scalable end-to-end
verification (see §4.3): for PUT requests it generates the
appropriate metadata, while for GET requests it uses the
request’s metadata to check whether the data returned to
the client is consistent.

To issue a request, the client (or rather, its block driver)
contacts the Master, which identifies the RRS responsi-
ble for servicing the block that the client wants to access.
The client caches this information for future use and for-
wards the request to that RRS. The first responsibility of
the RRS is to ensure that the request commits in the order
specified by the client. This is where the pipelined com-
mit protocol becomes important: as we will see in more
detail in §4.1, the protocol requires only minimal coordi-
nation to enforce dependencies among requests assigned
to distinct RRSs. If the request is a PUT, the RRS also
needs to ensure that the data associated with the request
is made persistent, despite the possibility of individual
region servers suffering commission failures. This is the
role of active storage (see §4.2): the responsibility of
processing PUT requests is no longer assigned to a sin-
gle region server, but is instead conditioned on the set of
region servers in the RRS achieving unanimous consent
on the update to be performed. Thanks to Salus’ end-to-
end verification guarantees, GET requests can instead be
safely carried out by a single region server (with obvious
performance benefits), without running the risk that the
client sees incorrect data.
4.1 Pipelined commit
The goal of the pipelined commit protocol is to allow
clients to concurrently issue requests to multiple region-
s, while preserving the ordering specified by the client
(ordered-commit). In the presence of even simple crash
failures, however, enforcing the ordered-commit proper-
ty can be challenging.

Consider, for example, a client that, after mounting a
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volume V that spans regions 1 and 2, issues a PUT u1 for
a block mapped to region 1 and then, without waiting for
the PUT to complete, issues a barrier PUT u2 for a block
mapped at region 2. Untimely crashes, even transient
ones, of the client and of the region server for region 1
may lead to u1 being lost even as u2 commits.3 Volume V
now violates both standard disk semantics and the weak-
er prefix semantics; further, V is left in an invalid state
that can potentially cause severe data loss [15, 35].

A simple way to avoid such inconsistencies would be
to allow clients to issue one request (or one batch of
requests) at a time, but, as we show in §5.2.4, perfor-
mance would suffer significantly. Instead, we would like
to achieve the good performance that comes with issu-
ing multiple oustanding requests, without compromising
the ordered-commit property. To achieve this goal, Salus
parallelizes the bulk of the processing (such as crypto-
graphic checks and disk-writes) required to handle each
request, while ensuring that requests commit in order.

Salus ensures ordered-commit by exploiting the se-
quence number that clients assign to each request. Re-
gion servers use these sequence numbers to guarantee
that a request does not commit unless the previous re-
quest is also guaranteed to eventually commit. Similarly,
during recovery, these sequence numbers are used to en-
sure that a consistent prefix of issued requests are recov-
ered (§4.4).

Salus’ apporach to ensure ordered-commit for GETs is
simple. Like other systems before it [9], Salus neither
assigns new sequence numbers to GETs, nor logs GETs
to stable storage. Instead, to prevent returning stale val-
ues, a GET request to a region server simply carries a
prevNum field indicating the sequence number of the last
PUT executed on that region: region servers do not ex-
ecute a GET until they have committed a PUT with the
prevNum sequence number. Conversely, to prevent the
value of a block from being overwritten by a later PUT,
clients block PUT requests to a block that has outstanding
GET requests.4

Salus’ pipelined commit protocol for PUTs is illustrat-
ed in Figure 2. The client, as in HBase, issues request-
s in batches. Unlike HBase, each client is allowed to
issue multiple outstanding batches. Each batch is com-
mitted using a 2PC-like protocol [21, 24], consisting of
the phases described below. Compared to 2PC, pipelined
commit reduces the overhead of the failure-free case by
eliminating the disk write in the commit phase and by
pushing complexity to the recovery protocol, which is
usually a good trade-off.

PC1. Choosing the batch leader and participants. To pro-

3For simplicity, in this example and throughout this section we con-
sider a single logical region server to be at work in each region. In
practice, in Salus this abstraction is implemented by a RRS.

4This requirement has minimal impact on performance, as such PUT
requests are rare in practice.
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Fig. 2: Pipelined commit (each batch leader is actually replicated to
tolerate arbitrary faults.)

cess a batch, a client divides its PUTs into various sub-
batches, one per region server. Just like a GET request,
a PUT request to a region also includes a prevNum field
to identify the last PUT request issued to that region.
The client identifies one region server as batch leader
for the batch and sends each sub-batch to the appropri-
ate region server along with the batch leader’s identity.
The client sends the sequence numbers of all requests
in the batch to the batch leader, along with the identity
of the leader of the previous batch.

PC2. Preparing. A region server preprocesses the PUTs in
its sub-batch by validating each request, i.e. by check-
ing whether the request is signed and by using the
prevNum field to verify it is the next request that the
region server should process. If validation succeeds
for all requests in the sub-batch, the region server logs
the request (which is now prepared ) and sends its YES
vote to the batch’s leader; otherwise, the region server
votes NO.

PC3. Deciding. The batch leader can decide COMMIT on-
ly if it receives a YES vote for all the PUTs in its
batch and a COMMIT-CONFIRMATION from the lead-
er of the previous batch; otherwise, it decides ABORT.
Either way, the leader notifies the participants of it-
s decision. Upon receiving COMMIT for a request, a
region server updates its memory state (memstore),
sends a PUT_SUCCESS notification to the client, and
asynchronously marks the request as committed on
persistent storage. On receiving ABORT, a region serv-
er discards the state associated with that PUT and sends
the client a PUT_FAILURE message.
Notice that all disk writes—both within a batch and

across batches—can proceed in parallel and that the vot-
ing and commit phases for a given batch can be similar-
ly parallelized. Different region servers receive and log
the PUT and COMMIT asynchronously. The only serial-
ization point is the passing of COMMIT-CONFIRMATION
from the leader of a batch to the leader of the next batch.

Despite its parallelism, the protocol ensures that re-
quests commit in the order specified by the client. The
presence of COMMIT in any correct region server’s log
implies that all preceding PUTs in this batch must have
prepared. Furthermore, all requests in preceding batches
must have also prepared. Our recovery protocol (§4.4)
ensures that all these prepared PUTs eventually commit
without violating ordered-commit.

The pipelined commit protocol enforces ordered-
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commit assuming the abstraction of (logical) region
servers that are correct. It is the active storage proto-
col (§4.2) that, from physical region servers that can lose
committed data and suffer arbitrary failures, provides
this abstraction to the pipelined commit protocol.

4.2 Active storage
Active storage provides the abstraction of a region server
that does not experience arbitrary failures or lose data.
Salus uses active storage to ensure that the data remains
available and durable despite arbitrary failures in the s-
torage system by addressing a key limitation of existing
scalable storage systems: they replicate data at the stor-
age layer (e.g. HDFS) but leave the computation layer
(e.g. HBase) unreplicated. As a result, the computation
layer that processes clients’ requests represents a single
point of failure in an otherwise robust system. For ex-
ample, a bug in computing the checksum of data or a
corruption of the memory of a region server can lead to
data loss and data unavailability in systems like HBase.

The design of Salus embodies a simple principle: all
changes to persistent state should happen with the con-
sent of a quorum of nodes. Salus uses these compute quo-
rums to protect its data from faults in its region servers.

Salus implements this basic principle using active s-
torage. In addition to storing data, storage nodes in Salus
also coordinate to attest data and perform checks to en-
sure that only correct and attested data is being replicat-
ed. Perhaps surprisingly, in addition to improving fault-
resilience, active storage also enables us to improve per-
formance by trading relatively cheap CPU cycles for ex-
pensive network bandwidth.

Using active storage, Salus can provide strong avail-
ability and durability guarantees: a data block with a
quorum of size n will remain available and durable as
long as no more than n−1 nodes fail. These guarantees
hold irrespective of whether the nodes fail by crashing
(omission) or by corrupting their disk, memory, or logi-
cal state (commission).

Replication typically incurs network and storage over-
heads. Salus uses two key ideas—(1) moving computa-
tion to data, and (2) using unanimous consent quorums—
to ensure that active storage does not incur more network
cost or storage cost compared to existing approaches that
do not replicate computation.

4.2.1 Moving computation to data to minimize net-
work usage

Salus implements active storage by blurring the bound-
aries between the storage layer and the compute layer.
Existing storage systems [6, 11, 14] require a designated
primary datanode to mediate updates. In contrast, Salus
modifies the storage system API to permit region servers
to directly update any replica of a block. Using this mod-
ified interface, Salus can efficiently implement active s-
torage by colocating a compute node (region server) with

the storage node (datanode) that it needs to access.
Active storage thus reduces bandwidth utilization in

exchange for additional CPU usage (§5.2.2)—an attrac-
tive trade-off for bandwidth starved data-centers. In par-
ticular, because a region server can now update the colo-
cated datanode without requiring the network, the band-
width overheads of flushing (§3) and compaction (§3) in
HBase are avoided.

We have implemented active storage in HBase by
changing the NameNode API for allocating blocks. As
in HBase, to create a block a region server sends a re-
quest to the NameNode, which responds with the new
block’s location; but where the HBase NameNode makes
its placement decisions in splendid solitude, in Salus the
request to the NameNode includes a list of preferred
datanodes as a location-hint. The hint biases the NameN-
ode toward assigning the new block to datanodes hosted
on the same machines that also host the region servers
that will access the block. The NameNode follows the
hint unless doing so violates its load-balancing policies.

Loosely coupling in this way the region servers and
datanodes of a block yields Salus significant network
bandwidth savings (§5.2.2): why then not go all the
way—eliminate the HDFS layer and have each region
server store its state on its local file system? The rea-
son is that maintaining flexibility in block placement is
crucial to the robustness of Salus: our design allows the
NameNode to continue to load balance and re-replicate
blocks as needed, and makes it easy for a recovering re-
gion server to read state from any datanode that stores it,
not just its own disk.

4.2.2 Using unanimous consent to reduce replica-
tion overheads

To control the replication and storage overheads, we use
unanimous consent quorums for PUTs. Existing system-
s replicate data to three nodes to ensure durability de-
spite two permanent omission failures. Salus provides
the same durability and availability guarantees despite t-
wo failures of either omission or commission without in-
creasing the number of replicas. To tolrate f commission
faults with just f + 1 replicas, Salus requires the repli-
cas to reach unanimous consent prior to performing any
operation that updates the state and to store a certificate
proving the legitimacy of the update.

Of course, the failure of any of the replicated region
servers can prevent unanimous consent. To ensure live-
ness, Salus replaces any RRS that is not making adequate
progress with a new set of region servers, which read al-
l state committed by the previous region server quorum
from the datanodes and resume processing requests. This
fail-over protocol is a slight variation of the one already
present in HBase to handle failures of unreplicated re-
gion servers. If a client detects a problem with a RRS,
it sends a RRS-replacement request to the Master, which
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Fig. 3: Steps to process a PUT request in Salus using active storage.

first attempts to get all the nodes of the existing RRS
to relinquish their leases; if that fails, the Master coor-
dinates with ZooKeeper to prevent lease renewal. Once
the previous RRS is known to be disabled, the Master
appoints a new RRS. Then Salus performs the recovery
protocol as described in §4.4.

4.2.3 Active storage protocol
To provide to the other components of Salus the abstrac-
tion of a correct region server, region servers within a
RRS are organized in a chain. In response to a client’s
PUT request or to attend a periodic task (such as flush-
ing and compaction), the primary region server (the first
replica in the chain) issues a proposal, which is forward-
ed to all region servers in the chain. After executing the
request, the region servers in the RRS coordinate to cre-
ate a certificate attesting that all replicas executed the re-
quest in the same order and obtained identical respons-
es. The components of Salus (such as client, NameNode,
and Master) that use active storage to make data persis-
tent require all messages from a RRS to carry such a
certificate: this guarantees no spurious changes to per-
sistent data as long as at least one region server and its
corresponding datanode do not experience a commission
failure.

Figure 3 shows how active storage refines the
pipelined commit protocol for PUT requests. The PUT
issued by a client is received by the primary region serv-
er as part of a sub-batch ( 1 ). Upon receiving a PUT,
each replica validates it and forwards it down the chain
of replicas ( 2 ). The region servers then agree on the lo-
cation and order of the PUT in the append-only logs ( 3 )
and create a PUT-log certificate that attests to that loca-
tion and order. Each region server sends the PUT and
the certificate to its corresponding datanode to guarantee
their persistence and waits for the datanode’s confirma-
tion ( 4 ) before marking the request as prepared. Each
region server then independently contacts the leader of
the batch to which the PUT belongs and, if it voted YES,
waits for the decision. On receiving COMMIT, the region
servers mark the request as committed, update their in-
memory state and generate a PUT_SUCCESS certificate
( 5 ); on receiving ABORT the region servers generate in-
stead a PUT_FAILED certificate. In either case, the pri-
mary then forwards the certificate to the client ( 6 ).

Similar changes are also required to leverage active s-
torage in flushing and compaction. Unlike PUTs, these
operations are initiated by the primary region server: the
other region servers use predefined deterministic crite-
ria, such as the current size of the memstore, to verify

Client RS

RS1 RS2

RS3 RS4

Volume tree

Region 
trees1 32 4

1

3

2

4

Fig. 4: Merkle tree structure on client and region servers

whether the proposed operation should be performed.

4.3 End-to-end verification
Local file systems fail in unpredictable ways [35]. Dis-
tributed systems like HBase are even more complex
and are therefore more prone to failures. To provide
strong correctness guarantees, Salus implements end-to-
end checks that (a) ensure that clients access correct and
current data and (b) do so without affecting performance:
GETs can be processed at a single replica and yet retain
the ability to identify whether the returned data is correct
and current.

Like many existing systems [19, 26, 31, 41], Salus’
mechanism for end-to-end checks leverages Merkle trees
to efficiently verify the integrity of the state whose hash
is at the tree’s root. Specifically, a client accessing a
volume maintains a Merkle tree on the volume’s block-
s, called volume tree, that is updated on every PUT and
verified on every GET.

For robustness, Salus keeps a copy of the volume tree
stored distributedly across the region servers that host the
volume so that, after a crash, a client can rebuild its vol-
ume tree by contacting the region servers responsible for
the regions in that volume. Replicating the volume tree at
the region servers also allows a client, if it so chooses, to
only store a subset of its volume tree during normal oper-
ation, fetching on demand what it needs from the region
servers serving its volume.

Since a volume can span multiple region servers, for
scalability and load-balancing each region server only s-
tores and validates a region tree for the regions that it
hosts. The region tree is a sub-tree of the volume tree
corresponding to the blocks in a given region. In addi-
tion, to enable the client to recover the volume tree, each
region server also stores the latest known hash for the
root of the full volume tree, together with the sequence
number of the PUT request that produced it.

Figure 4 shows a volume tree and its region trees. The
client stores the top levels of the volume tree that are not
included in any region tree so that it can easily fetch the
desired region tree on demand. A client can also cache
recently used region trees for faster access.

To process a GET request for a block, the client sends
the request to any of the region servers hosting that block.
On receiving a response, the client verifies it using the lo-
cally stored volume tree. If the check fails (because of a
commission failure) or if the client times out (because of
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an omission failure), the client retries the GET using an-
other region server. If the GET fails at all region server-
s, the client contacts the Master triggering the recovery
protocol(§4.4). To process a PUT, the client updates its
volume tree and sends the weakly-signed root hash of its
updated volume tree along with the PUT request to the
RRS. Attaching the root hash of the volume tree to each
PUT request enables clients to ensure that, despite com-
mission failures, they will be able to mount and access a
consistent volume.

A client’s protocol to mount a volume after losing the
volume tree is simple. The client begins by fetching the
region trees, the root hashes, and the corresponding se-
quence numbers from the various RRSs. Before respond-
ing to a client’s fetch request, a RRS commits any pre-
pared PUTs pending to be committed using the commit-
recovery phase of the recovery protocol (§4.4). Using the
sequence numbers received from all the RRSs, the client
identifies the most recent root hash and compares it with
the root hash of the volume tree constructed by combin-
ing the various region trees. If the two hashes match, then
the client considers the mount to be complete; otherwise
it reports an error indicating that a RRS is returning a
potentially stale tree. In such cases, the client reports
an error to the Master to trigger the replacement of the
servers in the corresponding RRS, as described in §4.4.
4.4 Recovery
The recovery protocol ensures that, despite comission or
permanent omission failures in up to f pairs of corre-
sponding region servers and datanodes, Salus continues
to provide the abstraction of a virtual disk with standard
disk semantics, except in the extreme failure scenario in
which the client crashes and one or more of the region
server/datanode pairs of a region experience a commis-
sion failure and all other region server/datanode pairs of
that region are unavailable: in this case, Salus’ recovery
protocol guarantees the weaker prefix semantics.

To achieve this goal, Salus’ recovery protocol collect-
s the longest available prefix PC of prepared PUT re-
quests that satisfy the ordered-commit property. Recall
from §4.1 that every PUT for which the client received a
PUT_SUCCESS must appear in the log of at least one cor-
rect replica in the region that processed that PUT. Hence,
if a correct replica is available for each of the volume’s
regions, PC will contain all PUT requests for which the
client received a PUT_SUCCESS, thus guaranteeing stan-
dard disk semantics. If however, because of a confluence
of commission and transient omission failures, the only
available replicas in a region are those who have suffered
commission failures, then the PC that the recovery proto-
col collects may include only a prefix (albeit ordered-
commit-compliant) of those PUT requests, resulting in
the weaker prefix semantics.

Specifically, recovery must address two key issues.
Resolving log discrepancies Because of omission or

1 do
2 foreach failed-region i
3 remapRegion(i)
4 end
5 foreach failed-region i
6 region_logs[i] ← recoverRegionLog(region i)
7 end
8 LCP ← identifyLCP(region_logs)
9 while rebuildVolume(LCP) fails

Fig. 5: Pseudocode for the recovery protocol.

commission failures, different datanodes within the same
RRS may store different logs. A prepared PUT, for ex-
ample, may have been made persistent at one datanode,
but not at another.

Identifying committable requests Because COM-
MIT decisions are logged asynchronously, some PUTs
for which a client received PUT_SUCCESS may not be
marked as committed in the logs. It is possible, for ex-
ample, that a later PUT be logged as committed when
an earlier one is not; or that a suffix of PUTs for which
the client has received a PUT_SUCCESS be not logged as
committed. Worse, because of transient omission fail-
ures, some region may temporarily have no operational
correct replica when the recovery protocol attempts to
collect logged PUTs.

One major challenge in addressing these issues is that,
while PC is defined on a global volume log, Salus does
not actually store any such log: instead, for efficiency,
each region keeps its own separate region log. Hence,
after retrieving its region log, a recovering region server
needs to cooperate with other region servers to determine
whether the recovered region log is correct and whether
the PUTs it stores can be committed.

Figure 5 describes the protocol that Salus uses to re-
cover faulty datanodes and region servers. The first two
phases describe the recovery of individual region logs,
while the last two phases describe how the RRSs coordi-
nate to identify commitable requests.
1. Remap (remapRegion). As in HBase, when a RRS
crashes or is reported by the client as non-responsive, the
Master swaps out the servers in that RRS and assigns its
regions to one or more replacement RRSs.
2. Recover region log (recoverRegionLog). To re-
cover all prepared PUTs of a failed region, the new region
servers choose, among the instances (one for each op-
erational datanode) of that region’s old region logs, the
longest available log that is valid. A log is valid if it
is a prefix of PUT requests issued to that region. 5 We
use the PUT-log certificate attached to each PUT record
to separate valid logs from invalid ones: each region
server independently replays the log and checks if each
PUT record’s location and order matches the location and
order included in that PUT record’s PUT-log certificate.
Having found a valid log, the servers in the RRS agree
on the longest prefix and advance to the next stage.

5Salus’ approach for truncating logs is similar to how HBase man-
ages checkpoints and is discussed in an extended TR [44].
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3. Identify the longest commitable prefix (LCP) of the
volume log (identifyLCP). If the client is available,
Salus can determine the LCP and the root of the corre-
sponding volume tree simply by asking the client. Oth-
erwise, all RRSs must coordinate to identify the longest
prefix of the volume log that contains either committed
or prepared PUTs (i.e. PUTs whose data has been made
persistent in at least one correct datanode). Since Salus
keeps no physical volume log, the RRSs use ZooKeeper
as a means of coordination, as follows. The Master asks
each RRS to report its maximum committed sequence
number as well as its list of prepared sequence number-
s by writing the requested information to a known file
in ZooKeeper. Upon learning from Zookeeper that the
file is complete (i.e. all RRSs have responded), 6 each
RRS uses the file to identify the longest prefix of com-
mitted and prepared PUTs in the volume log. Finally, the
sequence number of the last PUT in the LCP and the at-
tached Merkle tree root are written to ZooKeeper.
4. Rebuild volume state (rebuildVolume). The goal
of this phase is to ensures that all PUTs in the LCP are
committed and available. The first half is simple: if a
PUT in the LCP is prepared, then the corresponding re-
gion server marks it as committed. With respect to avail-
ability, Salus makes sure that all PUTs in the LCP are
available, in order to reconstruct the volume consistent-
ly. To that end, the Master asks the RRSs to replay their
log and rebuild their region trees; it then uses the same
checks used by the client in the mount protocol (§4.3)
to determine whether the current root of the volume tree
matches the one stored in ZooKeeper during Phase 3.

As mentioned above, a confluence of commission and
transient omission failures could cause a RRS to recover
only a prefix of its region log. In that case, the above
checks could fail, since some PUTs within the LCP could
be ignored. If the checks fail, recovery starts again from
Phase 1.7 Note, however, that all the ignored PUTs must
have been prepared and so, as long as the number of per-
manent omission or commission failures does not exceed
f , a correct datanode will eventually become available
and a consistent volume will be recovered.

5 Evaluation
We have implemented Salus by modifying HBase [6] and
HDFS [39] to add pipelined commit, active storage, and
end-to-end checks. Our current implementation lags be-
hind our design in two ways. First, our prototype sup-
ports unanimous consent between HBase and HDFS but
not between HBase and ZooKeeper. Second, while our
design calls for a BFT-replicated Master, NameNode,
and ZooKeeper, our prototype does not yet incorporate

6If some RRS are unavailable during this phase, recovery starts a-
gain from Phase 1, replacing the unavailable servers.

7For a more efficient implementation that leverages version vectors,
see [44].

Salus ensures freshness, ordered-commit, and liveness
when there are no more than 2 failures within any RRS
and the corresponding datanodes.

§5.1

Salus achieves comparable or better single-client through-
put compared to HBase with slightly increased latency. §5.2.1

Salus’ active replication can reduce network usage by 55%
and increase aggregate throughput by 74% for sequential
write workload compared to HBase. Salus can achieve
similar aggregate read throughput compared to HBase.

§5.2.2

Salus’ overhead over HBase does not grow with the scale
of the system. §5.2.3

Fig. 6: Summary of main results.

these features. We intend to use UpRight [16] to repli-
cate NameNode, ZooKeeper, and Master.

Our evaluation tries to answer two basic questions.
First, does Salus provide the expected guarantees despite
a wide range of failures? Second, given its stronger guar-
antees, is Salus’ performance competitive with HBase?
Figure 6 summarizes the main results.

5.1 Robustness
In this section, we evaluate Salus’ robustness, which in-
cludes guaranteeing freshness for read operations and
liveness and ordered-commit for all operations.

Salus is designed to ensure these properties as long as
there are no more than two failures in the region servers
within an RRS and their corresponding datanodes, and
fewer than a third of the nodes in the implementation
of each of UpRight NameNode, UpRight ZooKeeper,
and UpRight Master nodes are incorrect; however, since
we have not yet integrated in Salus UpRight versions of
NameNode, ZooKeeper, and Master, we only evaluate
Salus’ robustness when datanode or region server fails.

We test our implementation via fault injection. We in-
troduce failures and then determine what happens when
we attempt to access the storage. For reference, we
compare Salus with HBase (which replicates stored data
across datanodes but does not support pipelined commit,
active storage, or end-to-end checks).

In particular, we inject faults into clients to force them
to crash and restart. We inject faults into datanodes to
force them either to crash, temporarily or permanently, or
to corrupt block data. We cause data corruption in both
log files and checkpoint files. We inject faults into region
servers to force them to either 1) crash; 2) corrupt data in
memory; 3) write corrupted data to HDFS; 4) refuse to
process requests or forward requests out of order; or 5)
ask the NameNode to delete files. Once again, we cause
corruption in both log files and checkpoint files. Note
that data on region servers is not protected by checksums.
Figure 7 summarizes our results.

First, as expected, when a client crashes and restart-
s in HBase, a volume’s on-disk state can be left in an
inconsistent state, because HBase does not guarantee or-
dered commit. HBase can avoid these inconsistencies
by blocking all requests that follow a barrier request un-
til the barrier completes, but this can hurt performance
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Affected nodes Faults HBase Salus
GET PUT GET PUT

Client Crash and restart Fresh Not ordered Fresh Ordered

DataNode

1 or 2 permanent crashes Fresh Ordered Fresh Ordered
Corruption of 1 or 2 replicas of log or checkpoint Fresh Ordered Fresh Ordered
3 arbitrary failures Fresh* Lost Fresh* Lost

Region server+DataNode

1 (for HBase) or 3 (for Salus) region server permanent
crashes

Fresh Ordered Fresh Ordered

1 (for HBase) or 2 (for Salus) region server arbitrary
failures that potentially affect datanodes

Corrupted Lost Fresh Ordered

3 (for Salus) region server arbitrary failures that po-
tentially affect datanodes

- - Fresh* Lost

Client+Region server+DataNode Client crashes and restarts, 1 (for HBase) or 2 (for
Salus) region server arbitrary failures causing the cor-
responding datanodes to not receive a suffix of data

Corrupted Lost Fresh Ordered

Fig. 7: Robustness towards failures affecting the region servers within an RRS, and their corresponding datanodes. (- = not applicable, * =
corresponding operations may not be live). Note that a region server failure has the potential to cause the failure of the corresponding datanode.

when barriers are frequent (see §5.2.4). Second, HBase’s
replicated datanodes tolerate crash and benign file cor-
ruptions that alter the data but don’t affect the checksum,
which is stored separately. Thus, when considering only
datanode failures, HBase provides the same guarantees
as Salus. Third, HBase’s unreplicated region server is a
single point of failure, vulnerable to commission failures
that can violate freshness as well as ordered-commit.

In Salus, end-to-end checks ensure freshness for GET
operations in all the scenarios covered in Figure 7: a cor-
rect client does not accept GET reply unless it can pass
the Merkle tree check. Second, pipelined commit en-
sures the ordered-commit property in all scenarios in-
volving one or two failures, whether of omission or of
commission: if a client fails or region servers reorder
requests, the out-of-order requests will not be accepted
and eventually recovery will be triggered, causing these
requests to be discarded. Third, active storage protect-
s liveness failure scenarios involving one or two region
server/datanode pairs: if a client receives an unexpected
GET reply, it retries until it obtains the correct data. Fur-
thermore, during recovery, the recovering region servers
find the correct log by using the certificates generated
by active storage protocol. As expected, ordered-commit
and liveness cannot be guaranteed if all replicas either
permanently fail or experience commission failures.

5.2 Performance

Salus’ architecture can in principle result in both bene-
fits and overhead when it comes to throughput and la-
tency: on the one hand, pipelined commit allows multi-
ple batches to be processed in parallel and active stor-
age reduces network bandwidth consumption. On the
other hand, end-to-end checks introduce checksum com-
putations on both clients and servers; pipelined commit
requires additional network messages for preparing and
committing; and active storage requires additional com-
putation and messages for certificate generation and val-
idation. Compared to the cost of disk-accesses for data,
however, we expect these ovrheads to be modest.

This section quantifies these tradeoffs using

sequential- and random-, read and write microbench-
marks. We compare Salus’ single-client throughput
and latency, aggregate throughput, and network usage
to those of HBase. We also include measured num-
bers from Amazon EBS to put Salus’ performance in
perspective.

Salus targets clusters of storage nodes with 10 or more
disks each. In such an environment, we expect a node’s
aggregate disk bandwidth to be much larger than its net-
work bandwidth. Unfortunately, we have only three stor-
age nodes matching this description, the rest of our small
nodes have a single disk and a single active 1Gbit/s net-
work connection.

Most of our experiments run on a 15-node clus-
ter of small nodes equipped with a 4-core Intel X-
eon X3220 2.40GHz CPU, 3GB of memory, and one
WD2502ABYS 250GB hard drive. In these experiments,
we use nine small nodes as region servers and datanodes,
another small node as the Master, ZooKeeper, and Na-
meNode, and up to four small nodes acting as clients. In
these experiments, we set the Java heap size to 2GB for
the region server and 1GB for the datanode.

To understand system behavior when disk bandwidth
is more plentiful than network bandwidth, we run several
experiments using the three storage nodes, each equipped
with an 16-core AMD Opteron 4282 @3.0GHz, 64G-
B of memory, and 10 WDC WD1003FBYX 1TB hard
drives. These storage nodes have 1Gbit/s networks, but
the network topology constrains them to share an aggre-
gate bandwidth of about 1.2Gbit/s.

To measure the scalability of Salus with a large num-
ber of machines, we run several experiments on Amazon
EC2 [2]. The detailed configuration is shown in §5.2.3.

For all experiments, we use a small 4KB block size,
which we expect to magnify Salus’ overheads compared
to larger block sizes. For read workloads, each client
formats the volume by writing all blocks and then forc-
ing a flush and compaction before the start of the ex-
periments. For write workloads, since compaction in-
troduces significant overhead in both HBase and Salus
and the compaction interval is tunable, we first run these
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experiments with compaction disabled to measure the
maximum throughput; then we run HBase with its de-
fault compaction strategy and measure how many bytes
it reads for each compaction; finally, we tune Salus’ com-
paction interval so that Salus performs compaction on the
same amount of data as HBase.

5.2.1 Single client throughput and latency
We first evaluate the single-client throughput and latency
of Salus. Since a single client usually cannot saturate the
system, we find that executing requests in a pipeline is
beneficial to Salus’ throughput. However, the additional
overhead of checksum computation and message transfer
of Salus increases its latency.

We use the nine small nodes as servers and start a sin-
gle client to issue sequential and random reads and writes
to the system. For the throughput experiment, the client
issues requests as fast as it can and performs batching to
maximize throughput. In all experiments, we use a batch
size of 250 requests, so each batch accesses about 1M-
B. For the latency experiment, the client issues a single
request, waits for it to return, and then waits for 10ms
before issuing the next request.

Figure 8 shows the single client throughput. For se-
quential read, Salus outperforms the HBase system with
a speedup of 2.5. The reasons are that Salus’ active
replication’s three region servers increase parallelism for
reads and reads are pipelined to have multiple batches
outstanding; the HBase client instead issues only one
batch of requests at a time. For random reads, disk seeks
are the bottleneck and HBase and Salus have comparable
performance.

For sequential write and random write, Salus is slower
than HBase by 3.5% to 22.8% for its stronger guaran-
tees. For Salus, pipelined execution does not help write
throughput as much as it helps sequential reads, since
write operations need to be forwared to all three nodes
and unlike reads cannot be executed in parallel.

As a sanity check, Figure 8 also shows the perfor-
mance we measured from a small compute instance ac-
cessing Amazon’s EBS. Because the EBS hardware dif-
fers from our testbed hardware, we can only draw lim-
ited conclusions, but we note that the Salus prototype
achieves a respectable fraction of EBS’s sequential read
and write bandwidth, and that it modestly outperforms
EBS’s random read throughput (likely because it is uti-
lizing more disk arms), and that it substantially outper-
forms EBS’s random write throughput (likely because it
transforms random writes into sequential ones.)

Figure 9 shows the 90th-percentile latency for random
reads and writes. In both cases, Salus’ latency is within
two or three milliseconds or of HBase’s. This is rea-
sonable considering Salus’ additional work to perform
Merkle tree calculation, certificate generation and vali-
dation, and network transfer. One thing should be noted
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Fig. 8: Single client throughput on small nodes. HBase-N and Salus-N
disable compactions. EBS’s numbers are measured on different hard-
wares and are included for reference.
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about the random write latency experiment: the HBase
datanode does not call sync when performing disk write
and that’s why its write latency is small. This may be a
reasonable design decision when the probability of three
simultaneous crashes is small [28]. In this experiment,
we also show what happens when adding this call to both
HBase and Salus: calling sync adds more than 10ms of
latency to both. To be consistent, we do not call sync in
other throughput experiments.

Again, as a sanity check we note that Salus (and H-
Base) are reasonably competitive with EBS (though we
emphasize again that EBS’s underlying hardware is not
known to us, so not too much should be read into this
experiment.)

Overall, these results show that despite all the extra
computation and message transfers to achieve stronger
guarantees, Salus’ single-client throughput and latency
are comparable to those of HBase. This is because the
additional processing Salus requires adds relatively lit-
tle to the time required to complete disk operations. In
an environment in which computational cycles are plen-
tiful, trading off as Salus does processing for improved
reliability appears to be a reasonable trade-off.

5.2.2 Aggregate throughput/network bandwidth
We then evaluate the aggregate throughput and network
usage of Salus. The servers are saturated in these exper-
iments, so pipelined execution does not improve Salus’
throughput at all. On the other hand, we find that active
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Throughput (MB/s) 27 47

Network consumption (network bytes per
byte written by the client)

5.3 2.4

Fig. 11: Aggregate sequential write throughput and network band-
width usage with fewer server machines but more disks per machine.

replication of region servers, introduced to improve ro-
bustness, can reduce network bandwidth and significant-
ly improve performance when the total disk bandwidth
exceeds the aggregate network bandwidth.

Figure 10 reports experiments on our small-server
testbed with nine nodes acting as combined region serv-
er and datanode servers and we increase the number of
clients until the throughput does not increase.

For sequential read, both systems can achieve about
110MB/s. Pipelining reads in Salus does not improve ag-
gregate throughput since also HBase has multiple clients
to parallelize network and disk operations. For random
reads, disk seek and rotation are the bottleneck, and both
systems achieve only about 3MB/s.

The relative slowdown of Salus versus HBase for se-
quential and random writes is respectively of 11.1% to
19.4% and significantly lower when compaction is en-
abled since compaction adds more disk operations to
both HBase and Salus. Salus reduces network bandwidth
at the expense of higher disk and CPU usage, but this
trade-off does not help in our system because disk and
network bandwidth are comparable. Even so, we find
this to be an acceptable price for the stronger guarantees
provided by Salus.

Figure 11 shows what happens when we run the se-
quential write experiment using the three 10-disk storage
nodes as servers. Here, the tables are turned and Salus
outperforms HBase (47MB/s versus 27MB/s). Our pro-
filing shows that in both experiments, the bottleneck is
the network topology that constrains the aggregate band-
width to 1.2Gbit/s.

Figure 11 also compares the network bandwidth us-
age of HBase and Salus under the sequential write work-
load. HBase sends more than five bytes for each byte
written by the client (two network transfers each for log-
ging and flushing, but fewer than two for compaction,
since some blocks are overwritten.) Salus only uses two
bytes per-byte-written to forward the request to replicas;
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Fig. 12: Write throughput per server with 9 servers and 108 servers
(compaction disabled).

logging, flushing, and compaction are performed locally.
The actual number is slightly higher than 2, because of
Salus’s additional metadata. Salus halves network band-
width usage compared to HBase, which explains why its
throughput is 74% higher than that HBase when network
bandwidth is limited.

Note that we do not measure the aggregate throughput
of EBS because we do not know its internal architecture
and thus we do not know how to saturate it.

5.2.3 Scalability
In this section we evaluate the degree to which the mech-
anisms that Salus uses to achieve its stronger robustness
guarantees impact its scalability. Growing by an order
of magnitude the size of the testbed used in our previ-
ous experiments, we run Salus and HBase on Amazon
EC2 [2] with up to 108 servers. While short of our goal
of showing conclusively that Salus can scale to thousands
of servers, we believe these experiments can offer valu-
able insights on the relevant trends.

For our testbed we use EC2’s extra large instances,
with datanodes and region servers configured to use 3G-
B of memory each. Some preliminary tests run to mea-
sure the characteristics of our testbed show that each EC2
instance can reach a maximum network and disk band-
width of about 100MB/s, meaning that network band-
width is not a bottleneck; thus, we do not expect Salus to
outperform HBase in this setting.

Given our limited resources, we focus our attention
on measuring the throughput of sequential and random
writes: we believe this is reasonable since the only addi-
tional overhead for reads are the end-to-end checks per-
formed by the clients, which are easy to make scalable.
We run each experiment with an equal number of clients
and servers and for each 11-minute-long experiment we
report the throughput of the last 10 minutes.

Because we do not have full control over EC2’s in-
ternal architecture, and because one user’s virtual ma-
chines in EC2 may share resources such as disks and
networks with other users, these experiments have lim-
itations: the performance of EC2’s instances fluctuates
noticeably and it becomes hard to even determine what
the stable throughput for a given experimental configu-
ration is. Further, while in most cases, as expected, we
find that HBase performs better than Salus, some experi-
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barriers varies.
ments show Salus with a higher throughput than HBase,
possibly because the network is being heavily used and
pipelined commit helps Salus handle high network laten-
cies more efficiently: to be conservative, we report only
results for which HBase performs better than Salus.

Figure 12 shows the per-server throughput of the
sequential and random write workloads in configura-
tion with 9 and 108 servers. For the sequential write
workload, the throughput per server remains almost un-
changed in both HBase and Salus as we move from 9 to
108 servers, meaning that for this workload both systems
are perfectly scalable up to 108 servers. For the random
write workload, however, both HBase and Salus experi-
ence a significant drop in throughput-per-server when the
number of servers grows. The culprit is the high number
of small I/O operations that this workload requires. As
the number of server increases, the number of request-
s randomly assigned to each server in a sub-batch de-
creases, even as increasing the number of clients causes
each server to process more sub-batches. The net result
is that as the number of server increases, each server per-
forms an ever larger number of ever smaller-sized I/O
operations—which of course hurts performance. Note
however that the extent of Salus’ slowdown with respect
to HBase is virtually the same (28%) in both the 9-server
and the 108-server experiments, the letter that Salus’
overhead does not grow with the scale of the system.

5.2.4 Pipeline commit
Salus achieves increased parallelism by pipelining PUTs
across barrier operations—Salus’ PUTs always commit
in the order they are issued, so the barriers’ constraints
are satisfied without stalling the pipeline. Figure 13 com-
pares HBase and Salus by varying the number of opera-
tions between barriers. Salus’ throughput remains con-
stant at 18 MB/s as it is not affected by barriers, whereas
HBase’s throughput suffers with increasing barrier fre-
quency: HBase achieves 3MB/s with a batch size of 1
and 14 MB/s with a batch size of 32.

6 Related work
Scalable and consistent storage. Many existing sys-
tems provide the abstraction of scalable distributed stor-
age [6, 11, 14, 27] with strong consistency. Unfortunate-
ly, these systems do not tolerate arbitrary node failures.
While these systems use checksums to safeguard data

written on disk, a memory corruption or a software glitch
can lead to the loss of data in these systems (§ 5.1). In
contrast, Salus is designed to be robust (safe and live)
even if nodes fail arbitrarily.

Protections in local storage systems Disks and stor-
age sub systems can fail in various ways [7, 8, 18, 23, 34,
37], are so can memories and CPUs [33, 38] with disas-
trous consequences [35]. Unfortuantely, end-to-end pro-
tection mechanisms developed for local storage system-
s [35, 41] are inadequate for protecting the full path from
a PUT to a GET in complex systems like HBase.

End-to-end checks. ZFS [41] incorporates an on-disk
Merkle tree to protect the file system from disk cor-
ruptions. SFSRO [19], SUNDR [26], Depot [31], and
Iris [40] also use end-to-end checks to guard against
faulty servers. However, none of these systems is de-
signed to scale to thousands of machines, because, to
support multiple clients sharing a volume, they depend
on a single server to update the Merkle tree. Instead,
Salus is designed for a single client per volume, so it can
rely on the client to update the Merkle tree and make the
server side scalable. We do not claim this to be a ma-
jor novelty of Salus; we see this as an example of how
different goals lead to different designs.

BFT systems. While some distributed systems tolerate
arbitrary faults (Depot [31], SPORC [17], SUNDR [26],
BFT RSM [13, 16]), they require a correct node to ob-
serve all writes to a given volume, preventing a volume
from scaling with the number of nodes.

Supporting multiple writers. We are not aware of any
system that can support multiple writers while achieving
ordered-commit, scalability, and end-to-end verification
for read requests. One can tune Salus to support multiple
writers by either using a single server to serialize requests
to a volume as shown in SUNDR [26], which of course
hurts scalability, or by using weaker consistency models
like Fork-Join-Casual [31] or fork* [17].

7 Conclusions
Salus is a distributed block store that offers an unprece-
dented combination of scalability and robustness. Sur-
prisingly, Salus’ robustness does not come at the cost of
performance: pipelined commit allows updates to pro-
ceed at high speed while ensuring that the system’s com-
mitted state is consistent; end-to-end checks allow read-
ing from one replica safely; and active replication not
only eliminates reliability bottlenecks but also eases per-
formance bottlenecks.
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Abstract

This paper presents a set of architecturally and workload-
inspired algorithmic and engineering improvements
to the popular Memcached system that substantially
improve both its memory efficiency and throughput.
These techniques—optimistic cuckoo hashing, a com-
pact LRU-approximating eviction algorithm based upon
CLOCK, and comprehensive implementation of opti-
mistic locking—enable the resulting system to use 30%
less memory for small key-value pairs, and serve up to
3x as many queries per second over the network. We
have implemented these modifications in a system we
call MemC3—Memcached with CLOCK and Concur-
rent Cuckoo hashing—but believe that they also apply
more generally to many of today’s read-intensive, highly
concurrent networked storage and caching systems.

1 Introduction

Low-latency access to data has become critical for many
Internet services in recent years. This requirement has
led many system designers to serve all or most of certain
data sets from main memory—using the memory either
as their primary store [19, 26, 21, 25] or as a cache to
deflect hot or particularly latency-sensitive items [10].

Two important metrics in evaluating these systems are
performance (throughput, measured in queries served per
second) and memory efficiency (measured by the over-
head required to store an item). Memory consumption is
important because it directly affects the number of items
that system can store, and the hardware cost to do so.

This paper demonstrates that careful attention to algo-
rithm and data structure design can significantly improve
throughput and memory efficiency for in-memory data
stores. We show that traditional approaches often fail
to leverage the target system’s architecture and expected
workload. As a case study, we focus on Memcached [19],
a popular in-memory caching layer, and show how our
toolbox of techniques can improve Memcached’s perfor-
mance by 3× and reduce its memory use by 30%.

Standard Memcached, at its core, uses a typical hash
table design, with linked-list-based chaining to handle
collisions. Its cache replacement algorithm is strict LRU,
also based on linked lists. This design relies on locking
to ensure consistency among multiple threads, and leads
to poor scalability on multi-core CPUs [11].

This paper presents MemC3 (Memcached with
CLOCK and Concurrent Cuckoo Hashing), a complete
redesign of the Memcached internals. This re-design
is informed by and takes advantage of several observa-
tions. First, architectural features can hide memory access
latencies and provide performance improvements. In par-
ticular, our new hash table design exploits CPU cache
locality to minimize the number of memory fetches re-
quired to complete any given operation; and it exploits
instruction-level and memory-level parallelism to overlap
those fetches when they cannot be avoided.

Second, MemC3’s design also leverages workload char-
acteristics. Many Memcached workloads are predomi-
nately reads, with few writes. This observation means
that we can replace Memcached’s exclusive, global lock-
ing with an optimistic locking scheme targeted at the
common case. Furthermore, many important Memcached
workloads target very small objects, so per-object over-
heads have a significant impact on memory efficiency.
For example, Memcached’s strict LRU cache replacement
requires significant metadata—often more space than the
object itself occupies; in MemC3, we instead use a com-
pact CLOCK-based approximation.

The specific contributions of this paper include:

• A novel hashing scheme called optimistic cuckoo
hashing. Conventional cuckoo hashing [23] achieves
space efficiency, but is unfriendly for concurrent oper-
ations. Optimistic cuckoo hashing (1) achieves high
memory efficiency (e.g., 95% table occupancy); (2)
allows multiple readers and a single writer to concur-
rently access the hash table; and (3) keeps hash table
operations cache-friendly (Section 3).
• A compact CLOCK-based eviction algorithm that re-

quires only 1 bit of extra space per cache entry and
supports concurrent cache operations (Section 4).
• Optimistic locking that eliminates inter-thread syn-
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function stock Memcached MemC3

Hash Table

concurrency serialized
concurrent lookup,

serialized insert
lookup performance slower faster
insert performance faster slower
space 13.3n Bytes ∼ 9.7n Bytes

Cache Mgmt

concurrency serialized
concurrent update,
serialized eviction

space 18n Bytes n bits

Table 1: Comparison of operations. n is the number
of existing key-value items.

chronization while ensuring consistency. The opti-
mistic cuckoo hash table operations (lookup/insert)
and the LRU cache eviction operations both use this
locking scheme for high-performance access to shared
data structures (Section 4).

Finally, we implement and evaluate MemC3, a
networked, in-memory key-value cache, based on
Memcached-1.4.13.1 Table 1 compares MemC3 and stock
Memcached. MemC3 provides higher throughput using
significantly less memory and computation as we will
demonstrate in the remainder of this paper.

2 Background

2.1 Memcached Overview
Interface Memcached implements a simple and light-
weight key-value interface where all key-value tuples are
stored in and served from DRAM. Clients communicate
with the Memcached servers over the network using the
following commands:

• SET/ADD/REPLACE(key, value): add a (key,
value) object to the cache;
• GET(key): retrieve the value associated with a key;
• DELETE(key): delete a key.

Internally, Memcached uses a hash table to index the
key-value entries. These entries are also in a linked list
sorted by their most recent access time. The least recently
used (LRU) entry is evicted and replaced by a newly
inserted entry when the cache is full.

Hash Table To lookup keys quickly, the location of each
key-value entry is stored in a hash table. Hash collisions
are resolved by chaining: if more than one key maps
into the same hash table bucket, they form a linked list.

1Our prototype does not yet provide the full memcached api.

Slab1 header

Slab2 header

Hash table 
w/ chaining per-slab LRU Linked-list 

Figure 1: Memcached data structures.

Chaining is efficient for inserting or deleting single keys.
However, lookup may require scanning the entire chain.

Memory Allocation Naive memory allocation (e.g., mal-
loc/free) could result in significant memory fragmentation.
To address this problem, Memcached uses slab-based
memory allocation. Memory is divided into 1 MB pages,
and each page is further sub-divided into fixed-length
chunks. Key-value objects are stored in an appropriately-
size chunk. The size of a chunk, and thus the number of
chunks per page, depends on the particular slab class. For
example, by default the chunk size of slab class 1 is 72
bytes and each page of this class has 14563 chunks; while
the chunk size of slab class 43 is 1 MB and thus there is
only 1 chunk spanning the whole page.

To insert a new key, Memcached looks up the slab
class whose chunk size best fits this key-value object. If a
vacant chunk is available, it is assigned to this item; if the
search fails, Memcached will execute cache eviction.

Cache policy In Memcached, each slab class maintains
its own objects in an LRU queue (see Figure 1). Each
access to an object causes that object to move to the head
of the queue. Thus, when Memcached needs to evict
an object from the cache, it can find the least recently
used object at the tail. The queue is implemented as a
doubly-linked list, so each object has two pointers.

Threading Memcached was originally single-threaded.
It uses libevent for asynchronous network I/O call-
backs [24]. Later versions support multi-threading but use
global locks to protect the core data structures. As a result,
operations such as index lookup/update and cache evic-
tion/update are all serialized. Previous work has shown
that this locking prevents current Memcached from scal-
ing up on multi-core CPUs [11].

Performance Enhancement Previous solutions [4, 20,
13] shard the in-memory data to different cores. Shard-
ing eliminates the inter-thread synchronization to permit
higher concurrency, but under skewed workloads it may
also exhibit imbalanced load across different cores or
waste the (expensive) memory capacity. Instead of simply
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sharding, we explore how to scale performance to many
threads that share and access the same memory space;
one could then apply sharding to further scale the system.

2.2 Real-world Workloads: Small and
Read-only Requests Dominate

Our work is informed by several key-value workload char-
acteristics published recently by Facebook [3].

First, queries for small objects dominate. Most keys
are smaller than 32 bytes and most values no more than
a few hundred bytes. In particular, there is one common
type of request that almost exclusively uses 16 or 21 Byte
keys and 2 Byte values.

The consequence of storing such small key-value ob-
jects is high memory overhead. Memcached always allo-
cates a 56-Byte header (on 64-bit servers) for each key-
value object regardless of the size. The header includes
two pointers for the LRU linked list and one pointer for
chaining to form the hash table. For small key-value ob-
jects, this space overhead cannot be amortized. Therefore
we seek more memory efficient data structures for the
index and cache.

Second, queries are read heavy. In general, a GET/SET
ratio of 30:1 is reported for the Memcached workloads in
Facebook. Important applications that can increase cache
size on demand show even higher fractions of GETs (e.g.,
99.8% are GETs, or GET/SET=500:1). Note that this ratio
also depends on the GET hit ratio, because each GET miss
is usually followed by a SET to update the cache by the
application.

Though most queries are GETs, this operation is not
optimized and locks are used extensively on the query
path. For example, each GET operation must acquire (1)
a lock for exclusive access to this particular key, (2) a
global lock for exclusive access to the hash table; and (3)
after reading the relevant key-value object, it must again
acquire the global lock to update the LRU linked list. We
aim to remove all mutexes on the GET path to boost the
concurrency of Memcached.

3 Optimistic Concurrent Cuckoo
Hashing

In this section, we present a compact, concurrent and
cache-aware hashing scheme called optimistic concurrent
cuckoo hashing. Compared with Memcached’s original
chaining-based hash table, our design improves memory
efficiency by applying cuckoo hashing [23]—a practical,
advanced hashing scheme with high memory efficiency
and O(1) amortized insertion time and retrieval. How-
ever, basic cuckoo hashing does not support concurrent

read/write access; it also requires multiple memory ref-
erences for each insertion or lookup. To overcome these
limitations, we propose a collection of new techniques
that improve basic cuckoo hashing in concurrency, mem-
ory efficiency and cache-friendliness:

• An optimistic version of cuckoo hashing that supports
multiple-reader/single writer concurrent access, while
preserving its space benefits;
• A technique using a short summary of each key to

improve the cache locality of hash table operations;
and
• An optimization for cuckoo hashing insertion that im-

proves throughput.

As we show in Section 5, combining these techniques
creates a hashing scheme that is attractive in practice:
its hash table achieves over 90% occupancy (compared
to 50% for linear probing, or needing the extra pointers
required by chaining) [? ]. Each lookup requires only two
parallel cacheline reads followed by (up to) one memory
reference on average. In contrast, naive cuckoo hashing
requires two parallel cacheline reads followed by (up
to) 2N parallel memory references if each bucket has N
keys; and chaining requires (up to) N dependent memory
references to scan a bucket of N keys. The hash table
supports multiple readers and a single writer, substantially
speeding up read-intensive workloads while maintaining
equivalent performance for write-heavy workloads.

Interface The hash table provides Lookup, Insert
and Delete operations for indexing all key-value ob-
jects. On Lookup, the hash table returns a pointer to the
relevant key-value object, or “does not exist” if the key
can not be found. On Insert, the hash table returns true
on success, and false to indicate the hash table is too full.2

Delete simply removes the key’s entry from the hash
table. We focus on Lookup and Insert as Delete is
very similar to Lookup.

Basic Cuckoo Hashing Before presenting our tech-
niques in detail, we first briefly describe how to perform
cuckoo hashing. The basic idea of cuckoo hashing is to
use two hash functions instead of one, thus providing each
key two possible locations where it can reside. Cuckoo
hashing can dynamically relocate existing keys and refine
the table to make room for new keys during insertion.

Our hash table, as shown in Figure 2, consists of an
array of buckets, each having 4 slots.3 Each slot contains
a pointer to the key-value object and a short summary of

2As in other hash table designs, an expansion process can increase
the cuckoo hash table size to allow for additional inserts.

3 Our hash table is 4-way set-associative. Without set-associativity,
basic cuckoo hashing allows only 50% of the table entries to be occupied
before unresolvable collisions occur. It is possible to improve the space
utilization to over 90% by using a 4-way (or higher) set associative hash
table. [9]
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Cuckoo hash table

tag ptr 

key version
counters 

key x 
key

KV object

value
metadata

Figure 2: Hash table overview: The hash table is 4-
way set-associative. Each key is mapped to 2 buck-
ets by hash functions and associated with 1 version
counter; Each slot stores a tag of the key and a pointer
to the key-value item. Values in gray are used for op-
timistic locking and must be accessed atomically.

the key called a tag. To support keys of variable length,
the full keys and values are not stored in the hash table,
but stored with the associated metadata outside the table
and referenced by the pointer. A null pointer indicates
this slot is not used.

Each key is mapped to two random buckets, so
Lookup checks all 8 candidate keys from every slot. To
insert a new key x into the table, if either of the two buck-
ets has an empty slot, it is then inserted in that bucket;
if neither bucket has space, Insert selects a random
key y from one candidate bucket and relocates y to its
own alternate location. Displacing y may also require
kicking out another existing key z, so this procedure may
repeat until a vacant slot is found, or until a maximum
number of displacements is reached (e.g., 500 times in
our implementation). If no vacant slot found, the hash
table is considered too full to insert and an expansion
process is scheduled. Though it may execute a sequence
of displacements, the amortized insertion time of cuckoo
hashing is O(1) [23].

3.1 Tag-based Lookup/Insert
To support keys of variable length and keep the index
compact, the actual keys are not stored in the hash table
and must be retrieved by following a pointer. We propose
a cache-aware technique to perform cuckoo hashing with
minimum memory references by using tags—a short hash
of the keys (one-byte in our implementation). This tech-
nique is inspired by “partial-key cuckoo hashing” which
we proposed in previous work [17], but eliminates the
prior approach’s limitation in the maximum table size.

Cache-friendly Lookup The original Memcached
lookup is not cache-friendly. It requires multiple depen-
dent pointer dereferences to traverse a linked list:

K V K V K Vlookup

Neither is basic cuckoo hashing cache-friendly: checking
two buckets on each Lookup makes up to 8 (parallel)
pointer dereferences. In addition, displacing each key on
Insert also requires a pointer dereference to calculate
the alternate location to swap, and each Insert may
perform several displacement operations.

Our hash table eliminates the need for pointer deref-
erences in the common case. We compute a 1-Byte tag
as the summary of each inserted key, and store the tag in
the same bucket as its pointer. Lookup first compares
the tag, then retrieves the full key only if the tag matches.
This procedure is as shown below (T represents the tag)

T T T T K V
lookup

It is possible to have false retrievals due to two different
keys having the same tag, so the fetched full key is further
verified to ensure it was indeed the correct one. With a
1-Byte tag by hashing, the chance of tag-collision is only
1/28 = 0.39%. After checking all 8 candidate slots, a
negative Lookup makes 8 × 0.39% = 0.03 pointer deref-
erences on average. Because each bucket fits in a CPU
cacheline (usually 64-Byte), on average each Lookup
makes only 2 parallel cacheline-sized reads for checking
the two buckets plus either 0.03 pointer dereferences if
the Lookup misses or 1.03 if it hits.

Cache-friendly Insert We also use the tags to avoid re-
trieving full keys on Insert, which were originally
needed to derive the alternate location to displace keys. To
this end, our hashing scheme computes the two candidate
buckets b1 and b2 for key x by

b1 = HASH(x) // based on the entire key
b2 = b1 ⊕ HASH(tag) // based on b1 and tag of x

b2 is still a random variable uniformly distributed4; more
importantly b1 can be computed by the same formula
from b2 and tag. This property ensures that to displace a
key originally in bucket b—no matter if b is b1 or b2— it
is possible to calculate its alternate bucket b′ from bucket
index b and the tag stored in bucket b by

b′ = b ⊕ HASH(tag) (1)

As a result, Insert operations can operate using only
information in the table and never have to retrieve keys.

4 b2 is no longer fully independent from b1. For a 1-Byte tag, there
are up to 256 different values of b2 given a specific b1. Microbenchmarks
in Section 5 show that our algorithm still achieves close-to-optimal load
factor, even if b2 has some dependence on b1.
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Figure 3: Cuckoo path. ∅ represents an empty slot.

3.2 Concurrent Cuckoo Hashing

Effectively supporting concurrent access to a cuckoo hash
table is challenging. A previously proposed scheme im-
proved concurrency by trading space [12]. Our hashing
scheme is, to our knowledge, the first approach to support
concurrent access (multi-reader/single-writer) while still
maintaining the high space efficiency of cuckoo hashing
(e.g., > 90% occupancy).

For clarity of presentation, we first define a cuckoo
path as the sequence of displaced keys in an Insert
operation. In Figure 3 “a ⇒ b ⇒ c” is one cuckoo path
to make one bucket available to insert key x.

There are two major obstacles to making the sequential
cuckoo hashing algorithm concurrent:

1. Deadlock risk (writer/writer): An Insert may mod-
ify a set of buckets when moving the keys along the
cuckoo path until one key lands in an available bucket.
It is not known before swapping the keys how many
and which buckets will be modified, because each dis-
placed key depends on the one previously kicked out.
Standard techniques to make Insert atomic and
avoid deadlock, such as acquiring all necessary locks
in advance, are therefore not obviously applicable.

2. False misses (reader/writer): After a key is kicked
out of its original bucket but before it is inserted to its
alternate location, this key is unreachable from both
buckets and temporarily unavailable. If Insert is
not atomic, a reader may complete a Lookup and
return a false miss during a key’s unavailable time.
E.g., in Figure 3, after replacing b with a at bucket
4, but before b relocates to bucket 1, b appears at
neither bucket in the table. A reader looking up b at
this moment may return negative results.

The only scheme previously proposed for concurrent
cuckoo hashing [12] that we know of breaks up Inserts
into a sequence of atomic displacements rather than lock-
ing the entire cuckoo path. It adds extra space at each
bucket as an overflow buffer to temporarily host keys

swapped from other buckets, and thus avoid kicking out
existing keys. Hence, its space overhead (typically two
more slots per bucket as buffer) is much higher than the
basic cuckoo hashing.

Our scheme instead maintains high memory efficiency
and also allows multiple-reader concurrent access to the
hash table. To avoid writer/writer deadlocks, it allows
only one writer at a time—a tradeoff we accept as our tar-
get workloads are read-heavy. To eliminate false misses,
our design changes the order of the basic cuckoo hashing
insertion by:

1) separating discovering a valid cuckoo path from the
execution of this path. We first search for a cuckoo
path, but do not move keys during this search phase.

2) moving keys backwards along the cuckoo path. After a
valid cuckoo path is known, we first move the last key
on the cuckoo path to the free slot, and then move the
second to last key to the empty slot left by the previous
one, and so on. As a result, each swap affects only
one key at a time, which can always be successfully
moved to its new location without any kickout.

Intuitively, the original Insert always moves a selected
key to its other bucket and kicks out another existing key
unless an empty slot is found in that bucket. Hence, there
is always a victim key “floating” before Insert com-
pletes, causing false misses. In contrast, our scheme first
discovers a cuckoo path to an empty slot, then propagates
this empty slot towards the key for insertion along the
path. To illustrate our scheme in Figure 3, we first find a
valid cuckoo path “a⇒ b⇒ c” for key x without editing
any buckets. After the path is known, c is swapped to
the empty slot in bucket 3, followed by relocating b to
the original slot of c in bucket 1 and so on. Finally, the
original slot of a will be available and x can be directly
inserted into that slot.

3.2.1 Optimization: Optimistic Locks for Lookup

Many locking schemes can work with our proposed con-
current cuckoo hashing, as long as they ensure that during
Insert, all displacements along the cuckoo path are
atomic with respect to Lookups. The most straightfor-
ward scheme is to lock the two relevant buckets before
each displacement and each Lookup. Though simple,
this scheme requires locking twice for every Lookup and
in a careful order to avoid deadlock.

Optimizing for the common case, our approach takes
advantage of having a single writer to synchronize
Insert and Lookups with low overhead. Instead of
locking on buckets, it assigns a version counter for each
key, updates its version when displacing this key on
Insert, and looks for a version change during Lookup
to detect any concurrent displacement.
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Lock Striping [12] The simplest way to maintain each
key’s version is to store it inside each key-value object.
This approach, however, adds one counter for each key
and there could be hundred of millions of keys. More im-
portantly, this approach leads to a race condition: to check
or update the version of a given key, we must first lookup
in the hash table to find the key-value object (stored ex-
ternal to the hash table), and this initial lookup is not
protected by any lock and thus not thread-safe.

Instead, we create an array of counters (Figure 2). To
keep this array small, each counter is shared among mul-
tiple keys by hashing (e.g., the i-th counter is shared by
all keys whose hash value is i). Our implementation
keeps 8192 counters in total (or 32 KB). This permits the
counters to fit in cache, but allows substantial concurrent
access. It also keeps the chance of a “false retry” (re-
reading a key due to modification of an unrelated key) to
roughly 0.01%. All counters are initialized to 0 and only
read/updated by atomic memory operations to ensure the
consistency among all threads.

Optimistic Locking [15] Before displacing a key, an
Insert process first increases the relevant counter by
one, indicating to the other Lookups an on-going update
for this key; after the key is moved to its new location, the
counter is again increased by one to indicate the comple-
tion. As a result, the key version is increased by 2 after
each displacement.

Before a Lookup process reads the two buckets for
a given key, it first snapshots the version stored in its
counter: If this version is odd, there must be a concurrent
Insertworking on the same key (or another key sharing
the same counter), and it should wait and retry; otherwise
it proceeds to the two buckets. After it finishes reading
both buckets, it snapshots the counter again and compares
its new version with the old version. If two versions differ,
the writer must have modified this key, and the Lookup
should retry. The proof of correctness in the Appendix
covers the corner cases.

3.2.2 Optimization: Multiple Cuckoo Paths

Our revised Insert process first looks for a valid cuckoo
path before swapping the key along the path. Due to
the separation of search and execution phases, we apply
the following optimization to speed path discovery and
increase the chance of finding an empty slot.

Instead of searching for an empty slot along one cuckoo
path, our Insert process keeps track of multiple paths
in parallel. At each step, multiple victim keys are “kicked
out,” each key extending its own cuckoo path. Whenever
one path reaches an available bucket, this search phase
completes.

With multiple paths to search, insert may find an empty
slot earlier and thus improve the throughput. In addition,

it improves the chance for the hash table to store a new key
before exceeding the maximum number of displacements
performed, thus increasing the load factor. The effect of
having more cuckoo paths is evaluated in Section 5.

4 Concurrent Cache Management

Cache management and eviction is the second important
component of MemC3. When serving small key-value
objects, this too becomes a major source of space over-
head in Memcached, which requires 18 Bytes for each key
(i.e., two pointers and a 2-Byte reference counter) to en-
sure that keys can be evicted safely in a strict LRU order.
String LRU cache management is also a synchronization
bottleneck, as all updates to the cache must be serialized
in Memcached.

This section presents our efforts to make the cache man-
agement space efficient (1 bit per key) and concurrent (no
synchronization to update LRU) by implementing an ap-
proximate LRU cache based on the CLOCK replacement
algorithm [6]. CLOCK is a well-known algorithm; our
contribution lies in integrating CLOCK replacement with
the optimistic, striped locking in our cuckoo algorithm to
reduce both locking and space overhead.

As our target workloads are dominated by small ob-
jects, the space saved by trading perfect for approximate
LRU allows the cache to store siginifcantly more entries,
which in turn improves the hit ratio. As we will show
in Section 5, our cache management achieves 3× to 10×
the query throughput of the default cache in Memcached,
while also improving the hit ratio.

CLOCK Replacement A cache must implement two
functions related to its replacement policy:

• Update to keep track of the recency after querying
a key in the cache; and
• Evict to select keys to purge when inserting keys

into a full cache.

Memcached keeps each key-value entry in a doubly-
linked-list based LRU queue within its own slab class.
After each cache query, Update moves the accessed
entry to the head of its own queue; to free space when the
cache is full, Evict replaces the entry on the tail of the
queue by the new key-value pair. This ensures strict LRU
eviction in each queue, but unfortunately it also requires
two pointers per key for the doubly-linked list and, more
importantly, all Updates to one linked list are serialized.
Every read access requires an update, and thus the queue
permits no concurrency even for read-only workloads.

CLOCK approximates LRU with improved concur-
rency and space efficiency. For each slab class, we main-
tain a circular buffer and a virtual hand; each bit in the
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buffer represents the recency of a different key-value ob-
ject: 1 for “recently used” and 0 otherwise. Each Update
simply sets the recency bit to 1 on each key access; each
Evict checks the bit currently pointed by the hand. If
the current bit is 0, Evict selects the corresponding key-
value object; otherwise we reset this bit to 0 and advance
the hand in the circular buffer until we see a bit of 0.

Integration with Optimistic Cuckoo Hashing The
Evict process must coordinate with reader threads to en-
sure the eviction is safe. Otherwise, a key-value entry may
be overwritten by a new (key,value) pair after eviction,
but threads still accessing the entry for the evicted key
may read dirty data. To this end, the original Memcached
adds to each entry a 2-Byte reference counter to avoid
this rare case. Reading this per-entry counter, the Evict
process knows how many other threads are accessing this
entry concurrently and avoids evicting those busy entries.

Our cache integrates cache eviction with our optimistic
locking scheme for cuckoo hashing. When Evict se-
lects a victim key x by CLOCK, it first increases key x’s
version counter to inform other threads currently reading
x to retry; it then deletes x from the hash table to make
x unreachable for later readers, including those retries;
and finally it increases key x’s version counter again to
complete the change for x. Note that Evict and the hash
table Insert are both serialized (using locks) so when
updating the counters they can not affect each other.

With Evict as above, our cache ensures consistent
GETs by version checking. Each GET first snapshots the
version of the key before accessing the hash table; if the
hash table returns a valid pointer, it follows the pointer and
reads the value assoicated. Afterwards, GET compares the
latest key version with the snapshot. If the verions differ,
then GET may have observed an inconsistent intermediate
state and must retry. The pseudo-code of GET and SET
is shown in Algorithm 1.

5 Evaluation

This section investigates how the proposed techniques
and optimizations contribute to performance and space
efficiency. We “zoom out” the evaluation targets, starting
with the hash table itself, moving to the cache (includ-
ing the hash table and cache eviction management), and
concluding with the full MemC3 system (including the
cache and network). With all optimizations combined,
MemC3 achieves 3× the throughput of Memcached. Our
proposed core hash table if isolated can achieve 5 million
lookups/sec per thread and 35 million lookups/sec when
accessed by 12 threads.

Algorithm 1: Psuedo code of SET and GET
SET(key, value) //insert (key,value) to cache
begin

lock();
ptr = Alloc(); //try to allocate space
if ptr == NULL then

ptr = Evict(); //cache is full, evict old item
memcpy key, value to ptr;
Insert(key, ptr); //index this key in hashtable
unlock();

GET(key) //get value of key from cache
begin

while true do
vs = ReadCounter(key); //key version
ptr= Lookup(key); //check hash table
if ptr == NULL then return NULL ;
prepare response for data in ptr;
ve = ReadCounter(key); //key version
if vs & 1 or vs != ve then
//may read dirty data, try again
continue

Update(key); //update CLOCK
return response

5.1 Platform
All experiments run on a machine with the following con-
figuration. The CPU of this server is optimized for energy
efficiency rather than high performance, and our system
is CPU intensive, so we expect the absolute performance
would be higher on “beefier” servers.

CPU 2× Intel Xeon L5640 @ 2.27GHz
# cores 2 × 6
LLC 2 × 12 MB L3-cache
DRAM 2 × 16 GB DDR SDRAM
NIC 10Gb Ethernet

5.2 Hash Table Microbenchmark
In the following experiments, we first benchmark the
construction of hash tables and measure the space effi-
ciency. Then we examine the lookup performance of a
single thread and the aggregate throughput of 6 threads
all accessing the same hash table, to analyze the contribu-
tion of different optimizations. In this subsection, hash
tables are linked into a workload generator directly and
benchmarked on a local machine.

Space Efficiency and Construction Speed We insert
unique keys into empty cuckoo and chaining hash tables
using a single thread, until each hash table reaches its max-
imum capacity. The chaining hash table, as used in Mem-
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Hash table Size (MB) # keys
(million) Byte/key Load factor Construction rate

(million keys/sec)
Largest
bucket

Chaining 1280 100.66 13.33 − 14.38 13
Cuckoo 1path 1152 127.23 9.49 94.79% 6.19 4
Cuckoo 2path 1152 127.41 9.48 94.93% 7.43 4
Cuckoo 3path 1152 127.67 9.46 95.20% 7.29 4

Table 2: Comparison of space efficiency and construction speed of hash tables. Results in this table are inde-
pendent of the key-value size. Each data point is the average of 10 runs.

cached, stops insertion if 1.5n objects are inserted to a
table of n buckets to prevent imbalanced load across buck-
ets; our cuckoo hash table stops when a single Insert
fails to find an empty slot after 500 consecutive displace-
ments. We initialize both types of hash tables to have a
similar size (around 1.2 GB, including the space cost for
pointers)

Table 2 shows that the cuckoo hash table is much more
compact. Chaining requires 1280 MB to index 100.66
million items (i.e., 13.33 bytes per key); cuckoo hash
tables are both smaller in size (1152 MB) and contain at
least 20% more items, using no more than 10 bytes to
index each key. Both cuckoo and chaining hash tables
store only pointers to objects rather than the real key-value
data; the index size is reduced by 1/3. A smaller index
matters more for small key-value pairs.

Table 2 also compares cuckoo hash tables using differ-
ent numbers of cuckoo paths to search for empty slots
(Section 3.2.2). All of the cuckoo hash tables have high
occupancy (roughly 95%). While more cuckoo paths only
slightly improve the load factor, they boost construction
speed non-trivially. The table with 2-way search achieves
the highest construction rate (7.43 MOPS), as searching
on two cuckoo paths balances the chance to find an empty
slot vs. the resources required to keep track of all paths.

Chaining table construction is twice as fast as cuckoo
hashing, because each insertion requires modifying only
the head of the chain. Though fast, its most loaded bucket
contains 13 objects in a chain (the average bucket has 1.5
objects). In contrast, bucket size in a cuckoo hash table
is fixed (i.e., 4 slots), making it a better match for our
targeted read-intensive workloads.

Cuckoo Insert Although the amortized cost to insert one
key with cuckoo hashing is O(1), it requires more dis-
placements to find an empty slot when the table is more
occupied. We therefore measure the insertion cost—in
terms of both the number of displacements per insert and
the latency—to a hash table with x% of all slots filled,
and vary x from 0% to the maximum possible load fac-
tor. Using two cuckoo paths improves insertion latency,
but using more than that has diminishing or negative re-
turns. Figure 4 further shows the reciprocal throughput,
expressed as latency. When the table is 70% filled, a
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Figure 4: Cuckoo insert, with different number of
parallel searches. Each data point is the average of
10 runs.

cuckoo insert can complete within 100 ns. At 95% oc-
cupancy, insert delay is 1.3 µs with a single cuckoo path,
and 0.84 µs using two.

Factor Analysis of Lookup Performance This experi-
ment investigates how much each optimization in Sec-
tion 3 contributes to the hash table. We break down the
performance gap between the basic chaining hash table
used by Memcached and the final optimistic cuckoo hash
table we proposed, and measure a set of hash tables—
starting from the basic chaining and adding optimizations
cumulatively as follows:

• Chaining is the default hash table of Memcached, serv-
ing as the baseline. A global lock is used to synchronize
multiple threads.
• +hugepage enables 2MB x86 hugepage support in

Linux to reduce TLB misses.
• +int keycmp replaces the default memcmp (used for

full key comparison) by casting each key into an integer
array and then comparing based on the integers.
• +bucket lock replaces the global lock by bucket-based

locks.
• cuckoo applies the naive cuckoo hashing to replace

chaining, without storing the tags in buckets and using
bucket-based locking to coordinate multiple threads.
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Figure 5: Contribution of optimizations to the hash table lookup performance. Optimizations are cumulative.
Each data point is the average of 10 runs.

• +tag stores the 1-Byte hash for each key to improve
cache-locality for both Insert and Lookup (Sec-
tion 3.1).
• +opt lock replaces the per-bucket locking scheme by

optimistic locking to ensure atomic displacement (Sec-
tion 3.2.1).

Single-thread lookup performance is shown in Fig-
ure 5a with lookups all positive or all negative. No lock is
used for this experiment. In general, combining all opti-
mizations improves performance by ∼ 2× compared to the
naive chaining in Memcached for positive lookups, and
by ∼ 5× for negative lookups. Enabling “hugepage” im-
proves the baseline performance slightly; while “int key-
cmp” can almost double the performance over “hugepage”
for both workloads. This is because our keys are relatively
small, so the startup overhead in the built-in memcmp be-
comes relatively large. Using cuckoo hashing without the
“tag” optimization reduces performance, because naive
cuckoo hashing requires more memory references to re-
trieve the keys in all 4 × 2 = 8 candidate locations on
each lookup (as described in Section 3.1). The “tag” opti-
mization therefore significantly improves the throughput
of read-only workloads (2× for positive lookups and 8×
for negative lookups), because it compares the 1-byte tag
first before fetching the real keys outside the table and
thus eliminates a large fraction of CPU cache misses.

Multi-thread lookup performance is shown in Fig-
ure 5b, measured by aggregating the throughput from
6 threads accessing the same hash table. Different from
the previous experiment, a global lock is used for the base-
line chaining (as in Memcached by default) and replaced
by per-bucket locking and finally optimistic locking for
the cuckoo hash table.

The performance gain (∼ 12× for positive and ∼ 25×
for negative lookups) of our proposed hashing scheme
over the default Memcached hash table is large. In Mem-
cached, all hash table operations are serialized by a global
lock, thus the basic chaining hash table in fact performs
worse than its single-thread throughput in Figure 5a. The
slight improvement (< 40%) from “hugepage” and “int
keycmp” indicates that most performance benefit is from
making the data structures concurrent. The “bucket lock”
optimization replaces the global lock in chaining hash
tables and thus significantly improves the performance
by 5× to 6× compared to “int keycmp”. Using the basic
concurrent cuckoo reduces throughput (due to unneces-
sary memory references), while the “tag” optimization
is again essential to boost the performance of cuckoo
hashing and outperform chaining with per-bucket locks.
Finally, the optimistic locking scheme further improves
the performance significantly.

Multi-core Scalability Figure 6 illustrates how the total
hash table throughput changes as more threads access

9



380 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  2  4  6  8  10  12  14  16

M
ill

io
n 

re
qs

/s
ec

Number of threads

cuck. 100% rd
cuck.  90% rd

chain. 100% rd
chain.  90% rd

Figure 6: Hash table throughput vs. number of
threads. Each data point is the average of 10 runs.

the same hash table. We evaluate read-only and 10%
write workloads. The throughput of the default hash ta-
ble does not scale for either workload, because all hash
table operations are serialized. Due to lock contention,
the throughput is actually lower than the single-thread
throughput without locks.

Using our proposed cuckoo hashing for the read-only
workload, the performance scales linearly to 6 threads
because each thread is pinned on a dedicated physical core
on the same 6-core CPU. The next 6 threads are pinned to
the other 6-core CPU in the same way. The slope of the
curve becomes lower due to cross-CPU memory traffic.
Threads after the first 12 are assigned to already-busy
cores, and thus performance does not further increase.

With 10% Insert, our cuckoo hashing reaches a peak
performance of 20 MOPS at 10 threads. Each Insert
requires a lock to be serialized, and after 10 threads the
lock contention becomes the bottleneck.

We further vary the fraction of insert queries in the
workload and measure the best performance achieved by
different hash tables. Figure 7 shows this best perfor-
mance and also the number of threads (between 1 and 16)
required to achieve this performance. In general, cuckoo
hash tables outperform chaining hash tables. When
more write traffic is generated, performance of cuckoo
hash tables declines because Inserts are serialized and
more Lookups happen concurrently. Consequently, the
best performance for 10% insert is achieved using only 9
threads; while with 100% lookup, it scales to 16 threads.
Whereas the best performance of chaining hash tables
(with either a global lock or per-bucket locks) keeps
roughly the same when the workloads become more write-
intensive.

5.3 Cache Microbenchmark
Workload We use YCSB [5] to generate 100 million
key-value queries, following a zipf distribution. Each key
is 16 Bytes and each value 32 Bytes. We evaluate caches
with four configurations:

• chaining+LRU: the default Memcached cache config-
uration, using chaining hash table to index keys and
LRU for replacement;
• cuckoo+LRU: keeping LRU, but replacing the hash

table by concurrent optimistic cuckoo hashing with all
optimizations proposed;
• chaining+CLOCK: an alternative baseline combining

optimized chaining with the CLOCK replacement algo-
rithm. Because CLOCK requires no serialization to up-
date, we also replace the global locking in the chaining
hash table with the per-bucket locks; we further include
our engineering optimizations such as “hugepage”, “int
keycmp”.
• cuckoo+CLOCK: the data structure of MemC3, using

cuckoo hashing to index keys and CLOCK for replace-
ment.

We vary the cache size from 64 MB to 10 GB. Note that
this cache size parameter does not count the space for
the hash table, only the space used to store key-value ob-
jects. All four types of caches are linked into a workload
generator and micro-benchmarked locally.

Cache Throughput Because each GET miss is followed
by a SET to the cache, to understand the cache perfor-
mance with heavier or lighter insertion load, we evaluate
two settings:

• a read-only workload on a “big” cache (i.e., 10 GB,
which is larger than the working set), which had no
cache misses or inserts and is the best case for perfor-
mance;
• a write-intensive workload on a “small” cache (i.e., 1

GB, which is ∼10% of the total working set) where
about 15% GETs miss the cache. Since each miss
triggers a SET in turn, a workload with 15% inserts is
worse than the typical real-world workload reported by
Facebook [3].

Figure 8a shows the results of benchmarking the “big
cache”. Though there are no inserts, the throughput does
not scale for the default cache (chaining+LRU), due to
lock contention on each LRU update (moving an object
to the head of the linked list). Replacing default chain-
ing with the concurrent cuckoo hash table improves the
peak throughput slightly. This suggests that only having
a concurrent hash table is not enough for high perfor-
mance. After replacing the global lock with bucket-based
locks and removing the LRU synchronization bottleneck
by using CLOCK, the chaining-based cache achieves 22
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Figure 8: Cache throughput vs. number of threads. Each data point is the average of 10 runs.

MOPS at 12 threads, and drops quickly due to the CPU
overhead for lock contention after all 12 physical cores
are assigned. Our proposed cuckoo hash table combined
with CLOCK, however, scales to 30 MOPS at 16 threads.

Figure 8b shows that peak performance is achieved at
6 MOPS for the “small cache” by combining CLOCK
and cuckoo hashing. The throughput drop is because the
15% GET misses result in about 15% hash table inserts, so
throughput drops after 6 threads due to serialized inserts.

Space Efficiency Table 3 compares the maximum num-
ber of items (16-Byte key and 32-Byte value) a cache can
store given different cache sizes5. The default LRU with
chaining is the least memory efficient scheme. Replacing
chaining with cuckoo hashing improves the space utiliza-
tion slightly (7%), because one pointer (for hash table
chaining) is eliminated from each key-value object. Keep-
ing chaining but replacing LRU with CLOCK improves

5 The space to store the index hash tables is separate from the given
cache space in Table 3. We set the hash table capacity larger than the
maximum number of items that the cache space can possibly allocate.
If chaining is used, the chaining pointers (inside each key-value object)
are also allocated from the cache space.

space efficiency by 27% because two pointers (for LRU)
and one reference count are saved per object. Combin-
ing CLOCK with cuckoo increases the space efficiency
by 40% over the default. The space benefit arises from
eliminating three pointers and one reference count per
object.

Cache Miss Ratio Compared to the linked list based
approach in Memcached, CLOCK approximates LRU
eviction with much lower space overhead. This ex-
periment sends 100 million queries (95% GET and 5%
SET, in zipf distribution) to a cache with different con-
figurations, and measures the resulting cache miss ratios.
Note that each GET miss will trigger a retrieval to the
backend database system, therefore reducing the cache
miss ratio from 10% to 7% means a reduction of traffic
to the backend by 30%. Table 3 shows when the cache
size is smaller than 256 MB, the LRU-based cache pro-
vides a lower miss ratio than CLOCK. LRU with cuckoo
hashing improves upon LRU with chaining, because it
can store more items. In this experiment, 256 MB is
only about 2.6% of the 10 GB working set. Therefore,
when the cache size is very small, CLOCK—which is an

11
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cache type cache size
64 MB 128 MB 256 MB 512 MB 1 GB 2 GB

# items stored
(million)

chaining+LRU 0.60 1.20 2.40 4.79 9.59 19.17
cuckoo+LRU 0.65 1.29 2.58 5.16 10.32 20.65
chaining+CLOCK 0.76 1.53 3.05 6.10 12.20 24.41
cuckoo+CLOCK 0.84 1.68 3.35 6.71 13.42 26.84

cache miss ratio
95% GET, 5% SET

zipf distribution

chaining+LRU 36.34% 31.91% 27.27% 22.30% 16.80% 10.44%
cuckoo+LRU 35.87% 31.42% 26.76% 21.74% 16.16% 9.80%
chaining+CLOCK 37.07% 32.51% 27.63% 22.20% 15.96% 8.54%
cuckoo+CLOCK 36.46% 31.86% 26.92% 21.38% 14.68% 7.89%

Table 3: Comparison of four types of caches. Results in this table depend on the object size (16-Byte key and
32-Byte value used). Bold entries are the best in their columns. Each data point is the average of 10 runs.
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Figure 9: Full system throughput (over network) v.s.
number of server threads

approximation—has a higher chance of evicting popular
items than strict LRU. For larger caches, CLOCK with
cuckoo hashing outperforms the other two schemes be-
cause the extra space improves the hit ratio more than the
loss of precision decreases it.

5.4 Full System Performance

Workload This experiment uses the same workload as
in Section 5.3, with 95% GETs and 5% SETs generated
by YCSB with zipf distribution. MemC3 runs on the
same server as before, but the clients are 50 different
nodes connected by a 10GB Ethernet. The clients use lib-
memcached 1.0.7 [16] to communicate with our MemC3
server over the network. To amortize the network over-
head, we use multi-get supported by libmemcached [16]
by batching 100 GETs.

In this experiment, we compare four different systems:
original Memcached, optimized Memcached (with non-
algorithmic optimizations such as “hugepage”, “in key-
cmp” and tuned CPU affinity), optimized Memcached
with sharding (one core per Memcached instance) and

MemC3 with all optimizations enabled. Each system is
allocated with 1GB memory space (not including hash
table space).

Throughput Figure 9 shows the throughput as more
server threads are used. Overall, the maximum through-
put of MemC3 (4.4 MOPS) is almost 3× that of the orig-
inal Memcached (1.5 MOPS). The non-algorithmic op-
timizations improve throughput, but their contribution
is dwarfed by the algorithmic and data structure-based
improvements.

A surprising result is that today’s popular technique,
sharding, performs the worst in this experiment. This
occurs because the workload generated by YCSB is
heavy-tailed, and therefore imposes differing load on
the memcached instances. Those serving “hot” keys are
heavily loaded while the others are comparatively idle.
While the severity of this effect depends heavily upon
the workload distribution, it highlights an important bene-
fit of MemC3’s approach of sharing all data between all
threads.

6 Related Work

This section presents two categories of work most related
to MemC3: efforts to improve individual key-value stor-
age nodes in terms of throughput and space efficiency;
and the related work applying cuckoo hashing.

Flash-based key-value stores such as BufferHash [1],
FAWN-DS [2], SkimpyStash [8] and SILT [17] are op-
timized for I/O to external storage such as SSDs (e.g.,
by batching, or log-structuring small writes). Without
slow I/O, the optimization goals for MemC3 are saving
memory and eliminating synchronization. Previous work
in memory-based key-value stores [4, 20, 13] boost per-
formance on multi-core CPUs or GP-GPUs by sharding
data to dedicated cores to avoid synchronization. MemC3
instead targets read-mostly workloads and deliberately
avoids sharding to ensure high performance even for “hot”
keys. Similar to MemC3, Masstree [18] also applied ex-
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tensive optimizations for cache locality and optimistic
concurrency control, but used very different techniques
because it was a variation of B+-tree to support range
queries. RAMCloud [22] focused on fast data recon-
struction from on-disk replicas. In contrast, as a cache,
MemC3 specifically takes advantage of the transience of
the data it stores to improve space efficiency.

Cuckoo hashing [23] is an open-addressing hashing
scheme with high space efficiency that assigns multiple
candidate locations to each item and allows inserts to kick
existing items to their candidate locations. FlashStore [7]
applied cuckoo hashing by assigning each item 16 loca-
tions so that each lookup checks up to 16 locations, while
our scheme requires reading only 2 locations in the hash
table. We previously proposed partial key cuckoo hashing
in the SILT system [17] to achieve high occupancy with
only two hash functions, but our earlier algorithm limited
the maximum hash table size and was therefore unsuit-
able for large in-memory caches. Our improved algorithm
eliminates this limitation while retaining high memory ef-
ficiency. To make cuckoo operations concurrent, the prior
approach of Herlihy et al. [12] traded space for concur-
rency. In contrast, our optimistic locking scheme allows
concurrent readers without losing space efficiency.

7 Conclusion
MemC3 is an in-memory key-value store that is designed
to provide caching for read-mostly workloads. It is built
on carefully designed and engineered algorithms and data
structures with a set of architecture-aware and workload-
aware optimizations to achieve high concurrency, space-
efficiency and cache-locality. In particular, MemC3 uses
a new hashing scheme—optimistic cuckoo hashing—that
achieves over 90% space occupancy and allows concur-
rent read access without locking. MemC3 also employs
CLOCK-based cache management with only 1-bit per
entry to approximate LRU eviction. Compared to Mem-
cached, it reduces space overhead by more than 20 Bytes
per entry. Our evaluation shows the throughput of our
system is 3× higher than the original Memcached while
storing 30% more objects for small key-value pairs.
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A Correctness of the optimistic
locking on keys

This appendix examines the possible interleavings of
two threads in order to show that the optimistic locking
scheme correctly prevents Lookup from returning wrong
or corrupted data. Assume that threads T1 and T2 concur-
rently access the hash table. When both threads perform
Lookup, correctness is trivial. When both Insert, they
are serialized (Insert is guarded by a lock). The remain-
ing case occurs when T1 is Insert and T2 is Lookup.

During Insert, T1 may perform a sequence of dis-
placement operations where each displacement is pro-
ceeded and followed by incrementing the counter. With-
out loss of generality, assume T1 is displacing key1 to
a destination slot that originally hosts key0. Each slot
contains a tag and a pointer, as shown:

tag0 ptr0 

key0 tag1 ptr1 key1
lookup

T2
displaceT1

key0 differs from key1 because there are no two iden-
tical keys in the hash table, which is guaranteed because
every Insert effectively does a Lookup first. If T2
reads the same slot as T1 before T1 completes its update:

case1: T2 is looking for key0 . Because Insert
moves backwards along a cuckoo path (Section 3.2),
key0 must have been displaced to its other bucket (say
bucket i), thus
• if T2 has not checked bucket i, it will find key0 when

it proceeds to that bucket;
• if T2 checked bucket i and did not find key0 there, the

operation that moves key0 to bucket i must happen
after T2 reads bucket i. Therefore, T2 will see a change
in key0’s version counter and make a retry.

case2: T2 is looking for key1 . Since T1 will atomically
update key1’s version before and after the displacement,
no matter what T2 reads, it will detect the version change
and retry.

case3: T2 is looking for a key � key0 or key1 . No
matter what T2 sees in the slot, it will be rejected even-
tually, either by the tags or by the full key compari-
son following the pointers. This is because the pointer
field of this slot fetched by T2 is either ptr(key0) or
ptr(key1) rather than some corrupted pointer, ensured
by the atomic read/write for 64-bit aligned pointers on
64-bit machines.6

6quadword memory access aligned on a 64-bit boundary are atomic
on Pentium and newer CPUs [14]
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Abstract: Memcached is a well known, simple, in-
memory caching solution. This paper describes how
Facebook leverages memcached as a building block to
construct and scale a distributed key-value store that
supports the world’s largest social network. Our system
handles billions of requests per second and holds tril-
lions of items to deliver a rich experience for over a bil-
lion users around the world.

1 Introduction
Popular and engaging social networking sites present
significant infrastructure challenges. Hundreds of mil-
lions of people use these networks every day and im-
pose computational, network, and I/O demands that tra-
ditional web architectures struggle to satisfy. A social
network’s infrastructure needs to (1) allow near real-
time communication, (2) aggregate content on-the-fly
from multiple sources, (3) be able to access and update
very popular shared content, and (4) scale to process
millions of user requests per second.

We describe how we improved the open source ver-
sion of memcached [14] and used it as a building block to
construct a distributed key-value store for the largest so-
cial network in the world. We discuss our journey scal-
ing from a single cluster of servers to multiple geograph-
ically distributed clusters. To the best of our knowledge,
this system is the largest memcached installation in the
world, processing over a billion requests per second and
storing trillions of items.

This paper is the latest in a series of works that have
recognized the flexibility and utility of distributed key-
value stores [1, 2, 5, 6, 12, 14, 34, 36]. This paper fo-
cuses on memcached—an open-source implementation
of an in-memory hash table—as it provides low latency
access to a shared storage pool at low cost. These quali-
ties enable us to build data-intensive features that would
otherwise be impractical. For example, a feature that
issues hundreds of database queries per page request
would likely never leave the prototype stage because it
would be too slow and expensive. In our application,

however, web pages routinely fetch thousands of key-
value pairs from memcached servers.

One of our goals is to present the important themes
that emerge at different scales of our deployment. While
qualities like performance, efficiency, fault-tolerance,
and consistency are important at all scales, our experi-
ence indicates that at specific sizes some qualities re-
quire more effort to achieve than others. For exam-
ple, maintaining data consistency can be easier at small
scales if replication is minimal compared to larger ones
where replication is often necessary. Additionally, the
importance of finding an optimal communication sched-
ule increases as the number of servers increase and net-
working becomes the bottleneck.

This paper includes four main contributions: (1)
We describe the evolution of Facebook’s memcached-
based architecture. (2) We identify enhancements to
memcached that improve performance and increase
memory efficiency. (3) We highlight mechanisms that
improve our ability to operate our system at scale. (4)
We characterize the production workloads imposed on
our system.

2 Overview
The following properties greatly influence our design.
First, users consume an order of magnitude more con-
tent than they create. This behavior results in a workload
dominated by fetching data and suggests that caching
can have significant advantages. Second, our read op-
erations fetch data from a variety of sources such as
MySQL databases, HDFS installations, and backend
services. This heterogeneity requires a flexible caching
strategy able to store data from disparate sources.
Memcached provides a simple set of operations (set,

get, and delete) that makes it attractive as an elemen-
tal component in a large-scale distributed system. The
open-source version we started with provides a single-
machine in-memory hash table. In this paper, we discuss
how we took this basic building block, made it more ef-
ficient, and used it to build a distributed key-value store
that can process billions of requests per second. Hence-
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database

web
server

memcache

1. get k 2. SELECT ...

3. set (k,v)

database

web
server

memcache

2. delete k

1. UPDATE ...

Figure 1: Memcache as a demand-filled look-aside
cache. The left half illustrates the read path for a web
server on a cache miss. The right half illustrates the
write path.

forth, we use ‘memcached’ to refer to the source code
or a running binary and ‘memcache’ to describe the dis-
tributed system.
Query cache: We rely on memcache to lighten the read
load on our databases. In particular, we use memcache
as a demand-filled look-aside cache as shown in Fig-
ure 1. When a web server needs data, it first requests
the value from memcache by providing a string key. If
the item addressed by that key is not cached, the web
server retrieves the data from the database or other back-
end service and populates the cache with the key-value
pair. For write requests, the web server issues SQL state-
ments to the database and then sends a delete request to
memcache that invalidates any stale data. We choose to
delete cached data instead of updating it because deletes
are idempotent. Memcache is not the authoritative source
of the data and is therefore allowed to evict cached data.

While there are several ways to address excessive
read traffic on MySQL databases, we chose to use
memcache. It was the best choice given limited engi-
neering resources and time. Additionally, separating our
caching layer from our persistence layer allows us to ad-
just each layer independently as our workload changes.
Generic cache: We also leverage memcache as a more
general key-value store. For example, engineers use
memcache to store pre-computed results from sophisti-
cated machine learning algorithms which can then be
used by a variety of other applications. It takes little ef-
fort for new services to leverage the existing marcher
infrastructure without the burden of tuning, optimizing,
provisioning, and maintaining a large server fleet.

As is, memcached provides no server-to-server co-
ordination; it is an in-memory hash table running on
a single server. In the remainder of this paper we de-
scribe how we built a distributed key-value store based
on memcached capable of operating under Facebook’s
workload. Our system provides a suite of configu-
ration, aggregation, and routing services to organize
memcached instances into a distributed system.
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Figure 2: Overall architecture

We structure our paper to emphasize the themes that
emerge at three different deployment scales. Our read-
heavy workload and wide fan-out is the primary con-
cern when we have one cluster of servers. As it becomes
necessary to scale to multiple frontend clusters, we ad-
dress data replication between these clusters. Finally, we
describe mechanisms to provide a consistent user ex-
perience as we spread clusters around the world. Op-
erational complexity and fault tolerance is important at
all scales. We present salient data that supports our de-
sign decisions and refer the reader to work by Atikoglu
et al. [8] for a more detailed analysis of our workload. At
a high-level, Figure 2 illustrates this final architecture in
which we organize co-located clusters into a region and
designate a master region that provides a data stream to
keep non-master regions up-to-date.

While evolving our system we prioritize two ma-
jor design goals. (1) Any change must impact a user-
facing or operational issue. Optimizations that have lim-
ited scope are rarely considered. (2) We treat the prob-
ability of reading transient stale data as a parameter to
be tuned, similar to responsiveness. We are willing to
expose slightly stale data in exchange for insulating a
backend storage service from excessive load.

3 In a Cluster: Latency and Load
We now consider the challenges of scaling to thousands
of servers within a cluster. At this scale, most of our
efforts focus on reducing either the latency of fetching
cached data or the load imposed due to a cache miss.

3.1 Reducing Latency
Whether a request for data results in a cache hit or miss,
the latency of memcache’s response is a critical factor
in the response time of a user’s request. A single user
web request can often result in hundreds of individual
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memcache get requests. For example, loading one of our
popular pages results in an average of 521 distinct items
fetched from memcache.1

We provision hundreds of memcached servers in a
cluster to reduce load on databases and other services.
Items are distributed across the memcached servers
through consistent hashing [22]. Thus web servers have
to routinely communicate with many memcached servers
to satisfy a user request. As a result, all web servers
communicate with every memcached server in a short
period of time. This all-to-all communication pattern
can cause incast congestion [30] or allow a single server
to become the bottleneck for many web servers. Data
replication often alleviates the single-server bottleneck
but leads to significant memory inefficiencies in the
common case.

We reduce latency mainly by focusing on the
memcache client, which runs on each web server. This
client serves a range of functions, including serializa-
tion, compression, request routing, error handling, and
request batching. Clients maintain a map of all available
servers, which is updated through an auxiliary configu-
ration system.
Parallel requests and batching: We structure our web-
application code to minimize the number of network
round trips necessary to respond to page requests. We
construct a directed acyclic graph (DAG) representing
the dependencies between data. A web server uses this
DAG to maximize the number of items that can be
fetched concurrently. On average these batches consist
of 24 keys per request2.
Client-server communication: Memcached servers do
not communicate with each other. When appropriate,
we embed the complexity of the system into a stateless
client rather than in the memcached servers. This greatly
simplifies memcached and allows us to focus on making
it highly performant for a more limited use case. Keep-
ing the clients stateless enables rapid iteration in the
software and simplifies our deployment process. Client
logic is provided as two components: a library that can
be embedded into applications or as a standalone proxy
named mcrouter. This proxy presents a memcached
server interface and routes the requests/replies to/from
other servers.

Clients use UDP and TCP to communicate with
memcached servers. We rely on UDP for get requests to
reduce latency and overhead. Since UDP is connection-
less, each thread in the web server is allowed to directly
communicate with memcached servers directly, bypass-
ing mcrouter, without establishing and maintaining a

1The 95th percentile of fetches for that page is 1,740 items.
2The 95th percentile is 95 keys per request.
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Figure 3: Get latency for UDP, TCP via mcrouter

connection thereby reducing the overhead. The UDP
implementation detects packets that are dropped or re-
ceived out of order (using sequence numbers) and treats
them as errors on the client side. It does not provide
any mechanism to try to recover from them. In our in-
frastructure, we find this decision to be practical. Un-
der peak load, memcache clients observe that 0.25% of
get requests are discarded. About 80% of these drops
are due to late or dropped packets, while the remainder
are due to out of order delivery. Clients treat get er-
rors as cache misses, but web servers will skip insert-
ing entries into memcached after querying for data to
avoid putting additional load on a possibly overloaded
network or server.

For reliability, clients perform set and delete opera-
tions over TCP through an instance of mcrouter run-
ning on the same machine as the web server. For opera-
tions where we need to confirm a state change (updates
and deletes) TCP alleviates the need to add a retry mech-
anism to our UDP implementation.

Web servers rely on a high degree of parallelism and
over-subscription to achieve high throughput. The high
memory demands of open TCP connections makes it
prohibitively expensive to have an open connection be-
tween every web thread and memcached server without
some form of connection coalescing via mcrouter. Co-
alescing these connections improves the efficiency of
the server by reducing the network, CPU and memory
resources needed by high throughput TCP connections.
Figure 3 shows the average, median, and 95th percentile
latencies of web servers in production getting keys over
UDP and through mcrouter via TCP. In all cases, the
standard deviation from these averages was less than
1%. As the data show, relying on UDP can lead to a
20% reduction in latency to serve requests.
Incast congestion: Memcache clients implement flow-
control mechanisms to limit incast congestion. When a
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Figure 4: Average time web requests spend waiting to
be scheduled

client requests a large number of keys, the responses
can overwhelm components such as rack and cluster
switches if those responses arrive all at once. Clients
therefore use a sliding window mechanism [11] to con-
trol the number of outstanding requests. When the client
receives a response, the next request can be sent. Similar
to TCP’s congestion control, the size of this sliding win-
dow grows slowly upon a successful request and shrinks
when a request goes unanswered. The window applies
to all memcache requests independently of destination;
whereas TCP windows apply only to a single stream.

Figure 4 shows the impact of the window size on the
amount of time user requests are in the runnable state
but are waiting to be scheduled inside the web server.
The data was gathered from multiple racks in one fron-
tend cluster. User requests exhibit a Poisson arrival pro-
cess at each web server. According to Little’s Law [26],
L = λW , the number of requests queued in the server
(L) is directly proportional to the average time a request
takes to process (W ), assuming that the input request
rate is constant (which it was for our experiment). The
time web requests are waiting to be scheduled is a di-
rect indication of the number of web requests in the
system. With lower window sizes, the application will
have to dispatch more groups of memcache requests se-
rially, increasing the duration of the web request. As the
window size gets too large, the number of simultaneous
memcache requests causes incast congestion. The result
will be memcache errors and the application falling back
to the persistent storage for the data, which will result
in slower processing of web requests. There is a balance
between these extremes where unnecessary latency can
be avoided and incast congestion can be minimized.

3.2 Reducing Load
We use memcache to reduce the frequency of fetch-
ing data along more expensive paths such as database
queries. Web servers fall back to these paths when the
desired data is not cached. The following subsections
describe three techniques for decreasing load.
3.2.1 Leases

We introduce a new mechanism we call leases to address
two problems: stale sets and thundering herds. A stale
set occurs when a web server sets a value in memcache
that does not reflect the latest value that should be
cached. This can occur when concurrent updates to
memcache get reordered. A thundering herd happens
when a specific key undergoes heavy read and write ac-
tivity. As the write activity repeatedly invalidates the re-
cently set values, many reads default to the more costly
path. Our lease mechanism solves both problems.

Intuitively, a memcached instance gives a lease to a
client to set data back into the cache when that client ex-
periences a cache miss. The lease is a 64-bit token bound
to the specific key the client originally requested. The
client provides the lease token when setting the value
in the cache. With the lease token, memcached can ver-
ify and determine whether the data should be stored and
thus arbitrate concurrent writes. Verification can fail if
memcached has invalidated the lease token due to re-
ceiving a delete request for that item. Leases prevent
stale sets in a manner similar to how load-link/store-
conditional operates [20].

A slight modification to leases also mitigates thunder-
ing herds. Each memcached server regulates the rate at
which it returns tokens. By default, we configure these
servers to return a token only once every 10 seconds per
key. Requests for a key’s value within 10 seconds of a
token being issued results in a special notification telling
the client to wait a short amount of time. Typically, the
client with the lease will have successfully set the data
within a few milliseconds. Thus, when waiting clients
retry the request, the data is often present in cache.

To illustrate this point we collect data for all cache
misses of a set of keys particularly susceptible to thun-
dering herds for one week. Without leases, all of the
cache misses resulted in a peak database query rate of
17K/s. With leases, the peak database query rate was
1.3K/s. Since we provision our databases based on peak
load, our lease mechanism translates to a significant ef-
ficiency gain.
Stale values: With leases, we can minimize the appli-
cation’s wait time in certain use cases. We can further
reduce this time by identifying situations in which re-
turning slightly out-of-date data is acceptable. When a
key is deleted, its value is transferred to a data struc-
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ture that holds recently deleted items, where it lives for
a short time before being flushed. A get request can re-
turn a lease token or data that is marked as stale. Appli-
cations that can continue to make forward progress with
stale data do not need to wait for the latest value to be
fetched from the databases. Our experience has shown
that since the cached value tends to be a monotonically
increasing snapshot of the database, most applications
can use a stale value without any changes.

3.2.2 Memcache Pools

Using memcache as a general-purpose caching layer re-
quires workloads to share infrastructure despite differ-
ent access patterns, memory footprints, and quality-of-
service requirements. Different applications’ workloads
can produce negative interference resulting in decreased
hit rates.

To accommodate these differences, we partition a
cluster’s memcached servers into separate pools. We
designate one pool (named wildcard) as the default and
provision separate pools for keys whose residence in
wildcard is problematic. For example, we may provi-
sion a small pool for keys that are accessed frequently
but for which a cache miss is inexpensive. We may also
provision a large pool for infrequently accessed keys for
which cache misses are prohibitively expensive.

Figure 5 shows the working set of two different sets
of items, one that is low-churn and another that is high-
churn. The working set is approximated by sampling all
operations on one out of every one million items. For
each of these items, we collect the minimum, average,
and maximum item size. These sizes are summed and
multiplied by one million to approximate the working
set. The difference between the daily and weekly work-
ing sets indicates the amount of churn. Items with differ-
ent churn characteristics interact in an unfortunate way:
low-churn keys that are still valuable are evicted before
high-churn keys that are no longer being accessed. Plac-
ing these keys in different pools prevents this kind of
negative interference, and allows us to size high-churn
pools appropriate to their cache miss cost. Section 7 pro-
vides further analysis.

3.2.3 Replication Within Pools

Within some pools, we use replication to improve the la-
tency and efficiency of memcached servers. We choose
to replicate a category of keys within a pool when (1)
the application routinely fetches many keys simultane-
ously, (2) the entire data set fits in one or two memcached
servers and (3) the request rate is much higher than what
a single server can manage.

We favor replication in this instance over further di-
viding the key space. Consider a memcached server
holding 100 items and capable of responding to 500k
requests per second. Each request asks for 100 keys.
The difference in memcached overhead for retrieving
100 keys per request instead of 1 key is small. To scale
the system to process 1M requests/sec, suppose that we
add a second server and split the key space equally be-
tween the two. Clients now need to split each request for
100 keys into two parallel requests for ∼50 keys. Con-
sequently, both servers still have to process 1M requests
per second. However, if we replicate all 100 keys to mul-
tiple servers, a client’s request for 100 keys can be sent
to any replica. This reduces the load per server to 500k
requests per second. Each client chooses replicas based
on its own IP address. This approach requires delivering
invalidations to all replicas to maintain consistency.

3.3 Handling Failures

The inability to fetch data from memcache results in ex-
cessive load to backend services that could cause fur-
ther cascading failures. There are two scales at which
we must address failures: (1) a small number of hosts
are inaccessible due to a network or server failure or (2)
a widespread outage that affects a significant percent-
age of the servers within the cluster. If an entire clus-
ter has to be taken offline, we divert user web requests
to other clusters which effectively removes all the load
from memcache within that cluster.

For small outages we rely on an automated remedi-
ation system [3]. These actions are not instant and can
take up to a few minutes. This duration is long enough to
cause the aforementioned cascading failures and thus we
introduce a mechanism to further insulate backend ser-
vices from failures. We dedicate a small set of machines,
named Gutter, to take over the responsibilities of a few
failed servers. Gutter accounts for approximately 1% of
the memcached servers in a cluster.

When a memcached client receives no response to its
get request, the client assumes the server has failed and
issues the request again to a special Gutter pool. If this
second request misses, the client will insert the appropri-
ate key-value pair into the Gutter machine after querying
the database. Entries in Gutter expire quickly to obviate
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Gutter invalidations. Gutter limits the load on backend
services at the cost of slightly stale data.

Note that this design differs from an approach in
which a client rehashes keys among the remaining
memcached servers. Such an approach risks cascading
failures due to non-uniform key access frequency. For
example, a single key can account for 20% of a server’s
requests. The server that becomes responsible for this
hot key might also become overloaded. By shunting load
to idle servers we limit that risk.

Ordinarily, each failed request results in a hit on the
backing store, potentially overloading it. By using Gut-
ter to store these results, a substantial fraction of these
failures are converted into hits in the gutter pool thereby
reducing load on the backing store. In practice, this sys-
tem reduces the rate of client-visible failures by 99%
and converts 10%–25% of failures into hits each day. If
a memcached server fails entirely, hit rates in the gutter
pool generally exceed 35% in under 4 minutes and often
approach 50%. Thus when a few memcached servers are
unavailable due to failure or minor network incidents,
Gutter protects the backing store from a surge of traffic.

4 In a Region: Replication
It is tempting to buy more web and memcached servers
to scale a cluster as demand increases. However, naı̈vely
scaling the system does not eliminate all problems.
Highly requested items will only become more popular
as more web servers are added to cope with increased
user traffic. Incast congestion also worsens as the num-
ber of memcached servers increases. We therefore split
our web and memcached servers into multiple frontend
clusters. These clusters, along with a storage cluster that
contain the databases, define a region. This region ar-
chitecture also allows for smaller failure domains and
a tractable network configuration. We trade replication
of data for more independent failure domains, tractable
network configuration, and a reduction of incast conges-
tion.

This section analyzes the impact of multiple frontend
clusters that share the same storage cluster. Specifically
we address the consequences of allowing data replica-
tion across these clusters and the potential memory effi-
ciencies of disallowing this replication.

4.1 Regional Invalidations
While the storage cluster in a region holds the authori-
tative copy of data, user demand may replicate that data
into frontend clusters. The storage cluster is responsi-
ble for invalidating cached data to keep frontend clus-
ters consistent with the authoritative versions. As an op-
timization, a web server that modifies data also sends
invalidations to its own cluster to provide read-after-

Memcache 

Mcrouter 

Update 
Operations Storage 

MySQL McSqueal 
Commit Log 

Storage Server 

Figure 6: Invalidation pipeline showing keys that need
to be deleted via the daemon (mcsqueal).

write semantics for a single user request and reduce the
amount of time stale data is present in its local cache.

SQL statements that modify authoritative state are
amended to include memcache keys that need to be
invalidated once the transaction commits [7]. We de-
ploy invalidation daemons (named mcsqueal) on every
database. Each daemon inspects the SQL statements that
its database commits, extracts any deletes, and broad-
casts these deletes to the memcache deployment in every
frontend cluster in that region. Figure 6 illustrates this
approach. We recognize that most invalidations do not
delete data; indeed, only 4% of all deletes issued result
in the actual invalidation of cached data.
Reducing packet rates: While mcsqueal could con-
tact memcached servers directly, the resulting rate of
packets sent from a backend cluster to frontend clus-
ters would be unacceptably high. This packet rate prob-
lem is a consequence of having many databases and
many memcached servers communicating across a clus-
ter boundary. Invalidation daemons batch deletes into
fewer packets and send them to a set of dedicated servers
running mcrouter instances in each frontend cluster.
These mcrouters then unpack individual deletes from
each batch and route those invalidations to the right
memcached server co-located within the frontend clus-
ter. The batching results in an 18× improvement in the
median number of deletes per packet.
Invalidation via web servers: It is simpler for web
servers to broadcast invalidations to all frontend clus-
ters. This approach unfortunately suffers from two prob-
lems. First, it incurs more packet overhead as web
servers are less effective at batching invalidations than
mcsqueal pipeline. Second, it provides little recourse
when a systemic invalidation problem arises such as
misrouting of deletes due to a configuration error. In the
past, this would often require a rolling restart of the en-
tire memcache infrastructure, a slow and disruptive pro-
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A (Cluster) B (Region)
Median number of users 30 1
Gets per second 3.26 M 458 K
Median value size 10.7 kB 4.34 kB

Table 1: Deciding factors for cluster or regional replica-
tion of two item families

cess we want to avoid. In contrast, embedding invalida-
tions in SQL statements, which databases commit and
store in reliable logs, allows mcsqueal to simply replay
invalidations that may have been lost or misrouted.

4.2 Regional Pools

Each cluster independently caches data depending on
the mix of the user requests that are sent to it. If
users’ requests are randomly routed to all available fron-
tend clusters then the cached data will be roughly the
same across all the frontend clusters. This allows us to
take a cluster offline for maintenance without suffer-
ing from reduced hit rates. Over-replicating the data can
be memory inefficient, especially for large, rarely ac-
cessed items. We can reduce the number of replicas by
having multiple frontend clusters share the same set of
memcached servers. We call this a regional pool.

Crossing cluster boundaries incurs more latency. In
addition, our networks have 40% less average available
bandwidth over cluster boundaries than within a single
cluster. Replication trades more memcached servers for
less inter-cluster bandwidth, lower latency, and better
fault tolerance. For some data, it is more cost efficient
to forgo the advantages of replicating data and have a
single copy per region. One of the main challenges of
scaling memcache within a region is deciding whether
a key needs to be replicated across all frontend clusters
or have a single replica per region. Gutter is also used
when servers in regional pools fail.

Table 1 summarizes two kinds of items in our appli-
cation that have large values. We have moved one kind
(B) to a regional pool while leaving the other (A) un-
touched. Notice that clients access items falling into cat-
egory B an order of magnitude less than those in cate-
gory A. Category B’s low access rate makes it a prime
candidate for a regional pool since it does not adversely
impact inter-cluster bandwidth. Category B would also
occupy 25% of each cluster’s wildcard pool so region-
alization provides significant storage efficiencies. Items
in category A, however, are twice as large and accessed
much more frequently, disqualifying themselves from
regional consideration. The decision to migrate data into
regional pools is currently based on a set of manual
heuristics based on access rates, data set size, and num-
ber of unique users accessing particular items.

4.3 Cold Cluster Warmup
When we bring a new cluster online, an existing one
fails, or perform scheduled maintenance the caches will
have very poor hit rates diminishing the ability to in-
sulate backend services. A system called Cold Clus-
ter Warmup mitigates this by allowing clients in the
“cold cluster” (i.e. the frontend cluster that has an empty
cache) to retrieve data from the “warm cluster” (i.e. a
cluster that has caches with normal hit rates) rather than
the persistent storage. This takes advantage of the afore-
mentioned data replication that happens across frontend
clusters. With this system cold clusters can be brought
back to full capacity in a few hours instead of a few days.

Care must be taken to avoid inconsistencies due to
race conditions. For example, if a client in the cold clus-
ter does a database update, and a subsequent request
from another client retrieves the stale value from the
warm cluster before the warm cluster has received the
invalidation, that item will be indefinitely inconsistent
in the cold cluster. Memcached deletes support nonzero
hold-off times that reject add operations for the spec-
ified hold-off time. By default, all deletes to the cold
cluster are issued with a two second hold-off. When a
miss is detected in the cold cluster, the client re-requests
the key from the warm cluster and adds it into the cold
cluster. The failure of the add indicates that newer data
is available on the database and thus the client will re-
fetch the value from the databases. While there is still a
theoretical possibility that deletes get delayed more than
two seconds, this is not true for the vast majority of the
cases. The operational benefits of cold cluster warmup
far outweigh the cost of rare cache consistency issues.
We turn it off once the cold cluster’s hit rate stabilizes
and the benefits diminish.

5 Across Regions: Consistency
There are several advantages to a broader geographic
placement of data centers. First, putting web servers
closer to end users can significantly reduce latency.
Second, geographic diversity can mitigate the effects
of events such as natural disasters or massive power
failures. And third, new locations can provide cheaper
power and other economic incentives. We obtain these
advantages by deploying to multiple regions. Each re-
gion consists of a storage cluster and several frontend
clusters. We designate one region to hold the master
databases and the other regions to contain read-only
replicas; we rely on MySQL’s replication mechanism
to keep replica databases up-to-date with their mas-
ters. In this design, web servers experience low latency
when accessing either the local memcached servers or
the local database replicas. When scaling across mul-
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tiple regions, maintaining consistency between data in
memcache and the persistent storage becomes the pri-
mary technical challenge. These challenges stem from
a single problem: replica databases may lag behind the
master database.

Our system represents just one point in the wide
spectrum of consistency and performance trade-offs.
The consistency model, like the rest of the system, has
evolved over the years to suit the scale of the site. It
mixes what can be practically built without sacrificing
our high performance requirements. The large volume
of data that the system manages implies that any minor
changes that increase network or storage requirements
have non-trivial costs associated with them. Most ideas
that provide stricter semantics rarely leave the design
phase because they become prohibitively expensive. Un-
like many systems that are tailored to an existing use
case, memcache and Facebook were developed together.
This allowed the applications and systems engineers to
work together to find a model that is sufficiently easy
for the application engineers to understand yet perfor-
mant and simple enough for it to work reliably at scale.
We provide best-effort eventual consistency but place an
emphasis on performance and availability. Thus the sys-
tem works very well for us in practice and we think we
have found an acceptable trade-off.
Writes from a master region: Our earlier decision re-
quiring the storage cluster to invalidate data via daemons
has important consequences in a multi-region architec-
ture. In particular, it avoids a race condition in which
an invalidation arrives before the data has been repli-
cated from the master region. Consider a web server in
the master region that has finished modifying a database
and seeks to invalidate now stale data. Sending invalida-
tions within the master region is safe. However, having
the web server invalidate data in a replica region may be
premature as the changes may not have been propagated
to the replica databases yet. Subsequent queries for the
data from the replica region will race with the replica-
tion stream thereby increasing the probability of setting
stale data into memcache. Historically, we implemented
mcsqueal after scaling to multiple regions.
Writes from a non-master region: Now consider a
user who updates his data from a non-master region
when replication lag is excessively large. The user’s next
request could result in confusion if his recent change is
missing. A cache refill from a replica’s database should
only be allowed after the replication stream has caught
up. Without this, subsequent requests could result in the
replica’s stale data being fetched and cached.

We employ a remote marker mechanism to minimize
the probability of reading stale data. The presence of the

marker indicates that data in the local replica database
are potentially stale and the query should be redirected
to the master region. When a web server wishes to up-
date data that affects a key k, that server (1) sets a re-
mote marker rk in the region, (2) performs the write to
the master embedding k and rk to be invalidated in the
SQL statement, and (3) deletes k in the local cluster. On
a subsequent request for k, a web server will be unable
to find the cached data, check whether rk exists, and di-
rect its query to the master or local region depending on
the presence of rk. In this situation, we explicitly trade
additional latency when there is a cache miss, for a de-
creased probability of reading stale data.

We implement remote markers by using a regional
pool. Note that this mechanism may reveal stale in-
formation during concurrent modifications to the same
key as one operation may delete a remote marker that
should remain present for another in-flight operation. It
is worth highlighting that our usage of memcache for re-
mote markers departs in a subtle way from caching re-
sults. As a cache, deleting or evicting keys is always a
safe action; it may induce more load on databases, but
does not impair consistency. In contrast, the presence of
a remote marker helps distinguish whether a non-master
database holds stale data or not. In practice, we find both
the eviction of remote markers and situations of concur-
rent modification to be rare.
Operational considerations: Inter-region communica-
tion is expensive since data has to traverse large geo-
graphical distances (e.g. across the continental United
States). By sharing the same channel of communication
for the delete stream as the database replication we gain
network efficiency on lower bandwidth connections.

The aforementioned system for managing deletes in
Section 4.1 is also deployed with the replica databases to
broadcast the deletes to memcached servers in the replica
regions. Databases and mcrouters buffer deletes when
downstream components become unresponsive. A fail-
ure or delay in any of the components results in an in-
creased probability of reading stale data. The buffered
deletes are replayed once these downstream components
are available again. The alternatives involve taking a
cluster offline or over-invalidating data in frontend clus-
ters when a problem is detected. These approaches result
in more disruptions than benefits given our workload.

6 Single Server Improvements
The all-to-all communication pattern implies that a sin-
gle server can become a bottleneck for a cluster. This
section describes performance optimizations and mem-
ory efficiency gains in memcached which allow better
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scaling within clusters. Improving single server cache
performance is an active research area [9, 10, 28, 25].

6.1 Performance Optimizations

We began with a single-threaded memcached which used
a fixed-size hash table. The first major optimizations
were to: (1) allow automatic expansion of the hash ta-
ble to avoid look-up times drifting to O(n), (2) make the
server multi-threaded using a global lock to protect mul-
tiple data structures, and (3) giving each thread its own
UDP port to reduce contention when sending replies and
later spreading interrupt processing overhead. The first
two optimizations were contributed back to the open
source community. The remainder of this section ex-
plores further optimizations that are not yet available in
the open source version.

Our experimental hosts have an Intel Xeon
CPU (X5650) running at 2.67GHz (12 cores and
12 hyperthreads), an Intel 82574L gigabit ethernet
controller and 12GB of memory. Production servers
have additional memory. Further details have been
previously published [4]. The performance test setup
consists of fifteen clients generating memcache traffic
to a single memcached server with 24 threads. The
clients and server are co-located on the same rack and
connected through gigabit ethernet. These tests measure
the latency of memcached responses over two minutes
of sustained load.
Get Performance: We first investigate the effect of re-
placing our original multi-threaded single-lock imple-
mentation with fine-grained locking. We measured hits
by pre-populating the cache with 32-byte values before
issuing memcached requests of 10 keys each. Figure 7
shows the maximum request rates that can be sustained
with sub-millisecond average response times for differ-
ent versions of memcached. The first set of bars is our
memcached before fine-grained locking, the second set
is our current memcached, and the final set is the open
source version 1.4.10 which independently implements
a coarser version of our locking strategy.

Employing fine-grained locking triples the peak get
rate for hits from 600k to 1.8M items per second. Per-
formance for misses also increased from 2.7M to 4.5M
items per second. Hits are more expensive because the
return value has to be constructed and transmitted, while
misses require a single static response (END) for the en-
tire multiget indicating that all keys missed.

We also investigated the performance effects of us-
ing UDP instead of TCP. Figure 8 shows the peak re-
quest rate we can sustain with average latencies of less
than one millisecond for single gets and multigets of 10
keys. We found that our UDP implementation outper-
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Figure 8: Get hit performance comparison for single
gets and 10-key multigets over TCP and UDP

forms our TCP implementation by 13% for single gets
and 8% for 10-key multigets.

Because multigets pack more data into each request
than single gets, they use fewer packets to do the same
work. Figure 8 shows an approximately four-fold im-
provement for 10-key multigets over single gets.

6.2 Adaptive Slab Allocator
Memcached employs a slab allocator to manage memory.
The allocator organizes memory into slab classes, each
of which contains pre-allocated, uniformly sized chunks
of memory. Memcached stores items in the smallest pos-
sible slab class that can fit the item’s metadata, key, and
value. Slab classes start at 64 bytes and exponentially in-
crease in size by a factor of 1.07 up to 1 MB, aligned on
4-byte boundaries3. Each slab class maintains a free-list
of available chunks and requests more memory in 1MB
slabs when its free-list is empty. Once a memcached
server can no longer allocate free memory, storage for
new items is done by evicting the least recently used
(LRU) item within that slab class. When workloads
change, the original memory allocated to each slab class
may no longer be enough resulting in poor hit rates.

3This scaling factor ensures that we have both 64 and 128 byte
items which are more amenable to hardware cache lines.
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We implemented an adaptive allocator that period-
ically re-balances slab assignments to match the cur-
rent workload. It identifies slab classes as needing more
memory if they are currently evicting items and if the
next item to be evicted was used at least 20% more re-
cently than the average of the least recently used items in
other slab classes. If such a class is found, then the slab
holding the least recently used item is freed and trans-
ferred to the needy class. Note that the open-source com-
munity has independently implemented a similar allo-
cator that balances the eviction rates across slab classes
while our algorithm focuses on balancing the age of the
oldest items among classes. Balancing age provides a
better approximation to a single global Least Recently
Used (LRU) eviction policy for the entire server rather
than adjusting eviction rates which can be heavily influ-
enced by access patterns.

6.3 The Transient Item Cache

While memcached supports expiration times, entries
may live in memory well after they have expired.
Memcached lazily evicts such entries by checking ex-
piration times when serving a get request for that item
or when they reach the end of the LRU. Although effi-
cient for the common case, this scheme allows short-
lived keys that see a single burst of activity to waste
memory until they reach the end of the LRU.

We therefore introduce a hybrid scheme that relies on
lazy eviction for most keys and proactively evicts short-
lived keys when they expire. We place short-lived items
into a circular buffer of linked lists (indexed by sec-
onds until expiration) – called the Transient Item Cache
– based on the expiration time of the item. Every sec-
ond, all of the items in the bucket at the head of the
buffer are evicted and the head advances by one. When
we added a short expiration time to a heavily used set of
keys whose items have short useful lifespans; the pro-
portion of memcache pool used by this key family was
reduced from 6% to 0.3% without affecting the hit rate.

6.4 Software Upgrades

Frequent software changes may be needed for upgrades,
bug fixes, temporary diagnostics, or performance test-
ing. A memcached server can reach 90% of its peak hit
rate within a few hours. Consequently, it can take us over
12 hours to upgrade a set of memcached servers as the re-
sulting database load needs to be managed carefully. We
modified memcached to store its cached values and main
data structures in System V shared memory regions so
that the data can remain live across a software upgrade
and thereby minimize disruption.
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Figure 9: Cumulative distribution of the number of dis-
tinct memcached servers accessed

7 Memcache Workload
We now characterize the memcache workload using data
from servers that are running in production.

7.1 Measurements at the Web Server
We record all memcache operations for a small percent-
age of user requests and discuss the fan-out, response
size, and latency characteristics of our workload.
Fanout: Figure 9 shows the distribution of distinct
memcached servers a web server may need to contact
when responding to a page request. As shown, 56%
of all page requests contact fewer than 20 memcached
servers. By volume, user requests tend to ask for small
amounts of cached data. There is, however, a long tail to
this distribution. The figure also depicts the distribution
for one of our more popular pages that better exhibits
the all-to-all communication pattern. Most requests of
this type will access over 100 distinct servers; accessing
several hundred memcached servers is not rare.
Response size: Figure 10 shows the response sizes from
memcache requests. The difference between the median
(135 bytes) and the mean (954 bytes) implies that there
is a very large variation in the sizes of the cached items.
In addition there appear to be three distinct peaks at ap-
proximately 200 bytes and 600 bytes. Larger items tend
to store lists of data while smaller items tend to store
single pieces of content.
Latency: We measure the round-trip latency to request
data from memcache, which includes the cost of rout-
ing the request and receiving the reply, network transfer
time, and the cost of deserialization and decompression.
Over 7 days the median request latency is 333 microsec-
onds while the 75th and 95th percentiles (p75 and p95)
are 475μs and 1.135ms respectively. Our median end-
to-end latency from an idle web server is 178μs while
the p75 and p95 are 219μs and 374μs, respectively. The
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fetched

wide variance between the p95 latencies arises from
handling large responses and waiting for the runnable
thread to be scheduled as discussed in Section 3.1.

7.2 Pool Statistics
We now discuss key metrics of four memcache pools.
The pools are wildcard (the default pool), app (a pool
devoted for a specific application), a replicated pool for
frequently accessed data, and a regional pool for rarely
accessed information. In each pool, we collect average
statistics every 4 minutes and report in Table 2 the high-
est average for one month collection period. This data
approximates the peak load seen by those pools. The ta-
ble shows the widely different get, set, and delete rates
for different pools. Table 3 shows the distribution of re-
sponse sizes for each pool. Again, the different char-
acteristics motivate our desire to segregate these work-
loads from one another.

As discussed in Section 3.2.3, we replicate data
within a pool and take advantage of batching to handle
the high request rates. Observe that the replicated pool
has the highest get rate (about 2.7× that of the next high-
est one) and the highest ratio of bytes to packets despite
having the smallest item sizes. This data is consistent
with our design in which we leverage replication and
batching to achieve better performance. In the app pool,
a higher churn of data results in a naturally higher miss
rate. This pool tends to have content that is accessed for
a few hours and then fades away in popularity in favor
of newer content. Data in the regional pool tends to be
large and infrequently accessed as shown by the request
rates and the value size distribution.

7.3 Invalidation Latency
We recognize that the timeliness of invalidations is a
critical factor in determining the probability of expos-
ing stale data. To monitor this health, we sample one out
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Figure 11: Latency of the Delete Pipeline

of a million deletes and record the time the delete was is-
sued. We subsequently query the contents of memcache
across all frontend clusters at regular intervals for the
sampled keys and log an error if an item remains cached
despite a delete that should have invalidated it.

In Figure 11, we use this monitoring mechanism to re-
port our invalidation latencies across a 30 day span. We
break this data into two different components: (1) the
delete originated from a web server in the master region
and was destined to a memcached server in the master re-
gion and (2) the delete originated from a replica region
and was destined to another replica region. As the data
show, when the source and destination of the delete are
co-located with the master our success rates are much
higher and achieve four 9s of reliability within 1 second
and five 9s after one hour. However when the deletes
originate and head to locations outside of the master re-
gion our reliability drops to three 9s within a second and
four 9s within 10 minutes. In our experience, we find
that if an invalidation is missing after only a few sec-
onds the most common reason is that the first attempt
failed and subsequent retrials will resolve the problem.

8 Related Work
Several other large websites have recognized the util-
ity of key-value stores. DeCandia et al. [12] present
a highly available key-value store that is used by a
variety of application services at Amazon.com. While
their system is optimized for a write heavy workload,
ours targets a workload dominated by reads. Similarly,
LinkedIn uses Voldemort [5], a system inspired by Dy-
namo. Other major deployments of key-value caching
solutions include Redis [6] at Github, Digg, and Bliz-
zard, and memcached at Twitter [33] and Zynga. Lak-
shman et al. [1] developed Cassandra, a schema-based
distributed key-value store. We preferred to deploy and
scale memcached due to its simpler design.

Our work in scaling memcache builds on extensive
work in distributed data structures. Gribble et al. [19]
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pool miss rate get
s

set
s

delete
s

packets
s outbound

bandwidth (MB/s)
wildcard 1.76% 262k 8.26k 21.2k 236k 57.4

app 7.85% 96.5k 11.9k 6.28k 83.0k 31.0
replicated 0.053% 710k 1.75k 3.22k 44.5k 30.1
regional 6.35% 9.1k 0.79k 35.9k 47.2k 10.8

Table 2: Traffic per server on selected memcache pools averaged over 7 days

pool mean std dev p5 p25 p50 p75 p95 p99
wildcard 1.11 K 8.28 K 77 102 169 363 3.65 K 18.3 K

app 881 7.70 K 103 247 269 337 1.68K 10.4 K
replicated 66 2 62 68 68 68 68 68
regional 31.8 K 75.4 K 231 824 5.31 K 24.0 K 158 K 381 K

Table 3: Distribution of item sizes for various pools in bytes

present an early version of a key-value storage system
useful for Internet scale services. Ousterhout et al. [29]
also present the case for a large scale in-memory key-
value storage system. Unlike both of these solutions,
memcache does not guarantee persistence. We rely on
other systems to handle persistent data storage.

Ports et al. [31] provide a library to manage the
cached results of queries to a transactional database.
Our needs require a more flexible caching strategy. Our
use of leases [18] and stale reads [23] leverages prior
research on cache consistency and read operations in
high-performance systems. Work by Ghandeharizadeh
and Yap [15] also presents an algorithm that addresses
the stale set problem based on time-stamps rather than
explicit version numbers.

While software routers are easier to customize and
program, they are often less performant than their hard-
ware counterparts. Dobrescu et al. [13] address these
issues by taking advantage of multiple cores, multiple
memory controllers, multi-queue networking interfaces,
and batch processing on general purpose servers. Ap-
plying these techniques to mcrouter’s implementation
remains future work. Twitter has also independently de-
veloped a memcache proxy similar to mcrouter [32].

In Coda [35], Satyanarayanan et al. demonstrate how
datasets that diverge due to disconnected operation can
be brought back into sync. Glendenning et al. [17] lever-
age Paxos [24] and quorums [16] to build Scatter, a dis-
tributed hash table with linearizable semantics [21] re-
silient to churn. Lloyd et al. [27] examine causal consis-
tency in COPS, a wide-area storage system.

TAO [37] is another Facebook system that relies heav-
ily on caching to serve large numbers of low-latency
queries. TAO differs from memcache in two fundamental
ways. (1) TAO implements a graph data model in which
nodes are identified by fixed-length persistent identifiers
(64-bit integers). (2) TAO encodes a specific mapping of

its graph model to persistent storage and takes respon-
sibility for persistence. Many components, such as our
client libraries and mcrouter, are used by both systems.

9 Conclusion
In this paper, we show how to scale a memcached-based
architecture to meet the growing demand of Facebook.
Many of the trade-offs discussed are not fundamental,
but are rooted in the realities of balancing engineering
resources while evolving a live system under continu-
ous product development. While building, maintaining,
and evolving our system we have learned the following
lessons. (1) Separating cache and persistent storage sys-
tems allows us to independently scale them. (2) Features
that improve monitoring, debugging and operational ef-
ficiency are as important as performance. (3) Managing
stateful components is operationally more complex than
stateless ones. As a result keeping logic in a stateless
client helps iterate on features and minimize disruption.
(4) The system must support gradual rollout and roll-
back of new features even if it leads to temporary het-
erogeneity of feature sets. (5) Simplicity is vital.
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F10: A Fault-Tolerant Engineered Network
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Abstract
The data center network is increasingly a cost, reliabil-
ity and performance bottleneck for cloud computing. Al-
though multi-tree topologies can provide scalable band-
width and traditional routing algorithms can provide even-
tual fault tolerance, we argue that recovery speed can be
dramatically improved through the co-design of the net-
work topology, routing algorithm and failure detector. We
create an engineered network and routing protocol that di-
rectly address the failure characteristics observed in data
centers. At the core of our proposal is a novel network
topology that has many of the same desirable properties
as FatTrees, but with much better fault recovery prop-
erties. We then create a series of failover protocols that
benefit from this topology and are designed to cascade
and complement each other. The resulting system, F10,
can almost instantaneously reestablish connectivity and
load balance, even in the presence of multiple failures.
Our results show that following network link and switch
failures, F10 has less than 1/7th the packet loss of cur-
rent schemes. A trace-driven evaluation of MapReduce
performance shows that F10’s lower packet loss yields a
median application-level 30% speedup.

1 Introduction
Data center networks are an increasingly important com-
ponent to the cost, reliability and performance of cloud
services. This has led to recent efforts by the network re-
search community to explore new topologies [11, 12, 13],
new routing protocols [11] and new network manage-
ment layers [3, 4, 20], with a goal of improving network
cost-effectiveness, fault tolerance and scalability.

A state of the art approach is taken by Al-Fares et al. [3]
and its followup project PortLand [20]. In these systems,
the data center network is constructed in a multi-rooted
tree structure called a FatTree (inspired by fat-trees [17])
of inexpensive, commodity switches. These proposals
provide scalability, both in terms of port count and the
overall bisection bandwidth of the network. They also
deliver better performance at low costs, primarily due to
their use of commodity switches.

The use of a large number of commodity switches, how-
ever, opens up questions regarding what happens when
links and switches fail. A FatTree has redundant paths
between any pair of hosts. If end host operating system
changes are possible between these end hosts, the network
can be set up to provide multiple paths. The end host man-
ages packet loss and congestion across the paths using
MPTCP [22]. In many cases, the data center operator is

not in control of the OS, requiring a network-level solu-
tion to fault tolerance. A consequence of our work is to
show that entirely network-level failure recovery can be
practical and nearly instantaneous in a data center setting.

Addressing this need for network-layer recovery, Fat-
Tree architectures have proposed using a centralized man-
ager that collects topology and failure information from
the switches. It then periodically generates and dissemi-
nates back to the switches and end-hosts alternate sets of
routes to avoid failures. Centralized route management
is both simple and flexible—a reasonable design choice
provided that failures do not occur very often.

Recent measurements of network-layer failures in data
centers, however, have shown that failures are frequent
and disruptive [10]. Network-layer failures can reduce the
volume of traffic delivered by more than 40%, even when
the underlying network is designed for failure resilience.
As data centers grow, the probability of network failures
and the consequent disruptions on the system as a whole
will likely increase, further exacerbating the problem.

Our goal is to co-design a topology and set of proto-
cols that admit near-instantaneous, fine-grained, localized,
network-level recovery and rebalancing for common-case
network failures. Because the network is already a signifi-
cant part of the cost of the data center, we limit ourselves
to not introducing any additional hardware relative to
PortLand. Other work has shown that local repair is pos-
sible at the cost of significant added hardware relative to
a standard FatTree [9, 12, 13], so our work can be seen as
either improving the speed of repair in FatTree and other
multi-tree networks or in reducing the hardware cost of
fast repair in more general networks. A limitation of our
work is that we assume that we can change both the net-
work topology and the protocols used between network
switches.

Our system is called F10 (the Fault-Tolerant Engi-
neered Network), a network topology and a set of proto-
cols that can recover rapidly from almost all data center
network failures. We design a novel topology to make it
easier to do localized repair and rebalancing after failures.
This topology is applicable to the FatTree and other multi-
tree networks. We then redesign the routing protocols to
take advantage of the modified topology. To satisfy the
need for extremely fast failover, we use a local recov-
ery mechanism that reacts almost instantaneously at the
cost of additional latency and increased congestion. Some
failures are not short-term, so local rerouting eventually
triggers a slightly slower pushback mechanism that redi-
rects traffic flows before they reach the faulty components.
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To address longer-term failures, a centralized scheduler
rearranges traffic on a much slower time scale in order
to create as close to a optimally rerouted configuration
as possible. We also introduce a failure detector that ben-
efits from (and contributes to) the speed of our failover
protocols while providing fine-grained information not
available to traditional failure detection methods.

We have implemented a Click-based prototype of F10
and its failure detector and have performed a simulation-
based evaluation, based on measurements of real-world
data center traffic from [5] and measurements of data
center network failures from [10]. Our results show that
our system dramatically improves packet loss relative to
PortLand with no added hardware cost. Our localized re-
routes do incur some path inflation and network state, but
these effects are small because of our novel topology.

2 Motivation
Our goal is to design a data center network architecture
that can gracefully and quickly recover after failures, with-
out any additional hardware. To motivate our approach,
we outline previous measurements of data center network
failures and then discuss the implications of these results
on the design of fault-tolerant data center networks.

2.1 Failures in Data Centers

A recent study by Gill et al. provides insight into the
characteristics of data center network failures [10]. The
authors found that a large majority of devices are failure-
free over the course of a year; commodity switches are
mostly reliable. Their data also shows, however, that there
are frequent short-term failures, that link failures are com-
mon and that the network responsiveness to failures is
limited. We emphasize a few results from their study:

• Many failures are short-term. Devices and links ex-
hibit a large number of short-term failures. In fact, the
authors observed that the most failure-prone devices have
a median time-to-failure of 8.6 minutes.
• Multiple failures are common. Devices often fail in

groups. 41% of link failure events affect multiple devices—
often, just a few (2–4) links, but in 10% of cases, they do
affect more than 4 devices. There are also often multiple
independent ongoing failures.
• Some failures have long downtimes. Though most

failures are short-term, failure durations exhibit a long tail.
Gill et al. attribute this to issues such as firmware bugs and
device unreliability. Hardware that fails often stays down
and contributes heavily to network-level unavailability.
• Network faults impact network efficiency. The data

centers studied by Gill et al. have 1:1 redundancy dedi-
cated to failure recovery, yet the network delivered only
about 90% of the traffic in the median failure case. Per-
formance is worse in the tail, with only 60% of traffic

delivered during 20% of failures. This suggests better
methods are needed for exploiting existing redundancy.

The authors assume a model where hardware is either
up or down and transitions between those two states, but
certain parts of their data—along with anecdotal evidence
of gray failures from industry—conforms to a stochastic
model of failures in which hardware loses a certain per-
centage of packets. There is thus an additional concern:

• Existing failure detection mechanisms are too
coarse-grained. Links are marked as down after losing
a certain number of heartbeats and marked as up after a
brief handshake. Within a short time frame, it is difficult
to distinguish between a complete failure, where no pack-
ets are getting through, and a situation where the link is
congested, and had gotten unlucky with the heartbeats.
Conversely, a flaky link that just happened to allow a
handshake would appear to be reliable.

2.2 Next-Generation Data Center Networks

Today’s data center networks are multi-level, multi-rooted
trees of switches. The leaves of the tree are Top-of-Rack
(ToR) switches that connect down to many machines in
a rack, and up to the network core which aggregates and
transfers traffic between racks. A modern data center
might have racks that contain 40 servers connected with
1 Gbps access links, and one or two 10 Gbps uplinks that
connect the ToR switch to the core, which contains a small
number of significantly more expensive switches with an
even faster interconnect. The primary challenges with
these networks are that they do not scale—port counts
and internal backplane bandwidth of core switches are
limited and expensive—and that they are dramatically
oversubscribed, with reported factors of 1:240 [11].

Recent proposals for the next generation of data center
networks [3, 11, 12] overcome these limitations. We focus
on a class of these networks based on the FatTree [3]
proposal and its subsequent extensions. Inspired by the
concept of a fat-tree [17], these FatTrees use a multi-
rooted, multi-stage tree structure identical to a folded
Clos network [15].1 Just like in a fat-tree, child subtrees
are stitched together at each level of the FatTree with
thicker and thicker edges until there remains a single
root tree, but unlike fat-trees, FatTrees can be built with
uniformly-sized switches and links.

The benefit of these networks is that they can be made

1Since there are a few key distinctions between their instantiations,
we clarify them here. We use fat-tree to denote the classical concept
where links increase in capacity as you travel up toward the root. We
use FatTree to denote the proposal of Al-Fares et al. [3], which uses
multiple rooted trees to approximate a fat-tree. A similar caveat applies
to the research literature’s use of the terminology for Clos networks,
which route messages along equal-length paths between distinct input
and output terminals; folded Clos networks, which make no distinctions
between terminals; and FatTrees, which allow short-circuiting of paths
between nodes in a folded Clos network subtree.

2



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 401

of cheaper, commodity switches and provide much more
path diversity within the network. PortLand takes advan-
tage of this path diversity by using ECMP, which ran-
domly places flows across physical paths. While ECMP
lets us take advantage of the increased bandwidth pro-
vided by multiple paths, placing a flow on a single physi-
cal path means that failures will disrupt entire flows. An
alternative is to upgrade the OS and let the end host use a
protocol like MPTCP; however, it is not always the case
that network operators have the ability to change end host
OSes. In this paper, we explore whether we can make
network failures lightweight from the perspective of the
end host so that data center operators can run any end
host system and not what is needed for the network.

To ease exposition, we will focus on a non-
oversubscribed FatTree, in which half of the ports are
used as downlinks to connect nodes within the same sub-
tree, and half used as uplinks to access other parts of the
tree. However, our system handles both oversubscribed
(which allocate more ports to downlinks and can scale
to more nodes or use few layers) and overprovisioned
(which allocate more ports to uplinks for reliability and
bisection bandwidth) variants, discussed further in Sec-
tion 8. The root nodes, which do not have uplink edges,
use all ports for downlinks. Figure 1a depicts a 3-level
FatTree built from 4-port switches.

Our goal is near-instantaneous recovery from failures
and load spikes with no added hardware. The original
design of Clos networks was more concerned with non-
blocking behavior than fault tolerance. Similarly, the pa-
pers introducing FatTrees and related proposals [3, 4, 20]
discuss basic failover mechanisms, but are principally
focused on achieving good bisection bandwidth with com-
modity switches [3], scalability, resilience to (but not
rapid recovery from) faults [20], and centralized load-
balancing [4]. These proposals are inherently limited in
their ability to recover quickly and thoroughly from faults.

Limited local rerouting: While modern data centers
have a variety of failover mechanisms, few are truly local.
Data centers that use a link-state protocol such as OSPF
require updates sent across the entire network before con-
vergence. PortLand uses a centralized topology manager.
VL2 [11] suggested detouring around a fault on the up-
ward path, but it does not reroute around failures on the
downward path because (as we explain below) there is
only one path from any given root to a leaf switch.

Failure information must propagate to many and dis-
tant nodes: This deficiency goes beyond the lack of a suit-
able protocol. Consider Figure 1a.2 No parent or grand-
parent of the failed node has any downlink path to the
affected subtree. This property follows from the fat-tree-

2For simplicity, we omit from several of our figures the doubled
subtrees generated by folding the root uplinks into downlinks.

style construction that there is only ever one downlink
path from the root of a subtree to any of its children.
Among the nodes whose routes could reach a failed node,
only those located lower in the tree than the failure have
a route that avoids the failure. In other words, no protocol
that informs only nodes in the top portion of the tree will
restore connectivity. In the case of a failure on the down-
ward portion of a path, any detour or pushback/broadcast
protocol will be forced to travel from the parent of the
failure all the way back to every node in the entire tree
lower than the failure.

Irregular tree structure because of long-term faults:
While data center operators aim to rapidly repair or re-
place failed equipment, as a practical matter, failures can
persist for long periods of time. This can leave the system
in a suboptimal state with poor load balancing. Multiple
failures make this problem even worse. In our view, it is
crucial that data center networks gracefully handle miss-
ing links and loss of symmetry. A negative example of this
is the simple application of ECMP, which spreads load
from a failed link to all remaining links at a local level,
but does not evenly shift load to the remaining paths.

3 Design Overview
Taking the above concerns into account, we create an en-
gineered network and routing protocol that can rapidly
restore network connectivity and performance. Our sys-
tem, F10, relies on the following ideas:

• Planned asymmetry: We propose a network topol-
ogy that introduces a limited amount of asymmetry to
achieve greater failure tolerance. The basic insight is that
next-generation topologies provide many desirable prop-
erties, but there are variants that provide the same basic
properties and are more resilient to failures.
• Cascaded failover mechanisms: Our system uses

different mechanisms at different time scales to achieve
short-term patching, medium-term fault avoidance, and
longer-term load balancing.
• Co-design of everything: Each of the components of

F10 (i.e., the topology, failover and load balancing pro-
tocols, and failure detector) are designed to enhance and
support each other. As part of this approach, we unify the
related problems of failure recovery and load balancing
and use a similar set of mechanisms for both.

We elaborate on these design points below.

AB FatTree: We introduce a novel topology, the AB Fat-
Tree. By skewing the symmetry of a traditional FatTree,
the AB FatTree allows for efficient local rerouting. The
benefits come at almost no cost. The network requires no
extra hardware, does not lose bisection bandwidth, and
has similar properties to standard FatTrees (e.g., unique
paths from a root to leaf, non-blocking behavior, etc.).

3
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(a) (b)

Figure 1: Path alternatives in (a) a standard FatTree and (b) an AB FatTree. The X indicates a failure, and the hashed rectangles
represent switches that are affected by it when trying to send to its children. Bold borders indicate affected switches that have a path
around the failure. In the AB FatTree, more switches are affected, but more have alternatives, and they are closer to the failure.

Local rerouting: To satisfy the need for fast failover, we
use a local recovery mechanism that is able to reroute the
very next packet after failure detection. Because we fix
the topology, we can design a purely local mechanism that
is initiated and torn down at the affected switch and does
not cause any convergence issues or broader disruptions.

Pushback notification: The reroute uses extra hops then
the global optimum. Our system adds a slightly slower
pushback mechanism that removes the additional latency,
reducing the impact on congestion of local recovery.

Global re-optimization: On a much slower time scale, a
centralized scheduler rearranges traffic to optimally bal-
ance load, despite failures.

Failure Detector: The lightweight and local nature of
our failover protocols means that we can be more aggres-
sive in marking links and switches as down, improving
network performance. Our failure detector also provides
and uses finer-grained information about the exact loss
characteristics of the connection.

To accomplish the above, we assume a few things about
the hardware. On the most basic level, we assume that
we can modify the control plane of switches to execute
our protocols locally and that switches can do local neigh-
bor failure detection. We also assume the presence of a
fault-tolerant controller and ability to readdress destina-
tions with a location-based address, as in PortLand. For
flow scheduling, we assume switches support consistent
flow-based assignment for each source-destination pair.
Our system can also benefit from the ability of switches
to randomly place flows based on configured weights cal-
culated by the central controller; however, this weighted
placement is not essential for correct operation.

4 The AB FatTree
As we saw in Section 2.2, the standard FatTree design by
Al-Fares et al. [3] has a structural weakness that makes
it difficult to locally reroute around network failures. We
introduce a novel topology, the AB FatTree, that skews
the symmetry of a traditional FatTree to address this issue.

Notation Definition or Value

k # of ports per switch, e.g., 24
L+1 # of levels in the network, e.g., 3
p k/2: # of up/downlinks per switch
N 2pL+1: # of end hosts in the data center
b �log2(p)�: # of bits per level in a node location
prefix(a, i) a � (ib): relevant prefix of location a at level i
same prefix(a,a′, i) (prefix(a, i)≡ prefix(a′, i)): whether a and a′

share a prefix at level i

Table 1: A key to the notation used in this paper.

The key weakness in the standard FatTree is that all
subtrees at level i are wired to the parents at level i+1 in
an identical fashion. A parent attempting to detour around
a failed child must use roundabout paths (with inflation
of at least four hops) because all paths from its p− 1
other children to the target subtree use the same failed
node. The AB FatTree solves this problem by defining
two types of subtrees (called type A and type B) that are
wired to their parents in two different ways. With this
simple change, a parent with a failed child in a type A
subtree can detour to that subtree in two hops through the
parents of a child in a type B subtree (and vice versa),
because those parents do not rely on the failed node.

We now make the design concrete. Let k be the number
of ports on each switch element, and L be the number of
levels; as in the standard FatTree we use p = k/2 ports
each for uplink and downlink at each switch, and can
connect a total of N = 2pL end hosts in a rearrangeably
non-blocking manner to the network. Table 1 contains a
summary of the notation we use in this paper.

Figure 2 shows the labeled structure of an AB FatTree
for k = 4 and L = 3, explained in the next few paragraphs.

Connectivity. For levels numbered 0 through L, each
level i < L contains 2pL switches arranged in 2pL−i

groups of pi switches.3 Each group at level i represents
a multi-rooted subtree of pi+1 end hosts with pi root
switches. The distinction between the standard version

3The top level (i = L) has one group of pL switches, using all ports
for downlinks.
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Figure 2: A labeled AB FatTree in which the subtrees with
dotted blue lines are of type A and the subtrees with solid red
lines are of type B. The numbers to the right of the tree are the
level, the top number in each switch is the location, and the
bottom number is the index.

and an AB FatTree is in the method of connecting these
root switches to their parents.

Let j denote the index of a root node numbered 0
through pi −1 in level i. In a type A subtree, root j will
be connected to the p consecutive parents numbered jp
through ( j+1)p−1. A standard FatTree contains only
type A subtrees, whereas in an AB FatTree only half
the subtrees are of type A. The remainder are of type B,
wherein children connect to parents with a stride of pi:
root j is connected to parents j, j+ pi, j+2pi, etc.

Addressing/Routing. A switch is uniquely identified by:

• level i – The level of the subtree of which it is a root.
• index j – The roots of a specific subtree are consecu-

tively numbered as described above.
• location – The location of a node is an Lb+1-bit num-

ber constructed such that all nodes in the same level i sub-
tree share a prefix of (L− i)b+1 bits that encodes the path
from the root group to the subtree, where b = �log2 p�.
The location has the format: (b+ 1 bits for level L).(b
bits for level L−1). . .(b bits for level i+1), concatenated
with ib zero bits for levels i through 0.

In the absence of failures, routing occurs much like in
PortLand [20]—each packet is routed upwards until it is
able to travel back down, following longest-prefix match-
ing. By construction, each subtree owns a single location
address and the roots of a subtree can access one child in
each of its subsubtrees. When a packet’s destination lies
within the subtree rooted in the current node, it will be
routed downwards, otherwise it is forwarded upward.

Versus a standard FatTree. Revisiting Figure 1, we see
that this rewiring allows nodes in subtrees of a different
type to route around failures, in addition to nodes on
a lower level that already had alternate paths. While the
number of switches with affected paths increases, the total
number of failed paths stays the same, and therefore the
effects of the failure are distributed across more switches.
As a consequence, more nodes have alternate paths, and
there are alternatives closer to the failure.

(B, 2)(A, 0)

AA B

v y

w z

u

x✘

Figure 3: Illustration of the base cases of local rerouting with
a failure at v. In the upward direction, w avoids v by routing
to any other parent. Downward, u must find detours that avoid
the failure group (A,0). The bold green path shows Scheme 1
rerouting through a type B child x, and the dotted blue path
shows Scheme 2 rerouting through a child y of same type A.

5 Handling Failures
Our failover protocol consists of three stages that operate
on increasing timescales. (1) When a switch detects a
failure in one of its links, it immediately begins using
local rerouting to reroute the very next packet. (2) Since
local rerouting inflates paths as well as increases local
congestion, the switch initiates a pushback protocol that
causes upstream switches to redirect traffic to resume
using shortest paths. (3) Finally, to deal with long-term
failures that create a structural imbalance in the network,
a centralized rerouting protocol determines an efficient
global rearrangement of flows. In addition, the key to fast
failure recovery is rapid and accurate failure detection,
which is discussed at the end of this section.

5.1 Local Rerouting

Our first step after a failure is to quickly establish a new
working route using only local information. We explain
this using Figure 3, which shows a 3-level AB FatTree
with k = 6. We label nodes u, v, and w, where v has failed.

Note that local rerouting for upward links in any multi-
rooted tree is simple. A child (w) can route around a
failed parent (v), by simply redirecting affected flows to
any working parent. This restores connectivity without
increasing the number of hops or requiring control traffic.
In the unlikely event that all parents have failed, the child
drops the packet; an alternative route will soon be con-
figured by the pushback schemes discussed later unless
the node is a leaf node. Most data center services are de-
signed to tolerate rack-level failures. Alternatively, each
leaf node can be wired into multiple ToR switches.

The rest of this section discusses rerouting of traffic for
failed downward links. This case is significantly more
complex, because when a child (v) fails, its parents (e.g.,
u) lose the only working path to that subtree (identified
by prefix(v)) that follows standard routing policy. Instead,
we propose two local detouring schemes. The first mecha-
nism results in shorter detours, but p/2 failures located at
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specific locations can cause it to fail. The second mecha-
nism succeeds in more cases, but will have longer paths.

Scheme 1: three-hop rerouting. In most cases, we can
route around a single failed child in an AB FatTree with
two additional hops (three hops in total, but one replacing
the link that would have been traversed anyway), without
any pre-computation or coordination.

Suppose, without loss of generality, that the failed child
(v) is located in a type A subtree. By construction, the
parent (u) has connections to p/2−1 children in type A
subtrees, and p/2 children in type B subtrees. Each of
these children has p−1 other parents (u’s siblings), which
all have a link into the affected subtree. By detouring
through one of its siblings, u can establish a path.

Not any sibling will work. With only local information,
u must assume that the entire switch v has failed, rather
than just the link 〈u,v〉. If so, none of the other parents of
v have a route to the affected subtree. We call this set of
v’s parents a failure group and identify it by a tuple (t, j)
consisting of v’s subtree type t and its index j, since each
parent is connected to the jth node in all type t subtrees.
In this example, we would denote the failure group of v
as (A,0). Figure 3 shows (A,0) and (B,2) failure groups.

All of u’s children in type A subtrees only have parents
in the (A,0) failure group, and thus cannot reach the target
prefix. Thus, in Scheme 1, u will simply pick a random
child, say x, in a type B subtree. By construction, x has
parents in all type A failure groups, and thus any parent of
x except u does not route through v. One of the alternate
paths from u to v’s subtree is shown by the bold, green
line in Figure 3. This does not exist in a standard FatTree.

Multiple failures can be handled in most cases. When
failures are located on different levels of the tree, Scheme
1 will always find a path. Multiple failures on the same
level can sometimes block Scheme 1. For the first hop,
u has p/2 links into type B subtrees; if none of these
links work (p/2+ 1 targeted failures) then u must use
Scheme 2. At the second hop, if x has no other working
parents (p targeted failures and a p/2 random choice)
then the scheme fails and packets will be dropped for
the brief period until the pushback mechanism (described
in Section 5.2) removes u from all such paths. At the
third hop, if the link from u′ into the affected subtree has
also failed (2 targeted failures and (p/2)(p−1) random
choice), u′ will invoke local rerouting recursively.

Scheme 2 – five-hop rerouting. We saw that in some
cases of at least p/2+1 failures, Scheme 1 will fail be-
cause u will have no working links to type B subtrees.
This situation trivially arises in the case of any single fail-
ure in a standard FatTree, so our work can also be seen as
showing how to do local rerouting in a standard FatTree.
Scheme 2 uses u’s type A children, but it must go two
levels down to find a working route to v, for a total of

four additional hops in the detour path. One such path is
illustrated in Figure 3 using the bold, dashed blue line. In
Scheme 2, u picks any type A child y �= v in a different
type A subtree, y picks any of its children, and that child
proceeds to use normal routing to v’s prefix after ensuring
it routes through a parent (y’s sibling) not in a currently-
known failure group. This results in a five-hop path from
u to the target prefix. Scheme 2 can fail in the presence of
sufficiently many (at least p) targeted failures and unlucky
random choices. These unlikely cases will be resolved by
our pushback schemes, described next. With fewer than p
failures, local rerouting will always succeed.

5.2 Pushback Flow Redirection

The purpose of local rerouting is to find a quick way to
reestablish routing immediately after detecting a failure.
The detour paths it sets up are necessarily inflated, and the
schemes we use can sometimes fail although a working
path exists. We introduce pushback redirection to reestab-
lish direct routes and handle cases where local rerouting
fails, but where connectivity is still possible. Pushback
solves both of these issues by sending a failure notifica-
tion back along each affected path to the closest switch
that has a direct route that does not include the failure. The
AB FatTree enables notifications to occur closer to the
failure than in a regular FatTree. Reducing notifications
speeds recovery and minimizes network state.

Consider Figure 4, which shows an AB FatTree built
with 6-port switches. This figure shows pushback propaga-
tion in the network when the link 〈u,v〉 has failed. A total
of 14 pushback messages are sent (indicated by the bold
red lines), and state has to be installed at the 8 switches
marked with red circles. Note that in our pushback scheme
all messages indicate link failures, not node failures. If
the entire node v had failed, u’s two siblings would also
send pushback messages along the red dashed lines, for
a total of 32 additional messages and an additional 12
switches installing state. The main difference between
AB FatTrees and standard FatTrees is that AB FatTrees
can install state higher in the tree, and as a result, push-
back messages travel less far, meaning that the network
will find direct paths more quickly with less effort.
When to push back. There are three key scenarios in
which a switch u will push notifications to its neighbors
(we outline other uses for pushback in handling data cen-
ter congestion in Section 6):

• u cannot route to some prefix in its subtree, either
because of the failure of an immediate child v or upon
receiving a notification from v of a failure further down-
stream. Then u will multicast that it can no longer route
to the affected prefix to all of its neighbors excluding v.
• When all uplinks from u have failed, u will inform its

children that they should use other routes.
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Figure 4: Illustration of pushback when the link from u to v fails (marked by the red ’X’). Solid red lines are the paths along which
the notification travels, and the switches with red circles are the set of nodes that need to be notified of the failure. In the case of the
entire switch v failing, the dashed red lines show the paths along which associated notifications travel and state would be installed at
all the endpoints they touch.

• There may exist some external prefixes for which u is
unable to route traffic if all uplinks are failed or affected
by failures and the affected prefixes happen to overlap. u
will inform its children so they can reroute.

Implementation sketch. We do not have the space in this
paper to fully lay out the implementation details for our
pushback protocol. Instead, we present here the messages,
data structures, and basic mechanisms used by F10.

To handle the three pushback scenarios, laid out above,
we define two types of pushback messages. PBOnly mes-
sages indicate that the sender cannot route to the spe-
cific prefix indicated in the message. PBExcept messages
mean that the sender cannot reach any prefix except its
own subtree (or the subtree indicated in the message). To-
gether, PBOnly and PBExcept can represent any set of
routable prefixes. PBOnly messages are used in scenario
1 described above, PBExcept messages match scenario
2, and a combination of both is used in scenario 3.

Suppose a node n receives a PBOnly message telling it
that the edge 〈u,v〉 has failed. How does it know whether
it can route around the failure—in which case it installs
pushback state locally and does not forward the message—
or whether it needs to forward the notification on to its
neighbors? The intuition behind this is that if a node n can
connect to a root node that node u cannot (in the absence
of failures), then n has paths using this root that can reach
v’s subtree without going through the failed edge. Thus
when the edge 〈u,v〉 fails, n has an alternative path to v’s
prefix if and only if it is connected to such a root.

One simple way that n is guaranteed to be wired to a
root that u is not: when n is located at a lower level than
u, then at most one of its parents routes through u, and
an alternative path exists. In AB FatTrees, pushback state
can be sometimes be stored higher in the tree.

To implement a method by which n at a level above u
can know that it has an alternative root, we use a subtree

type stack that represents the types of the trees on the path
from a given switch to the roots of AB FatTree. When a
switch that receives a pushback notification has the same
type stack as the originator (or partial type stack, if the
recipient is higher in the tree), then the switch has no
alternative route and must forward the message on to its
neighbors. In Figure 4, u and w both have stacks {A},
while x has a type stack {B}. Since u and w have the same
type stack, when v fails neither u nor w can route around
it. x can reroute as long as it uses a parent it does not
share with u and w. Formally, a node in a subtree has a
path around a single failed edge precisely if (i) it is at a
lower level than the failure, or (ii) its subtree type stack
is different than the top of the type stack of the failure.

The above procedure describes how a switch u would
handle receiving a notification of a single edge failure.
More generally, its currently-installed pushback state tells
u what prefixes its uplink is unable to serve. Any new
failure (either via a failed link, or notification of a failure
from an uplink) can potentially imply a prefix to which
u can no longer route. If that is the case, u propagates a
notification to all its downlinks.

5.3 Epoch-based Rerouting

After pushback terminates, all traffic will be routed along
shortest paths (provided a route exists), but load may be
unbalanced. Traffic that would have traversed failed links
are shunted onto the remaining links. The third step is
then to repair load balancing by reassigning flows. This is
a global process that is somewhat more involved than the
previous two schemes, so while failures are immediately
reported to a centralized controller, the rebalancing of
load occurs periodically at discrete epochs.

We describe a centralized load balancing server in Sec-
tion 6.2; the same mechanism is used to rebalance flows
after failures. The mechanism for reporting traffic charac-
teristics and scheduling will be discussed subsequently.

7
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Failures are communicated to the centralized controller
and taken into account in scheduling. Only shortest paths
are considered by the controller—local detours are in-
tended to be a temporary patch. Since all paths have the
same length, the controller assigns flows to minimize the
maximum traffic across any link. If there is no direct path
available, the flow will continue to take a locally rerouted
path if possible. Additionally, if a packet from a scheduled
flow encounters a failed link or node before the central-
ized controller is informed or reflects the change, it is
treated as non-scheduled from that point onwards. If it
remains stable, it will be rescheduled in the next epoch.

When a node recovers, the switch or link must prove
that it is stable by remaining up for an extended period of
time before the centralized scheduler will assign it traf-
fic. This minimizes lost packets due to repeated failures
of flaky devices. By putting recovery of hardware on a
somewhat slower time scale, we aggregate frequent and
correlated failures into a single event and only incur the
compulsory losses once. When the controller does decide
to reinstall the device, all neighbors are informed, and
they are responsible for tearing down local reroutes and
pushback blocks. Only when the neighboring switches
acknowledge reinstallation is complete does the central
controller use the new device for scheduled flows.

5.4 Failure Detection

Most current detection methods intentionally ensure that
devices do not react to failures too quickly [25]. In IP
routers, OSPF and IS-IS, by default, implement 330 mil-
lisecond heartbeats with 1 second dead intervals. Simi-
larly, layer 2 Ethernet switches will report failures only
after a waiting period on the order of multiple millisec-
onds. (This is called debouncing the interface.) Most of
these failure detection methods only declare a failure after
multiple, relatively slow heartbeats because the networks
they traditionally handle are not necessarily physically
connected and/or operate on shared media. In these set-
tings, congestion can cause false positives, and routing
algorithms are prone to instabilities during rapid changes.

To achieve near-instantaneous rerouting, we need to be
able to rapidly and accurately detect failures. In the case
of fail-stop behavior, we need a faster failure detector that
does not depend on multiple losses of relatively infrequent
heartbeats as mean time to recovery is bounded by the
time to detection, plus the time to compute and install any
changes into the routing table. In the case of stochastic
failures, we need a more accurate failure detector that
does not rely on the loss of a few designated packets.

F10 is able to achieve fast neighbor-to-neighbor fail-
ure detection because switches are directly connected
and routing loops are impossible by construction. Our
failure detection mechanism requires that switches con-
tinually send packets, even when idle. These packets test

the interface, data link, and to an extent, the forwarding
engine. F10’s failure detector takes advantage of the fact
that packets should be continually arriving, and allows
the network administrator to define two sets of values—
one for bit transitions to detect physical layer issues and
one for valid packets and forwarding logic to detect link-
and network-layer problems (higher-level failures require
higher-level, potentially end-to-end solutions):

• t, the time period over which to aggregate
• c, the required number of bit transitions/valid packets

per t for a working link to not be declared as down
• d, the number of bit transitions/valid packets per t

before a failed link is brought back up

These values allow for the customization of the thresh-
old for stochastic losses, as well as the amount of time
necessary before the link can be declared as down. There
are several factors that a operator can take into account
when choosing appropriate values for these variables:

• Probability distributions of failure and recovery times
• Desired false positive rate
• Application requirements for reactivity to failures

While there is a fundamental trade-off between stability
and reactivity (more aggressive c/t ratios necessitate a
higher aggregation period), t is ideally set to allow for
recovery before a transport-layer timeout. Note that these
values will not result in persistent flapping because we
use exponential backoff to handle fluctuations.

Our system eliminates the usual concerns with fast fail-
ure detection. Firstly, our failover protocols only deal with
one link at a time, meaning that a spurious failure will
not affect any other link, cascade failures, or create feed-
back loops. The only negative consequence of a spurious
failure is that the increased load from reroutes will cause
congestion. However, local rerouting is intended to be
short-term. Further, global load balancing is done based
on the measured end-to-end traffic matrix, ignoring the
temporary detour routes.

Secondly, local rerouting is initiated and can be re-
moved at the affected node. Instead of having an extended
period during which the network propagates status up-
dates until the system converges, our rerouting protocol
completes in the time it takes for a switch to update its
routing table. The choice of whether to send along the
link in question or to deflect to a new path is made at the
detecting switch, thus limiting the issue of convergence
of local rerouting to a single switch and guaranteeing that
the protocol converges before the next failure.

Note that continuous probing assumes certain proper-
ties of the link layer—particularly that it is full-duplex.
The type of Ethernet used in data centers are mostly
full-duplex between switches, and in fact, Cisco giga-
bit Ethernet switches and Ethernet standards starting from

8
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Figure 5: Example where the bold, red link between u and v be-
comes congested. If the congestion is in the downward direction,
at least x and y need to be notified of the congestion to allevi-
ate it. The colored, dashed lines indicate the four paths toward
which traffic will be shifted as a result of said notification.

10GbE do not even support half-duplex or CSMA/CD.
Furthermore, we argue that this functionality is practical
since modern Ethernet standards already call for continual
broadcasting of null symbols during idle periods.

6 Load Balancing
A closely related problem to failure recovery is that of
load balancing. Not only do failures increase load on
the rest of the system, they also have very similar char-
acteristics. Traffic in data centers, like failures, follows
a long-tailed distribution [5]. The majority of flows are
small and short-lived, but their longer-lived counterparts
can cause long-term congestion if not handled correctly.

Even in the case of a single loaded link, the two prob-
lems share much in common. Consider Figure 5, where a
single link connecting u and v is overloaded. v can detect
and instantly react if the load is in the (v,u) direction, but
if it is in the reverse direction, the closest nodes that can
respond to the issue are x and y. In the end, however, all
links in the network could potentially need to change in
order to restore global load balancing. We take the same
‘cascading’ approach to load as we do with failures and
introduce three mechanisms that mirror those above:

• A flow-placement mechanism that allows each switch
to locally place flows based on expected load.
• A version of our pushback mechanism that is able to

gracefully handle momentary spikes in traffic. For details,
we refer the interested reader to our tech report [19].
• The same epoch-based centralized scheduler that is

also used for failure recovery.

Because TCP dynamics make packet reordering unde-
sirable, we place traffic on a per-flow basis. At a high
level, the centralized scheduler preallocates a portion of
each link for long-term, stable flows. The remainder is
used for new and unstable flows—these are randomly
scheduled in the remaining capacity, but with pushback
to deal with short term congestion.

6.1 Weighted Random Load Balancing

Traffic that is too short-lived to benefit from our central-
ized scheduling algorithm needs to be handled locally and
immediately. For these types of flows, switches on the
upward path use random placement of short-term traffic
across all of the available shortest paths. Each flow is di-
rected along upward edges randomly, and in the case that
the centralized scheduler makes paths unequal in terms
of scheduled load, we use weighted ECMP that is based
on the residual capacity left after scheduling.

Note that new links have an initial residual capacity of
zero, and thus, new flows do not use the link so that the
centralized controller is able to ensure consistent weight-
ing. If all links have zero remaining capacity, a new flow is
placed across some non-failed link with equal probability.

In the example in Figure 5, random load balancing
attempts to avoid congesting the link in the first place by
distributing across all available links. After the congestion
occurs, v will place less weight on the congested link,
and even x and y will need to adjust their weights after
pushback load balancing completes.

When there are no failures and stable flows, just placing
flows randomly across all paths can achieve optimality.
However, spontaneous congestion and failures necessitate
other mechanisms in addition to random load balancing—
mechanisms like pushback and centralized scheduling.

6.2 Centralized scheduling

Longer-term, predictable flows can and should be sched-
uled centrally to ensure good placement to avoid persis-
tent congestion. For these longer flows, we use a similar
approach to MicroTE [6], which advocates centralized
scheduling of ToR-to-ToR pairs that remain predictable
for a sufficient timespan. The authors found from mea-
surement data that data center traffic is predictable. They
propose a system in which a server in each rack saves
traffic statistics and periodically sends to a centralized
controller a list of “predictable” flows that have instanta-
neous values within some delta of their average value.

In F10, these flows are scheduled with a greedy al-
gorithm that sorts the flows from largest to smallest and
places them in order on the paths with the least cost, where
the cost of a path is defined as ∑ 1

R(e) over the edges e in
the path P, where R(e) is the remaining capacity of edge
e. The controller informs ToRs about scheduled flows,
and residual capacities are sent to each switch to use for
weighted ECMP. If a scheduled flow runs into a failure,
it becomes unscheduled at the point of failure, and gets
placed using weighted ECMP.

In general, optimal rearrangement is an NP-complete
problem for single-source unsplittable flows. We choose
the greedy algorithm for scalability reasons, but the exact
choice of algorithm is orthogonal to our work. Multipath

9
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Figure 6: TCP congestion window trace with and without failure.
In the case of the failure, a link went down at 15sec and F10
recovered before a timeout occurred.

flows are more flexible from a load balancing perspective,
but require end host changes to the TCP stack.

7 Prototype and Evaluation
7.1 Prototype

We built a Click-based implementation of F10 and tested
it on a small deployment in Emulab [24]. The prototype
runs either in user-mode or as a kernel module. The im-
plementation is a proof of concept and correctly performs
all of the routing and rerouting functionality of F10. It is
able to accept traffic from unmodified servers and route
them to their correct destinations.
Failure Characteristics. We instrumented a Linux kernel
to gather detailed TCP information, including accurate
information about congestion window size; we used this
instrumented kernel to test the effect of a failure on a
TCP stream. Tests were performed in Emulab, but since
bandwidth limitations in both the links and the Click
implementation are lower than in a real data center, we
lowered the packet size so that the transmission time and
the number of packets in flight are comparable to a real
deployment with 1 gigabit links. We used this testbed to
compare the evolution of a congestion window with and
without failure during a 25 second interval in Figure 6.
F10 is able to recover from the failure before a timeout
occurs and the performance hit is minimal.
Failure Detector. We have also implemented an approx-
imation of F10’s failure detector using Click in polling
mode. The detector would ideally be built in hardware,
but preliminary results indicate that we can approximate
the ideal detector with a Click-based implementation. Un-
fortunately, with Click, it is not possible to track bit tran-
sitions on the wire, and there is some amount of jitter
between successive schedulings of the network device
poller. Even so, our Pentium III testbed machine was able
to accurately detect failures after as little as 30µs—much
less than a single RTT in a data center. With this property,
we were able to fail based on the rate of valid packets.

At each output port, we placed a strict priority sched-
uler that pulls from the output queue if possible, or else
generates a test packet. The dummy packets are inter-
cepted and dropped by the downstream failure detector
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Figure 7: Comparison of throughput of the testbed and the sim-
ulator through ten failures and the same topology/offered load.

before being passed to the rest of the system. The detector
asserts a failure and notifies the rest of the system when
the arrival rate of either good or nonce packets drops
below the specified threshold.

7.2 Evaluation Environment

Simulator. We created an event-driven simulator to test
the efficacy of F10 with medium- to large-scale data
centers—resources limited the feasibility of such experi-
ments in our testbed setting. The simulation includes the
entire routing and load balancing protocol along with the
fast failure detection algorithm.

Our multicore, packet-level, event-driven simulator
comprises 4181 lines of Java. It implements both low-
level device behaviors and protocols. The Layer 2 Eth-
ernet switches use standard drop-tail queues and have
unbounded routing state; our evaluation shows that even
with many failures in the network, only a modest amount
of state needs to be installed. The simulator models 100 ns
latency across each link to cover switch and interface pro-
cessing as well as network propagation latencies. When
there is no traffic, each switch generates nonce messages
to its neighbors. The link is marked as failed if three
consecutive packets are not received correctly.

Our experiments are performed assuming 24-port
10GbE switches in a configuration that has 1,728 end
hosts, resulting in a standard or AB FatTree with three
layers. Except in Section 7.6, we use UDP traffic in our
experiments so that we can more precisely measure the im-
pact of the failure on load. This enables us to understand
how well the evaluated mechanisms improve network ca-
pacity. TCP will generally back off quickly, resulting in
lower delivered throughput than shown here.

We have compared the measurements generated by
both the testbed and simulator, for an identical topology
and offered load. Figure 7 is a CDF of throughput for a
single source-destination pair that experienced a sequence
of ten failures, which each went through all of the stages
of failover in F10. We found that, in all cases tested, the
simulator and testbed results matched each other closely.

Workload model. We derive our workload from mea-
surements of Microsoft data centers given by Benson
et al. [5]. We generate log-normal distributions for (1)
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Figure 8: Aggregate losses due to lack of connectivity and con-
gestion in the case a single failure.

packet interarrival times, (2) flow ON-periods, and (3)
flow OFF-periods, parameterized to match the experimen-
tal data from the paper. In certain experiments (labeled
explicitly below), we scale the packet interarrival times
to adjust the load on the network.

Failure model. Failures are based on the study by Gill et
al. [10] that investigated failures in modern data centers.
We generated log-normal distributions for (1) the time be-
tween failures and (2) the time to repair for both switches
and individual links based on their experimental data.

Note that we do not consider leaf (ToR) switch fail-
ures, as these are well handled by cloud software. Fault
tolerance of rack failures is orthogonal to our work on the
robust interconnection between them.

7.3 Recovering from a Single Failure

Figure 8 shows a breakdown of the losses over time after
a single switch failure in F10 running a uniform all-pairs
workload at 50% (UDP) load. The y-axis in this graph
shows the loss rate normalized to the expected number of
packets traversing each switch.

When the failure occurs at 10ms, there is a burst of
packet drops due to failure. At around 11ms, the neighbors
of the failed switch detect the failure, and local rerouting
installs new working routes and eliminates failure drops.
Local rerouting reduces the capacity of the network, trig-
gering congestion. When the pushback scheme is initiated
later, it quickly and effectively optimizes paths, spreading
the extra load and eliminating the congestion loss.

7.4 Comparison with PortLand

F10 recovered from the single failure evaluated in the
prior section within 1 ms of the failure; this is more than
two orders of magnitude faster than possible with Port-
Land [20], the state of the art research proposal for fault
tolerance in data center networks, which reports minimum
failure response times of 65 ms. In addition, F10 was able
to recover load balancing in 35 ms, while PortLand does
not handle congestion losses at all. In this section, we
compare F10 against PortLand using the realistic, syn-
thetic traffic and failure models described in Section 7.2.

Figure 9 shows the congestion rate in each system. We
generated workload and failure events from a random
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Figure 9: CDF of the congestion losses of both PortLand and
F10 under realistic traffic and failure conditions.

seed and fed the same trace into PortLand, which uses a
standard FatTree, and F10 with an AB FatTree and all our
techniques. We aggregated loss statistics over a 500µs
time interval, and report the distribution of congestion loss
over these intervals. The figure aggregates data points for
multiple runs that start from different initial conditions.

Overall, F10 has much less congestion than PortLand.
F10 sees negligible loss for 3/4 of time periods, whereas
PortLand nearly always has congestion. In total, Portland
has 7.6× the congestion loss of F10 for UDP traffic.

7.5 Local Rerouting and AB FatTrees

Note that both standard and AB FatTrees can perform
local rerouting, but the former is unable to exploit the
shorter detours of F10. Here, we evaluate the impact of
the novel structure of AB FatTrees during local reroutes.
We measured the path inflation of local reroutes using
varying numbers of switch failures (up to 15 concurrent
failures, implying up to 360 failed links) in standard vs
AB FatTrees (see Figure 10). We found that local reroutes
in AB FatTrees experience roughly half the path inflation
than in standard FatTrees, owing to F10’s ability to use
Scheme 1 rerouting in addition to Scheme 2. Even for
many concurrent failures, the vast majority—more than
99.9%—of reroutes use the minimum number of hops (2
for AB FatTrees). We also looked at random link failures
as opposed to switch failures, and obtained similar results
in terms of how the path dilation in F10 compares with
that of standard FatTrees.

7.6 Speeding up MapReduce

We conclude our evaluation by simulating the behavior of
a MapReduce job (with TCP flows) in our data center. We
used a MapReduce trace generated from a 3600-node pro-
duction data center [7], and considered the performance
of just the shuffle phase, where flows are initiated from
mappers to reducers, with mappers and reducers assigned
randomly to servers. We focus our study on only those
MapReduce computations that involved fewer than 200
mappers and reducers in total.

Figure 11 compares the performance of the shuffle op-
eration under the two architectures—F10 and PortLand—
and the failure model used thus far. Since the shuffle
operation completes only after all the constituent flows
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(b) An AB FatTree using both local rerouting schemes

Figure 10: Complementary CDF of the path dilation using local
rerouting for 1, 5, 10 and 15 simulated switch failures when
using our local rerouting schemes in standard and AB FatTrees.

are complete, it suffers from the well-known stragglers
problem. If any of the flows traverse a failed or rerouted
link, it suffers from suboptimal performance. We measure
the speedup of an individual job as the completion time
under PortLand divided by that of the job under F10.

Figure 11a shows the distribution of the speedup; we
find that F10 is faster than PortLand with a median
speedup of about 1.3×. Figure 11b, shows the distribution
of speedup vs job size, and we find that gains are larger
when more nodes participate and compete for bandwidth.
We conclude that F10 offers significant gains over Port-
Land, and this will improve in larger future data centers.

8 Extensions
8.1 Other Types of Multi-Tree Networks

So far, we have focused on a specific subset of multi-tree
networks—Clos networks where the number of uplinks
at any switch is equal to the number of downlinks. We
now show how the ideas presented in this paper can be
used in conjunction with other topologies. In particular,
we generalize our protocols for any type of folded Clos
network and also look at traditional data center topologies.
Oversubscribed and Overprovisioned Networks: Al-
lowing the number of uplinks and downlinks for a single
switch to differ allows for “vertical” asymmetry. Such
asymmetry can be useful if different layers use different
technologies (e.g., VL2’s Clos topology) or when traffic
patterns do not require full bisection bandwidth.

Fortunately, these networks require little to no change
in our algorithms. The placement of flows by the global
rebalancer is easily extended to this case. Pushback simi-
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Figure 11: An end-to-end evaluation using PortLand or F10 for
MapReduce jobs.

larly does not rely on the number of links; notifications
are broadcast to all uplinks and downlinks, and termi-
nation only depends on level and type stack. For ba-
sic routing, local rerouting and recursive pushback, a
few generalizations of functions must be made, and for
this we require configuration of the number of down-
links for switches at each level, Dlevel. All references
to p should be replaced by Dlevel and protocols should
be changed to take the nonuniformity into account (e.g.,
prefix(a, i) = a � (Σi

l=1(�log(Dl)�))).
Traditional Data Center Networks: Next we look at
more traditional topologies like those described in [8].
These topologies have many extra links compared to a
Clos topology with an equal number of switches, but gain
fault-tolerance as a result. Although we focused on next-
generation data centers as they are more scalable and cost
effective, there is no reason that F10’s concepts cannot be
applied to traditional networks as well. These networks
have two main topological differences from Fat-Trees:

• Cross-links between switches in the same level
• Multiple links into a given subtree/pod (often all sub-

roots connect to all roots and vice versa)

While these links do not necessarily add to the capac-
ity of the network, they allow for shorter reroutes than
possible in F10. Even so, F10’s failure detection, near-
instantaneous failover and load balancing concepts can
increase performance and reactivity to failures and fault
tolerance in the case of multiple failures. Note that in the
case where all subroots connect to all roots and vice versa,
A and B subtrees have identical wirings just as in the low-
est level of normal FatTrees. Thus, any child can be used
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for phase 1 of local rerouting and pushback terminates as
soon as it follows a downlink.

8.2 Beyond AB FatTrees

Our architecture introduces an extra type of subtree that
connects to a different set of roots and thus provides
additional path diversity. A natural question to ask is
whether we can get even more diversity with more types.

In the limit, we can create a p-type FatTree in which
all subtrees are connected to a slightly different set of
roots. This is accomplished by rotating the set of roots to
which a subtree connects—subroot j of the first subtree
connects to the jp through the ( j+1)p−1 roots, subroot
j of the second subtree connects to roots jp+1 through
( j+1)p, and in the same manner, each additional subtree
incrementally shifts by one. This guarantees that every
sibling of a given node n has at least one alternative path.

At first glance, this seems to improve the potential
for efficient reroutes. However, more choices at the first
hop of local rerouting comes at the cost of fewer at the
second. While an AB FatTree provides p−1 alternatives
for the second hop of Scheme 1 given a single failure, a p
type FatTree will have an average of p/2−1, with some
nodes having more alternatives than others. Increasing the
number of types does not, in general, increase the chance
of finding a two-hop detour.

For pushback, more alternatives means that the notifi-
cations can stop earlier (in the case of a single failure in a
p-type FatTree, pushback can terminate after the message
traverses any downward link). However, traffic destined
for the failed path is split over a smaller number of al-
ternate paths, disproportionately increasing the load on
those paths. In sum, the tradeoffs are complex, and we
leave a fuller comparison for future work.

9 Related Work
The topic of fault tolerance in interconnection networks
has a long history [1, 9, 16]. Most previous work on this
topic, most notably [2], has added hardware in the form of
stages, switches and links to existing topologies to make
them more fault tolerant while keeping latency and non-
blocking characteristics constant. We instead allow for a
temporary increase in latency for paths affected by faults
in exchange for no increase in hardware cost.

In the context of today’s data centers, researchers have
recently proposed several alternative interconnects. Our
work directly builds on FatTrees [3] as they are used
in PortLand [20], although our ideas generalize to other
multi-rooted trees like VL2 [11] and beyond. We lever-
age many of the earlier mechanisms in our work. We
replace the interconnect with our novel AB FatTree net-
work and co-design local rerouting, pushback, and load
balancing mechanisms to exploit the topology. Hedera [4]
implements centralized load balancing on top of PortLand.

Hedera only schedules new flows, whereas we choose to
globally rearrange flows periodically.

DCell [13] and BCube [12] introduce structured net-
works that are not multi-rooted trees.The key difference
is that these topologies trade more hardware for their in-
creased robustness. DCell performs local rerouting after a
failure but is not loop free (unlike ours). Loop freedom is
important to enable fast failure detectors at the link layer
without compromising reliability.

Jellyfish [23] takes a different approach to datacenter
design—unstructured, random-wiring. It trades regular-
ity and rearangeable, non-blocking guarantees for better
average-case performance with less hardware. Our mech-
anisms might apply to their topology, though it would re-
quire precomputation of all detour paths, and it is unclear
how much path dilation would be needed on average.

Our failure recovery schemes leverage existing tech-
niques. Our local rerouting scheme uses tags and fail-
ure lists analogous to MPLS and Failure-Carrying Pack-
ets [14], respectively. MPLS supports a similar style of
immediate local detours (Fast Reroute) while waiting for
the failure to propagate upstream (Facility Backup) [21].
MPLS failover requires manual preconfiguration and
stored state, whereas our system has easy-to-compute
backup paths and stores state only when there is a failure.

DDC [18] has the same intuition that failover should
be done at the network layer. They make no assump-
tions about network topology, and so they cannot benefit
from preset local reroutes. In order to handle unstructured
networks, their approach reroutes for each destination
separately and does not result in paths that are as efficient
as the ones produced by our local rerouting scheme.

10 Conclusion
Scalable, cost-efficient and failure resilient data center net-
works are increasingly important for cloud-based services.
In this paper, we describe F10, a novel multi-tree topol-
ogy and routing algorithm to achieve near-instantaneous
restoration of connectivity and load balance after a switch
or link failure. Our approach operates entirely in the net-
work with no end host modifications, and experiments
show that routes can generally be reestablished with de-
tours of two additional hops and no global coordination,
even during multiple failures. We couple this fast rerout-
ing with complementary mechanisms to quickly reestab-
lish direct routes and global load balancing. Our evalu-
ation shows significant reduction in packet loss and im-
proved application-level performance.
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Abstract
Under misconfiguration or topology changes, iBGP with
route reflectors exhibits a variety of ills, including rout-
ing instability, transient loops, and routing failures. In
this paper, we consider the intra-domain route dissemi-
nation problem from first principles, and show that these
pathologies are not fundamental–rather, they are artifacts
of iBGP. We propose the Simple Ordered Update Proto-
col (SOUP) and Link-Ordered Update Protocol (LOUP),
clean-slate dissemination protocols for external routes
that do not create transient loops, make stable route
choices in the presence of failures, and achieve policy-
compliant routing without any configuration. We prove
SOUP cannot loop, and demonstrate both protocols’
scalability and correctness in simulation and through
measurements of a Quagga-based implementation.

1 INTRODUCTION

Much has been written about iBGP’s susceptibility to
persistent routing instability and forwarding loops [11,
12, 20]. Yet the transient behavior of intra-domain dis-
semination of external routes has been, to our knowl-
edge, unexamined. In recent work, we found that today’s
iBGP frequently incurs transient forwarding loops while
propagating updates [13]. Real-time traffic of the sort
prevalent on today’s Internet does not tolerate transient
loops or failures well; Kushman et al. [18] note that pe-
riods of poor quality in VoIP calls correlate closely with
BGP routing changes. Even a BGP-free core does not
entirely eliminate iBGP’s role in intra-AS route dissem-
ination, nor any associated pathologies: border routers
(BRs) must still use iBGP internally to exchange routes.

In this paper, we illustrate that the routing instability
and transient loops that often occur when disseminating
a route update (or withdrawal) learned via eBGP within
an AS are not fundamental. Rather, they are side-effects
of the way in which route dissemination protocols—not
only iBGP as typically deployed with Route Reflectors
(RRs), but in the case of transient loops, alternatives such
as BST and RCP, as well—happen to disseminate routes.
It is the lack of attention to the order in which routers
adopt routes that causes these pathologies.

Based on these observations, we introduce the Simple
Ordered Update Protocol (SOUP), a route dissemination
protocol that provably never causes transient forwarding
loops while propagating any sequence of updates from
any set of BRs. SOUP avoids causing loops by reliably
disseminating updates hop-by-hop along the reverse for-
warding tree from a BR. We further introduce the Link-

Ordered Update Protocol (LOUP), which uses a similar
ordering mechanism to avoid loops, but includes opti-
mizations that reduce its convergence time (compared
with that of SOUP) in common cases.

We are not the first to observe that careful attention
to the details of route propagation can eliminate tran-
sient anomalies. DUAL [8], the loop-free distance-vector
interior gateway protocol (IGP), explicitly validates be-
fore switching to a next hop that doing so will not cause
a forwarding loop. And Consensus Routing [17] aug-
ments eBGP with Paxos agreement to ensure that all
ASes have applied an update for a prefix before any AS
deems a route based on that update to be stable. SOUP
and LOUP use comparatively light-weight mechanisms
(i.e., forwarding in order along a tree) to avoid transients
during route dissemination within an AS.

Our contributions in this paper include:
• a first-principles exploration of the dynamics of route

dissemination, including how known protocols do dis-
semination and the trade-offs they make

• invariants that, when maintained during route dissem-
ination, avoid transient loops when any set of updates
to prefixes is introduced

• SOUP, a simple route dissemination protocol that en-
forces these invariants using ordered dissemination of
log entries along a tree

• a proof that SOUP cannot introduce forwarding loops
• LOUP, an optimized route dissemination protocol that

converges faster than SOUP
• an evaluation in simulation that demonstrates the cor-

rectness and scalability of LOUP on a realistic Internet
Service Provider topology

• measurements of an implementation of LOUP for
Quagga that show LOUP scales well in memory and
computation, so that it can handle a full Internet rout-
ing table and high update processing rate.

2 INTRA-AS ROUTE DISSEMINATION

Internet routing consists of three components: External
BGP (eBGP) distributes routes between routing domains
and is the instrument of policy routing. An Interior Gate-
way Protocol (IGP) such as OSPF or IS-IS tracks reach-
ability within a routing domain. Finally, Internal BGP
(iBGP) distributes external routes received by border
routers (BRs) both to all other BRs, so they can be redis-
tributed to other domains, and also to all participating in-
ternal routers. In this paper we are concerned with iBGP:
when a route changes elsewhere in the Internet, how does
this change propagate across a routing domain?

1
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When a BR receives a route change from a neighbor-
ing routing domain or Autonomous System (AS), it sanity
checks it and applies a policy filter. This policy filter can
drop the route, or it can modify it.

After policy filtering, the BR runs its decision process,
determining whether it prefers this route to other routes
it may hold for the same IP address prefix. The decision
process is specified in the BGP standard, and consists of
successive rounds of eliminating candidate routes based
on different criteria until only one remains. First in the
decision process is Local Preference, so configured pol-
icy trumps all else. Lower down the list come AS Path
length, and below that IGP distance (the distance to the
BGP next hop—usually either the announcing BR itself,
or its immediate neighbor in the neighboring AS).

When a BR receives a route announcement for a new
prefix, if it is not dropped by policy, the BR distributes it
to all other routers in the domain so they can reach this
destination. If a BR already has a route to that prefix, it
only sends the new route to the other routers if it prefers
the new route. Similarly, if a BR hears a route from an-
other BR that it prefers to one it previously announced, it
will withdraw the previously announced route.

Having decided to announce or withdraw a route, it
is important to communicate the change reliably and
quickly to the rest of the AS. BGP routing tables are
large—currently over 400,000 prefixes—and multiple
BRs can receive different versions of each route. Peri-
odic announcement of routes doesn’t scale well, so dis-
semination needs to be reliable: once a router has been
told a route, it will hold it until it is withdrawn or super-
seded. Route dissemination also needs to be fast, other-
wise inter-AS routing can take a long time to converge.

The simplest way to disseminate routes across an AS
is full-mesh iBGP, where each router opens a connection
to every other router in the domain (Fig. 1a). When an
update needs to be distributed, a BR just sends it down
all its connections. TCP then provides reliable in-order
delivery of all updates to each router, though it provides
no ordering guarantees between different recipients.

In practice, few networks run full-mesh iBGP. The
O(n2) TCP connections it requires dictate that all routers
in a network must be reconfigured whenever a router is
added or retired, and every router must fan out each up-
date to all n− 1 peers causing a load spike with associ-
ated processing delays. Most ISPs use iBGP route reflec-
tors (RRs). These introduce hierarchy; they force propa-
gation to happen over a tree1 (Fig. 1b). Updates are sent
by a BR to its reflector, which forwards them to its other
clients and to other reflectors. Each other reflector for-
wards on to its own clients.

Route reflectors significantly improve iBGP’s scaling,

1ISPs often use two overlaid trees for redundancy.

but they bring a range of problems all their own. In par-
ticular, each BR now only sees the routes it receives di-
rectly via eBGP and those it receives from its route re-
flector. Thus no router has a complete overview of all the
choices available, and this can lead to a range of patholo-
gies, including persistent route oscillations [9].

ISPs attempt to avoid such problems by manually
placing route reflectors according to guidelines that say
“follow the physical topology”; not doing so can cause
suboptimal routing [20]. Despite these issues, almost all
ISPs use route reflectors and, with conservative network
designs, most succeed in avoiding the potential pitfalls.

Persistent Route Oscillations With eBGP, inconsis-
tent policies between ISPs can lead to persistent BGP
oscillations. These can be avoided if BGP policies obey
normal autonomous systems relations (“obey AR” [7]).
Essentially this involves preferring customer routes to
peer or provider routes, and that the graph of cus-
tomer/provider relationships is acyclic. However, even
when AR is obeyed, BGP’s MED attribute can result in
persistent iBGP route oscillations [10].

Briefly, MED allows an operator some measure of
control over which link traffic from his provider takes
to enter his network. Unfortunately the use of MED
means that there is no unique lexical ordering to alter-
native routes. The decision process essentially takes two
rounds; in the first routes received from the same ISP are
compared, and the ones with higher MED are eliminated;
in the second, the remaining routes are compared, and
an overall winner is chosen. Thus route A can eliminate
route B in the first round, then lose in the second round
to route C. However, in the absence of route A, route B
may win the second round. Compared pairwise, we have
A > B, B >C, and C > A. To make the correct decision,
routers must see all the routes, not a subset of them.

Route reflectors hide information; only the best route
is passed on. This interacts poorly with MED, resulting
in persistent oscillations [19]. Griffin and Wilfong prove
that so long as policies obey AR, full-mesh iBGP will
always converge to a stable solution [10]. The same is
not true of route reflectors or confederations. To avoid
iBGP route oscillations, it is sufficient to converge to the
same routing solution that would be achieved by full-
mesh iBGP, and we adopt this as a goal.

The Rise of the BGP-free Core In recent years many
ISPs have deployed MPLS within their networks, primar-
ily to support the provisioning of VPN services. MPLS
also allows some networks to operate a BGP-free core.

An MPLS network with a BGP-free core functions in
the same way as BGP with route reflectors, except that
only BRs are clients of the RRs. An internal router that
only provides transit services between BRs does not need
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(a) iBGP (b) iBGP + RR (c) RCP

(d) BST (e) LOUP

Figure 1:
Propagation
mechanisms.

to run BGP; instead the entry BR uses an MPLS label-
switched path to tunnel traffic to the exit BR. A protocol
such as LDP [2] is then used to set up a mesh of MPLS
paths from each entry BR to each exit BR.

One potential advantage of a BGP-free core is that
core routers need only maintain IGP routes, rather than
the 400,000 or so prefixes in a full routing table, though
they must also hold MPLS state for a subset of the O(n2)
label-switched paths. In general though, due to improve-
ments in hardware and forwarding algorithms [23], the
overall size of routing tables is not the problem it was
once thought to be [6]. Another potential advantage of
a BGP-free core is that it reduces the number of clients
of iBGP route reflectors. Fewer clients mean less pro-
cessing load on the RRs and less chance of configuration
errors that cause routing instability.

Against these potential benefits, a BGP-free core de-
pends on additional protocols such as LDP or RSVP-TE
for basic connectivity, which add complexity and them-
selves need careful configuration. Moreover, a BGP-free
core doesn’t eliminate transient forwarding loops. BRs
still run iBGP with RRs, and RRs still fail to control
the order in which their distinct clients hear updates. Al-
though MPLS may reduce the prevalence of such loops,
it cannot prevent them—those transient loops that do
occur will traverse the whole network between two (or
more) BRs.

Thus the adoption of a BGP-free core seems to be
driven by obsolete concerns about routing table size and
by undesirable properties of iBGP with route reflec-
tors. Our goal is to revisit the role played by iBGP, and
demonstrate that iBGP’s limitations are not fundamental.
We will describe replacements for iBGP that:
• are not susceptible to configuration errors,
• are stable under all configurations,
• are not prone to routing protocol traffic hot spots,
• minimize forwarding table (FIB) churn, both in BRs

and internal routers,
• propagate no more changes to eBGP peers than full-

mesh iBGP would,
• free of transient loops.

3 DISSEMINATION MECHANISMS

We now examine alternative route dissemination mecha-
nisms from first principles to cast light on how forward-
ing loops arise and inform the design of the loop-free
route dissemination protocol we describe subsequently.

Although iBGP’s use of TCP ensures the in-order ar-
rival of updates at each recipient, each recipient applies
every update as soon as it can. Thus the order of up-
date application among recipients is arbitrary, causing
transient loops and black holes until all the routers have
received and processed the update. Route reflectors im-
pose a limited ordering constraint (RR clients receive a
route after their RR processes it), but except in trivial
non-redundant topologies this constraint is insufficient to
prevent loops and black holes.

One way to avoid both loops and persistent oscillations
would be to centralize routing, as shown in Fig. 1c. When
an external update arrives the BR first sends it to a rout-
ing control platform (e.g., RCP [3]), which is in charge of
running the decision process for the whole domain and
distributing the results to all routers. As the RCP con-
troller has full knowledge, it could be extended to avoid
loops by applying updates in a carefully controlled order.
However, to do so would require a synchronous update
approach which, given the RTTs to each router, would
be slower than distributed approaches.

In the case of IGP routing, it is well known how to
build loop-free routing protocols. DUAL [8] is the ba-
sis of Cisco’s EIGRP, widely deployed in enterprise net-
works, and uses a provably loop-free distance-vector ap-
proach. DUAL is based on several observations:

• If a metric change is received that reduces the distance
to the destination, it is always safe to switch to the
new shortest path. This is a property of distance-vector
routing; if the neighbor sending the change is the new
next hop, it must already have applied the update, and
so must be closer to the destination. Therefore no loop
can occur.

• If an increased distance is received, the router can
safely switch to any neighbor that is closer than it
previously was from the destination. This constraint
is DUAL’s feasibility condition, and these routes are
known as feasible routes. They are safe because no
matter the router’s distance after the update, it still
never forwards away from the destination.

• In all other circumstances, a router receiving an in-
creased distance cannot safely make its own local
decision. DUAL uses a diffusing computation [5] to
make its choice. It freezes the current choice of next
hop and queries its neighbors to see if they have a
feasible route. If they do not, they query their neigh-
bors, and so on, until the computation reaches a router
close enough to the destination that it can make a safe
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choice. The responses spread out back across the net-
work, activating routes in a wave as they return.
The iBGP route dissemination problem is different

from that solved by DUAL, as iBGP distributes the same
information to all internal routers, irrespective of the in-
ternal topology. DUAL, in contrast, concerns itself with
path choice across the internal topology. For each prefix
iBGP routers must decide between alternative external
routes as those routes propagate across the network. The
routes themselves do not change; rather to avoid loops
we must either control the order in which route changes
are received or the order in which they are applied.

Wavefront Propagation DUAL performs hop-by-hop
flooding of route changes, accumulating metric changes
along the way. BGP route dissemination can also be per-
formed using hop-by-hop flooding, as shown in Fig. 1d,
in which each router sends the messages it receives to all
neighbors. Flooding must be done over one-hop reliable
sessions to ensure messages are not lost. BST [15] takes
this approach. Flooding imposes a topological ordering
constraint, guaranteeing that at all times, a contiguous
region of routers has processed an update. Essentially an
update propagates across the domain as a wavefront; this
is a necessary (though not sufficient) condition to avoid
transient loops. iBGP does not have this property.

To see why this condition is not sufficient, even as a
new route is propagated, consider Fig. 2. BR B had pre-
viously received a route to prefix P and distributed it to
all the routers in the domain. BR A then receives a better
route to P, and this is in the process of flooding across the
domain, forming a wavefront 1© flowing outward from A.
All the routes in the light gray region now forward via A;
the remainder still forward via B. Unfortunately, flooding
does not ensure that the wavefront remains convex—that
a forwarding path only crosses the wavefront once. As a
result transient loops 3© can occur.

Fig. 4 shows one way that such non-convexity can oc-
cur. Initially all routers forward to some prefix via B2,
but then B1 receives a better route. Link 1-2 would not
normally be used because of its high metric. If, how-
ever, router 1 floods the update from B1 over this link,
then receiving router 2 may direct traffic towards router

3 which is on the forwarding path to B1. As router 3 has
not yet heard the update, it will direct traffic towards B2
via router 2, forming a loop. This loop will clear eventu-
ally when router 3 hears the update. Note that the update
may be delayed either by the network (e.g., congestion,
packet loss) or more likely, by variable update processing
delays at routers.

4 SIMPLE ORDERED UPDATE PROTOCOL

Building upon the discussion of route dissemination
primitives above, we now propose two novel dissemi-
nation techniques, reverse forwarding tree dissemination
and backward activation. We combine these into a Sim-
ple Ordered Update Protocol (SOUP), and prove that it
never causes transient forwarding loops within an AS.

4.1 Reverse Forwarding Tree Dissemination
Recall that BST’s loops occur when one BR propagates
a new route that is preferred to a pre-existing route from
another BR. A sufficient condition for avoiding such
loops is for no router to adopt the new route until the
next hop for that route has also adopted the route. The
condition transitively guarantees that a packet forwarded
using the new state will not encounter a router still us-
ing the old state. One way to meet this condition in BGP
route dissemination is for a router only to announce a
route to routers that will forward via itself. Thus, route
announcements flow from a BR along the reverse of the
forwarding tree that packets take to reach that BR. Ap-
plying this condition in Fig. 4 precludes sending the up-
date over link 1-2 as it is not on the RFT.

SOUP works by propagating announcements over a
hop-by-hop tree, as shown in Fig. 1e. Unlike the Route
Reflector tree, SOUP uses one tree per BR, rooted at that
BR. SOUP builds this tree dynamically hop by hop by
reversing the links on the shortest-path tree that the IGP
follows to reach that BR from everywhere in the domain.
This hop-by-hop nature preserves the wavefront prop-
erty. Disseminating routes down the reverse forwarding
tree (RFT) adds additional desirable ordering constraints
that eliminate transient loops of the sort described above
when improved routes are disseminated.
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4.2 Sending Bad News: Backward Activation
Sending bad news is never as simple as sending good
news. If a router receives a withdrawal (even over the
RFT), it cannot just pass it on and locally delete the route
from its FIB. If it does, a transient loop may result. Con-
sider what happens when all routers hold more than one
route to the same destination prefix. This often occurs
when routes tie-break on IGP distance: more than one
BR originates a route, but they are all equally preferred.
Each router chooses the route to the closest exit; some
choose one exit, some another. Such hot-potato routing
is common when two ISPs peer in multiple places.

Withdrawing one of those routes, as B does in Fig. 3,
causes a loop. The routers behind withdrawal wavefront
2© have already switched to an alternative route via A.
Routers farther away have not yet heard the withdrawal
and still forward to B. Traffic loops at wavefront 2©.

To avoid such loops, when a BR withdraws a route,
the change must first be applied by routers furthest from
the BR. Essentially we want the change to propagate in
exactly the reverse of what would happen when good
news propagates. In this way, no router uses the to-be-
withdrawn route to forward packets to a router that has
already withdrawn the route, and so the withdrawal will
not cause a loop to occur. In Fig. 3 the routers far-
thest from B will remove the route first, though doing
so doesn’t change their forwarding decision. The routers
just to the right of 2© will be the first to withdraw the
route and change their choice of exit router, then their
parents (with respect to the tree routed at B), and so on
back up to B. We call this process backward activation.

4.3 The SOUP Protocol
SOUP routers actively build an RFT for each BR by ex-
changing messages with the relevant parent router. We
describe this in more detail in Section 6.1. BRs receive
route updates2 over eBGP. If a BR uses a route or the up-
date is a change to a route it previously used, then the BR
sends it hop-by-hop down the RFT.

We define a route as active if it is eligible to be con-
sidered in the decision process, even if it is not installed
in the FIB. Updates can be sent forward activated or
backward activated. Each router makes its own choice
of forward or backward activation, but with one excep-
tion, once the BR has originated a route as one or the
other, the update will stay that way across the network.

When a router receives an update, it checks if the route
is preferred to the current activated version of the same
route it received from the same BR. If it is preferred, the
route is feasible; it is applied immediately, and previous
versions of this route from the same BR are flushed. If

2A withdrawal is just an extreme form of a route becoming
less preferred, so we will only refer to updates from now on.

the route wins the BGP decision process, it is installed
in the FIB. Irrespective of whether it was installed in the
FIB, the router then sends it on to its children as forward
activated. The children will also find it to be feasible.

If the route is not feasible, the router cannot yet apply
the change. Its children still have the better version of
this route, and if it applies the change, it may forward to
a child who forwards right back again. Instead it keeps
the old route active, adds the update to a list of inactive
alternative routes received from that BR, and sends the
change to all its children marked as backward activated.

When a backward activated update is received by a
leaf router on the BR’s RFT, it is safe for that router to
activate the update—it has no children, so no loop can re-
sult. The leaf sends an activation message back to its par-
ent, indicating that it has activated the change. Once the
parent receives activation messages from all of its chil-
dren, it in turn can activate the update and send its own
activation message on to its parent. After activating an
update, the router runs the BGP decision process in the
normal way to decide which of its active routes, received
from different BRs, it should install in its FIB.

SOUP’s behavior is simple so long as only one update
from a BR propagates at a time: good news forward acti-
vates and bad news backward activates. At no time does
the existence or absence of an alternative route received
from another BR change this dissemination process. But
what happens when more than one change propagates si-
multaneously from the same BR?

Suppose a BR has already announced route ρ1, then
receives a route change from eBGP indicating the route
got worse, becoming ρ2. It sends an update containing
ρ2, which will backward activate. Before the activation
messages have returned, the route improves somewhat,
so the BR sends an update containing ρ3, which will also
backward activate—even though it is better than ρ2, it
is worse than the active route ρ1. Each router therefore
maintains a list containing {ρ1,ρ2,ρ3}, where ρ1 is still
active, and ρ2 and ρ3 are awaiting backward activation.

At the leaves of the tree, ρ2 has now activated, and the
activation for ρ2 spreads back up the tree. Descendants
on the RFT below the backward activation only have ρ2
in their list. At some point the update for ρ3 propagating
away from the BR passes the activation message for ρ2
returning toward the BR. On the link where these mes-
sages cross, the child router, Rc receives update ρ3. ρ3’s
update is marked as backward activated, but is preferable
to the active route ρ2. It is therefore feasible, is applied
immediately, and is sent on marked as forward activated.
However, as ρ3 was received at Rc marked as backward
activated, Rc must also indicate to its parent that it has
activated the route, so it sends an activation message.

These rules ensure that an update sent as forward ac-
tivated is always propagated as forward activated, but an
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Figure 5: A simple routing loop.
update sent as backward activated may switch to forward
activated if it crosses into a region where backward acti-
vation has already removed an older version of that same
route. An update can only change from backward acti-
vated to forward activated once, and never the other way.

Limitations of SOUP SOUP is loop-free when dis-
seminating changes if the IGP is loop free and internal
routes do not change. It does not attempt to be loop-
free while the IGP is reconverging, but as external route
changes greatly outnumber internal ones in most net-
works, this seems a reasonable compromise.

SOUP cannot always prevent transient loops in the
presence of the BGP MED attribute, though it will al-
ways converge to the same stable loop-free solution
as full-mesh iBGP. With MED, although routes can be
ranked as better or worse when originating from the
same BR, the same is no longer true when they origi-
nate from different BRs. MED has the property that with
three routes, A, B, and C for the same prefix, where three
routers have routes ABC, BC, and AC, as might happen
when routes A and B are propagating, then the three
routers can choose routes A, B, and C respectively. For
example, B beats C on MED, A beats B on router ID, C
beats A on router ID. There is no total order among the
three routes that all routers agree on, so looping can oc-
cur. iBGP-RR can exhibit persistent route oscillations in
this case, and Cisco provides an always-compare-MED
option to impose a strict total order. We conjecture that
no distributed protocol can ensure loop-freedom when
MED is used without such a workaround.

4.4 Proof of SOUP’s Loop Freedom
To show that SOUP does not introduce forwarding loops,
we focus on how the protocol handles updates for a sin-
gle prefix. Our proof rests on two assumptions: first,
that the IGP is not currently reconverging; and second,
that BGP’s always-compare-MED option is in use (such
that there is a strict total order on BGP routes). Without
these assumptions, SOUP cannot always prevent tran-
sient loops. We proceed in two steps: first, we introduce
a sufficient condition for loop avoidance, and second, we
prove that SOUP always complies with that condition.

Lemma. When the quality of the route used for forward-
ing improves monotonically at all successive router hops,
no forwarding loop can occur.3

Proof. Consider the simple three-router topology in
Fig. 5, in which letters denote the routes on which each

3Jaffe and Moss offer a similar proof [16].

router forwards. Define the operator “≺” such that for
routes x and y, x ≺ y means that the BGP decision pro-
cess prefers y to x. Consider a path whose first edge
(route) is A, along which route quality monotonically
increases. We proceed by contradiction. Assume that a
loop occurs along this path, and without loss of gener-
ality, assume the loop occurs between the third and first
router, as shown in Fig. 5. But if this loop occurs, we
have that A ≺C (by the path’s monotonic improvement)
and also that C ≺ A, as the loop will forward succes-
sively on routes C and A. In general, for any path on
which routes improve monotonically, a forwarding loop
will cause a contradiction in which the route that closes
the cycle must simultaneously be less preferred and more
preferred than the immediately subsequent route.

Theorem. SOUP does not introduce forwarding loops.

Proof. When a packet is forwarded, the routers along the
path do not have to forward towards the same BR. Some
may have received new state that the others have not yet
heard. However, as shown in the above lemma, so long as
the routing state along the path monotonically improves,
no loop can occur. For a loop to occur, monotonicity must
be violated: somewhere, a router rn+1 must forward to-
wards BR r0, and the next hop, rn, must forward using
less good state than that used by rn+1. Let the route be-
ing used at rn be ρn∗ and the route being used at rn+1 be
ρn+1∗. (We will use ∗ to indicate that a route is installed
in the FIB and used for forwarding.) To violate mono-
tonicity, and thus for a loop to be possible, ρn∗ ≺ ρn+1∗.
There are two cases to consider, depending on which BR
originated ρn∗:
Case 1: ρn∗ is a route that originated at r0.

For rn+1 to have route ρn+1∗, it must previously have
received a forward activated update for a route ρbest

n+1
from r0 that was either better than ρn+1∗ or is actually
ρn+1∗ . This is the case because forward activated up-
dates are the only way routes can improve. As rn+1 is
the child of rn with respect to BR r0, for rn+1 to have
received ρbest

n+1, it must have received this route from rn.
rn must therefore have also held ρbest

n+1 at some point.
If ρn∗ ≺ ρn+1∗, then rn must have received an update
that replaced ρbest

n+1 with a worse route. Such an update
must have backward activated at rn, as it would not
have been feasible compared to ρbest

n+1. However, for
ρn∗ to have been backward activated, as rn+1 is the
child of rn, the activation must have passed through
rn+1, and it would have replaced ρn+1∗. Thus rn+1 can-
not have ρn+1∗ � ρn∗ if ρn∗ originated at r0.
To summarize: if rn+1 has route ρn+1, then its parent
rn must still have the same route or a better one.

Case 2: ρn∗ originated at BR rBR, where rBR �= r0.
However, by case 1, if rn+1 has route ρn+1∗ received
from r0, then rn must still have a route ρr0

n received

6
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from r0, such that ρn+1∗ ≺ ρr0
n . If router rn has route

ρr0
n � ρn∗, then it will not choose ρn∗—the BGP de-

cision process can only choose ρn∗ � ρr0
n . Hence it

cannot be the case that ρn∗ ≺ ρn+1∗.
As neither case 1 nor case 2 can occur, it is impossible
for a loop to occur.

5 LINK-ORDERED UPDATE PROTOCOL

SOUP avoids loops by always maintaining the invariant
that no router ever has better active state for a prefix from
a specific BR than its parent router. The down side of
maintaining this invariant is that bad news must normally
propagate all the way across the network and the back-
ward activations return before worsening or withdrawn
state can be removed. If, after receiving bad news from
eBGP, a BR still has an external route, even though it is
no longer the best route from the domain, then there is no
significant problem: the destination is still reachable, and
all that happens is a suboptimal path is used for a short
while. However, when the BR receives a withdrawal via
eBGP and has no other eBGP route, then it will have
to drop any packets for this destination. SOUP forces the
BR to hold the old route longer than we would wish, pro-
longing the black hole longer than alternative protocols
that are not loop-free.

Is it possible to get the best of both worlds: maintain
loop-free routing, but also reconverge quickly? Back-
ward activation of withdrawals is essential for loop-free
routing, but inevitably delays switching to an alterna-
tive route. Thus SOUP cannot converge as fast as proto-
cols that do not perform backward activation. However,
it is often safe to terminate a backward activation without
having it traverse the whole network and back.

Consider Fig. 3, where the route advertised by B is
being withdrawn and an alternative route from A that tie-
broke on IGP distance exists. To avoid loops, SOUP’s
withdrawal wavefront spreads the whole way across the
network before activating on the reverse path. It is safe
instead to activate the withdrawal as soon as the wave-
front reaches 5©. The first hop to the left of 5© could trig-
ger the backward activation of the withdrawal by sending
a reply. This short-cutting of backward activation is the
essence of the Link-Ordered Update Protocol (LOUP).

5.1 Local Activation of Withdrawals
Just as with SOUP, a LOUP router passes a worsening
update on to its children without activating it, and waits
for backward activations from them before activating the
route change. Doing so maintains the invariant that a
router never has a better activated version of the route
than its parent does. This invariant ensures that succes-
sive announcements of a route from the same BR cannot
cause a loop.

A Y Z B

C

X
U(A)	  W(A)	  

U(C)	  A	  =	  C	  >	  B	  

Figure 6: Local activation can lead to transient loops.

Fig. 3 might lead us to consider that the routers just to
the left of 5© could locally activate the withdrawal. They
are not using the route being withdrawn, so they could re-
ply immediately to their parent, activating the withdrawal
back toward B. In the steady state, doing so is safe and
does not cause loops. However, it violates the invariant
that no router ever has a better activated version of a route
than its parent. Although it is quite difficult to find cases
where a loop results, they do exist.

Consider Fig. 6. The three BRs, A, B, and C have all
announced routes, such that A=C �B. The updates from
A and C have not yet reached B, so B has not yet with-
drawn its route. C’s update has reached Y , but not reached
X and Z. A has withdrawn its route—the withdrawal will
backward activate. Thus A, X , and Z are currently using
route A (shown by the block arrows), Y is using C, and B
is using its own route. So far, the network is loop-free.

The withdrawal of A then reaches Y , which is not us-
ing route A. Y therefore activates the withdrawal, passes
it to its children, and sends an activation message back
to X . Before any of these messages are received, Y then
receives a withdrawal of C. Because neither X nor Z
reaches C via Y , Y is a leaf on C’s RFT. Y immediately
activates the withdrawal, and switches to its only alterna-
tive, which is B. Traffic now loops between Y and Z.

Thus we can see that local activation is not safe in
the presence of transient announcements such as the one
from C. The problem is that the existence of the route
from C causes routers Y and Z to violate the invariant—
Z still has the route to A, but Y does not. To maintain the
invariant and be loop-free, the routing state at a route for
one BR must not depend on the existence or absence of
routing state for another BR.

5.2 Targeted Tell-me-when
To avoid the problem associated with local activation, we
build upon the sound basis of SOUP. LOUP activates an
update exactly as SOUP does—it triggers backward ac-
tivation under the same conditions as SOUP. However,
if a router has an alternative route via another neighbor,
it is safe to switch to that route if the router knows that
neighbor is no longer using the route that is waiting for a
backward activation.

Upon receiving a withdrawal (or a worsening update),
a router marks the route as backward activated and passes
it on to its children. It then also runs the decision pro-
cess to determine which route it would use if the change
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were activated. If there is an alternative route via another
neighbor, the router sends a tell-me-when request to that
neighbor requesting that it reply when it is no longer us-
ing the route being withdrawn.

If the response to the tell-me-when arrives before the
activation, the router knows that it is now safe to use the
alternative because its new next hop (and transitively, all
routers between it and the new exit point) is already us-
ing the alternative. The router does not yet activate the
withdrawal, but it can reply to any tell-me-when from its
other neighbors.

If the alternative route is withdrawn, the router still
has the original route (waiting for backward activation of
the withdrawal) in its table, and can safely switch back
to it if necessary as the invariant still holds, so long as
it has not replied to any other router’s tell-me-when for
this route. If it has replied to a tell-me-when, the route
is marked as dead. It is unsafe to switch back to a dead
route, and packets for this prefix will be black-holed until
the backward activation arrives.

Only when the backward activation arrives from all a
router’s children is a withdrawal finally activated.

5.3 Safety
With respect to a BR, LOUP maintains the same invariant
as SOUP, so no two routers forwarding on state from the
same BR can cause a loop. In [13], for an older version
of LOUP that used targeted tell-me-when messages but
did not use backward activation, we exhaustively consid-
ered all the possible ways a single update or withdrawal
could interact with existing forwarding state at routers.
So long as the IGP itself is loop-free, there was only
one way a loop could occur: a race condition we called a
Withdrawal/Announcement race, where a withdrawal of
one route caused a previously suppressed route to be re-
announced. The triggering withdrawal and the triggered
announcement could race, leading to loops. The current
LOUP protocol’s backward activation mechanism pre-
vents this race condition. We thus assert that no single
update can cause LOUP to create a forwarding loop. We
make no assertion that LOUP is loop-free when a BR
sends multiple updates for the same prefix in extremely
rapid succession, but we have not seen such loops in sim-
ulation. BGP’s MRAI timer would normally prevent this.

5.4 Freedom from Configuration Errors
Full-mesh iBGP requires all peerings be configured. The
configuration is simple, but all routers must be recon-
figured whenever any are added or removed. Route re-
flectors and confederations add configured structure to
an AS, and require expert knowledge to follow heuristics
to avoid sub-optimal routing or persistent oscillations. A
BGP-free core improves iBGP’s scaling somewhat, at the
expense of requiring additional non-trivial mechanisms

just to route traffic across the network core. All this con-
figuration significantly increases the likelihood of disrup-
tions caused by configuration errors.

Hop-by-hop dissemination mechanisms such as BST
and LOUP are configuration-free. All one must do is en-
able the protocol. Some might equate configuration with
control. We will show that LOUP’s freedom from con-
figuration does not give rise to routing protocol traffic
hotspots.

6 BUILDING AND USING THE RFT
We now describe the details of ordered update dissemi-
nation along an RFT in the SOUP and LOUP protocols.4

There are two main aspects: how to build the RFT, and
how to disseminate updates along the RFT reliably de-
spite topology changes.

6.1 RFT Construction
Each LOUP router derives a unique ID (similar to BGP-
ID) that it uses to identify routes it originates into the
AS. LOUP routers periodically send single-hop link-
local-multicast Hello messages to allow auto-discovery
of peers. A Hello contains the sender’s ID and AS num-
ber. Upon exchanging Hellos containing the same AS
number, a pair of LOUP routers establish a TCP con-
nection for a peering. All LOUP protocol messages apart
from Hellos traverse these TCP connections, and are sent
with an IP TTL of 1.

A LOUP router must know the IDs of all LOUP
routers in its AS to build and maintain the RFTs. This
list is built by a gossip-like protocol that operates over
LOUP’s TCP-based peerings. Essentially, a LOUP router
announces the full set of LOUP router IDs it knows to its
neighbors each time that set grows (and to bootstrap, it
announces its own ID when it first peers with a neighbor).
These gossip messages need not be sent periodically, as
they are disseminated reliably with TCP. LOUP routers
time out IDs from this list upon seeing them become un-
reachable via the IGP.

The RFT rooted at a router X is the concatenation of
the forwarding paths from all routers to X—the inverse of
the relevant adjacencies in routers’ routing tables. When-
ever the RFT changes, each LOUP router sends each
of its neighbors a Child message. LOUP router Y will
send its neighbor X a Child message stating, “you are
my parent in the RFT for this set of IDs.” This set of
IDs is simply the set of all IGP-learned destination IDs
in Y ’s routing table with a next hop of X . Upon receiving
a Child message on interface i, LOUP router X subse-
quently knows that it should forward any message that
originated at any ID mentioned in that Child message
down the appropriate RFT on interface i.

4Both protocols use the exact same RFT techniques; we
write “LOUP” hereafter for brevity.
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6.2 Reliable RFT Dissemination

An origin LOUP router that wishes to send an update
(e.g., a BR injecting an update received over eBGP)
sends that update to all routers in its AS over the RFT
rooted at itself. LOUP routers forward such updates over
their one-hop TCP peerings with their immediate neigh-
bors on the appropriate RFT. During a period when no
topology changes occur in an RFT, TCP’s reliable in-
order delivery guarantees that all updates disseminated
down the RFT will reach all routers in the AS.

When the topology (and thus the RFT) changes, how-
ever, message losses may occur: if the distance between
two routers that were previously immediate neighbors
changes and exceeds a single hop, the IP TTL of 1 on
the TCP packets LOUP sends over its peerings will cause
them to be dropped before they are delivered. For RFT-
based update dissemination to be reliable under topology
changes, then, some further mechanism is needed.

To make update dissemination over the RFT robust
against topology changes, the LOUP protocol structures
updates as a log. Each router maintains a log for each
origin. A log consists of an active operation and one or
more inactive operations, each with a sequence number,
ordered by these sequence numbers; this sequence num-
ber space is per-origin. An operation may either be a
route update or a route withdrawal. Inactive operations
are backward propagated updates that have not yet been
activated. When a LOUP router receives an operation
for dissemination over the RFT on a TCP peering with
a neighbor, it only accepts the operation and appends
it to the appropriate origin’s log if that operation’s se-
quence number is one greater than that of the greatest
sequence number of any operation already in that ori-
gin’s log. That is, a router only accepts operations from
an origin for RFT dissemination in contiguous increasing
sequence number order.

Should a LOUP router ever receive an operation for
RFT dissemination with a sequence number other than
the next contiguous sequence number, or should a tem-
porary partition occur between erstwhile single-hop-
neighbor routers, LOUP may need to recover missing
operations for the origin in question. A LOUP router
does so by communicating the next sequence number
it expects for each origin’s log to its current RFT par-
ent. LOUP includes this information in Child messages,
which routers send their parents for RFT construction
and maintenance, as described above. Should an RFT
parent find that it holds operations in a log that have not
yet been seen by its RFT child, it forwards the operations
in question to that child.

LOUP requires that the topology within an AS remains
stable long enough for LOUP to establish parent-child
adjacencies with its Child messages. So long as this con-

dition holds, LOUP’s single-hop TCP connections cou-
pled with its log mechanism guarantee reliable dissem-
ination of operations down the RFT. Topology changes
may temporarily disrupt the RFT, but all data will even-
tually reach the entire AS.

When a BR wishes to distribute a route update or with-
drawal, it acts as an origin: it adds this operation to its
log with the next unused sequence number, and sends it
down the RFT. As routers receive the operation, they ap-
ply it to their logs. When all operations are eventually
activated the end effect is the same as that of full-mesh
iBGP because the origin BR disseminates its update or
withdrawal to every router in the AS, just as full-mesh
iBGP does.

7 EVALUATION

We evaluated SOUP and LOUP to examine their correct-
ness, scalability, and convergence speed. To be correct
they must:
• always converge to the same solution as full-mesh

iBGP—doing so guarantees no persistent oscillations
if eBGP policy obeys AR; and

• not create transient loops, so long as the underlying
IGP’s routes are loop-free.

We assess scalability by asking:
• How is the CPU load distributed between routers?
• How are FIB changes distributed? Is the FIB updated

more frequently than with iBGP?
• How much churn is propagated to neighboring ASes?
• What is the actual cost of processing updates? Can

bursts of updates be handled quickly enough?
• Can the implementation hold the global routing table

in a reasonable memory footprint? Neither SOUP nor
LOUP hides information, so how well does it compare
to BGP with RRs?
Finally, we consider the delay and stability behavior of

these protocols during convergence, and compare them
with the alternate loop-free strategy of injecting external
routes into DUAL:
• How do the convergence times of SOUP and LOUP

compare? How long does DUAL take to converge
when conveying external routes?

• Does injecting external routes into DUAL render the
network unstable? What is the cost when an internal
link comes up or down?

7.1 Methodology
We implemented LOUP, SOUP, iBGP with RRs and a
generic flooding protocol that we will call BST* in a
purpose-built event-driven network simulator.5 We also
implemented a version of DUAL that injects external

5We wanted to implement BST, but there is no clear spec,
so it probably differs from BST in some respects.

9



422 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

Figure 7: Transients on update (less connected)

Figure 8: Transients on withdrawal (less connected)

routes, so it can be used as a loop-free iBGP replacement.
In addition we implemented LOUP for Quagga [14], and
compare it to Quagga’s iBGP implementation.

We have explored the behavior of SOUP and LOUP
on a wide range of synthetic topologies, including grids,
cliques, and trees. These scenarios included varying de-
grees of link and router failure and the presence of MED
attributes. In all cases the two protocols required no ex-
plicit configuration and converged to the same solution
as full-mesh iBGP.

To illustrate the behavior of the protocols in a realistic
scenario, we simulate a network based on that of Hurri-
cane Electric (HE), an ISP with an international network.
We use publicly available data: HE’s backbone topology
(including core router locations) and iBGP data that re-
veal all next hops in the backbone [1]. These next hops
are the addresses of either customer routers or customer-
facing routers. We assume there is an attachment point in
the geographically closest POP to each distinct next hop,
create a router for each attachment point, and assign it
to the closest backbone router. For iBGP-RR, we place
RRs on the core routers and connect them in a full mesh.
Recent studies suggest this model is not unrealistic [4].

We explore two different levels of redundancy. In the
baseline redundancy case all clients in a POP connect
to two aggregation routers, which in turn connect to the
core router. In the more redundant case each aggregation
router is additionally connected to the nearest POP. Un-
less explicitly specified all simulation results are from the
more connected case.

We model speed-of-light propagation delay and add a
uniform random processing delay in [0, 10] ms. We do
not, however, model queues of updates that might form
in practice, so our simulations should produce shorter-

Figure 9: Transients on update (more connected)

Figure 10: Transients on withdrawal (more connected)

lived transients than might be seen in real backbones.
In the case of DUAL, we inject eBGP routes into

DUAL by mapping the BGP path attribute list to a DUAL
metric, and then allow DUAL to distribute these routes
internally as it normally does.

7.2 Correctness
To examine transient loops we compare the behavior of
LOUP, BST*, and iBGP in two scenarios involving a
single prefix: the announcement of a new “best” route
for a prefix, and the withdrawal of one route when two
routes tie-break on IGP distance. We compare both the
less redundant and the more redundant topologies to ob-
serve the effect of increased connectivity. Figs. 7 and 9
show the protocols’ behavior when a single BR propa-
gates an update, and all routers prefer that update to a
route they are already using for the same prefix. As a re-
sult, this update triggers a withdrawal for the old route.
And Figs. 8 and 10 show the protocols’ behavior in the
tie-break withdrawal case.

We are interested in how the prefix’s path from each
router evolves over time. Define the correct BR before
the change occurs as the old exit and the correct BR after
the change occurs and routing converges as the new exit.
In these four figures, we introduce the initial change at
time t = 0.1 seconds and every 100 µs we check every
router’s path to the destination. Either a packet correctly
reaches the new BR, still reaches the old BR, is dropped,
or encounters a loop. The y-axis shows the number of
routers whose path has each outcome. We plot the mean
of 100 such experiments, each with randomly chosen
BRs as the old and new exits.

Figs. 7 and 9 confirm that LOUP incurs no transient
loops or black holes and its convergence time is similar to
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Figure 11: Convergence delay on update (sec)

Figure 12: Convergence delay on withdrawal (sec)

that of the other protocols. BST* and iBGP-RR perform
as expected; BST* does not cause black holes, but IBGP-
RR causes both loops and black holes. On the less con-
nected topology, there is limited opportunity for races to
propagate far, so BST incurs relatively few loops. When
it does loop, many paths are affected - the BST results
have high variance. The more redundant the network, the
more opportunity there is for BST to cause loops, as is
evident from Fig. 9.

Figs. 8 and 10 demonstrate the importance of en-
forcing ordering on withdrawals. LOUP does not cause
loops, but it takes longer to converge because the with-
drawal first must propagate to the “tie” point and then
be activated along the reverse path. All other protocols
loop transiently because the BR immediately applies the
withdrawal resulting in a loop like that in Fig. 3.

In the interest of brevity we omitted graphs for DUAL
and SOUP, but neither incurred transient loops. We ex-
amine their convergence latency separately below.

7.3 Convergence Delay
How quickly do the various protocols propagate changes
to all routers? We repeated the single-update and single-
withdrawal experiments from Fig. 10 for 100 passes per
protocol. We collected the median and 90th percentile
delays of all passes and present their CDFs. We also
present results for DUAL and SOUP. The results are in
Figs. 11 and 12. When disseminating good news, all the
protocols incur similar delay.

Fig. 12 shows the price paid to avoid looping with bad
news. BST and iBGP converge fastest, but cause tran-
sient loops. SOUP performs worst, as it cannot short-cut
the activation of withdrawals, propagating them all the
way to the end of the AS, and only then activating. In
fact, if one or two routers were slower, this effect would
be exacerbated. Both LOUP and DUAL overcome this

Figure 13: DUAL instability

problem, but DUAL’s flooding nature means that it is
a little slower to converge. When frozen, each DUAL
router must collect replies from all its neighbors before
terminating the diffusing computation, while a LOUP
router only needs to wait for its children on the RFT. This
is the reason for the gap between DUAL and LOUP.

7.4 Stability
The most significant problem with distributing external
routes into DUAL is the increased cost of IGP changes.
After LOUP, SOUP or BST has propagated external
routes through the network, any route change in the IGP
will not cause additional churn—the IGP will recon-
verge, but there will be no need to re-exchange external
routing information. If a link fails with DUAL, a new
path is calculated for each destination, including the ex-
ternal ones, as each may be injected from a different sub-
set of BRs. To do this requires a great deal of commu-
nication. In some cases a single link’s failure may cause
all external routes to be frozen and DUAL will have to
re-converge for each of them.

We injected 5000 routes from the HE data set into
DUAL—these relate to 300 different prefixes. We then
failed one link and observed the traffic generated that
relates to these external prefixes. We repeated this pro-
cess for every core link and 300 randomly chosen access
links. Fig. 13 shows a CDF of the results. For 50% of the
access links, a failure results in more than 2000 messages
being exchanged and 10% of link failures generate more
than 10000 messages. We would expect message com-
plexity to scale linearly; for example, with a full routing
table of 300K prefixes, we would expect 50% of core link
failures to result in more than 2 million messages being
sent.

Access link failures generate fewer messages—60%
generate none in this experiment because these BRs in-
jected no external routes. With a full routing table, all
these would have injected some routes. Of the ones that
were on the shortest-path tree for some external prefix,
50% of link failures generated more than 300 messages.
With a full routing table, we would expect this number
to grow to around 300K messages.

We have omitted results for LOUP, SOUP and BST
because they generate no routing messages for exter-
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nal prefixes when the IGP changes, though LOUP and
SOUP generate up to one message per neighbor to main-
tain the RFTs. iBGP does generate some churn as RRs
change preferred routes and inform their clients of the
changes, but this churn is usually insignificant compared
to DUAL’s, and it does not manifest in this scenario.

7.5 Scalability
To what extent do the different protocols concentrate pro-
cessing load in a few routers? We take a set of 10000
routes from HE’s iBGP data set, taking care to preserve
all alternatives for each prefix we select, and inject them
rapidly into the simulated 3000 router HE network. We
rank the routers in terms of messages sent or received,
and show the 750 busiest in Figs. 14, 15, and 16. Mes-
sage counts are a measure of communication cost, and
update counts are a measure of the cost of running the
BGP decision process.

BST’s flooding means it incurs greater communica-
tion cost and processes many updates. LOUP and SOUP
are a little more expensive than iBGP, as route reflectors
hide some updates from their clients. As the HE route
set does not include many external withdrawals, tell-me-
when kicks in rarely, so LOUP and SOUP perform al-
most identically. DUAL’s overall costs are similar, but it
performs more processing in well-connected core routers
as it explores alternatives.

Control-plane overhead is only one aspect to scalabil-
ity: on some routing hardware, FIB changes are the rout-
ing bottleneck [6]. Generally FIB adds or deletes where
the trie may need to be rebalanced are more costly than
in-place updates to existing entries.

Figs. 17 and 18 show FIB operations during the ex-
periment above. All protocols except DUAL perform a
similar number of operations. Although iBGP processes
fewer messages, those messages are more likely to cause
expensive FIB adds or deletes. Route reflectors hide in-
formation. Doing so can lead to path exploration dur-
ing which the FIB is modified multiple times, but it may
also shield RRs’ clients from a number of FIB updates.
SOUP, LOUP, and BST exhibit virtually identical behav-
ior because they exchange the same information.

The DUAL results show the number of times DUAL
changes successor. It can do so often, as its loop-
avoidance mechanism needs to freeze and then unfreeze
portions of the network when updates for the same prefix
propagate at the same time.

Fig. 19 shows FIB operations at the BRs only. When
a BR changes route, it usually notifies its external peers,
so this is a measure of churn passed on to eBGP. DUAL
is significantly worse than the other protocols here, as it
explores more alternatives before converging.

To evaluate CPU usage we run our Quagga-based
LOUP implementation using a simple topology consist-

ing of three single-core 2Ghz AMD machines (A, B and
C) connected with gigabit links. In BGP’s case we open
an eBGP session from A to B and an iBGP session from
B to C. In LOUP’s case we perform no configuration.
We inject one view of the global routing table (4̃00,000
routes) at A, which forwards to B, which forwards to C.
We look at the load on B as it must both receive and send
updates, and does the most work.

Task LOUP BGP
Updating the RIB 1981 5042
Updating the FIB 6544 16874
Serialization 3222 7477
Low-level IO 7223 6447
Other 2824 5369
Total (million cycles) 21797 41212
Total (seconds) 10.8 20.6

Both protocols spend most of the time updating the
FIB and doing low-level IO. Running the decision pro-
cess and updating the RIB data structures is almost neg-
ligible. LOUP is much faster than BGP, but it seems
that Quagga’s BGP spends unnecessary time updating
the FIB, so this effect is not fundamental.

LOUP’s memory usage, below, depends directly on
the number of routes for a prefix that tie-break on IGP
distance, as other alternatives will be withdrawn.

BGP (1) LOUP (1) LOUP (2) LOUP (3)
73.2 MB 46.7 MB 68.2 MB 89.8 MB

Memory usage is shown when we injected the same
route feed from 1, 2 and 3 different BRs in our exper-
imental network. We only present results for BGP with
one view, because the RRs hide all but the winning routes
from their clients. Because BGP has to maintain multiple
RIBs for each session, its memory footprint is greater
than LOUP’s. Based on HE’s data, in a large ISP there
will be on average 5-6 alternatives for a prefix. LOUP’s
memory usage grows linearly, so we expect the protocol
to run easily in a network like HE’s on any modern router
with 200 MB or more of RAM.

8 RELATED WORK

There has been significant work on carefully disseminat-
ing routing updates so as to improve the stability of rout-
ing and ameliorate pathologies such as loops and black
holes. We have discussed DUAL’s approach to loop-
free IGP routing [8], BST’s reliable flooding approach to
intra-AS route dissemination [15], and RCP’s centralized
approach to intra-AS route dissemination [3] at length in
Sections 2 and 3. To recap: LOUP tackles loop-free intra-
AS dissemination of externally learned routes, a differ-
ent problem than loop-free IGP routing, as taken on by
DUAL and oFIB [22]; the non-convexity of BST’s flood-
ing causes transient loops that LOUP avoids; and RCP
centralizes the BGP decision process for an AS, but does
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Figure 14: Updates received Figure 15: Total messages Figure 16: Messages (no leaves)

Figure 17: FIB adds and deletes Figure 18: FIB operations Figure 19: FIB operations (BRs)

not propagate the results synchronously to all routers,
and so does not achieve the freedom from transient loops
and black holes that LOUP does. We note that loop-
free IGPs like DUAL (and its implementation in EIGRP)
complement LOUP nicely: running LOUP atop DUAL
would prevent both IGP loops and transient loops present
in today’s route dissemination by iBGP with RRs.

Consensus Routing [17] adds Paxos-based agreement
to eBGP to avoid using a route derived from an update
until that update has propagated to all ASes. LOUP’s or-
dered, reliable dissemination of updates along an RFT
is lighter-weight than Paxos-based agreement, yet still
avoids introducing loops within an AS during dissem-
ination. Bayou’s logs of sequence-number-ordered up-
dates [24] and ordered update dissemination [21] in-
spired the analogous techniques in LOUP; we show how
to apply these structures to achieve robust route dissemi-
nation, rather than weakly consistent storage.

In prior work [13], we first proposed ordered, RFT-
based dissemination as a means to avoid transient loops.
In this paper, we have additionally described SOUP and
LOUP, full routing protocols built around these princi-
ples, proven that SOUP never causes forwarding loops,
and evaluated the scalability of a full implementation of
LOUP atop the Quagga open-source routing platform.

9 CONCLUSION

The prevalence of real-time traffic on today’s Internet
demands greater end-to-end path reliability than ever
before. The vagaries of iBGP with route reflectors—
transient routing loops, route instability, and a brittle,
error-prone reliance on configuration—have sent net-
work operators running into the arms of MPLS, in an

attempt to banish iBGP and its ills from the core of
their networks. In exploring the fundamental dynamics
of route dissemination, we have articulated why iBGP
with route reflectors and BST introduce such patholo-
gies. Based on these fundamentals, we have described
a simple technique—ordered dissemination of updates
along a reverse forwarding tree—that avoids them. And
we have illustrated how to apply this technique in prac-
tice. SOUP is provably loop-free, but incurs latency as-
sociated with network-wide backward activation of less
preferable routes. LOUP converges faster than SOUP by
short-cutting backward activation in common cases. Dur-
ing convergence after a single update from a single BR,
LOUP prevents forwarding loops. But as LOUP may in-
cur loops under heavy update churn for the same prefix
from multiple BRs, it trades absolute loop-freedom for
faster convergence. Our evaluation in simulation has re-
vealed LOUP to be a practical, scalable routing proto-
col, which we have also seen through to a prototype im-
plementation for Quagga. While earlier work has drawn
upon consistency techniques from the distributed sys-
tems community to improve the robustness of routing,
SOUP and LOUP achieve strong robustness with lighter-
weight mechanisms. As such, we believe they offer com-
pelling alternatives to a BGP-free core.
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Abstract. This paper addresses a core question in dis-

tributed systems: how should applications be notified of

failures? When a distributed system acts on failure re-

ports, the system’s correctness and availability depend

on the granularity and semantics of those reports. The

system’s availability also depends on coverage (failures

are reported), accuracy (reports are justified), and time-

liness (reports come quickly). This paper describes Pi-

geon, a failure reporting service designed to enable high

availability in the applications that use it. Pigeon exposes

a new abstraction, called a failure informer, which al-

lows applications to take informed, application-specific

recovery actions, and which encapsulates uncertainty, al-

lowing applications to proceed safely in the presence of

doubt. Pigeon also significantly improves over the pre-

vious state of the art in the three-way trade-off among

coverage, accuracy, and timeliness.

1 Introduction

Availability is now a paramount concern of distributed

applications in data centers and enterprises (distributed

storage systems, key-value stores, replication systems,

etc.); for such applications, even seconds of downtime

can affect millions of users. A critical factor in avail-

ability is failure handling. Specifically, for optimal avail-

ability, distributed applications need to learn of failures

quickly, so that they can recover, and they need infor-

mation about the failure, so that they can take the best

recovery action.1

This paper proposes Pigeon, a service for reporting

host and network failures to highly available distributed

applications. Pigeon provides a new abstraction, called a

failure informer. This abstraction hides the messy details

of failures; it reports a small number of conditions that

each represent a class of problems that affect the appli-

cation similarly. The conditions are differentiated by the

failure certainty, or lack thereof, which gives enough in-

formation for applications to improve their recovery, in

application-specific ways.

For example, if a lease server [13, 30] is informed

of the certain crash of a process holding a lease, the

server can bypass the lease delay and reissue the lease

immediately; without this information, the lease server

1By failure, we mean a problem that is visible end-to-end, not masked;

by recovery, we mean actions in response to such failures (failover,

etc.). Techniques such as microreboot and component restart [14, 15]

are failure prevention, which is orthogonal to (in the sense that it does

not obviate) our concern of failure reporting.

would have to wait until the lease times out. As another

example, consider a primary-backup system [4]. If Pi-

geon reports to the backup that the primary has certainly

stopped, the backup takes over immediately; if Pigeon

reports that the primary is (possibly intermittently) un-

reachable, the backup must decide whether to fail over

the primary, based on the expected problem duration

(which Pigeon reports) and the cost of failover; and if Pi-

geon reports that the primary is expected to crash soon,

the backup can provision a new replica without failing

over the primary yet.

In the above example, notice that the different reports

from Pigeon are qualitatively different and allow qual-

itatively different failure responses. Consider, by con-

trast, existing mechanisms for reporting failures, such as

ICMP, TCP connection reset, and failure detectors [17]

built on tuned timeouts [11, 18, 34, 62] or on layer-

specific monitors [46]. These mechanisms not only can-

not distinguish between various failure conditions but

also have other shortcomings (as argued in Section 2.1).

These shortcomings are rooted in the network’s design:

[At] the top of transport, there is only one fail-

ure, and it is total partition. The architecture was to

mask completely any transient failure. . . . the Inter-

net makes very weak assumptions about the ability

of a network to report that it has failed. [The] In-

ternet is thus forced to detect network failures using

Internet level mechanisms, with the potential for a

slower and less specific error detection [emphasis

added] [21].

The rationale was simplicity. Since the network was

to be designed for survivability above almost everything

else [21, §3–§4], and hence would recover from failures,

the benefit of exposing failures to applications was not

worth the cost of a mechanism. Yet, availability of dis-

tributed applications—a more pressing concern now than

it was then—calls for additional design: we want faster

and more specific error detection!

What should such a failure reporting service look

like? Answering this question requires addressing sev-

eral challenges. First, there are many failure indicators

(e.g., monitors reporting crashed processes, status of net-

work links, hardware error status), each with its own id-

iosyncrasies, but what details should be exposed to appli-

cations? Second, these indicators may report uncertain

information, leading to wrong conclusions. Addressing

these two challenges requires finding the right abstrac-

tion for failure reporting—one that is simple but conveys

1
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the information that lets applications recover effectively.

The third challenge is in implementing the abstraction:

to improve application availability, the implementation

must provide full coverage (failures are reported), but

also provide accuracy (reports are justified), and time-

liness (failures are reported quickly). Meanwhile, these

considerations are in a three-way trade-off.

Our response, Pigeon, classifies failures into four

types: whether the problem certainly occurred versus

whether it is expected and imminent, and whether the tar-

get is certainly and permanently stopped versus not. Ob-

serve that a report of certain occurrence and certain per-

manence abstracts “process crash” (among other things),

and a report of certain occurrence and uncertain per-

manence abstracts “pending timeout expired” or “net-

work partition” (among other things). Furthermore, ob-

serve that applications can benefit from even the uncer-

tain reports: they can consider the cost-benefit trade-offs

of waiting versus recovery (for problems of uncertain

permanence) and of waiting versus precautionary actions

(for problems of uncertain occurrence). Pigeon includes

other information too, such as expected problem dura-

tion, and the resulting abstraction is what we refer to as a

failure informer. To summarize the abstraction, it knows

what it knows, it knows what it doesn’t know, and appli-

cations benefit from hearing the difference.

Pigeon manages the conflict among coverage, accu-

racy, and timeliness by relying on an end-to-end timeout

as a backstop (achieving full coverage) and then using

low-level information from throughout the system to sig-

nificantly improve the accuracy-timeliness tradeoff. The

use of low-level information is inspired by Falcon [46].

However, Falcon has limited coverage (network failures

cause it to hang), a coarse interface (it reports crashes

only), and adverse collateral effects (it kills components,

sometimes gratuitously). We elaborate on these points in

Section 2.1 and compare the two systems in Section 7.

Our implementation of Pigeon has several limitations

and operating assumptions. First, Pigeon assumes a sin-

gle administrative domain (but there are many such net-

works, including enterprise networks and data centers).

Second, Pigeon requires the ability to install code in the

application and network routers (but doing so is viable in

single administrative domains). Third, for Pigeon to be

most effective, the administrator or operator must per-

form environment-specific tuning (but this needs to be

done only once).

Before continuing, we emphasize that the challenges

of Pigeon are mostly in architecture and design, as op-

posed to low-level mechanism; the mechanisms in Pi-

geon are largely borrowed from previous work [36, 37,

46, 59, 60]. The contributions of this work are:

• The thesis that network and host failures should be

exposed to applications (§2). Though simple, this

thesis has apparently not been advanced in previous

work (§7).

• The failure informer abstraction for exposing failures

(§3.1–§3.2) and a service, Pigeon, that implements

it (§3.4–§3.5). As is often the case with concise but

powerful abstractions, this one may appear “easy”, yet

identifying it was not, judging by our own repeated

attempts.

• The uses of Pigeon (§3.3, §5.2). Our confidence in the

abstraction is bolstered by concrete use cases.

• The evaluation (§5) of our prototype (§4). For a mi-

nor price in resources, Pigeon quickly (sub-second

time) and accurately reports common failure types.

Pigeon quantitatively and qualitatively outperforms

other mechanisms (including Falcon), and we demon-

strate that it allows real applications to make better,

faster, application-specific recovery decisions.

2 Motivation, challenges, and principles

We now explain the status quo’s shortcomings (§2.1) and

the principles that Pigeon is based on (§2.2).

2.1 Failure reporting today

Existing mechanisms for reporting failures are coarse-

grained, lack coverage, lack accuracy, or do not handle

latent failures. We give specifics below and demonstrate

some of them experimentally in Section 5.1.

As an example of a coarse-grained mechanism, con-

sider ICMP “destination unreachable” messages, which

the network delivers to sources [54]. This signal conflates

different failure cases (whether the failure resulted from

a problem in the host or network, whether the condition

is transient, etc.), requiring that applications react to each

failure identically or ignore the notifications altogether.

Other mechanisms do not have good coverage. For ex-

ample, consider the “connection reset” error in TCP. This

signal reports to the application that a remote process has

exited—but only if the remote TCP stack and the net-

work are both working.

Other mechanisms have good coverage but lack accu-

racy. For example, end-to-end timeouts eventually trig-

ger if a failure occurs, but they sometimes trigger prema-

turely, without any failures.

Some mechanisms do not detect latent failures: they

report failure only if and when the application tries to

use the network. For example, the network generates an

ICMP error packet only when a host attempts to send

data.2 As another example, consider timeouts again: they

are often set on some pending event (e.g., a request is-

sued to a peer). If an application has no such event out-

2The select() and epoll() system calls, which report errors on par-

ticular file descriptors, are simply interfaces to this behavior.
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condition occurred? permanent? description example causes

stop certain certain target stopped executing core dump, machine reboot

unreachability certain uncertain target unreachable network link down

stop warning expected; imminent certain target may stop executing disk about to crash

unreachability warning expected; imminent uncertain target may become unreachable network link close to capacity,

CPU overloaded

Figure 1—Conditions reported by Pigeon. These conditions abstract specific failures affecting a remote target process and encap-

sulate two kinds of uncertainty.

standing but later generates one, it must then wait for the

timeout interval to expire before learning of the failure.

Falcon [46] detects latent failures and is accurate, but

it sacrifices coverage and gives coarse-grained reports.

Falcon monitors a remote process with a network of spies

deployed at different layers of the system (operating sys-

tem, application, etc.). If a layer is unresponsive, a spy

sometimes kills that layer (e.g., by terminating a virtual

machine) so that clients can make progress; this requires

network communication so that the Falcon client can re-

quest and confirm the kill. As a result, Falcon hangs if

there is a network failure. Moreover, Falcon can report

applications only as crashed or not crashed.

2.2 Design challenges and principles

As noted in the introduction, there are three top-level

challenges in designing Pigeon: identifying what failure

details to provide; handling uncertain information safely;

and managing a three-way trade-off among coverage, ac-

curacy, and timeliness. At a high level, the root cause of

these challenges is the difficulty of determining why a re-

mote process does not respond: is it crashed? or slow? or

is the problem in the network? We confront these chal-

lenges with the principles below.

Renounce killing. Consider techniques that provide

perfect accuracy, such as Falcon [46], watchdogs [1, 27],

and virtual synchrony [12]. What would be required for

them not to hang on network failures? Since their accu-

racy comes from killing (when they are uncertain), they

would have to kill network elements and intentionally

create network partitions. This seems like a bad idea. In

fact, even targeted killing is not ideal: taking live compo-

nents offline impairs availability! Pigeon shall not kill.

Provide full coverage. Availability requires that the

failure informer report all failures (full coverage). How-

ever, two issues result. First, full coverage implies that

perfect accuracy is unattainable: if an informer must re-

port all failures (and do so without killing), but is uncer-

tain about whether a failure occurred, then the informer

will sometimes report some failures incorrectly. Second,

the three-way conflict among coverage, accuracy, and

timeliness means that full coverage causes a trade-off be-

tween accuracy (already imperfect) and timeliness. Our

next two principles address these issues in turn.

Expose uncertainty. How can the failure informer en-

sure safety, despite occasional mistakes? Our approach is

for the failure informer to provide certainty when possi-

ble and to flag the reports that may be wrong as uncertain.

(This is different from the notion of confidence in failure

detectors [34]; see Section 7.) This allows applications

to take qualitatively different recovery actions, as stated

in the introduction (see also Section 5.2). Note that han-

dling uncertainty is not a burden, as applications do so

already when, for example, end-to-end timeouts expire.

Leverage local information. The timeliness-accuracy

tradeoff can be improved by local knowledge that reveals

the state of components. For example, if a host’s cable

disconnects from a network switch, the switch quickly

learns, and the informer can thus tell the application

quickly. For the same accuracy, then, a failure informer

with access to lower layers can be more timely, because

the local information is visible sooner than if it had to

bubble up to higher layers. We borrow the idea of using

local information from Falcon [46] (see Section 7).

Design for extensibility. We are not going to get a per-

fect implementation, so we design for extensibility: Pi-

geon accommodates add-on modules that provide better

information and indicate different kinds of faults, ideally

improving the accuracy-timeliness trade-off. These ex-

tensions do not require redesigning Pigeon or applica-

tions; a key factor in avoiding redesign is exposing fail-

ures through an abstraction, versus exposing all details.

3 Design of Pigeon

This section presents the interface exposed by Pi-

geon (§3.1), describes the guarantees (§3.2), explains

how Pigeon can be used (§3.3), describes its architec-

ture (§3.4), and explains errors and their effects (§3.5).

3.1 The failure informer interface

The failure informer interface exposes conditions to ap-

plications, where each condition abstracts a class of

problems in a remote target process that all affect the

distributed application in similar ways. There are four

conditions, shown in Figure 1.

(1) In a stop, the target process has stopped execut-

ing and lost its volatile state. The problem has already

3
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occurred, and it is certainly permanent. This condition

abstracts process crashes, machine reboots, etc.

(2) In an unreachability, the target process may be op-

erational, but the client cannot reach it. The problem has

already occurred, but it is potentially intermittent. This

condition abstracts a timeout due to, say, a network par-

tition or a slow process.

(3) In a stop warning, the target process may stop exe-

cuting soon, as a critical resource is missing or depleted.

The problem has not yet occurred, but if it occurs it is

permanent. This condition abstracts cases such as a re-

port about an imminent disk failure [33, 53, 63].

(4) In an unreachability warning, the target process

may become unreachable soon, as an important resource

is missing or depleted. The problem has not yet occurred;

if it occurs, it is potentially intermittent. This condition

abstracts cases such as a network link being nearly satu-

rated or overload in the host CPU of the target process.

The four conditions above reflect a classification based

on two types of uncertainty that are useful to applica-

tions: whether the problem is certainly permanent (stop

vs. unreachability) and whether the problem certainly oc-

curred (actual vs. warning).

The interface also returns properties: information spe-

cific to the condition, which may help applications re-

cover. A property of all conditions is their expected du-

ration. (Note that a duration estimate does not subsume

certainty: certainty-vs-unreachability captures a quality

other than duration, and the duration estimate itself is

fundamentally uncertain.3) We describe how this prop-

erty is set in Section 4.4. A property of the warning con-

ditions is a bit vector indicating the critical resource(s)

responsible for the warning (disk, memory, CPU, net-

work bandwidth, etc.).

Client API. Client applications see the following pro-

grammatic interface.

function description

h = init(target, callback) request monitoring of target

process; returns a handle for

use in future operations

uninit(h) stop monitoring

c = query(h) get status; returns a list of

conditions

res = getProp(h, c, propname) get condition property value

setTimeout(h, timeout) set/reset timeout

clearTimeout(h) cancel timeout

The client calls init() to monitor a target process,

named by an IP address and an application identifier in

some name space (e.g., port space). The function returns

a handle to be used in other functions. The init() func-

3In fact, a failure informer can report an unreachability with indefinite

(unknown) duration. This is different from a stop, which is permanent.

tion takes as a parameter a callback function, which the

implementation calls as new failure conditions emerge.

The query() function returns a (possibly empty) list of

active conditions. The getProp() function returns proper-

ties, as described above.

The setTimeout() and clearTimeout() functions

set/reset and clear end-to-end timeouts. Clients use

timeouts as a catch-all: after the client installs a timer, if

the client does not cancel or reset it before the timeout

period, then the interface reports an unreachability.

3.2 Guarantees

We now describe the guarantees provided by Pigeon

along three axes: coverage, accuracy, and timeliness. Pi-

geon provides these guarantees in spite of failures in the

network and Pigeon itself, as described in Section 3.5.

Coverage. If the client uses Pigeon’s end-to-end time-

out, Pigeon guarantees full coverage: if the target process

stops responding to the client, then Pigeon reports either

a stop or an unreachability condition.

Accuracy. By accuracy, we mean “reported failures are

justified” (§1); we address the correctness of duration es-

timates in Section 5.1. We designed Pigeon not for per-

fect accuracy in its reports but for accuracy in its cer-

tainty: Pigeon knows when it knows, and it knows when

it doesn’t know. Specifically, if Pigeon reports a stop con-

dition, the application client can safely assume that the

target process will not continue; Pigeon returns an un-

reachability when it cannot confirm that the condition is

permanent. When Pigeon reports a warning, it guaran-

tees that a motive exists (a fault occurred) but not that an

unreachability or stop will occur.

Timeliness. If a condition occurs, Pigeon reports it as

fast as it can. This is a best effort guarantee.

3.3 Using the interface

We now give a general description of how applications

might use Pigeon; Section 5.2 considers specific appli-

cations (RAMCloud [52], Cassandra [43], lease-based

replication [30]). For each of the four conditions, we

explain the implications for the application and how it

could respond.

Recall that a stop condition indicates that the target

process has lost its volatile state and stopped executing

permanently; this has a quantitative implication and a

qualitative one. Quantitatively, it is safe for the client

to initiate recovery immediately. Qualitatively, the client

can use simpler recovery procedures: because it gets

closure—that is, because it knows that the target process

has stopped—it does not have to handle the case that the

target process is alive. For example, a stop condition al-

lows the client to simply restart the target on a backup.

By contrast, an unreachability condition implies only

4
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that the target is unreachable; the target process may

in fact be operational, or the condition may disappear

by itself. This has two implications. First, if the client

takes a recovery action, the system may have multiple

instances of the target process. Recovering safely there-

fore requires coordinating with other nodes using mech-

anisms like Chubby [13], ZooKeeper [35], or Paxos [45],

which allow nodes to agree on a single master or ac-

tion. Note that reports of unreachability are still useful—

and that using these agreement mechanisms is not overly

burdensome—because systems already have the appro-

priate logic: this is the logic that handles the case that an

end-to-end timeout fires without an actual failure.

Second, based on the expected duration of the condi-

tion, the application must consider the costs and benefits

of just waiting versus starting recovery proactively. Con-

ceptually, each application has an unavailability thresh-

old such that if the expected duration of the condition is

smaller, the application should wait; otherwise, it should

start recovery.

In fact, “eager recovery” can be taken a step further:

warnings allow applications to take precautionary ac-

tions even without failures. For example, a stop warning

could cause an application to bring a stand-by from warm

to hot, while an unreachability warning could cause an

application to degrade its service.

To illustrate the use of Pigeon concretely, consider a

synchronous primary-backup system [4], where the pri-

mary serves requests while a backup maintains an up-to-

date copy of the primary. The backup can use Pigeon to

monitor the primary:

• If Pigeon reports a stop, the backup takes over;

• If Pigeon reports an unreachability, the backup must

decide whether to fail over the primary, or instantiate

a new replica (either of which requires mechanisms

to prevent having multiple primaries), or simply wait.

These decisions must weigh the cost of the recovery

actions against the expected duration of the condition.

• If Pigeon reports a stop warning, the backup provi-

sions a new replica without failing over the primary.

• Under an unreachability warning, the backup logs the

warning so that, if the condition is frequent, operators

can better provision the system in the future.

3.4 Architecture of Pigeon

As stated in the introduction, Pigeon works within a sin-

gle administrative domain: an enterprise, a data center,

a campus network, etc. Pigeon’s architecture is geared

toward extracting and exploiting the information about

failures already available inside the system. For example,

the failed links in a network collectively yield informa-

tion about a network partition. To use this information,

Pigeon needs mechanisms to (a) sense information in-
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Figure 2—Architecture of Pigeon. Pigeon has sensors (S), re-

lays (R), and interpreters (I). Sensors are component-specific.

Sensors and relays are shared by multiple clients and end-hosts;

an interpreter is shared by all client applications on its host. The

client library presents the client API (§3.1) to applications.

side components, (b) relay information to end-hosts, and

(c) interpret information for client applications. These

mechanisms are embodied, respectively, in sensors, re-

lays, and interpreters (Figure 2). We describe their ab-

stract function below and their instantiations in our pro-

totype in Section 4.

A sensor is component-specific and tailored; it is em-

bedded in the component and detects faults in it. A fault

is a local event, possibly a malfunction, that may con-

tribute to one of the four failure conditions (§3.1). A crit-

ical fault is one that may lead to a stop condition; a regu-

lar fault, to an unreachability condition; and an advisory

fault, to a warning condition. Faults need not cause con-

ditions; they may be masked by recovery mechanisms

outside the application (e.g., route convergence).

Relays communicate with sensors and propagate these

sensors’ fault information to end-hosts. Sensors and re-

lays may be installed for Pigeon or may already exist in

the system.

Each end-host has an interpreter that receives infor-

mation about faults from the relays. Interpreters render

this information as failure conditions and estimate the ex-

pected duration of conditions. Clients interact with inter-

preters through a client library, which implements end-

to-end timeouts and the client API (§3.1). Interpreters

also determine which sensors are relevant to the client-

supplied (IP, port) pair that identifies a target (§4.4).

3.5 Coping with imperfect components

In this section we describe the effect of errors in Pi-

geon’s own components and the network. These errors

include crash failures and misjudgments; they do not in-

clude Byzantine failures, which Pigeon does not tolerate.

Figure 3 summarizes the effect of errors.

Before continuing, we note non-effects. First, Pigeon

does not compromise on coverage: its coverage derives

from the end-to-end timeout, which is implemented in

5



432 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

compromise cause

coverage nothing

safety nothing

timeliness sensor, relay, or interpreter crashes

sensor misses fault

interpreter does not report stop or unreachability

accuracy sensor, relay, or interpreter crashes

sensor falsely detects regular or advisory fault

interpreter falsely reports unreachability or warning

Figure 3—Effect of errors on Pigeon’s guarantees. Errors in

duration estimates are covered in Section 5.1.

the client library (linked into the application) and hence

shares fate with the client application, despite failures

elsewhere. Second, Pigeon is designed to not compro-

mise safety; while inaccuracy is possible under Pigeon,

the only threat to safety is a report of a stop that did not

happen (§3.2), which Pigeon is designed to avoid (§4).

If a sensor, relay, or interpreter crashes or is discon-

nected from the network, Pigeon loses access to local in-

formation, which affects accuracy and timeliness (§2.2).

Loss of local information also causes missed opportuni-

ties to report some failures as stop conditions (e.g., re-

mote process exit) rather than an unreachability condi-

tion triggered by the end-to-end timeout.

If a sensor does not detect a fault, then Pigeon may

need to rely on the end-to-end timeout, compromising

timeliness. If a sensor falsely detects a regular fault, then

Pigeon may misreport an unreachability condition. This

error in turn compromises accuracy (potentially caus-

ing an unwarranted application recovery action) but not

safety (see above). The effect when a sensor falsely de-

tects an advisory fault is similar (misreports of warning

conditions).

If the interpreter crashes or fails to report a condition,

then Pigeon relies on the end-to-end timeout, again com-

promising timeliness. If the interpreter misreports an un-

reachability or warning, Pigeon compromises accuracy

but not safety (see above). Errors in the interpreter’s du-

ration estimates are covered in Section 5.1.

We have designed Pigeon to be extensible, so new

components can reduce the errors above. However, Pi-

geon’s current components, which we describe next, al-

ready yield considerable benefits.

4 Prototype of Pigeon

We describe our target environment (§4.1), and the im-

plementations of sensors (§4.2), relays (§4.3), and the

interpreter (§4.4) used in our prototype. The prototype

borrows many low-level mechanisms from prior work, as

we will note, but the synthesis is new (if unsurprising).

4.1 Target environment

Our prototype targets networks that use link-state rout-

ing protocols, which are common in data centers and

enterprises [31, 39]. Currently, the prototype assumes

the Open Shortest Path First (OSPF) protocol [51] with

a single OSPF area or routing zone. This assumption

may raise scalability questions, which we address in Sec-

tion 5.3. We discuss multi-area routing and layer 2 net-

works in Section 6.

We assume a single administrative domain, where an

operator can tune and install our code in applications and

routers; this tuning is required at deployment, not during

ongoing operation.

4.2 Sensors

Sensors must detect faults quickly and confirm critical

faults; the latter requirement ensures that Pigeon does not

incorrectly report stops. The architecture accommodates

pluggable sensors, and our prototype includes four types:

a process sensor and an embedded sensor at end-hosts,

and a router sensor and an OSPF sensor in routers. For

each type, we describe the faults that it detects, how it de-

tects them, and how it confirms critical faults. Faults are

denoted as F-〈type〉 (critical ones noted in parentheses).

Process sensor. This sensor runs at end-hosts. When a

monitored application starts up, it connects to its local

process sensor over a UNIX domain socket. The pro-

cess sensor resembles Falcon’s application spy [46], but

it does not kill. The sensor detects three faults:

F-exit (critical). The target process is no longer in the

OS process table and has lost its volatile state, but the

OS remains operational. This fault can be caused by a

graceful exit, a software bug (e.g., segmentation fault),

or an exogenous event (e.g., the process was killed by

the out-of-memory killer on Linux). To detect this fault,

the sensor monitors its connection to the target processes.

When a connection is closed, the sensor checks the pro-

cess table every Tproc-check time units; after confirming the

target process is absent, it reports F-exit. Our prototype

sets Tproc-check to 5 ms, a value small enough to produce a

fast report, but not so small as to clog the CPU.

F-suspect-stop. The target process is in the process ta-

ble but is not responding to local probes. This fault can be

due, for example, to a bug that causes a deadlock in the

target process. To detect this fault, the sensor queries the

monitored process every Tapp-check time units. If the target

process reports a problem or times out after Tapp-resp time

units, the sensor declares the fault. Our prototype sets

Tapp-check to 100 ms of real time and Tapp-resp to 100 ms of

CPU time of the monitored application (the same values

are justified in Falcon [46, §4]).

F-disk-vulnerable. A disk used by the target process

has failed or is vulnerable to failure (based on vendor-

specific reporting data, e.g., SMART [63]). To detect this

fault, Pigeon checks the end-host’s SMART data every

Tdisk-check time units, which our prototype sets to 500 ms.
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Embedded sensor. The next sensor is logic embedded

in the end-host operating systems. This sensor resembles

Falcon’s OS-layer spy but has additional logic to confirm

critical faults without killing. It detects three faults:

F-host-reboot (critical). The OS of the target process

is rebooting. The embedded sensor reports this fault dur-

ing the shutdown that precedes a reboot but only after all

of the processes monitored by Pigeon have exited (the

waiting prevents falsely reporting a stop condition).

F-host-shutdown (critical). The OS of the target pro-

cess is shutting down. The sensor uses the same mecha-

nism as for F-host-reboot.

F-suspect-stop. The OS of the target process is no

longer scheduling a high priority process that increments

a counter in kernel memory every Tinc time units. The

sensor detects a fault by checking that the counter has

incremented at least once every Tinc-check time units. Our

prototype sets Tinc and Tinc-check to 1 ms and 100 ms, re-

spectively, providing fast detection of failures with neg-

ligible CPU cost (we borrow these settings from Falcon).

Router sensor. A process on the router runs as a sensor

that detects two faults:

F-suspect-stop. The end-host is no longer responding

to network probes. This fault can occur, for example, be-

cause of a power failure or an OS bug. The router sensor

detects this fault by running a keep-alive protocol with

any attached end-hosts. (This keep-alive protocol is bor-

rowed from Falcon.)

F-link-util. A network link has high utilization. Our

prototype checks the utilization of the router’s links ev-

ery Tutil time units and detects a fault if utilization ex-

ceeds a fraction Fbw of the link bandwidth. Our prototype

sets Fbw to 63% (which we measured to be the lowest uti-

lization at which a router starts to drop traffic) and Tutil

to 1 second (which corresponds to the maximum rate at

which this fault can be reported; see Section 4.3).

OSPF Sensor. A router’s OSPF logic acts as a sensor

that detects two faults:

F-link. A link in the network has gone down. The

routers in our environment detect link failures using

Bidirectional-Forwarding Detection (BFD) [38].

F-router-reboot. A network router is about to reboot.

The sensor detects this fault because the operating sys-

tem notifies it that the router is about to reboot.

4.3 Relays

The prototype uses three kinds of relays: one at end-

hosts, called a host relay, and two at routers, called a

router relay and an OSPF relay. Relays may be faulty, as

discussed in Section 3.5.

Host relay. This relay communicates faults detected by

the process sensor, and it runs in the same process as the

process sensor. When a client begins monitoring a tar-

get process, the client’s interpreter registers a callback at

the target’s host relay. The host relay invokes this call-

back whenever the process sensor detects a fault. Call-

backs improve timeliness, as the interpreter learns about

faults soon after they happen; this technique is used else-

where [20, 36, 46].

Router relay. This relay communicates the F-suspect-

stop fault detected by the router sensor, as well as all

faults detected by the embedded sensors. The relay runs

in the same process as the router sensor, and it uses the

same callback protocol as the host relay.

OSPF relay. This relay uses OSPF’s link-state routing

protocol to communicate information about links. Un-

der this protocol, routers generate information about their

links in Link-State Advertisements (LSAs) and propa-

gate LSAs to other routers using OSPF’s flooding mech-

anism. For link failures (F-link), the OSPF relay uses

normal LSAs, and for graceful shutdowns (F-router-

reboot), the relay uses LSAs with infinite distance [57].

To announce overloaded links (F-link-util), the router re-

lay uses opaque LSAs [10], which are LSAs that carry

application-specific information.

Using the network to announce overload and fail-

ures might compound problems, so we rate-limit opaque

LSAs to Ropaque, which our prototype sets to 1 per sec-

ond (the highest rate at which routers should accept

LSAs [10]). Similarly, a buggy client could deplete the

resources of this relay (and the router relay), since they

are shared; mitigating such behavior is outside our cur-

rent prototype’s scope, but standard techniques should

apply (rate-limiting, etc.). Note that the concern is buggy

clients, not malicious ones, because Pigeon targets a sin-

gle administrative domain (§4.1).

4.4 The interpreter

The interpreter gathers information about faults and out-

puts the failure conditions of §3.1. The interpreter must

(1) determine which sensors correspond to the client-

specified target process, (2) determine if a condition is

implied by a fault, (3) estimate the condition’s duration,

(4) report the condition to the application via the client

library, and (5) never falsely report a stop condition. We

discuss these duties in turn.

(1) The interpreter determines which sensors are rele-

vant to a target process by using knowledge of the net-

work topology, the location of sensors, and the location

of the client and target processes.

(2) The interpreter must not report every fault as a con-

dition; for example, a failed link that is not on the client’s

path to the target does not cause an unreachability con-

dition. If the interpreter cannot determine the effect of

a fault from failure information alone, it uses hints. For

7
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example, if a link becomes loaded along one of multiple

paths to the target process, the interpreter sends an ICMP

Echo Request with the Explicit Congestion Notification

(ECN) option [56] set, to determine if the client’s current

path is affected. The router sensors intercept these pack-

ets, and, if a link is loaded, mark them with the Conges-

tion Encountered (CE) bits. If the interpreter receives an

Echo Reply with these bits set, or times out after Tprobe-to

time units, the interpreter reports an unreachability warn-

ing; in this warning, the network is marked as the criti-

cal resource (§3.1). Our implementation sets Tprobe-to to

50 ms.4 The interpreter uses a similar hint (a network

probe packet) to determine the effect of link failures.

The interpreter determines which paths are available

to clients by passively participating in OSPF, a technique

used elsewhere [36, 59, 60]. For detecting link failures,

this technique adds little overhead to the network. How-

ever, detecting link utilization has additional overhead

(because it generates extra LSAs), and OSPF itself has

some cost. We evaluate these costs in Section 5.3.

(3) As mentioned earlier, the interpreter estimates the

duration of some unreachability conditions. Currently,

these durations are hard-coded based on our testbed mea-

surements, which we describe next; a better approach is

to estimate duration using on-line statistical learning.

Our prototype estimates the duration of unreachability

conditions as follows. If a link fails or a router reboots

along the current path from the client to the target pro-

cess, but there are alternate working paths, the interpreter

reports a duration of Tnew-path-delay—the average time that

the network takes to find and install the new path. If a

router reboots and there are no working paths from the

client to the target process, the client must wait for the

router to reboot, so the interpreter reports a duration of

Trouter-reboot—the average time that the router takes to re-

boot. The interpreter reports all other conditions as hav-

ing an indefinite duration.

In our testbed, we set Tnew-path-delay and Trouter-reboot to

2.8 seconds and 66 seconds, respectively. We determine

these values by measuring the unavailability caused by a

fault, as observed by a host pinging another every 50 ms.

In each experiment, we inject a link failure or router re-

boot, and report the failure’s duration as the gap in ping

replies observed by the end-host. We repeat this experi-

ment 50 times for each fault. The means are as reported;

the standard deviations are 27 ms and 2.5 seconds, re-

spectively, for the two conditions.

(4) The interpreter reports all conditions (and their ex-

pected duration) to the client library; the interpreter also

4We validate this timeout by running an experiment where one host

sends an ICMP Echo Request to another host for 10,000 iterations in

a closed loop. We observe a response latency (which includes round-

trip time and packet processing time) of 760 µs (standard deviation

96 µs) and a maximum of 1.2 ms, well below the timeout value.

Compared to existing failure reporting services, Pigeon

improves, either in coverage, accuracy, timeliness, or quality
§5.1

Pigeon’s richer information enables applications to react

quickly or prevent costly recoveries
§5.2

Pigeon uses negligible CPU and moderate network

bandwidth
§5.3

Figure 4—Summary of main evaluation results.

what problem is modeled? how is the fault injected?

process crash segmentation fault

host reboot issue reboot at host

link failure (backup paths exist) disable router port

link failures (partition) disable multiple router ports

router reboot (disrupts all paths) issue reboot at edge router

network load flood network path with burst

disk failure change SMART attributes [63]

Figure 5—Panel of modeled faults. The three groups should

generate stop, unreachability, and warning reports, respectively.

informs the client library if a condition clears or changes

expected duration. The client library in turn calls back

the client, and also exposes active conditions via the

query() function (§3.1).

(5) To avoid reporting false stop conditions, the inter-

preter reports a stop only for the critical faults (F-exit,

etc.), which sensors always confirm (by design).

5 Experimental evaluation

We evaluate Pigeon by assessing its reports (§5.1), its

benefit to applications (§5.2), and its costs (§5.3). Fig-

ure 4 summarizes the results.

Fully assessing Pigeon’s benefit would require running

Pigeon against real-world failure data. We do not have

that data, and gathering it would be a paper in its own

right [28]. Instead, we consider several real-world appli-

cations and failure scenarios, and show Pigeon’s benefit

for these instances.

Specifically, our evaluation compares our prototype

to a set of baselines, in a test network, under synthetic

faults. The three baselines in our experiments are:

1. End-to-end timeouts, set aggressively (200 ms time-

out on a ping sent every 250 ms) and to more usual

values (10 second timeout; ping every 5 seconds).

2. Falcon, with and without killing to confirm failure.

We call the version without killing Falcon-NoKill.

3. A set of Linux system calls (§2.1): send() in-

voked every 250 ms, recv(), and epoll(), with

and without error queues.

Our test network has 16 routers and 3 physical hosts,

each multiplexing up to 4 virtual machines (VMs).5 Our

5We do not expect much loss of fidelity in network performance from

using VMs. The peak throughput achieved by a benchmark tool, net-
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fault Pigeon 200 ms timeout Linux syscalls Falcon [46] Falcon-NoKill

process crash ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

host reboot ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

link failure (no partition) ⋆ ⋆ ⋆ ⋆ ⋆

link failures (partition) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

router reboot ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

network load ⋆ ⋆ ⋆ ⋆ ⋆

disk failure ⋆ ⋆ ⋆

Figure 6—Pigeon compared to baseline failure reporters under our fault panel. More stars and smaller bars are better. Stars

indicate the quality of a report; bars indicate the detection time. A maximum of four stars are awarded for detecting a failure, giving

a certain report, giving more information than just crashed-or-not (e.g., indicating the cause as network load), and for not killing.

Bar length and error bars depict mean detection time and standard deviation. These quantities are scaled; maximum is 30 seconds

(long bars), which means “not covered”. For the faults in our panel, Pigeon has higher quality, lower detection time, or both.

testbed looks like this:

It comprises three pods (gray circles), consisting of four

routers (white circles) and hosts (white squares). This is

a fat-tree topology [3], which we use to model a data cen-

ter. Note that our operating assumptions are data centers,

fat-tree, and OSPF; these assumptions are compatible, as

data centers use OSPF.6 Our topology has the same size

as the one evaluated by Al-Fares et al. (minus one pod),

albeit with different hardware [3].

Our routers are ASUS RT-N16s that run DD-WRT

(basically Linux) [25], and use the Quagga networking

suite [55] patched to detect link failure with BFD [38].

Our hypervisors run on three Dell PowerEdge T310s,

each with a quad-core Intel Xeon 2.4 GHz processor,

4 GB of RAM, and ten Gigabit Ethernet ports (four of

which are designated for VMs). The VMs are guests

of QEMU v1.1 and the KVM extensions of the Linux

3.4.9-gentoo kernel. The guests run 64-bit Linux (2.6.34-

gentoo-r6) and have either 768 MB of memory (labeled

small) or 1536 MB of memory (large). Each VM attaches

to the network using the host’s Intel 82574L NIC, which

it accesses via PCI passthrough.

Figure 5 lists the panel of faults in our experiments.

Although the faults are synthetic, the resulting failures

model a class of actual problems.

5.1 How well does Pigeon do its job?

In this section, we first evaluate Pigeon’s reports and then

the effect of duration estimation error.

Multi-dimensional study. There are many competing

requirements in failure reporting; the challenge is not to

meet any one of them but rather to meet all of them. Thus,

perf [2], is the same for a virtual and physical machine in our testbed,

and in our experiments, VMs do not contend for physical resources.
6A non-assumption is using layer 3: there are data center architectures,

based on fat-tree variants, that use OSPF at layer 2 [31].

we perform a multi-dimensional study of Pigeon and the

baselines.

Quantitatively, we investigate timeliness: for each pair

of failure reporter and fault, we perform 10 runs in which

a client process on a (small) VM monitors a target pro-

cess on another (small) VM in the same pod. We record

the detection time as the delay between when the appa-

ratus issues an RPC (to fault injection modules on the

routers and hosts) and when the client receives an er-

ror report; if no report is received within 30 seconds, we

record “not covered”. Qualitatively, we develop a rating

system of failure reporting features: certainty, ability to

give warnings, etc.

Figure 6 depicts the comparison. Pigeon’s reports are

generally of higher quality than those of the baselines;

for instance, Falcon offers certainty, but it kills to do so.

And none of the baselines gives proactive warnings, as

Pigeon does for the final two faults in the panel. In Sec-

tion 5.2, we investigate how these qualitative differences

translate into benefits for the application.

Pigeon’s reports are timely. For process crashes, sin-

gle link failure, partition, and router reboot, the mean de-

tection times are 10 ms, 710 ms, 660 ms, and 690ms.

For host reboots, Pigeon has a mean detection time of

1.9 seconds. (Detecting host reboot takes longer because

we measure from when the reboot command is issued,

and there is delay between then and when the reboot af-

fects processes.)

Pigeon has full coverage, at least in our experiments.

Finally, we come to accuracy (recall that Pigeon has to

balance coverage, timeliness, and accuracy). In our ex-

periments, Pigeon is accurate: we never observe Pigeon

incorrectly reporting a fault that has not occurred (a pro-

duction deployment would presumably see some false re-

ports and could adjust its parameters should such reports

become problematic; see Section 4). Next, we consider

the effect of duration estimation error in Pigeon’s reports.

Duration estimation error. To understand the effect of

duration estimation error, we compare our prototype to

an ideal failure informer that predicts the exact duration

of a failure condition. Specifically, we measure the ad-
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Figure 7—CDF of Pigeon’s cost over the ideal failure informer

for two sample applications, with availability thresholds (§3.3)

smaller and larger than Pigeon’s duration estimate.

ditional unavailability that Pigeon causes in two applica-

tions: one that always recovers when using Pigeon be-

cause its unavailability threshold (§3.3) is smaller than

Pigeon’s estimate (which is static; see Section 4.4), and

one that always waits (because its threshold is higher).

We perform a simulation; we sample failure durations

from a Weibull distribution (shape 0.5, scale 1.0), which

is heavy-tailed and intended to stress the prototype’s

static estimate by “spreading out” the range of actual fail-

ures. For each sample, we record the cost, defined as the

additional unavailability of the application when it uses

Pigeon versus when it uses the ideal. We model the ap-

plication’s recovery duration and availability threshold as

equal to each other.

Figure 7 depicts the results. For the small threshold,

Pigeon matches the ideal for fewer than 30% of the sam-

ples because a significant fraction of the actual durations

are very close to zero. Since this application always re-

covers with Pigeon, it frequently incurs (unnecessary)

unavailability from recovery: waiting out these short fail-

ures would have resulted in less unavailability. For the

large threshold, Pigeon matches the ideal for almost 80%

of the samples but sometimes does much worse, since it

waits on a long tail of failure durations. However, both

applications’ costs are capped, owing to their backstop

timeouts. Additionally, we find that these simulated ap-

plications incur lower costs from using Pigeon compared

to choosing “recover” or “wait” uniformly at random.

5.2 Does Pigeon benefit applications?

We consider three case study applications that use Pi-

geon differently: RAMCloud [52], Cassandra [43], and

lease-based replication [30]. For each, we consider the

unmodified system, the system modified to use Pigeon,

and the system modified to use one or more baselines.

RAMCloud [52]. RAMCloud is a storage system that

stores data in DRAM at a set of master servers, which

process client requests. RAMCloud replicates data on

the disks of multiple backup servers, for durability. To

reduce unavailability after a master server fails, a coor-

RAMCloud using

fault timeout Falcon [46] Pigeon

process crash 2.7s, eject 2.1s, eject 1.9s, eject

host reboot 2.6s, eject 1.8s, eject 1.9s, eject

link failure (no partition) 2.8s, eject 2.6s, wait 2.6s, wait

link failures (partition) 2.6s, eject ∞, wait 2.6s, eject

router reboot 2.6s, eject ∞, wait 1.7s, eject

network load ∞, eject 0.5s, wait 0.5s, wait

Figure 8—Mean unavailability observed by a RAMCloud

client when RAMCloud uses different detection mechansims

(standard deviations are within 15% of means). We also note

whether RAMCloud ejects a server or waits for the fault to

clear. Pigeon is roughly as timely as highly aggressive timeouts

but saves RAMCloud the cost of recovery sometimes (under

link failure (no partition) and network load faults). Falcon [46]

hangs on network failures, so RAMCloud+Falcon does too

(represented with ∞). Using timeouts, RAMCloud sometimes

hangs if network load triggers multiple recoveries.

dinator manages recovery to reconstruct data from the

backups quickly. There are two notable aspects of RAM-

Cloud for our purposes. First, although recovery is fast,

it is expensive (it draws data from across the system, and

it ejects the server, reducing capacity). Second, RAM-

Cloud has an aggressive timeout: it detects failures by

periodically pinging other servers at random and then

timing out after 200 ms.

Thus, we expect that unmodified RAMCloud recov-

ers more often than needed, and that Pigeon could help

it begin recovery quickly or avoid recovering; we also

expect that Pigeon can offer this benefit while provid-

ing full coverage and timely information. To investigate,

we modify RAMCloud servers to use Pigeon and Fal-

con (with long backstop timeouts that do not fire in these

experiments). We run a RAMCloud cluster on six large

VMs (one client, five servers; two VMs in each pod),

where each server stores 20MB of data. This configura-

tion allows RAMCloud to recover quickly on our testbed,

at the cost of ejecting a server. For each injected fault, we

perform 10 iterations and measure the gap in response

time that is seen by a client querying in a closed loop.

Figure 8 depicts the results. Pigeon is roughly as

timely as very aggressive timeouts, deriving its timeli-

ness from sensors. Pigeon also enables RAMCloud to

forgo recovery when possible. For instance, RAMCloud

waits under network load when it receives a warning

from Pigeon. Under a link failure, RAMCloud receives

an unreachability condition with a short duration (equal

to the network convergence time), so it waits. By con-

trast, under router reboot, RAMCloud receives an un-

reachability condition with a long duration (see Sec-

tion 4.4), so it recovers.

Cassandra [43]. Cassandra [43] is a distributed key-

value storage system used broadly (e.g., at Netflix, Cisco,

10
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Figure 9—Cassandra’s read throughput with and without Pi-

geon, after a network link fails 5 seconds into the run, tem-

porarily disrupting a single server. Using Pigeon, the Cassan-

dra snitch avoids using an unreachable replica; without Pigeon,

Cassandra waits for the server to become reachable again. This

example is representative: in our experiments, clients observed

a mean unavailability of 1 second (σ < 0.1) using Pigeon and

2.2 seconds (σ = 1.3) using the unmodified snitch.

and Reddit [16]). Cassandra servers read data from a pri-

mary replica and request digests from the other replicas.

Thus, the choice of primary is important: if the primary

has a problem, the server blocks until the problem is

solved or the request times out. A server chooses as its

primary the replica with the lowest expected request la-

tency, as reported by an endpoint snitch.

We expect that Pigeon could help a snitch make better

server selections. To measure this benefit, we run a client

in a closed loop, inject two faults (network load and link

failure) at a server in a five-server cluster (using large

VMs), and measure the throughput.

Under network load (not depicted), the unmodified

snitch and the Pigeon snitch offer comparable (signifi-

cant) benefit over no snitch, as the unmodified snitch’s

decisions are based on latencies—but only if the network

is working. This brings us to Figure 9, which depicts the

link failure case: here, Pigeon’s report to the snitch al-

lows the server to quickly choose a better primary, re-

sulting in higher throughput. Compare to RAMCloud:

Pigeon lets Cassandra act more quickly than it other-

wise would (because Pigeon reports the case and because

switching is cheap), whereas this same report lets RAM-

Cloud wait when it would otherwise act (see above).

Lease-based replication [30]. A common approach to

replication is to use a lease server [13, 30], which grants

a lease to a master replica, which in turn handles client

requests, forwarding them to backups. If a backup detects

or suspects a failure, it tries to become the master, by

requesting a lease from the lease server. However, this

process is delayed by the time remaining on the lease.

We expect that Pigeon’s stop reports would be par-

ticularly useful here: they report that a lease holder has

crashed with certainty, which allows the system to break

the lease, increasing system availability.7 To investigate,

we build a demo replication application and lease server,

which offers 10-second leases, and run it with and with-

out Pigeon. We run a client (10 iterations) that issues

queries in a closed loop, measuring the response gap seen

by the client after we inject a process crash at the master.

The results are unsurprising (but encouraging): the re-

sponse gap measured at the client averages 2.7 seconds

(standard deviation 0.4 seconds) when using Pigeon, ver-

sus 6.1 seconds (standard deviation 2.5 seconds) using

unmodified lease expiration.

Which applications do not gain from Pigeon? We

considered simple designs for many applications; Pigeon

usually provides a benefit but sometimes not. For exam-

ple, a DNS client can use Pigeon to monitor its DNS

server and quickly failover to a backup server when there

is a problem. However, because the client’s recovery is

lightweight (retry the request), there is little benefit over

using short end-to-end timeouts, since the cost of inac-

curacy is low. Some applications do not make use of any

information about failures; such applications likewise do

not gain from Pigeon. For example, NFS (on Linux) has

a hard-mount mode, in which the NFS client blocks until

it can communicate with its NFS server; this NFS client

does not expose failures or act on them. However, such

applications are not our target since they consciously re-

nounce availability.

5.3 What are Pigeon’s costs?

Implementation costs. Pigeon has 5.4K lines of C++

and Java. Sensors are compact, and the system is easy to

extend (e.g., the disk failure logic required only 34 lines).

Integrating Pigeon into applications is easy: it required

68 lines for RAMCloud and 414 lines for Cassandra.

CPU and network overheads. Figure 10 shows the

resource costs of Pigeon. CPU use is small; the main cost

is a high-priority process in the embedded sensor, which

periodically increments a shared counter (§4.2). Pigeon’s

network overheads come from OSPF LSAs to hosts.

Scalability. The main limiting factor is bandwidth to

propagate failure data; this overhead is inherited from

OSPF, which generates a number of LSAs proportional

to the number of router-to-router links in the network.

And this many LSAs are reasonable for networks with

thousands of routers and tens of thousands of hosts.

Specifically, we estimate that in a 48-port fat-tree topol-

ogy with 2880 routers and 27,648 end-hosts [3], OSPF

would use less than 11.8 Mbps of bisection bandwidth

(or 1.1% of 1 Gbps capacity), which is consistent with

our smaller-scale measurements. Larger networks would

7Note that Falcon would also enable such lease-breaking, but Falcon is

incompatible with the availability requirement: if the problem is in the

network, a query to Falcon literally hangs.
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component (§4) detecting network load idle

CPU used at end-hosts

process sensor/host relay 0.1% 0.0%

embedded sensor 3.0% 0.0%

interpreter 0.0% 0.0%

CPU used at routers

router sensor/relay 0.2% 0.0%

OSPF sensor/relay 0.1% 0.0%

bandwidth used

at each end-host 2.3 kbps 0 bps

at each router 3.4 kbps 1.3 kbps

Figure 10—Resource overheads of our Pigeon implementation.

presumably use multiple areas; we briefly discuss ex-

tending Pigeon to that setting in the next section.

6 Discussion, limitations, and future work

We now consider assumptions and limitations of the fail-

ure informer abstraction (§3.1–§3.2), the Pigeon archi-

tecture (§3.4), and our prototype implementation (§4).

The abstraction. How do we know if we got the ab-

straction right? As with any abstraction, this one is based

on generalizing from specific difficult cases, on judg-

ment, and on use cases. It is hard to prove that an ab-

straction is optimal (but ours is better than at least our

own previous attempts). A critique is that an implemen-

tation of the abstraction is permitted to return spurious

“uncertain” reports. However, uncertainty is fundamen-

tal and hence some wrong answers are inevitable (§2.2);

thus, this critique is really a requirement that the imple-

mentation have few false positives (§5.1).

The architecture. Our architecture assumes a single

administrative domain. This scenario has value (many

data centers satisfy this assumption), but extending to

a federated context may be worthwhile. However, this

requires additional research; prior work gives a starting

point [5, 6, 8, 61, 68].

The prototype. Our prototype assumes OSPF, runs on

layer 3, and monitors only end-hosts and routers (not

middleboxes). We could extend our prototype to other

routing protocols, by implementing appropriate relays

and sensors (§4.2–§4.3). We could also extend to layer-2

networks, either with OSPF (some layer-2 architectures

run OSPF for routing [31]), or without; in the latter case,

the prototype would need different sensors and relays.

Another extension is to monitor middleboxes using ad-

ditional types of sensors. Neither our current prototype

nor these extensions requires structural network changes.

(The logic for sensors and relays is small and runs in soft-

ware, on a router’s or switch’s control processor.)

We estimated our prototype’s scalability in Sec-

tion 5.3: it ought to scale to tens of thousands of hosts

in a single area, with the limit coming from OSPF itself.

OSPF can scale to more hosts, by using multiple areas;

we could extend Pigeon to this case using additional sen-

sors and relays at area borders to address what would

otherwise be a loss of accuracy (since areas are opaque

to each other). We leave this for future work.

7 Related work

Pigeon borrows low-level mechanisms from prior work

in network monitoring and failure handling. We describe

these two areas, and also present an extended comparison

with Falcon [46], which is Pigeon’s closest relative.

Network monitoring and intelligence. Many works in

network monitoring [7, 9, 23, 26, 29, 40, 41, 67, 69]

are complementary to Pigeon. Broadly speaking, these

works extract intelligence from network elements to aid

diagnosis, and Pigeon could use these techniques. In-

deed, Pigeon’s OSPF monitoring technique is borrowed

from Shaikh et al. [59, 60] (see Section 4.4). However,

the goal of these works is to help network operators per-

form diagnosis while Pigeon’s is to provide an online

failure reporting abstraction to distributed applications.

Providing a comprehensive service to distributed ap-

plications, using global information about the state of

a network, is the goal of information planes [19, 65].

Works in this area include the Knowledge Plane [22],

Sophia [58, 65] (which provides a distributed computa-

tional model for queries), iPlane [49, 50] (which helps

end-host applications choose servers, peers, or relays,

based on link latency, link loss, link capacity, etc.), and

NetQuery [61] (which instantiates a Knowledge Plane

under adversarial assumptions). These works are more

flexible than Pigeon (they usually expose an interface to

arbitrary queries), while Pigeon is more focused: its goal

is to report failure conditions to applications, a capability

that these papers do not discuss.

More targeted works include Meridian [66] (a node

and path selection service), King [32] (a latency esti-

mation service), and Network Exception Handlers [36]

(NEHs), which proactively delivers information from the

network to the end-host operating system, so end-hosts

can participate in traffic engineering. The goals of these

systems are different from Pigeon’s goal of exposing fail-

ures. But again, Pigeon could be extended to use similar

techniques, and in fact, Pigeon’s callback-based architec-

ture is reminiscent of the delivery mechanism in NEH.

While there are works that do report network failures

and errors to end-hosts [5, 42, 64], they do not provide a

comprehensive abstraction or full coverage, in contrast to

Pigeon’s goal. For example, Packet Obituaries [5] (POs)

proposes that each dropped packet should generate a re-

port about which AS dropped it. Their credo (“keep the

host informed!”) is similar to ours, and information about

POs would be useful for Pigeon, but POs do not obviate

Pigeon. First, under POs, the network generates reports

12
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Falcon [46] Pigeon

interface failure detector (crashes) failure informer (§3.1–§3.2)

accuracy always accurate usually accurate

timeliness fast fast

domain host failures host+network failures

coverage incomplete full

blocks yes no

kills yes no

Figure 11—Pigeon compared to its most closely related sys-

tem, Falcon [46]. Falcon has better accuracy, which simplifies

the layers over it, but Pigeon is superior in the other respects

and in particular leads to higher availability.

proactively but only when the host sends a packet, so this

mechanism has the limitation discussed in Section 2.1,

of allowing latent failures to persist. Second, POs pro-

vide low-level information about individual packets, in

contrast to Pigeon’s higher-level goal. Third, POs do not

provide information about host failures.

Failure recovery and detection. Handling failures re-

quires recovery and detection. Host failure recovery

(see [24] and citations therein) is complementary to our

work. (From our vantage, strategies such as microre-

boot [14, 15] are about masking and containing faults;

for us, recovery is about what to do when faults cannot

be masked.) Networks, of course, are designed for re-

covery, but there are techniques for making them even

more robust: Failure Carrying Packets [44] and Safe-

Guard [47] mask failures by carrying control plane infor-

mation inside data packets, and in Data-Driven Connec-

tivity [48], data plane packets trigger limited routing state

changes. Though these works are orthogonal to ours, an

open question is whether applications can benefit from

knowing that fault masking is underway.

The other aspect of handling failures is detection.

Chandra and Toueg [17] gave a theory of failure de-

tection, in the context of a client monitoring a remote

process. Since then, a number of failure detectors (FDs)

based on end-to-end timeouts have been proposed, in-

cluding by Bertier et al. [11], Chen et al. [18], and So and

Sirer [62]. The φ-accrual FD, by Hayashibara et al. [34],

extends the FD interface with a measure of confidence.

This notion of confidence contrasts with Pigeon’s notion

of “certain crash”: the confidence is probabilistic, so even

when the φ-accrual failure detector reports a crash with

high confidence, the monitored process may be up. The

failure detection literature, particularly the Falcon failure

detector [46], influenced the design of Pigeon; we com-

pare the two systems immediately below.

Pigeon vs. Falcon [46]. Falcon observed the power of

low-level information, and Pigeon borrows this observa-

tion, but the two have different goals, different proper-

ties, and different designs. Figure 11 shows the differ-

ences. Falcon is an accurate failure detector [17]—an ex-

isting abstraction that reports crash or up; by contrast,

Pigeon presents a new abstraction (the failure informer)

that exposes more information but with less accuracy.

Furthermore, Falcon does not have full coverage of hosts

or any coverage of the network; in the non-covered cases,

it hangs. In terms of design, Falcon (a) uses low-level

information only from hosts, (b) relies on the layered

structure of end-host system software, and (c) relies on

killing. Pigeon faces a bigger problem (network and host

failures, and a richer interface), in a landscape that does

not admit a layered structure or a license to kill. Thus,

Pigeon needs a different design, one that has intelligence

from the network and better local knowledge. Further-

more, there is a philosophical distinction in the knowl-

edge provided: Falcon reports the things that it knows it

knows, while Pigeon in addition gives timely reports of

the things that it knows it doesn’t know, and eventual re-

ports of the things that it does not know it does not know.

8 Summary and conclusion

The Internet is transparent to success but opaque to

failure [5].

Pigeon’s top-level contributions are architectural: a

thesis that applications should get information about fail-

ures, and a proposal to encapsulate that information in a

new abstraction that conveys the degree of certainty. Of

course, there is much about Pigeon to object to: its ul-

timate goal (better availability) is shared by all, its de-

sign is unsurprising, its mechanisms are borrowed, and

its implementation is limited. Nevertheless, this deriva-

tive system in fact enables higher application availability,

and it does so by enabling new behavior and functional-

ity in applications. Specifically, applications can use the

information provided by Pigeon to take the most appro-

priate action for the failure at hand: to initiate recovery

more quickly, to execute a simpler recovery strategy, to

recover proactively, or to simply wait it out by not re-

covering yet. As demonstrated in our experimental eval-

uation, this freedom leads to qualitatively and quantita-

tively better behavior, for a modest price in resources.

Pigeon, then, is like its namesake: in the wrong environ-

ment, it is a homely nuisance; in the right one, it is a key

tool with surprisingly powerful functionality.

Acknowledgments

This paper was improved by the helpful comments of

Lorenzo Alvisi, Sebastian Angel, Mahesh Balakrishnan,

Russ Cox, Alan Dunn, James Grimmelmann, Rodrigo

Rodrigues, Srinath Setty, Scott Shenker, and Edmund L.

Wong. We thank the anonymous reviewers, and our shep-

herd Katerina Argyraki, for their suggestions. This re-

search was supported in part by AFOSR grant FA9550-

10-1-0073 and NSF grants 1055057 and 1040083.

13



440 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

References

[1] Linux-HA, High-Availability software for Linux.

http://www.linux-ha.org.

[2] Netperf, the network performance benchmark.

www.netperf.org.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture. In ACM

SIGCOMM, pages 63–74, Aug. 2008.

[4] P. A. Alsberg and J. D. Day. A principle for resilient sharing of

distributed resources. In International Conference on Software

Engineering (ICSE), pages 562–570, 1976.

[5] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker. Providing

packet obituaries. In ACM Workshop on Hot Topics in Networks

(HotNets), Nov. 2004.

[6] K. Argyraki, P. Maniatis, and A. Singla. Verifiable

network-performance measurements. In ACM Conference on

Emerging Networking EXperiments and Technologies

(CoNEXT), Dec. 2010.

[7] H. Ballani and P. Francis. Fault management using the CONMan

abstraction. In INFOCOM, Apr. 2009.

[8] B. Barak, S. Goldberg, and D. Xiao. Protocols and lower bounds

for failure localization in the Internet. In EUROCRYPT, Apr.

2008.

[9] T. Benson, A. Akella, and D. Maltz. Unraveling the complexity

of network management. In Symposium on Networked Systems

Design and Implementation (NSDI), pages 335–348, Apr. 2009.

[10] L. Berger, I. Bryskin, A. Zinin, and R. Coltun. The OSPF opaque

LSA option. RFC 5250, Network Working Group, July 2008.

[11] M. Bertier, O. Marin, and P. Sens. Implementation and

performance evaluation of an adaptable failure detector. In

International Conference on Dependable Systems and Networks

(DSN), pages 354–363, June 2002.

[12] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in

distributed systems. In ACM Symposium on Operating Systems

Principles (SOSP), pages 123–138, Nov. 1987.

[13] M. Burrows. The Chubby lock service for loosely-coupled

distributed systems. In Symposium on Operating Systems Design

and Implementation (OSDI), pages 335–350, Dec. 2006.

[14] G. Candea, J. Cutler, and A. Fox. Improving availability with

recursive microreboots: A soft-state system case study.

Performance Evaluation Journal, 56(1–4):213–248, Mar. 2004.

[15] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.

Microreboot—a technique for cheap recovery. In Symposium on

Operating Systems Design and Implementation (OSDI), pages

31–44, Dec. 2004.

[16] The Apache Cassandra Project.

http://cassandra.apache.org/.

[17] T. D. Chandra and S. Toueg. Unreliable failure detectors for

reliable distributed systems. Journal of the ACM,

43(2):225–267, Mar. 1996.

[18] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of

service of failure detectors. IEEE Transactions on Computers,

51(5):561–580, May 2002.

[19] B. Chun, J. M. Hellerstein, R. Huebsch, P. Maniatis, and

T. Roscoe. Design considerations for Information Planes. In

Workshop on Real, Large, Distributed Systems (WORLDS), Dec.

2004.

[20] D. D. Clark. The structuring of systems using upcalls. In ACM

Symposium on Operating Systems Principles (SOSP), pages

171–180, Dec. 1985.

[21] D. D. Clark. The design philosophy of the DARPA Internet

protocols. In ACM SIGCOMM, pages 106–114, Aug. 1988.

[22] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski.

A knowledge plane for the Internet. In ACM SIGCOMM, pages

3–10, Aug. 2003.

[23] E. Cooke, R. Mortier, A. Donnelly, P. Barham, and R. Isaacs.

Reclaiming network-wide visibility using ubiquitous end system

monitors. In USENIX Annual Technical Conference, June 2006.

[24] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and

A. Warfield. Remus: High availability via asynchronous virtual

machine replication. In Symposium on Networked Systems

Design and Implementation (NSDI), pages 161–174, Apr. 2008.

[25] DD-WRT firmware. http://www.dd-wrt.com.

[26] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot.

Troubleshooting network unreachabilities using end-to-end

probes and routing data. In ACM Conference on Emerging

Networking EXperiments and Technologies (CoNEXT), Dec.

2007.

[27] C. Fetzer. Perfect failure detection in timed asynchronous

systems. IEEE Transactions on Computers, 52(2):99–112, Feb.

2003.

[28] P. Gill, N. Jain, and N. Nagappan. Understanding network

failures in data centers: Measurement, analysis, and

implications. In ACM SIGCOMM, pages 350–361, Aug. 2011.

[29] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford.

Path-quality monitoring in the presence of adversaries. In

SIGMETRICS, pages 193–204, June 2008.

[30] C. Gray and D. Cheriton. Leases: an efficient fault-tolerant

mechanism for distributed file cache consistency. In ACM

Symposium on Operating Systems Principles (SOSP), pages

202–210, Dec. 1989.

[31] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,

P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable

and flexible data center network. In ACM SIGCOMM, pages

51–62, Aug. 2009.

[32] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating

latency between arbitrary Internet end hosts. In SIGCOMM

Workshop on Internet Measurement (IMW), pages 5–18, Nov.

2002.

[33] G. Hamerly and C. Elkan. Bayesian approaches to failure

prediction for disk drives. In International Conference on

Machine Learning (ICML), pages 202–209, June 2001.
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Abstract
Commercial buildings are attractive targets for introduc-
ing innovative cyber-physical control systems, because
they are already highly instrumented distributed systems
which consume large quantities of energy. However, they
are not currently programmable in a meaningful sense
because each building is constructed with vertically inte-
grated, closed subsystems and without uniform abstrac-
tions to write applications against. We develop a set of
operating system services called BOSS, which supports
multiple portable, fault-tolerant applications on top of the
distributed physical resources present in large commer-
cial buildings. We evaluate our system based on lessons
learned from deployments of many novel applications
in our test building, a four-year-old, 140,000sf building
with modern digital controls, as well as partial deploy-
ments at other sites.

1 Introduction
Researchers and futurists working on ubiquitous and

pervasive computing have long argued that a future full
of personalized interaction between people and their en-
vironment is near [49, 42]. But this future has been
primarily held back by the lack of a path from concept
demonstration to broad deployment: developers have
prototyped hundreds of interesting sensors [11, 36, 21],
bringing new information about the world into a digital
form, and tied these sensors together with actuators to
provide interesting new capabilities to users. But invari-
ably, these are developed and deployed as standalone,
vertical applications, making it hard to share infrastruc-
ture investment among a variety of applications.

What is needed is an operating system to knit together
existing pieces of infrastructure, Internet data feeds, and
human feedback into a cohesive, extendable, and pro-
grammable system; i.e., provide convenient abstractions
and controlled access to shared physical resources. Do-
ing so is a significant challenge, since such a system must
bring together legacy systems with their own quirks, pro-

vide a path forward for new, native devices, and provide
improved and simplified interfaces at multiple levels of
abstraction. Existing buildings are not “programmable”
in a meaningful sense: there are no layers of abstraction
between the program and the system; programs may only
access sensors and actuators at the very lowest level. As
a result, applications are not portable, and it is impos-
sible to provide protected access to an application, due
to semantic mismatches between the level of policy and
the level of access. We propose a new architecture for
building control systems which, in addition to operating
the machinery, provides for robust, portable application
development and support many simultaneously running
applications on the common physical infrastructure of a
building. While buildings provide a concrete context,
many of the ideas could be applied to other complex,
connected physical systems.

We develop a collection of services forming a dis-
tributed operating system that solves several key prob-
lems that prevented earlier systems from scaling across
the building stock. First, as buildings and their contents
are fundamentally complicated, distributed systems with
complex interrelationships, we develop a flexible ap-
proximate query language allowing applications to spec-
ify the components they interact with in terms of their re-
lationship to other components, rather than specific hard-
ware devices. Second, coordinated distributed control
over a federated set of resources raises questions about
behavior in the presence of failure. To resolve this con-
cern, we present a transactional system for updating the
state of multiple physical devices and reasoning about
what will happen during a failure. Finally, there has pre-
viously been a separation between analytics, which deal
with historical data, and control systems, which deal with
real-time data. We demonstrate how to treat these uni-
formly in this environment, and present a time series ser-
vice which allows applications to make identical use of
both historical and real-time data.

Commercial buildings are an excellent environment in
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which to investigate such new systems. Many buildings
already contain thousands of sense and actuation points
which can be manipulated to provide new and surprising
experiences without hardware retrofits. They have large
energy bills, consuming about 73% of all electricity in
the United States [48], making energy efficiency a com-
pelling incentive for new investment. Furthermore, they
are large enough and contain enough people to drive is-
sues of scale, partial failure, isolation, and privacy.

2 Existing Building Systems
A large modern commercial building represents the

work of thousands of individuals and tens or hundreds of
millions of dollars of investment. Most of these buildings
contain extensive internal systems to manufacture an in-
door environment: to provide thermal comfort (heating
and cooling), good air quality (ventilation), and suffi-
cient lighting; other systems provide for life safety (fire
alarms, security) and connectivity (networking). These
systems are frequently provided by different vendors and
have little interoperability or extensibility beyond the
scope of the original system design.

Figure 1: A typical process diagram of an HVAC system
loop in a commercial building.

As an example of the complexity of many of these sub-
systems, Figure 1 shows one common design of a heat-
ing, ventilation, and air conditioning (HVAC) system for
a large building. Air is blown through ducts, where it
passes through variable air volume (VAV) boxes into in-
ternal rooms and other spaces. After circulating, it re-
turns through a return air plenum where a portion is ex-
hausted and the remaining portion is recirculated. The
recirculated air is also mixed with fresh outside air, be-
fore being heated or cooled to a target supply temperature
within an air handler unit (AHU), completing the loop.
Other systems circulate hot and cold water for chang-
ing the air temperature. Many different control loops are
present; the predominant control type is PID controllers
used to meet setpoint targets for air pressure, tempera-
ture, and air volume.

This control in existing building systems operates on

two levels. Direct control is performed in open and
closed control loops between sensors and actuators: a
piece of logic examines a set of input values and com-
putes a control decision which commands an actuator.
These direct control loops frequently have configuration
parameters that govern their operation that are called set-
points; they are set by the building operator, installer,
or engineer. Adjusting setpoints and schedules forms
an outer logical loop, known as supervisory control.
This logical distinction between types of control is typ-
ically reflected physically in the components and net-
working elements making up the system: direct control
is performed by embedded devices called Programmable
Logic Controllers (PLCs) that are hard-wired to sensors
and actuators, while supervisory control and manage-
ment of data for historical use is performed over a shared
bus between the PLCs. This architecture is natural for
implementing direct control loops since it minimizes the
number of pieces of equipment and network links infor-
mation must traverse to affect a particular control policy,
making the system more robust, but it provides no coor-
dinated control of distinct elements, and hard boundaries
which are difficult to overcome. This collection of equip-
ment is collectively known as a Building Management
System (BMS).

The BMS is typically configured, managed, and pro-
grammed through a head-end node sitting on the shared
bus. This node is responsible for providing an opera-
tor interface, storing historical “trend” data, and provid-
ing a point at which to reprogram the other controllers
on the bus. It may also be a point of integration with
other systems and therefore support some amount of re-
programmability or external access; for this reason, it can
be a natural point of access to existing systems.

3 Design Development
To articulate the design of an operating system for

buildings, we introduce three concrete, novel appli-
cations developed through research programs on our
testbed building. The essential commonality is that all
involve substantial interaction between components of
building infrastructure, substantial computational ele-
ments, and building occupants, rather than simply pro-
viding a new interface to existing controls.

3.1 Motivating Applications
Ordinarily, the temperature within an HVAC zone is

controlled to within a small range using a PID controller.
The drive to reach an exact setpoint is actually quite inef-
ficient, because it means that nearly every zone is heating
or cooling at all times. A more relaxed strategy is one
of floating: not attempting to effect the temperature of
the room within a much wider band; however this is not
one of the control policies available in typical commer-
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cial systems even though numerous studies indicate that
occupants can tolerate far more than the typical 2◦F vari-
ation allowed [4]. Furthermore, the minimum amount of
ventilation air provided to each zone is also configured
statically as a function of expected occupancy; however
the actual requirement is stated in terms of fresh, outside
air per occupant. The HVAC optimization application
uses occupancy information derived from network activ-
ity, combined with information about the mix of fresh
and return air currently in use to dynamically adjust the
volume of ventilation air to each zone.

A second application was developed to improve com-
fort by giving occupants direct control of their spaces,
inspired by previous work [16]. Using a smart-phone
interface, the personalized control application gives oc-
cupants direct control of the lighting and HVAC systems
in their workspaces. The application requires the ability
to command the lights and thermostats in the space.

A third application is an energy audit application for
our highly-instrumented building. Researchers input in-
formation about the structure of the building and the re-
lationship between sensors and devices. This requires
access to a uniform naming structure and streaming sen-
sor data coming from physically-placed sensors. The
former captures relationships between locations within
the building, sensors, and loads (energy consumers) and
the latter provides up-to-date information about physical
measurements taken in locations throughout the building.
This combination of data and metadata allow dashboard-
ing and occupant feedback to access fine-grained slices
of data – for instance, displaying the total energy con-
sumed by all plug-loads on a particular floor.

Many other building applications have been developed
in prior work including demand response [38], peak-
price minimization [34], and occupant feedback [37]. All
of these would benefit from a robust, common frame-
work for controlling the building and the ability to run
alongside other applications.

3.2 Architectural Implications
Experience with the ad hoc development of these

kinds of applications led us to conclude that better ab-
stractions and shared services would admit faster, easier,
and richer application development, as well as a more
fault tolerant system. The HVAC optimization applica-
tion highlights the need for real-time access, locating the
appropriate actuator for each temperature control unit,
and replacing the local control logic with something new.
Access to historical data is vital for training models and
evaluating control strategies.

The personalized climate control application high-
lights the need for the ability to outsource control, at least
temporarily, to a mobile web interface in a way that re-
verts gracefully to local control. It also integrates control

over multiple subsystems that are frequently physically
and logically separate in a building: HVAC and lighting.

The energy audit application highlights the need to
couple semantic information with streaming sensor data
in a uniform fashion and a way to meaningfully combine
it with raw sensor data. It also emphasizes the need for
real-time data cleaning and aggregation. Sensor feeds
can be quite dirty, often missing values or containing er-
rant data.

4 Design
The BOSS architecture consists of six main subsys-

tems shown in Figure 2: (1) hardware abstraction and
access abstraction; (2) naming and semantic modeling;
(3) real-time time series processing and archiving; (4)
a control transaction system; (5) authorization; and fi-
nally (6) running applications. The hardware abstrac-
tion layer elevates the plethora of underlying sensors
and actuators to a shared, RESTful level and places all
data within a shared global namespace, while the seman-
tic modeling system allows for the description of rela-
tionships between the underlying sensors, actuators, and
equipment. The time series processing system provides
both real-time access to all underlying sensor data as well
as stored historical data, and common analytical opera-
tors for cleaning and processing the data. The control
transaction layer defines a robust interface for external
processes wishing to control the system that is tolerant
of failure and applies security policies. Last, “user pro-
cesses” comprise the application layer. We expand on the
design of each of these services below.

The mapping of these components to fault domains
determines key properties of the overall system. The
HPL must be physically co-located with the machinery it
monitors and controls; failure of these components will
prevent undoing actions taken by applications, although
built-in control strategies provide the most basic level of
fallback control. The transaction manager coordinates
control over a set of HPL points and so it, combined with
the set of HPL services it manages, determines a second,
wider fault domain: this component forms the boundary
at which other OS components can fail and still provide
guaranteed behavior. The placement of the other services
is flexible but impacts the availability of the resulting ser-
vice; any other service failing could cause an application
to crash.

4.1 Hardware Presentation Layer
Building systems are made up of a huge number

of specialized sensors, actuators, communications links,
and controller architectures. A significant challenge is
overcoming this heterogeneity by providing uniform ac-
cess to these resources and mapping them into corre-
sponding virtual representations of underlying physical
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Architectural component Functional requirements Placement
Hardware presentation layer Expose the primitive low-level operations of hardware using a

common interface.
Distributed as close to the physical sensors as possible (ideally,
co-located).

Control transaction manager Provide “all or nothing” semantics when applying control in-
puts; provide rollback of actions on failure, cancellation, or ex-
piration.

Within the same failure domain as the HPL used to affect the
changes.

Hardware abstraction layer Map the low-level functions of the physical hardware to higher-
level abstractions.

Anywhere.

Time series service Maintain a history of readings from the sensors and actuators;
provide application interface to data.

Replicated; may be offsite.

Authorization service Approve application requests for access to building resources. Anywhere.
Control processes “User processes” implementing custom control logic. Anywhere.

Table 1: Architectural components of a Building Operating System
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Figure 2: A schematic of important pieces in the system.
BOSS consists of (1) the hardware presentation layer, the
(2) hardware abstraction layer, the (3) time series ser-
vice, and the (4) control transaction component. Finally,
the (5) authorization service determines access controls.
Control processes sit on top and consume these services.

hardware. At the lowest level is a Hardware Presentation
Layer. The HPL hides the complexity and diversity of
the underlying communications protocols and device in-
terfaces, presenting hardware capabilities through a uni-
form, self-describing protocol. The HPL abstracts all
sensing and actuation by mapping each individual sen-
sor or actuator into a point: for instance, the temperature
readings from a thermostat would be one sense point,
while the damper position in a duct would be represented
by an actuation point. These points produce time se-
ries, or streams, consisting of a timestamped sequence of
readings of the current value of that point. The HPL pro-
vides a small set of common services for each sense and
actuation point: the ability to read and write the point;
the ability to subscribe to changes or receive periodic
notifications about the point’s value, and the ability to re-

trieve and append simple key-value structured metadata
describing the point.

In order to provide the right building blocks for higher
level functionality, this layer includes:

Naming: each sense or actuation point is named with
a single, globally unique identifier. This provides
canonical names for all data generated by that point
for higher layers to use.

Metadata: most traditional protocols have limited or no
metadata included about themselves, or their in-
stallation; however metadata, is incredibly impor-
tant for the interpretation of data and for developing
portable applications. The HPL allows us to include
key-value metadata tags describing the data being
collected to consumers.

Buffering and Leasing: many sources of data have the
capability to buffer data for a period of time in case
of the failure of the consumer; the HPL uses this to
guard against missing data wherever possible. For
actuators, safely commanding them in a fault toler-
ant way requires associating each write with a lease.

Discovery and Aggregation: sensors and the associ-
ated computing resources are often physically dis-
tributed with low-powered hardware. The HPL pro-
vides a mechanism to discover and aggregate many
sensors into a single source on a platform with more
resources, to support scalability.

This functionality is distributed across the computing
resources closest to each sensor and actuator; ideally it
is implemented natively by each device, although for
legacy devices use a gateway or proxy. The HPL pro-
vides a small set of common services for each sense and
actuation point: the ability to read and write the point;
the ability to subscribe to changes or receive periodic
notifications about the point’s value, and the ability to re-
trieve and append simple key-value structured metadata
describing the point.

4.2 Hardware Abstraction Layer
Unlike computer systems, buildings are nearly always

custom-designed with unique architecture, siting, lay-
out, mechanical and electrical systems, and control logic
adapted to occupancy and local weather conditions. The
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HAL allows applications to inspect these differences at a
high level of abstraction, crucial for application portabil-
ity. To do this, the HAL provides an approximate query
language [28] allowing authors to describe the particular
sensor or actuator that the application requires based on
the relationship of that component to other items in the
building, rather than hardcoding a name or tag. Applica-
tions can be written in terms of high-level queries such as
“lights in room 410,” rather than needing the exact net-
work address of that point. The query language allows
authors to search through multiple views of underlying
building systems, including spacial, where objects are
located in three-dimensional space; electrical, describing
the electrical distribution tree; HVAC, describing how the
mechanical systems interact; and lighting.

The HAL also abstracts the logic used to control build-
ing components such as pumps, fans, dampers, chillers,
using a set of drivers to provide standard interfaces.
Drivers provide high-level methods such as set speed

and set temperature that are implemented using com-
mand sequences and control loops over the relevant HPL
points. These drivers provide a place to implement
device-specific logic that is needed to present standard-
ized abstractions on top of eclectic hardware systems.

Drivers and applications use this functionality to de-
termine locking sets, necessary for coexisting with other
applications. For instance, an application that is char-
acterizing the air handler behavior might want to ensure
that the default control policy is in use, while varying
a single input. It could use the approximate query lan-
guage to lock all points on the air handler, excluding
other processes. Since different models of the same piece
of equipment may have different points even though they
perform the same function, it is essential that applica-
tions can control sharing at the level of functional com-
ponent rather than raw point name.

4.3 Time series service
Most sensors and embedded devices have neither the

ability to store large quantities of historical data nor the
processing resources to make use of them; such data are
extremely important for historical analyses, model train-
ing, fault detection, and visualization. The challenge is
storing large quantities of these data efficiently, while
allowing applications to make the best use of them in
near real-time for incorporation into control strategies.
In existing systems, most historical data are goes unused
because they are difficult to access and make sense of.
Applications typically access data either by performing
range queries over timestamps and streams, or by sub-
scribing to the latest values. For instance, a typical query
might train a model based room light-level readings for
a period of one month, touching hundreds of millions of
values. Even a modest-sized installation will easily have

tens of billions of readings stored, with new data from
the HPL mostly appended to the end of the time series.
Finally, the data are usually dirty, often having desyn-
chronized timestamps requiring outlier detection and re-
calibration before use.

The time series service (TSS) provides a low-latency
application interface for accessing the large repository of
stored data at different granularities. It consists of two
parts: a stream selection language and a data transforma-
tion language. Using the stream selection language, ap-
plications can inspect and retrieve metadata about time
series. The data transformation language allows clients
to apply a pipeline of operators to the retrieved data to
perform common data cleaning operations. This moves
common yet complex processing logic out of applica-
tions, allowing them to focus on making the best use of
the data, and also enables the possibility of optimizing
common access patterns.

4.4 Control transactions
BOSS applications typically take the form of either

coordinating control among multiple resources, which
would otherwise operate independently as in the HVAC
optimization, or extending control beyond the building to
other systems, as in the personalized control or electric
grid responsive control. The challenge is doing so in a
way that is expressive enough to implement innovative
new control algorithms, yet is robust to failure of net-
work elements and controllers. Control algorithms that
involve users or Internet-based data feeds should survive
the failure of the parts of the control loop that run outside
of the building without leaving any building equipment
in an uncertain state. Therefore, we use a transaction
metaphor for affecting changes to control state. Transac-
tions in database systems are a way of reasoning about
the consistency guarantees made when modifying multi-
ple pieces of underling state; within BOSS, we use trans-
actions as a way of reasoning about what happens when
collections of control actions are performed.

A control transaction consists of a set of actions to
be taken at a particular time: for instance, a coordinated
write to multiple actuators. Actions at this level operate
at the level of “points” – individual actuator outputs; the
HAL uses its system model and driver logic to translate
high-level requests into point-level operations that may
include reads, writes, and locks.

To ensure reliability, control transactions require a
lease time during which actions are valid, a revert se-
quence specifying how to undo the action, and an er-
ror policy stating what to do in case of a partial failure.
When the lease expires, the transaction manager executes
the revert sequence, which restores control of the sys-
tem to the next scheduled direct controller. The ability
to revert transactions provides the fundamental building
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block for allowing control of the building to be turned
over to more sophisticated and less-trusted applications,
while providing baseline control. Actions may also be re-
verted on a partial failure, depending on the error policy;
for instance, if the transaction manager cannot acquire a
lock or the write to the underlying device fails. Revert se-
quences are provided for each action and can be thought
of as the “inverse action” that undoes the control input.
We require there to be a “lowest common denominator”
control loop present that is able to run the building in
its default (although potentially inefficient) operation. In
this way, applications can always simply release control
and the building will revert to its default control regime.

To support multiple applications, each point-level op-
eration also is associated with a priority level and a lock-
ing strategy. These allow multiple higher-level processes
or drivers to access the underlying points, while provid-
ing a mechanism for implicit coordination. Using a con-
cept borrowed from BACnet, writes are performed into
a “priority array” – a set of values that have been writ-
ten to the point ordered by priority level. The actual
output value is determined by taking the highest prior-
ity write. Although it provides for basic multiprocess-
ing, the BACnet scheme has several problems. With-
out leases, a crashing application could leave the system
locked in an uncertain state until its writes are manually
cleared. Without notifications, it is difficult to determine
if a particular write has been preempted by another pro-
cess at a higher priority without periodically polling the
array. The transaction manager adds notification, leasing
and locking, allowing applications to be notified when
their writes are preempted, or to prevent lower-priority
processes from accessing the point.

4.5 Authorization service
In addition to providing high-level, expressive access

to building systems, BOSS seeks to limit the ability
of applications to manipulate physical resources. Most
building operators will not turn over control to just any-
one, and even for a trusted application developer, safe-
guards against runaway behavior are needed. The au-
thorization service provides a means of authorizing prin-
cipals to perform actions and is based on the approxi-
mate query language of the HAL; applications may be
restricted by location (only lights on the fourth floor),
value (cannot dim the lights below 50%), or schedule
(access is only provided at night). This provides access
control at the same semantic level as the operations to be
performed.

BOSS checks access permissions on the level of in-
dividual method call and point name in the HAL and
HPL using a two-stage approve/verify process. Applica-
tions first register their intent to access a point or method
name with the service and what arguments they will call

it with. The intents may either be automatically approved
or presented to a building manager for approval. Security
and safety checks are performed at time-of-use on each
method call, providing the ability to revoke access. Ver-
ifying access permissions at time-of-use using an online
server rather than at time-of-issue using signed capabil-
ities has negative implications for availability and scala-
bility, as it places the authorization service on the critical
path of all application actions. However, we found the
ability to provide definitive revocation a critical function-
ality necessary to convince building managers that the
system is safe. This is one place where practical consid-
erations of the domain won over our bias against adding
more complexity to the command pathway.

4.6 Control processes
Updates to building control state are made atomi-

cally using control transactions; however, these are often
part of larger, more complex long-lived blocks of logic.
These is known as a “control process” (CP) and are anal-
ogous to a user process; each of our motiving applica-
tions is implemented as a control process in BOSS. CPs
connect to services they require, such as the time series
service, HAL, and transaction managers, and manage the
input of control actions. Because of the careful design of
transactions and the TSS, there are few constraints on
where control processes can be placed in the comput-
ing infrastructure; if they fail or become partitioned from
the actuator they control, the transaction manager will
simply “roll back” their changes and revert to a lower-
priority CP which has not experienced partition or failure
and ultimately to the hard-coded control strategy.

5 Implementation and Evaluation
To evaluate our architecture for building software sys-

tems, we have developed a prototype implementation
of the Building Operating System Services. BOSS im-
plements all system components, and is currently being
used by researchers in a living lab context. The sys-
tem is built mostly in Python, with C used for certain
performance-critical parts; all together, it is about 10,000
lines of non-application source code. The system uses a
service-oriented design, with canonical DNS names used
for finding other services; most services communicate
using RESTful interfaces exchanging JSON objects. In
cases where authentication is required, two-sided SSL is
used.

We have fully installed BOSS on our test building,
Sutardja Dai Hall: a four-year-old, 140,000 square foot
building containing mostly open “collaboratory” spaces
alongside faculty offices on the UC Berkeley campus.
Additionally, we have partially installed BOSS in many
other buildings; we have performed full BMS integra-
tion in two other campus buildings, and have used the
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HPL for data collection and analysis in around 100 other
buildings. The system is running many applications, in-
cluding our motivating examples; we study these actual
applications to illustrate how BOSS achieves its goals.

In our implementation, the HPL and the transaction
manager run physically co-located with the BMS com-
puter. Because the HPL buffers data when the time se-
ries service is unavailable and the transaction manager
will revert any actions taken by failing or disconnect pro-
cesses, this provides the best fault tolerance to failures
outside of the building. Other services run mostly in a
server room, although some applications are hosted on
cloud services such as EC2. The failure or partition of an
application from any of the services generally causes the
application to fail, with the transaction manager reverting
any actions taken once its leases expire.

5.1 Hardware Presentation
The presentation layer allows higher layers to retrieve

data and command actuators in a uniform way. Our HPL
is a revised version the Simple Measurement and Actua-
tion Profile [12, 13], which provides RESTful access to
data sources and actuators, exposing the command re-
source tree shown in Figure 3.

/data/      # all timeseries and collections  
 {  

     "Contents" : ["sensor0"], 
     “Metadata” : { “SourceName” : “Example sMAP Source” }, 
    }  
/data/sensor0 

 { "Contents” :["channel0"] }, 
/data/sensor0/channel0 

 { 
     "uuid" : "a7f63910-ddc6-11e0-8ab9-13c4da852bbc",     
     "Readings" : [ [1315890624000, 12.5 ] ] 
   } 
/reports/     # data destinations 

Figure 3: Resource tree exported by sMAP. Sensors and
actuators are mapped to time series resources identified
by UUIDs. Metadata from underlying systems are at-
tached as key-value tags associated with time series or
collections of time series.

Ease of integration is key when interfacing with exist-
ing systems. The sMAP library1 takes care of the me-
chanics of providing the external interface, and allows
driver writers to focus on implementing only sensor or
actuator-specific logic. It uses abstracted drivers that sep-
arate the device-specific logic needed for talking with
a device (native communications protocols, etc) from
the site-specific configuration (network locations, sam-
pling rates, etc). To demonstrate its flexibility and ver-
satility, we have implemented around 25 driver modules
which integrate with three major BMS vendors, various
low-power wireless devices, several different three-phase
electric meters, weather stations, and detailed operations
data from all major US electric grids to enable control

strategies taking account of time-of-use pricing and re-
newable energy availability; together, more than 28,000
streams are present in the HPL2. We interface with the
building management system of our test building primar-
ily over BACnet.

5.2 Hardware Abstraction Layer
The hardware abstraction enables application portabil-

ity in two ways: it supports queries over the relationships
between building components, and provides drivers with
standardized methods for making control inputs.
5.2.1 Semantic Query Language

Spacial Domain (#AREA)

HVAC Domain (#HVAC)

Constant Flow Chilled Water Loop VAV
Damper

Heating 
Coil

Airflow 
Sensor

Chiller

PumpTemp 
Sensor Temp 
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(#ELEC)

Building 
Electrical 
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Air 
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Cooling 
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Heating 
Coil

Airflow 
Sensor

Figure 4: Partial functional and spacial representation of
our test building. Directed edges indicate a “supplies”
or “feeds into” relationship. Queries are executed by
searching the graph.

The query interface allows applications to select ob-
jects based on type, attributes, and functional or spacial
relationships, allowing programmers to describe the par-
ticular sensor or actuator that the application requires
rather than hardcoding a name or tag. This allows ap-
plications to be portable across buildings with different
designs[28].

Queries are expressed in terms of metadata tags from
the HPL, and relationships indicated by < and > oper-
ators with A > B meaning that A supplies or feeds into
B. For example, an air handler might supply variable air
volume (VAV) boxes that supply rooms; a whole building
power meter may feed into multiple breaker panels that
supply different floors. The execution engine evaluates
queries by searching a directed graph of objects. Figure 4
shows a partial rendering of the functional and spacial
relationship graphs. Objects are exposed by drivers and
can be low-level (e.g., damper, sensor, fan) or high-level
(e.g., air handler, chilled water loop). Directed edges in-
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dicate the flow of physical media, i.e.air, water, electric-
ity. Tags describe the object type and functionality. We
also represent spatial areas, defined as polygons on floor
maps of the building and stored in a GIS database.

5.2.2 Drivers
BOSS drivers are implemented as persistent objects

within a global namespace; CPs obtain references to
drivers using the semantic query language from the HAL.
To make driver code reusable in an environment where
very little can be assumed about the underlying technol-
ogy, drivers present both uniform top-level interfaces to
the components they represent, as well as a template-
based bottom interface allowing them to be automatically
instantiated when the underlying HAL points have been
tagged with appropriate metadata.

SiemensReheatVAV

set_airflow(range) { ... }
set_temp(range) { ... }
set_reheat(level) { ... }

VAV/Setpoint

VAV/MinAirflow
VAV/MaxAirflow

VAV/HeatingValve

VAV/AirflowBaseVAV <<interface>>

set_airflow(range);
set_temp(range);

HAL Drivers HPL Points

Figure 5: Drivers expose a set of methods on top, and
are bound to HPL points based on metadata provided
by the HPL. Here, a Siemens VAV driver exposes the
methods common to all VAVs as well as an additional
set reheat method.

Figure 5 shows a schematic of a VAV driver:
to illustrate these relationships, the BaseVAV inter-
face which provides methods for controlling set-
point and temperature has been extended by the
SiemensReheatVAV driver to provide an additional,
non-standard set reheat method. Drivers encapsulate
device-specific logic needed to provide a standardized
interface on top of the actual hardware present which
may be more sophisticated than what is installed in a
given building. For instance, the standard VAV control
method allows applications to set a target temperature
range (dead band). However, for many VAVs, including
those in our test building, the width of this band is impos-
sible to change once installed. Therefore, the driver em-
ulates the desired behavior by manipulating the set point
as the temperate moves in and out of the dead band.

Our driver system includes representations of many
common building infrastructure elements such as VAVs,
dampers, water pumps, air handlers, economizers, lights,
light switches and transformers – and maps them into
canonical representations that are placed into the meta-
data graph. Using drivers’ bottom layer templates, ap-
propriate drivers are loaded in places where HPL points
have matching metadata, subject to hand checking.

5.3 Time Series Service
The time series service is responsible for storing, se-

lecting, and cleaning both real-time and historical data.
Figure 6 shows an example query exercising all three of
these functions. The TSS contains three main compo-
nents: the readingdb historian3 provides compressed,
low-latency, and high-throughput access to raw time se-
ries data. A selection engine performs SQL-to-SQL
compilation on user queries, allowing them to flexibly
select data streams on the basis of the tags applied by the
HPL. A data transformation component applies domain-
specific operations to the data.

5.3.1 readingdb
Many building energy products build on start SQL

databases which are disappointing at scale. Figure 7
compares readingdb performance to MySQL (using
both InnoDB and MyISAM storage engines) and Post-
greSQL tuned for time series data on a representative
usage pattern. Here, the database is loaded with syn-
thetic data (simulating a trickle load), and periodically
stopped to query a fixed-size set of data as well as to
measure how large the stored data are on disk. Because
MyISAM appends all records to the end of the volume,
inserts are uniformly very cheap; however, query perfor-
mance is poor and furthermore scales with the size of
the database rather than the size of the results set. Post-
gres and InnoDB keep data ordered by time on disk re-
sulting in more predictable query performance, but have
more expensive insert paths; furthermore the B+-tree in-
dexes scale poorly when presented with a large number
of leaf keys. readingdb’s bucketing algorithm mitigates
these issues (while still using an index for fast random
access) by packing neighboring records together using
only a single key, achieving an order of magnitude better
compression than the other tree-based schemes.

5.3.2 Data Selection
With tens of thousands of data streams present, find-

ing the right one can be a challenge. The HPL provides
the basis for this naming by identifying each data stream
with a unique identifier (a UUID), and attaching key-
value metadata to it. The time series service provides the
mechanism to apply complex queries to these streams to
locate them on the basis of the metadata, i.e., an “entity-
attribute-value” schema. Our system uses an SQL-to-
SQL complier to transform logical queries in key-space
to queries on the underlying database schema, allowing
users to specify any attribute in the HPL. Line 3 in Figure
6 is an example of easily locating all datacenter power
feeds.

5.3.3 Data Transformation
The processing pipeline allows operators to inspect

both data (time, value vectors) as well as metadata: op-
erators are first bound to the actual streams to be pro-
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1: apply  sum(axis=1) < missing < paste < window(mean, field="minute", width=15) 
2: to data in ("4/20/2012", "4/21/2012") 
3: where Metadata/Extra/System = 'datacenter' and Properties/UnitofMeasure = 'kW’ !


Figure 6: Example query executed by the time series service. Line 1 uses a pipeline of four data cleaning operators
to aggregate by resampling data in 15-minute intervals and then filtering missing data, Line 2 selects a range of time
from the readingdb storage manager, and Line 3 queries metadata to locate datacenter power feeds.

(a) Size of on-disk files (b) Insert performance (c) Query performance

Figure 7: readingdb time series performance compared to two relational databases. Compression keeps disk I/O to a
minimum, while bucketing prevents updating the B+-tree indexes on the time dimension from becoming a bottleneck.
Keeping data sorted by stream ID and timestamp preserves locality for range queries.

cessed and since each operator can inspect the metadata
of the input streams, it is possible to implement operators
that transform data based on the metadata such as a unit
or timezone conversion. Using simple combinations of
these operators, queries can interpolate time-stamps, re-
move sections with missing data, and compute algebraic
formulas over input data. Extending the set of operators
is simple since we provide support for wrapping arbitrary
Python functions which operate on vector data; in par-
ticular, we have imported most of the numpy numerical
library automatically.

5.4 Transaction Manager
Submitted transactions become runnable once the start

time has passed. The scheduler chooses the next ac-
tion from among the runnable actions, taking into ac-
count considerations of both upper and lower layers. It
considers the priorities of the various runnable actions
as well as the concurrency requirements of the underly-
ing hardware. For instance, some devices are present on
a shared 9600-baud RS-485 bus; Internet-style applica-
tions can easily overwhelm such a limited resource. Pri-
orities are implemented as separate FIFO queues at each
priority level. Once actions are scheduled, actual execu-
tion is passed off to controller components that perform
the action by communicating with the appropriate sMAP
devices and proxies. When the lifetime of a transaction
expires, it is canceled, or it encounters an error, the re-
vert method is used to enqueue new commands to undo
the previous control inputs.

The naı̈ve reversion policy would simply clear any
writes made; however, Figure 8(a) illustrates one prob-
lem with this method. Here, the setpoint is reduced at
around 12:31, causing air volume to increase and room
temperature to fall. However, when this change is re-
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(a) Unstable behavior around a transition
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(b) Specialized reversion sequences can deal
with this problem

Figure 8: Drivers may implement specialized reversion
sequences to preserve system stability when changing
control regimes.

verted at 12:41, the default commercial controller which
takes over becomes confused by the unexpected devia-
tion from setpoint, causing the damper position (and thus
air volume) to oscillate several times before finally stabi-
lizing. Understanding and dealing with this issue is prop-
erly the concern of a higher-level component such as a
VAV driver; to allow this, some drivers provide a custom
revert action along with their inputs. These actions con-
sist of restricted control sequences requiring no commu-
nication, replacing the default reversion policy. In Fig-
ure 8(b), the VAV driver uses a custom revert sequence
to gradually release control.
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6 Applications
We further evaluate BOSS in two ways: first, we ex-

amine how the system architecture makes implementing
our three motivating applications simpler and more con-
cise, while showing how it helps applications to coexist.
Second, we provide a survey of other applications which
have been implemented using BOSS, providing evidence
of the system’s generality.

6.1 HVAC Optimization
The HVAC optimization control process consists of

two strategies: temperature floating and ventilation ad-
justment. Building codes often require a rate of fresh
air ventilation per room based on occupancy and room
size [9, 4]. Keeping ventilation rates at the required min-
imum is highly desirable for energy savings since it re-
duces fan power and the need for air conditioning; how-
ever, this is difficult to do in traditional building control
systems because separate control loops are in charge of
varying the fresh air intake into the building, controlling
the per-room airflow, and detecting occupants. Occu-
pancy detection is a well-researched subject that is best
performed by fusing data from many sensors [2, 1, 31]
not normally available.

Figure 9 shows pseudocode implementing the airflow
reductions. The code uses the HAL semantic query inter-
face to find all dampers controlling fresh air intake and
adjusts the ventilation rates for their downstream rooms
– the more fresh air being brought into the building from
the outside, the less airflow is required per room to main-
tain the required freshness. In the example, line 3 returns
dampers servicing the two air handlers (AH1A and AH2A

in our building), each of which services around 70 zones,
which are found on line 4. We use a simple occupancy
model based on time of day and class schedule obtained
from a Google Calendar feed, and scale the ventilation
as a function of the number of people. This demon-
strates coordinated control across traditionally indepen-
dent building components: on line 6, the actual fresh air
intake setting is used to control the room ventilation re-
quirements. Furthermore, a separate building with com-
pletely different ventilation layout would be able to run
virtually the same control application.

1 proc = BossProcess(timeout=15min, auth_token=ABC)
2 while True:
3 for dmp in hal.find(’#OUT_AIR_DMP > #AH’):
4 for vav in hal.find(’#VAV < $%s’ % dmp.name):
5 occ = model.estimate_occupancy(vav)
6 vav.set_min_airflow((vav.min_fresh_air() /
7 dmp.get_percent_open()) * occ)
8 time.sleep(15*60)

Figure 9: Ventilation component of the HVAC optimiza-
tion application.

6.2 Personalized Control
A second application, a personalized control system,

takes direct occupant input to adjust room temperatures
and ventilation. One of its key features is the ability to
temporarily blast warm or cold air into the space in re-
sponse to a user request. Fault tolerance is crucial in this
application; blasts must be reverted even if the control
process crashes to ensure occupant comfort and avoid
wasting energy. Figure 10 shows the execution flow of
the personalized control application and the error han-
dling in response to an emulated crash.

The application writes to a room setpoint in response
to a user request but shortly thereafter crashes. The trans-
action manager reverts the blast action by undoing the
submitted transaction. A subplot of room temperature
taken while executing this control flow is also shown in
Figure 10. Temperature drops while the cold blast is run-
ning and reverts to normal after the application crashes.
Unlike traditional computer systems, reverting the room
temperature takes time as the space slowly warms back
up to steady state.

We run the personalized control application concur-
rently with the HVAC optimization application. Since
both apps access the same VAV point, some coordination
is required to ensure correct behavior. In this case, the
HVAC optimization application can coexist with the per-
sonal control application: if its commands are overrid-
den at a higher priority, it simply regains control when-
ever the higher priority application is finished. However,
the inverse situation is not acceptable: since users expect
an immediate response when initiating a blast, the appli-
cation locks the VAV points with an exclusive lock, so
that if it is itself overridden, it will immediately cause
the transaction to abort and display an error message.
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Figure 10: Execution flow of the personalized control
application responding to a user request for cooling. Af-
ter the control process crashes, the transaction manager
automatically reverts past actions.

6.3 Auditing and Baselining
We use the auditing application to compute energy

savings from the HVAC optimization and personal con-
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trols. The HPL and time series service allow easy access
to historical data from all meters within the building. We
use these data to train a baseline model of power con-
sumption of the building in its standard operating regime,
regressing against outside air temperature, time of day,
and class schedules. This model is used to produce a new
real-time baseline stream which appears as a new virtual
feed in the HPL. Using this baseline, we can compare
building performance before and after enabling our opti-
mization and control algorithms. Figure 11 shows mea-
sured power consumption and the modeled power base-
line. Power consumption drops by 28kW, about 17%,
after launching our optimization apps.
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Figure 11: Energy use before and after starting our
HVAC control applications in our test building showing
energy savings of approximately 17%.

6.4 Deployment and Application Survey
To begin quantifying the generality of BOSS is, we

surveyed a number of users inside and outside our group
who have written applications to produce Table 2. These
include the motivating applications above, as well as
applications which perform model-predictive control of
various system components and conduct comfort analy-
ses of building data. Overall, application writers felt that
their ability to spend time on their actual problems such
as system modeling or producing visualizations of the
data was much improved by operating at a higher level
of abstraction; furthermore many appreciated the ability
to write application code that might have bugs and yet be
assured that the system would fail gracefully.

7 Related Work
7.1 Ubiquitous Computing

There have been many attempts to provide pro-
grammable abstractions to make it easier to run
tasks on devices, predominantly in homes. For in-
stance, ICrafter [39] integrates devices in an intelligent
workspace into a service-oriented framework, used to
generate user interfaces, while ubiHome [17] applies se-
mantic web techniques to describe the services provided
by a variety of consumer devices. Several “living labo-
ratories” such as Sensor Andrew and HOBNET [41, 19]

also work to make experimentation with ubiquitous com-
puting environments simple and scalable, performing
complimentary research on communications protocols.

Microsoft HomeOS [14] is a related attempt to pro-
vide high-level abstractions to make programming phys-
ical devices simpler. All intelligent devices in a home are
presented as PC peripherals, and applications are imple-
mented as modules loaded into a single system image;
these applications are strongly isolated using run-time
containers and Datalog descriptions of access rules.
Our work takes a fundamentally different approach: we
allow applications to be distributed and enforce safety at
the transaction manager and driver services, at the cost of
limiting control over the behavior of applications. By al-
lowing control to be decentralized, we allow the system
to be configured so as to trade off partition-tolerance with
cost. Unlike HomeOS, we allow applications to be writ-
ten in terms of components’ relationship with other com-
ponents, and provide efficient access to historical data;
these functions are essential for scalability.

7.2 Metadata
Industry Foundation Classes [22] specify models for

structural, mechanical, and electrical aspects of build-
ings. IFCs are intended to describe building design and
facilitate sharing of information among design and con-
struction teams. IFC includes classes for HVAC equip-
ment and a connectivity model for building a directed
graph of objects [8]. Project Haystack [40] uses a list of
tags and rules about their use to describe building compo-
nents. Liu, et al. [30] focus on integrating existing meta-
data from multiple sources and devising a common data
representation for use by applications. Our work is com-
plementary and focuses on how applications can conve-
niently make use of available building controls portably
and at a higher level of abstraction.

7.3 Protocols
OLE for Process Control (OPC) is commonly used

for controls interoperability. Based on DCOM, OPC ac-
complishes some of the same goals as the HPL [35],
and contains a component for accessing historical data:
OPC-HDA; however it does not provide the ability to ap-
ply analytical operators to the stored data and also can
only locate data by point name. BACnet, or the Build-
ing Automation and Control Network protocol, also pro-
vides a standardized interface for accessing devices in
a building [3]. It provides for the discovery of BACnet
objects on a local subnet, and the ability for these ob-
jects to export standardized services, such as ReadValue
and WriteValue. Other industrial controls protocols like
WirelessHART [51], Modbus [33], and many others pro-
vide low-level access to field devices similar to the level
of the HPL; however these form only the lowest-level
building-blocks of a complete system. Protocols in the
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Name Description
Sensors

Used
Actuators

Used
Type of
Control

HPL
Adaptors

External
Examples

Demand
Ventilation

Ventilation rates are modulated to fol-
low occupancy, and room temps can
float at night.

VAV temps, airflow, &
CO2

VAV Damper Posi-
tions

Supervisory BACnet,
6loWPAN

Supply
Air Temp
Control

Air Handling Unit supply air temp
(AHU SAT) is optimized using model-
predictive control (MPC) [5].

AHU SAT, VAV temps &
airflow

AHU SAT Supervisory BACnet [50], [29], [7],
[52]

VAV Control Individual variable air-volume boxes
are exercised to create detailed models
of their response.

VAV temps & airflow VAV damper posi-
tions

Direct BACnet

Building
Audit

Loads throughout the building are sur-
veyed to enable DR and energy effi-
ciency efforts.

Plug-load meters, subme-
ters

N/A N/A ACme [25],
BACnet

[18], [20], [32],
[10], [45]

Personal
Building
Control

Users are presented with web-based
lighting and HVAC control of building
systems.

Light power, VAV temps Light level, VAV
airflow

Direct BACnet [27], [32], [23],
[15]

Personal
Comfort
Toolkit

Enables analysis of air stratification in
building system operation.

Zone temperatures, strati-
fication

N/A N/A BACnet,
CSV,
6loWPAN

Demand Re-
sponse

Responds to electric grid-initiated con-
trol signals requesting setback.

N/A Airflow & temper-
ature setpoints

Supervisory BACnet [26], [46]

Table 2: Deployed applications making use of BOSS.

residential space like uPNP [24] and Zigbee [44] tend
to have higher-level interoperability as a goal, typically
defining device profiles similar to our driver logic; this
work is valuable for defining common device interfaces
but does not address failures when these interfaces are
implemented by coordinating multiple devices.

7.4 Building Controls
A number of Building Management Systems enable

building engineers to create applications. The Siemens
APOGEE [43] system provides the Powers Process Con-
trol Language (PPCL) for design of control applications;
PPCL allows for custom logic, PID loops, and alarms.
ALC’s LogicBuilder [6] allows for graphical construc-
tion of control processes by sequencing “microblocks,”
or control functions, from a library; however, the library
of control functions is not extensible. Further, both of
these systems can only interact with equipment physi-
cally connected to the panel on which the code is in-
stalled, limiting the use of external information in con-
trol decisions. Tridium provides the Niagara AX frame-
work [47] for designing Internet-connected applications
using its HPL-like interfaces to building equipment and
external data sources. However, Tridium provides no se-
mantic information about its abstracted components, lim-
iting application portability.

8 Conclusion
Our work is a re-imagining building control systems of

the future: secure, modular, extensible, and networked.
Many of the problems with SCADA systems which ap-
pear in the popular media with increasing frequency can
be linked to system architecture designed for another
world: one without ubiquitous connectivity where sys-
tems are designed and used in isolation from other sys-
tems. This view is simply not realistic, but fixing the
problems requires a fundamental re-architecting of the

control system, drawing on distributed systems and In-
ternet design discipline to design a system which is ro-
bust even while subject to Internet-scale attacks. Al-
though challenging, we do not see an alternative because
it seems inevitable that control systems will become ever
more networked to provide increased efficiency and flex-
ibility; the only question is whether the result will be ro-
bust and conducive to application development.

BOSS begins to provide these properties by introduc-
ing flexibility in several new places where it did not pre-
viously exist: the HPL provides equal access to all of the
underlying data, while the transaction and control pro-
cess metaphors allow true applications to exist, and fail
safely. Looking forward, many challenges remain. Infer-
ring the HAL with minimum manual effort is an impor-
tant step to enabling this architecture in existing build-
ings. Much better tools are needed for incorporating ex-
isting BIM models, and tools for checking the derived
model against real sensor data will be crucial since draw-
ings rarely reflect the true state of the world. The emer-
gence of software-defined networks also presents an in-
teresting avenue for future exploration: if control intent
is expressed abstractly, SDNs might be used to enforce
access control and quality-of-service guarantees.
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Notes
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Abstract
Sprout is an end-to-end transport protocol for interactive
applications that desire high throughput and low delay.
Sprout works well over cellular wireless networks, where
link speeds change dramatically with time, and current
protocols build up multi-second queues in network gate-
ways. Sprout does not use TCP-style reactive conges-
tion control; instead the receiver observes the packet ar-
rival times to infer the uncertain dynamics of the network
path. This inference is used to forecast how many bytes
may be sent by the sender, while bounding the risk that
packets will be delayed inside the network for too long.

In evaluations on traces from four commercial LTE
and 3G networks, Sprout, compared with Skype, reduced
self-inflicted end-to-end delay by a factor of 7.9 and
achieved 2.2× the transmitted bit rate on average. Com-
pared with Google’s Hangout, Sprout reduced delay by a
factor of 7.2 while achieving 4.4× the bit rate, and com-
pared with Apple’s Facetime, Sprout reduced delay by a
factor of 8.7 with 1.9× the bit rate.

Although it is end-to-end, Sprout matched or outper-
formed TCP Cubic running over the CoDel active queue
management algorithm, which requires changes to cellu-
lar carrier equipment to deploy. We also tested Sprout as
a tunnel to carry competing interactive and bulk traffic
(Skype and TCP Cubic), and found that Sprout was able
to isolate client application flows from one another.

1 INTRODUCTION

Cellular wireless networks have become a dominant
mode of Internet access. These mobile networks, which
include LTE and 3G (UMTS and 1xEV-DO) services,
present new challenges for network applications, because
they behave differently from wireless LANs and from the
Internet’s traditional wired infrastructure.

Cellular wireless networks experience rapidly varying
link rates and occasional multi-second outages in one
or both directions, especially when the user is mobile.
As a result, the time it takes to deliver a network-layer
packet may vary significantly, and may include the ef-
fects of link-layer retransmissions. Moreover, these net-
works schedule transmissions after taking channel qual-
ity into account, and prefer to have packets waiting to
be sent whenever a link is scheduled. They often achieve
that goal by maintaining deep packet queues. The effect
at the transport layer is that a stream of packets expe-
riences widely varying packet delivery rates, as well as
variable, sometimes multi-second, packet delays.

Figure 1: Skype and Sprout on the Verizon LTE downlink
trace. For Skype, overshoots in throughput lead to large
standing queues. Sprout tries to keep each packet’s delay
less than 100 ms with 95% probability.
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For an interactive application such as a videoconfer-
encing program that requires both high throughput and
low delay, these conditions are challenging. If the appli-
cation sends at too low a rate, it will waste the oppor-
tunity for higher-quality service when the link is doing
well. But when the application sends too aggressively, it
accumulates a queue of packets inside the network wait-
ing to be transmitted across the cellular link, delaying
subsequent packets. Such a queue can take several sec-
onds to drain, destroying interactivity (see Figure 1).

Our experiments with Microsoft’s Skype, Google’s
Hangout, and Apple’s Facetime running over traces from
commercial 3G and LTE networks show the shortcom-
ings of the transport protocols in use and the lack of
adaptation required for a good user experience. The
transport protocols deal with rate variations in a reactive
manner: they attempt to send at a particular rate, and if
all goes well, they increase the rate and try again. They
are slow to decrease their transmission rate when the link
has deteriorated, and as a result they often create a large
backlog of queued packets in the network. When that
happens, only after several seconds and a user-visible
outage do they switch to a lower rate.

This paper presents Sprout, a transport protocol de-
signed for interactive applications on variable-quality

1
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networks. Sprout uses the receiver’s observed packet ar-
rival times as the primary signal to determine how the
network path is doing, rather than the packet loss, round-
trip time, or one-way delay. Moreover, instead of the tra-
ditional reactive approach where the sender’s window or
rate increases or decreases in response to a congestion
signal, the Sprout receiver makes a short-term forecast
(at times in the near future) of the bottleneck link rate
using probabilistic inference. From this model, the re-
ceiver predicts how many bytes are likely to cross the link
within several intervals in the near future with at least
95% probability. The sender uses this forecast to trans-
mit its data, bounding the risk that the queuing delay will
exceed some threshold, and maximizing the achieved
throughput within that constraint.

We conducted a trace-driven experimental evaluation
(details in §5) using data collected from four different
commercial cellular networks (Verizon’s LTE and 3G
1xEV-DO, AT&T’s LTE, and T-Mobile’s 3G UMTS).
We compared Sprout with Skype, Hangout, Facetime,
and several TCP congestion-control algorithms, running
in both directions (uplink and downlink).

The following table summarizes the average relative
throughput improvement and reduction in self-inflicted
queueing delay1 for Sprout compared with the various
other schemes, averaged over all four cellular networks
in both directions. Metrics where Sprout did not outper-
form the existing algorithm are highlighted in red:

App/protocol Avg. speedup Delay reduction
vs. Sprout (from avg. delay)

Sprout 1.0× 1.0× (0.32 s)
Skype 2.2× 7.9× (2.52 s)
Hangout 4.4× 7.2× (2.28 s)
Facetime 1.9× 8.7× (2.75 s)
Compound 1.3× 4.8× (1.53 s)
TCP Vegas 1.1× 2.1× (0.67 s)
LEDBAT 1.0× 2.8× (0.89 s)
Cubic 0.91× 79× (25 s)
Cubic-CoDel 0.70× 1.6× (0.50 s)

Cubic-CoDel indicates TCP Cubic running over the
CoDel queue-management algorithm [17], which would
be implemented in the carrier’s cellular equipment to be
deployed on a downlink, and in the baseband modem or
radio-interface driver of a cellular phone for an uplink.

We also evaluated a simplified version of Sprout,
called Sprout-EWMA, that tracks the network bitrate
with a simple exponentially-weighted moving average,

1This metric expresses a lower bound on the amount of time neces-
sary between a sender’s input and receiver’s output, so that the receiver
can reconstruct more than 95% of the input signal. We define the metric
more precisely in §5.

rather than making a cautious forecast of future packet
deliveries with 95% probability.

Sprout and Sprout-EWMA represents different trade-
offs in their preference for throughput versus delay. As
expected, Sprout-EWMA achieved greater throughput,
but also greater delay, than Sprout. It outperformed TCP
Cubic on both throughput and delay. Despite being end-
to-end, Sprout-EWMA outperformed Cubic-over-CoDel
on throughput and approached it on delay:

Protocol Avg. speedup Delay reduction
vs. Sprout-EWMA (from avg. delay)

Sprout-EWMA 1.0× 1.0× (0.53 s)
Sprout 2.0× 0.60× (0.32 s)
Cubic 1.8× 48× (25 s)
Cubic-CoDel 1.3 × 0.95× (0.50 s)

We also tested Sprout as a tunnel carrying competing
traffic over a cellular network, with queue management
performed at the tunnel endpoints based on the receiver’s
stochastic forecast about future link speeds. We found
that Sprout could isolate interactive and bulk flows from
one another, dramatically improving the performance of
Skype when run at the same time as a TCP Cubic flow.

The source code for Sprout, our wireless network trace
capture utility, and our trace-based network emulator is
available at http://alfalfa.mit.edu/ .

2 CONTEXT AND CHALLENGES

This section highlights the networking challenges in de-
signing an adaptive transport protocol on cellular wire-
less networks. We discuss the queueing and scheduling
mechanisms used in existing networks, present measure-
ments of throughput and delay to illustrate the problems,
and list the challenges.

2.1 Cellular Networks
At the link layer of a cellular wireless network, each de-
vice (user) experiences a different time-varying bit rate
because of variations in the wireless channel; these varia-
tions are often exacerbated because of mobility. Bit rates
are also usually different in the two directions of a link.
One direction may experience an outage for a few sec-
onds even when the other is functioning well. Variable
link-layer bit rates cause the data rates at the transport
layer to vary. In addition, as in other data networks, cross
traffic caused by the arrival and departure of other users
and their demands adds to the rate variability.

Most (in fact, all, to our knowledge) deployed cellu-
lar wireless networks enqueue each user’s traffic in a
separate queue. The base station schedules data trans-
missions taking both per-user (proportional) fairness and
channel quality into consideration [3]. Typically, each
user’s device is scheduled for a fixed time slice over

2
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which a variable number of payload bits may be sent, de-
pending on the channel conditions, and users are sched-
uled in roughly round-robin fashion. The isolation be-
tween users’ queues means that the dominant factor in
the end-to-end delay experienced by a user’s packets is
self-interaction, rather than cross traffic. If a user were to
combine a high-throughput transfer and a delay-sensitive
transfer, the commingling of these packets in the same
queue would cause them to experience the same de-
lay distributions. The impact of other users on delay
is muted. However, competing demand can affect the
throughput that a user receives.

Many cellular networks employ a non-trivial amount
of packet buffering. For TCP congestion control with
a small degree of statistical multiplexing, a good rule-
of-thumb is that the buffering should not exceed the
bandwidth-delay product of the connection. For cellular
networks where the “bandwidth” may vary by two or-
ders of magnitude within seconds, this guideline is not
particularly useful. A “bufferbloated” [9] base station at
one link rate may, within a short amount of time, be
under-provisioned when the link rate suddenly increases,
leading to extremely high IP-layer packet loss rates (this
problem is observed in one provider [16]).

The high delays in cellular wireless networks cannot
simply be blamed on bufferbloat, because there is no
single buffer size that will always work. It is also not
simply a question of using an appropriate Active Queue
Management (AQM) scheme, because the difficulties in
picking appropriate parameters are well-documented and
become harder when the available rates change quickly,
and such a scheme must be appropriate when applied to
all applications, even if they desire bulk throughput. In
§5, we evaluate CoDel [17], a recent AQM technique,
together with a modern TCP variant (Cubic, which is
the default in Linux), finding that on more than half of
our tested network paths, CoDel slows down a bulk TCP
transfer that has the link to itself.

By making changes—when possible—at endpoints in-
stead of inside the network, diverse applications may
have more freedom to choose their desired compromise
between throughput and delay, compared with an AQM
scheme that is applied uniformly to all flows.

Sprout is not a traditional congestion-control scheme,
in that its focus is directed at adapting to varying link
conditions, not to varying cross traffic that contends for
the same bottleneck queue. Its improvements over exist-
ing schemes are found when queueing delays are im-
posed by one user’s traffic. This is typically the case
when the application is running on a mobile device, be-
cause cellular network operators generally maintain a
separate queue for each customer, and the wireless link is
typically the bottleneck. An important limitation of this
approach is that in cases where these conditions don’t

hold, Sprout’s traffic will experience the same delays as
other flows.

2.2 Measurement Example
In our measurements, we recorded large swings in avail-
able throughput on mobile cellular links. Existing inter-
active transports do not handle these well. Figure 1 shows
an illustrative section of our trace from the Verizon LTE
downlink, whose capacity varied up and down by al-
most an order of magnitude within one second. From
15 to 25 seconds into the plot, and from 43 to 49 sec-
onds, Skype overshoots the available link capacity, caus-
ing large standing queues that persist for several seconds,
and leading to glitches or reduced interactivity for the
users. By contrast, Sprout works to maximize the avail-
able throughput, while limiting the risk that any packet
will wait in queue for more than 100 ms (dotted line).
It also makes mistakes (e.g., it overshoots at t = 43 sec-
onds), but then repairs them.

Network behavior like the above has motivated our
development of Sprout and our efforts to deal explicitly
with the uncertainty of future link speed variations.

2.3 Challenges
A good transport protocol for cellular wireless networks
must overcome the following challenges:

1. It must cope with dramatic temporal variations in
link rates.

2. It must avoid over-buffering and incurring high de-
lays, but at the same time, if the rate were to in-
crease, avoid under-utilization.

3. It must be able to handle outages without over-
buffering, cope with asymmetric outages, and re-
cover gracefully afterwards.

Our experimental results show that previous work
(see §6) does not address these challenges satisfactorily.
These methods are reactive, using packet losses, round-
trip delays, and in some cases, one-way delays as the
“signal” of how well the network is doing. In contrast,
Sprout uses a different signal, the observed arrival times
of packets at the receiver, over which it runs an inference
procedure to make forecasts of future rates. We find that
this method produces a good balance between through-
put and delay under a wide range of conditions.

3 THE SPROUT ALGORITHM

Motivated by the varying capacity of cellular networks
(as captured in Figure 1), we designed Sprout to com-
promise between two desires: achieving the highest pos-
sible throughput, while preventing packets from waiting
too long in a network queue.

From the transport layer’s perspective, a cellular net-
work behaves differently from the Internet’s traditional
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infrastructure in several ways. One is that endpoints can
no longer rely on packet drops to learn of unacceptable
congestion along a network path ([9]), even after delays
reach ten seconds or more. We designed Sprout not to de-
pend on packet drops for information about the available
throughput and the fullness of in-network queues.

Another distinguishing feature of cellular links is that
users are rarely subject to standing queues accumulated
by other users, because a cellular carrier generally pro-
visions a separate uplink and downlink queue for each
device in a cell. In a network where two independent
users share access to a queue feeding into a bottleneck
link, one user can inflict delays on another. No end-to-
end protocol can provide low-delay service when a net-
work queue is already full of somebody else’s packets.
But when queueing delays are largely self-inflicted, an
end-to-end approach may be possible.2

In our measurements, we found that estimating the ca-
pacity (by which we mean the maximum possible bit rate
or throughput) of cellular links is challenging, because
they do not have a directly observable rate per se. Even
in the middle of the night, when average throughput is
high and an LTE device may be completely alone in its
cell, packet arrivals on a saturated link do not follow an
observable isochronicity. This is a roadblock for packet-
pair techniques ([13]) and other schemes to measure the
available throughput.

Figure 2 illustrates the interarrival distribution of 1.2
million MTU-sized packets received at a stationary cell
phone whose downlink was saturated with these pack-
ets. For the vast majority of packet arrivals (the 99.99%
that come within 20 ms of the previous packet), the dis-
tribution fits closely to a memoryless point process, or
Poisson process, but with fat tails suggesting the impact
of channel quality-dependent scheduling, the effect of
other users, and channel outages, that yield interarrival
times between 20 ms and as long as four seconds. Such a
“switched” Poisson process produces a 1/ f distribution,
or flicker noise. The best fit is shown in the plot.3

A Poisson process has an underlying rate λ, which
may be estimated by counting the number of bits that
arrive in a long interval and dividing by the duration of
the interval. In practice, however, the rate of these cellu-
lar links varies more rapidly than the averaging interval
necessary to achieve an acceptable estimate.

Sprout needs to be able to estimate the link speed, both
now and in the future, in order to predict how many pack-
ets it is safe to send without risking their waiting in a net-

2An end-to-end approach may also be feasible if all sources run the
same protocol, but we do not investigate that hypothesis in this paper.

3We can’t say exactly why the distribution should have this shape,
but physical processes could produce such a distribution. Cell phones
experience fading, or random variation of their channel quality with
time, and cell towers attempt to send packets when a phone is at the
apex of its channel quality compared with a longer-term average.

Figure 2: Interarrival times on a Verizon LTE downlink,
with receiver stationary, fit to a 1/ f noise distribution.
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work queue for too long. An uncertain estimate of future
link speed is worth more caution than a certain estimate,
so we need to quantify our uncertainty as well as our best
guess.

We therefore treat the problem in two parts. We model
the link and estimate its behavior at any given time, pre-
serving our full uncertainty. We then use the model to
make forecasts about how many bytes the link will be
willing to transmit from its queue in the near future.
Most steps in this process can be precalculated at pro-
gram startup, meaning that CPU usage (even at high
throughputs) is less than 5% of a current Intel or AMD
PC microprocessor. We have not tested Sprout on a CPU-
constrained device or tried to optimize it fully.

3.1 Inferring the rate of a varying Poisson process
We model the link as a doubly-stochastic process, in
which the underlying λ of the Poisson process itself
varies in Brownian motion4 with a noise power of σ
(measured in units of packets per second per

√
second).

In other words, if at time t = 0 the value of λ was known
to be 137, then when t = 1 the probability distribution on
λ is a normal distribution with mean 137 and standard
deviation σ. The larger the value of σ, the more quickly
our knowledge about λ becomes useless and the more
cautious we have to be about inferring the link rate based
on recent history.

Figure 3 illustrates this model. We refer to the Poisson
process that dequeues and delivers packets as the service
process, or packet-delivery process.

The model has one more behavior: if λ = 0 (an out-
age), it tends to stay in an outage. We expect the outage’s

4This is a Cox model of packet arrivals [5, 18].
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Figure 3: Sprout’s model of the network path. A Sprout
session maintains this model separately in each direction.
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duration to follow an exponential distribution exp [−λz].
We call λz the outage escape rate. This serves to match
the behavior of real links, which do have “sticky” outages
in our experience.

In our implementation of Sprout, σ and λz have fixed
values that are the same for all runs and all networks.
(σ = 200 MTU-sized packets per second per

√
second,

and λz = 1.) These values were chosen based on prelim-
inary empirical measurements, but the entire Sprout im-
plementation including this model was frozen before we
collected our measurement 3G and LTE traces and has
not been tweaked to match them.

A more sophisticated system would allow σ and λz
to vary slowly with time to better match more- or less-
variable networks, Currently, the only parameter allowed
to change with time, and the only one we need to infer in
real time, is λ—the underlying, variable link rate.

To solve this inference problem tractably, Sprout dis-
cretizes the space of possible rates, λ, and assumes that:

• λ is one of 256 discrete values sampled uniformly
from 0 to 1000 MTU-sized packets per second (11
Mbps; larger than the maximum rate we observed).

• At program startup, all values of λ are equally prob-
able.

• An inference update procedure will run every
20 ms, known as a “tick”. (We pick 20 ms for com-
putational efficiency.)

By assuming an equal time between updates to the
probability distribution, Sprout can precompute the nor-
mal distribution with standard deviation to match the
Brownian motion per tick.

3.2 Evolution of the probability distribution on λ

Sprout maintains the probability distribution on λ in 256
floating-point values summing to unity. At every tick,
Sprout does three things:

1. It evolves the probability distribution to the current
time, by applying Brownian motion to each of the
255 values λ �= 0. For λ = 0, we apply Brownian
motion, but also use the outage escape rate to bias
the evolution towards remaining at λ = 0.

2. It observes the number of bytes that actually came
in during the most recent tick. This step multiplies
each probability by the likelihood that a Poisson
distribution with the corresponding rate would have
produced the observed count during a tick. Suppose
the duration of a tick is τ seconds (e.g., τ = 0.02)
and k bytes were observed during the tick. Then,
Sprout updates the (non-normalized) estimate of the
probabilities F :

F(x)← Pold(λ = x)
(x · τ)k

k!
exp[−x · τ].

3. It normalizes the 256 probabilities so that they sum
to unity:

Pnew(λ = x)← F(x)
∑i F(i)

.

These steps constitute Bayesian updating of the prob-
ability distribution on the current value of λ.

One important practical difficulty concerns how to
deal with the situation where the queue is underflowing
because the sender has not sent enough. To the receiver,
this case is indistinguishable from an outage of the ser-
vice process, because in either case the receiver doesn’t
get any packets.

We use two techniques to solve this problem. First,
in each outgoing packet, the sender marks its expected
“time-to-next” outgoing packet. For a flight of several
packets, the time-to-next will be zero for all but the
last packet. When the receiver’s most recently-received
packet has a nonzero time-to-next, it skips the “obser-
vation” process described above until this timer expires.
Thus, this “time-to-next” marking allows the receiver to
avoid mistakenly observing that zero packets were de-
liverable during the most recent tick, when in truth the
queue is simply empty.

Second, the sender sends regular heartbeat packets
when idle to help the receiver learn that it is not in an
outage. Even one tiny packet does much to dispel this
ambiguity.

3.3 Making the packet delivery forecast
Given a probability distribution on λ, Sprout’s receiver
would like to predict how much data it will be safe for
the sender to send without risking that packets will be
stuck in the queue for too long. No forecast can be ab-
solutely safe, but for typical interactive applications we
would like to bound the risk of a packet’s getting queued
for longer than the sender’s tolerance to be less than 5%.
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To do this, Sprout calculates a packet delivery forecast:
a cautious estimate, at the 5th percentile, of how many
bytes will arrive at its receiver during the next eight ticks,
or 160 ms.

It does this by evolving the probability distribution for-
ward (without observation) to each of the eight ticks in
the forecast. At each tick, Sprout sums over each λ to find
the probability distribution of the cumulative number of
packets that will have been drained by that point in time.
We take the 5th percentile of this distribution as the cau-
tious forecast for each tick. Most of these steps can also
be precalculated, so the only work at runtime is to take a
weighted sum over each λ.

3.4 The control protocol
The Sprout receiver sends a new forecast to the sender
by piggybacking it onto its own outgoing packets.

In addition to the predicted packet deliveries, the fore-
cast also contains a count of the total number of bytes
the receiver has received so far in the connection or has
written off as lost. This total helps the sender estimate
how many bytes are in the queue (by subtracting it from
its own count of bytes that have been sent).

In order to help the receiver calculate this number and
detect losses quickly, the sender includes two fields in ev-
ery outgoing packet: a sequence number that counts the
number of bytes sent so far, and a “throwaway number”
that specifies the sequence number offset of the most re-
cent sent packet that was sent more than 10 ms prior.

The assumption underlying this method is that while
the network may reorder packets, it will not reorder two
packets that were sent more than 10 ms apart. Thus, once
the receiver actually gets a packet from the sender, it can
mark all bytes (up to the sequence number of the first
packet sent within 10 ms) as received or lost, and only
keep track of more recent packets.

3.5 Using the forecast
The Sprout sender uses the most recent forecast it has
obtained from the receiver to calculate a window size—
the number of bytes it may safely transmit, while en-
suring that every packet has 95% probability of clear-
ing the queue within 100 ms (a conventional standard
for interactivity). Upon receipt of the forecast, the sender
timestamps it and estimates the current queue occupancy,
based on the difference between the number of bytes it
has sent so far and the “received-or-lost” sequence num-
ber in the forecast.

The sender maintains its estimate of queue occupancy
going forward. For every byte it sends, it increments the
estimate. Every time it advances into a new tick of the 8-
tick forecast, it decrements the estimate by the amount of
the forecast, bounding the estimate below at zero pack-
ets.

Figure 4: Calculating the window sizes from the forecast.
The forecast represents the receiver’s estimate of a lower
bound (with 95% probability) on the cumulative number
of packets that will be delivered over time.
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To calculate a window size that is safe for the applica-
tion to send, Sprout looks ahead five ticks (100 ms) into
the forecast’s future, and counts the number of bytes ex-
pected to be drained from the queue over that time. Then
it subtracts the current queue occupancy estimate. Any-
thing left over is “safe to send”—bytes that we expect
to be cleared from the queue within 100 ms, even tak-
ing into account the queue’s current contents. This evolv-
ing window size governs how much the application may
transmit. Figure 4 illustrates this process schematically.

As time passes, the sender may look ahead further
and further into the forecast (until it reaches 160 ms),
even without receiving an update from the receiver. In
this manner, Sprout combines elements of pacing with
window-based flow control.

4 EXPERIMENTAL TESTBED

We use trace-driven emulation to evaluate Sprout and
compare it with other applications and protocols under
reproducible network conditions. Our goal is to capture
the variability of cellular networks in our experiments
and to evaluate each scheme under the same set of time-
varying conditions.

4.1 Saturator
Our strategy is to characterize the behavior of a cellu-
lar network by saturating its uplink and downlink at the
same time with MTU-sized packets, so that neither queue
goes empty. We record the times that packets actually
cross the link, and we treat these as the ground truth rep-
resenting all the times that packets could cross the link
as long as a sender maintains a backlogged queue.
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Figure 5: Block diagram of Cellsim
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Because even TCP does not reliably keep highly vari-
able links saturated, we developed our own tool. The Sat-
urator runs on a laptop tethered to a cell phone (which
can be used while in a car) and on a server that has a
good, low-delay (< 20 ms) Internet path to the cellular
carrier.

The sender keeps a window of N packets in flight to
the receiver, and adjusts N in order to keep the observed
RTT greater than 750 ms (but less than 3000 ms). The
theory of operation is that if packets are seeing more
than 750 ms of queueing delay, the link is not starving
for offered load. (We do not exceed 3000 ms of delay
because the cellular network may start throttling or drop-
ping packets.)

There is a challenge in running this system in two di-
rections at once (uplink and downlink), because if both
links are backlogged by multiple seconds, feedback ar-
rives too slowly to reliably keep both links saturated.
Thus, the Saturator laptop is actually connected to two
cell phones. One acts as the “device under test,” and its
uplink and downlink are saturated. The second cell phone
is used only for short feedback packets and is otherwise
kept unloaded. In our experiments, the “feedback phone”
was on Verizon’s LTE network, which provided satisfac-
tory performance: generally about 20 ms delay back to
the server at MIT.

We collected data from four commercial cellular net-
works: Verizon Wireless’s LTE and 3G (1xEV-DO /
eHRPD) services, AT&T’s LTE service, and T-Mobile’s
3G (UMTS) service.5 We drove around the greater
Boston area at rush hour and in the evening while record-
ing the timings of packet arrivals from each network,
gathering about 17 minutes of data from each. Because
the traces were collected at different times and places,
the measurements cannot be used to compare different
commercial services head-to-head.

For the device under test, the Verizon LTE and 1xEV-
DO (3G) traces used a Samsung Galaxy Nexus smart-
phone running Android 4.0. The AT&T trace used a
Samsung Galaxy S3 smartphone running Android 4.0.
The T-Mobile trace used a Samsung Nexus S smartphone
running Android 4.1.

5We also attempted a measurement on Sprint’s 3G (1xEV-DO) ser-
vice, but the results contained several lengthy outages and were not
further analyzed.

Figure 6: Software versions tested

Program Version OS Endpoints

Skype 5.10.0.116 Windows 7 Core i7 PC
Hangout as of 9/2012 Windows 7 Core i7 PC
Facetime 2.0 (1070) OS X 10.8.1 MB Pro (2.3 GHz i7),

MB Air (1.8 GHz i5)
TCP Cubic in Linux 3.2.0 Core i7 PC
TCP Vegas in Linux 3.2.0 Core i7 PC
LEDBAT in µTP Linux 3.2.0 Core i7 PC
Compound TCP in Windows 7 Core i7 PC

4.2 Cellsim
We then replay the traces in a network emulator, which
we call Cellsim (Figure 5). It runs on a PC and takes
in packets on two Ethernet interfaces, delays them for a
configurable amount of time (the propagation delay), and
adds them to the tail of a queue. Cellsim releases packets
from the head of the queue to the other network interface
according to the same trace that was previously recorded
by Saturator. If a scheduled packet delivery occurs while
the queue is empty, nothing happens and the opportunity
to delivery a packet is wasted.6

Empirically, we measure a one-way delay of about
20 ms in each direction on our cellular links (by sending
a single packet in one direction on the uplink or down-
link back to a desktop with good Internet service). All
our experiments are done with this propagation delay, or
in other words a 40 ms minimum RTT.

Cellsim serves as a transparent Ethernet bridge for a
Mac or PC under test. A second computer (which runs
the other end of the connection) is connected directly
to the Internet. Cellsim and the second computer re-
ceive their Internet service from the same gigabit Eth-
ernet switch.

We tested the latest (September 2012) real-time imple-
mentations of all the applications and protocols (Skype,
Facetime, etc.) running on separate late-model Macs or
PCs (Figure 6).

We also added stochastic packet losses to Cellsim to
study Sprout’s loss resilience. Here, Cellsim drops pack-
ets from the tail of the queue according to a specified
random drop rate. This approach emulates, in a coarse
manner, cellular networks that do not have deep packet
buffers (e.g., Clearwire, as reported in [16]). Cellsim also
includes an optional implementation of CoDel, based on
the pseudocode in [17].

4.3 SproutTunnel
We implemented a UDP tunnel that uses Sprout to carry
arbitrary traffic (e.g. TCP, videoconferencing protocols)
across a cellular link between a mobile user and a well-
connected host, which acts as a relay for the user’s Inter-

6This accounting is done on a per-byte basis. If the queue contains
15 100-byte packets, they will all be released when the trace records
delivery of a single 1500-byte (MTU-sized) packet.
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net traffic. SproutTunnel provides each flow with the ab-
straction of a low-delay connection, without modifying
carrier equipment. It does this by separating each flow
into its own queue, and filling up the Sprout window in
round-robin fashion among the flows that have pending
data.

The total queue length of all flows is limited to the re-
ceiver’s most recent estimate of the number of packets
that can be delivered over the life of the forecast. When
the queue lengths exceed this value, the tunnel endpoints
drop packets from the head of the longest queue. This
algorithm serves as a dynamic traffic-shaping or active-
queue-management scheme that adjusts the amount of
buffering to the predicted channel conditions.

5 EVALUATION

This section presents our experimental results obtained
using the testbed described in §4. We start by moti-
vating and defining the two main metrics: throughput
and self-inflicted delay. We then compare Sprout with
Skype, Facetime, and Hangout, focusing on how the
different rate control algorithms used by these systems
affect the metrics of interest. We compare against the
delay-triggered congestion control algorithms TCP Ve-
gas and LEDBAT, as well as the default TCP in Linux,
Cubic, which does not use delay as a congestion sig-
nal, and Compound TCP, the default in some versions
of Windows.

We also evaluate a simplified version of Sprout, called
Sprout-EWMA, that eliminates the cautious packet-
delivery forecast in favor of an exponentially-weighted
moving average of observed throughput. We compare
both versions of Sprout with a queue-management tech-
nique that must be deployed on network infrastructure.
We also measure Sprout’s performance in the presence
of packet loss.

Finally, we evaluate the performance of competing
flows (TCP Cubic and Skype) running over the Verizon
LTE downlink, with and without SproutTunnel.

The implementation of Sprout (including the tuning
parameters σ = 200 and λz = 1) was frozen before col-
lecting the network traces, and has not been tweaked.

5.1 Metrics
We are interested in performance metrics appropriate for
a real-time interactive application. In our evaluation, we
report the average throughput achieved and the 95th-
percentile self-inflicted delay incurred by each protocol,
based on measurement at the Cellsim.

The throughput is the total number of bits received by
an application, divided by the duration of the experiment.
We use this as a measure of bulk transfer rate.

The self-inflicted delay is a lower bound on the end-
to-end delay that must be experienced between a sender

and receiver, given observed network behavior. We de-
fine it as follows: At any point in time, we find the most
recently-sent packet to have arrived at the receiver. The
amount of time since this packet was sent is a lower
bound on the instantaneous delay that must exist between
the sender’s input and receiver’s output in order to avoid
a gap in playback or other glitch at this moment. We cal-
culate this instantaneous delay for each moment in time.
The 95th percentile of this function (taken over the entire
trace) is the amount of delay that must exist between the
input and output so that the receiver can recover 95% of
the input signal by the time of playback. We refer to this
as “95% end-to-end delay.”

For a given trace, there is a lower limit on the 95% end-
to-end delay that can be achieved even by an omniscient
protocol: one that sends packets timed to arrive exactly
when the network is ready to dequeue and transmit a
packet. This “omniscient” protocol will achieve 100% of
the available throughput of the link and its packets will
never sit in a queue. Even so, the “omniscient” proto-
col will have fluctuations in its 95% end-to-end delay,
because the link may have delivery outages. If the link
does not deliver any packets for 5 seconds, there must be
at least 5 seconds of end-to-end delay to avoid a glitch,
no matter how smart the protocol is.7

The difference between the 95% end-to-end delay
measured for a particular protocol and for an “omni-
scient” one is known as the self-inflicted delay. This is the
appropriate figure to assess a real-time interactive proto-
col’s ability to compromise between throughput and the
delay experienced by users.

To reduce startup effects when measuring the average
throughput and self-inflicted delay from an application,
we skip the first minute of each application’s run.

5.2 Comparative performance
Figure 7 presents the results of our trace-driven experi-
ments for each transport protocol. The figure shows eight
charts, one for each of the four measured networks, and
for each data transfer direction (downlink and uplink).
On each chart, we plot one point per application or pro-
tocol, corresponding to its measured throughput and self-
inflicted delay combination. For interactive applications,
high throughput and low delay (up and to the right) are
the desirable properties. The table in the introduction
shows the average of these results, taken over all the mea-
sured networks and directions, in terms of the average
relative throughput gain and delay reduction achieved by
Sprout.

7If packets are not reordered by the network, the definition becomes
simpler. At each instant that a packet arrives, the end-to-end delay is
equal to the delay experienced by that packet. Starting from this value,
the end-to-end delay increases linearly at a rate of 1 s/s, until the next
packet arrives. The 95th percentile of this function is the 95% end-to-
end delay.
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Figure 7: Throughput and delay of each protocol over the traced cellular links. Better results are up and to the right.
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We found that Sprout had the lowest, or close to the
lowest, delay across each of the eight links. On average
delay, Sprout was lower than every other protocol. On av-
erage throughput, Sprout outperformed every other pro-
tocol except for Sprout-EWMA and TCP Cubic.

We also observe that Skype, Facetime, and Google
Hangout all have lower throughput and higher delay than
the TCP congestion-control algorithms. We believe this
is because they do not react to rate increases and de-
creases quickly enough, perhaps because they are unable
to change the encoding rapidly, or unwilling for percep-
tual reasons.8 By continuing to send when the network
has dramatically slowed, these programs induce high de-
lays that destroy interactivity.

5.3 Benefits of forecasting
Sprout differs from the other approaches in two signif-
icant ways: first, it uses the packet arrival process at
the receiver as the “signal” for its control algorithm (as
opposed to one-way delays as in LEDBAT or packet
losses or round-trip delays in other protocols), and sec-
ond, it models the arrivals as a flicker-noise process
to perform Bayesian inference on the underlying rate.
A natural question that arises is what the benefits of
Sprout’s forecasting are. To answer this question, we de-
veloped a simple variant of Sprout, which we call Sprout-
EWMA. Sprout-EWMA uses the packet arrival times,
but rather than do any inference with that data, simply
passes them through an exponentially-weighted moving
average (EWMA) to produce an evolving smoothed rate
estimate. Instead of a cautious “95%-certain” forecast,
Sprout-EWMA simply predicts that the link will con-
tinue at that speed for the next eight ticks. The rest of
the protocol is the same as Sprout.

The Sprout-EWMA results in the eight charts in Fig-
ure 7 show how this protocol performs. First, it out-
performs all the methods in throughput, including recent
TCPs such as Compound TCP and Cubic. These results
also highlight the role of cautious forecasting: the self-
inflicted delay is significantly lower for Sprout compared
with Sprout-EWMA. TCP Vegas also achieves lower de-
lay on average than Sprout-EWMA. The reason is that an
EWMA is a low-pass filter, which does not immediately
respond to sudden rate reductions or outages (the tails
seen in Figure 2). Though these occur with low prob-
ability, when they do occur, queues build up and take
a significant amount of time to dissipate. Sprout’s fore-
casts provide a conservative trade-off between through-
put and delay: keeping delays low, but missing legitimate
opportunities to send packets, preferring to avoid the risk
of filling up queues. Because the resulting throughput is

8We found that the complexity of the video signal did not seem to
affect these programs’ transmitted throughputs. On fast network paths,
Skype uses up to 5 Mbps even when the image is static.

Figure 8: Average utilization and delay of each scheme.
Utilization is the average fraction of the cellular link’s
maximum capacity that the scheme achieved.
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relatively high, we believe it is a good choice for inter-
active applications. An application that is interested only
in high throughput with less of an emphasis on low delay
may prefer Sprout-EWMA.

5.4 Comparison with in-network changes
We compared Sprout’s end-to-end inference approach
against an in-network deployment of active queue man-
agement. We added the CoDel AQM algorithm [17] to
Cellsim’s uplink and downlink queue, to simulate what
would happen if a cellular carrier installed this algorithm
inside its base stations and in the baseband modems or
radio-interface drivers on a cellular phone.

The average results are shown in Figure 8. Aver-
aged across the eight cellular links, CoDel dramatically
reduces the delay incurred by Cubic, at little cost to
throughput.

Although it is purely end-to-end, Sprout’s delays are
even lower than Cubic-over-CoDel. However, this comes
at a cost to throughput. (Figures are given in the table
in the introduction.) Sprout-EWMA achieves within 6%
of the same delay as Cubic-over-CoDel, with 30% more
throughput.

Rather than embed a single throughput-delay trade-
off into the network (e.g. by installing CoDel on carrier
infrastructure), we believe it makes architectural sense
to provide endpoints and applications with such control
when possible. Users should be able to decide which
throughput-delay compromise they prefer. In this setting,
it appears achievable to match or even exceed CoDel’s
performance without modifying gateways.

5.5 Effect of confidence parameter
The Sprout receiver makes forecasts of a lower bound on
how many packets will be delivered with at least 95%
probability. We explored the effect of lowering this con-
fidence parameter to express a greater willingness that
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Figure 9: Lowering the forecast’s confidence parameter
allows greater throughput at the cost of more delay. Re-
sults on the T-Mobile 3G (UMTS) uplink:
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Results on one network path are shown in Figure 9.
The different confidence parameters trace out a curve
of achievable throughput-delay tradeoffs. As expected,
decreasing the amount of caution in the forecast allows
the sender to achieve greater throughput, but at the cost
of more delay. Interestingly, although Sprout achieves
higher throughput and lower delay than Sprout-EWMA
by varying the confidence parameter, it never achieves
both at the same time. Why this is—and whether Sprout’s
stochastic model can be further improved to beat Sprout-
EWMA simultaneously on both metrics—will need to be
the subject of further study.

5.6 Loss resilience
The cellular networks we experimented with all exhib-
ited low packet loss rates, but that will not be true in gen-
eral. To investigate the loss resilience of Sprout, we used
the traces collected from one network (Verizon LTE) and
simulated Bernoulli packet losses (tail drop) with two
different packet loss probabilities, 5% and 10% (in each
direction). The results are shown in the table below:

Protocol Throughput (kbps) Delay (ms)

Downlink
Sprout 4741 73
Sprout-5% 3971 60
Sprout-10% 2768 58

Uplink
Sprout 3703 332
Sprout-5% 2598 378
Sprout-10% 1163 314

As expected, the throughput does diminish in the face
of packet loss, but Sprout continues to provide good
throughput even at high loss rates. (TCP, which inter-
prets loss as a congestion signal, generally suffers unac-
ceptable slowdowns in the face of 10% each-way packet

loss.) These results demonstrate that Sprout is relatively
resilient to packet loss.

5.7 Sprout as a tunnel for competing traffic
We tested whether SproutTunnel, used as a tunnel over
the cellular link to a well-connected relay, can success-
fully isolate bulk-transfer downloads from interactive ap-
plications.

We ran two flows: a TCP Cubic bulk transfer (down-
load only) and a two-way Skype videoconference, using
the Linux version of Skype.

We compared the situation of these two flows running
directly over the emulated Verizon LTE link, versus run-
ning them through SproutTunnel over the same link. The
experiments lasted about ten minutes each.9

Direct via Sprout Change

Cubic throughput 8336 kbps 3776 kbps −55%
Skype throughput 78 kbps 490 kbps +528%
Skype 95% delay 6.0 s 0.17 s −97%

The results suggest that interactive applications can be
greatly aided by having their traffic run through Sprout
along with bulk transfers. Without Sprout to mediate, Cu-
bic squeezes out Skype and builds up huge delays. How-
ever, Sprout’s conservatism about delay also imposes a
substantial penalty to Cubic’s throughput.

6 RELATED WORK

End-to-end algorithms. Traditional congestion-
control algorithms generally do not simultaneously
achieve high utilization and low delay over paths with
high rate variations. Early TCP variants such as Tahoe
and Reno [10] do not explicitly adapt to delay (other than
from ACK clocking), and require an appropriate buffer
size for good performance. TCP Vegas [4], FAST [12],
and Compound TCP [20] incorporate round-trip delay
explicitly, but the adaptation is reactive and does not
directly involve the receiver’s observed rate.

LEDBAT [19] (and TCP Nice [21]) share our goals
of high throughput without introducing long delays, but
LEDBAT does not perform as well as Sprout. We believe
this is because of its choice of congestion signal (one-
way delay) and the absence of forecasting. Some recent
work proposes TCP receiver modifications to combat
bufferbloat in 3G/4G wireless networks [11]. Schemes
such as “TCP-friendly” equation-based rate control [7]
and binomial congestion control [1] exhibit slower trans-
mission rate variations than TCP, and in principle could
introduce lower delay, but perform poorly in the face of
sudden rate changes [2].

9In each run, Skype ended the video portion of the call once and
was restarted manually.
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Google has proposed a congestion-control
scheme [15] for the WebRTC system that uses an
arrival-time filter at the receiver, along with other
congestion signals, to decide whether a real-time flow
should increase, decrease, or hold its current bit rate. We
plan to investigate this system and assess it on the same
metrics as the other schemes in our evaluation.

Active queue management. Active queue management
schemes such as RED [8] and its variants, BLUE [6],
AVQ [14], etc., drop or mark packets using local indi-
cations of upcoming congestion at a bottleneck queue,
with the idea that endpoints react to these signals before
queues grow significantly. Over the past several years,
it has proven difficult to automatically configure the pa-
rameters used in these algorithms. To alleviate this short-
coming, CoDel [17] changes the signal of congestion
from queue length to the delay experienced by packets in
a queue, with a view toward controlling that delay, espe-
cially in networks with deep queues (“bufferbloat” [9]).

Our results show that Sprout largely holds its own with
CoDel over challenging wireless conditions without re-
quiring any gateway modifications. It is important to note
that network paths in practice have several places where
queues may build up (in LTE infrastructure, in baseband
modems, in IP-layer queues, near the USB interface in
tethering mode, etc.), so one may need to deploy CoDel
at all these locations, which could be difficult. How-
ever, in networks where there is a lower degree of isola-
tion between queues than the cellular networks we study,
CoDel may be the right approach to controlling delay
while providing good throughput, but it is a “one-size-
fits-all” method that assumes that a single throughput-
delay tradeoff is right for all traffic.

7 LIMITATIONS AND FUTURE WORK

Although our results are encouraging, there are several
limitations to our work. First, as noted in §2 and §3,
an end-to-end system like Sprout cannot control delays
when the bottleneck link includes competing traffic that
shares the same queue. If a device uses traditional TCP
outside of Sprout, the incurred queueing delay—seen by
Sprout and every flow—will be substantial.

Sprout is not a traditional congestion-control protocol,
in that it is designed to adapt to varying link conditions,
not varying cross traffic. In a cellular link where users
have their own queues on the base station, interactive
performance will likely be best when the user runs bulk
and interactive traffic inside Sprout (e.g. using Sprout-
Tunnel), not alongside Sprout. We have not evaluated the
performance of multiple Sprouts sharing a queue.

The accuracy of Sprout’s forecasts depends on
whether the application is providing offered load suffi-
cient to saturate the link. For applications that switch in-

termittently on and off, or don’t desire high throughput,
the transient behavior of Sprout’s forecasts (e.g. ramp-
up time) becomes more important. We did not evaluate
any non-saturating applications in this paper or attempt
to measure or optimize Sprout’s startup time from idle.

Finally, we have tested Sprout only in trace-based em-
ulation of eight cellular links recorded in the Boston area
in 2012. Although Sprout’s model was frozen before data
were collected and was not “tuned” in response to any
particular network, we cannot know how generalizable
Sprout’s algorithm is without more real-world testing.

In future work, we are eager to explore different
stochastic network models, including ones trained on
empirical variations in cellular link speed, to see whether
it is possible to perform much better than Sprout if a pro-
tocol has more accurate forecasts. We think it will be
worthwhile to collect enough traces to compile a stan-
dardized benchmark of cellular link behavior, over which
one could evaluate any new transport protocol.

8 CONCLUSION

This paper presented Sprout, a transport protocol for
real-time interactive applications over Internet paths that
traverse cellular wireless networks. Sprout improves on
the performance of current approaches by modeling
varying networks explicitly. Sprout has two interesting
ideas: the use of packet arrival times as a congestion
signal, and the use of probabilistic inference to make a
cautious forecast of packet deliveries, which the sender
uses to pace its transmissions. Our experiments show that
forecasting is important to controlling delay, providing
an end-to-end rate control algorithm that can react at time
scales shorter than a round-trip time.

Our experiments conducted on traces from four com-
mercial cellular networks show many-fold reductions in
delay, and increases in throughput, over Skype, Face-
time, and Hangout, as well as over Cubic, Compound
TCP, Vegas, and LEDBAT. Although Sprout is an end-
to-end scheme, in this setting it matched or exceeded the
performance of Cubic-over-CoDel, which requires mod-
ifications to network infrastructure to be deployed.
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Abstract
Web page load time is a key performance metric that

many techniques aim to reduce. Unfortunately, the com-
plexity of modern Web pages makes it difficult to iden-
tify performance bottlenecks. We present WProf, a
lightweight in-browser profiler that produces a detailed
dependency graph of the activities that make up a page
load. WProf is based on a model we developed to cap-
ture the constraints between network load, page pars-
ing, JavaScript/CSS evaluation, and rendering activity
in popular browsers. We combine WProf reports with
critical path analysis to study the page load time of 350
Web pages under a variety of settings including the use
of end-host caching, SPDY instead of HTTP, and the
mod pagespeed server extension. We find that computa-
tion is a significant factor that makes up as much as 35%
of the critical path, and that synchronous JavaScript plays
a significant role in page load time by blocking HTML
parsing. Caching reduces page load time, but the reduc-
tion is not proportional to the number of cached objects,
because most object loads are not on the critical path.
SPDY reduces page load time only for networks with
high RTTs and mod pagespeed helps little on an average
page.

1 Introduction
Web pages delivered by HTTP have become the de-facto
standard for connecting billions of users to Internet ap-
plications. As a consequence, Web page load time (PLT)
has become a key performance metric. Numerous stud-
ies and media articles report its importance for user ex-
perience [5, 4], and consequently to business revenues.
For example, Amazon increased revenue 1% for every
0.1 second reduction in PLT, and Shopzilla experienced
a 12% increase in revenue by reducing PLT from 6 sec-
onds to 1.2 seconds [23].

Given its importance, many techniques have been de-
veloped and applied to reduce PLT. They range from
caching and CDNs, to more recent innovations such as
the SPDY protocol [28] that replaces HTTP, and the
mod pagespeed server extension [19] to re-write pages.
Other proposals include DNS pre-resolution [9], TCP
pre-connect [30], Silo [18], TCP fast open [24], and
ASAP [35].

Thus it is surprising to realize that the performance
bottlenecks that limit the PLT of modern Web pages are
still not well understood. Part of the culprit is the com-
plexity of the page load process. Web pages mix re-

sources fetched by HTTP with JavaScript and CSS eval-
uation. These activities are inter-related such that the
bottlenecks are difficult to identify. Web browsers com-
plicate the situation with implementation strategies for
parsing, loading and rendering that significantly impact
PLT. The result is that we are not able to explain why a
change in the way a page is written or how it is loaded
has an observed effect on PLT. As a consequence, it is
difficult to know when proposed techniques will help or
harm PLT.

Previous studies have measured Web performance in
different settings, e.g., cellular versus wired [13], and
correlated PLT with variables such as the number of re-
sources and domains [7]. However, these factors are
only coarse indicators of performance and lack explana-
tory power. The key information that can explain per-
formance is the dependencies within the page load pro-
cess itself. Earlier work such as WebProphet [16] made
clever use of inference techniques to identify some of
these dependencies. But inference is necessarily time-
consuming and imprecise because it treats the browser as
a black-box. Most recently, many “waterfall” tools such
as Google’s Pagespeed Insight [22] have proliferated to
provide detailed and valuable timing information on the
components of a page load. However, even these tools
are limited to reporting what happened without explain-
ing why the page load proceeded as it did.

Our goal is to demystify Web page load performance.
To this end, we abstract the dependency policies in four
browsers, i.e., IE, Firefox, Chrome, and Safari. We run
experiments with systematically instrumented test pages
and observe object timings using Developer Tools [8].
For cases when Developer Tools are insufficient, we de-
duce dependencies by inspecting the browser code when
open source code is available. We find that some of
these dependency policies are given by Web standards,
e.g., JavaScript evaluation in script tags blocks HTML
parsing. However, other dependencies are the result of
browser implementation choices, e.g., a single thread of
execution shared by parsing, JavaScript and CSS evalu-
ation, and rendering. They have significant impacts on
PLT and cannot be ignored.

Given the dependency policies, we develop a
lightweight profiler, WProf, that runs in Webkit browsers
(e.g., Chrome, Safari) while real pages are loaded.
WProf generates a dependency graph and identifies a
load bottleneck for any given Web page. Unlike exist-
ing tools that produce waterfall or HAR reports [12], our

1
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profiler discovers and reports the dependencies between
the browser activities that make up a page load. It is this
information that pinpoints why, for example, page pars-
ing took unexpectedly long and hence suggests what may
be done to improve PLT.

To study page load performance, we run WProf while
fetching pages from popular servers and apply critical
path analysis, a well-known technique for analyzing the
performance of parallel programs [25]. First, we identify
page load bottlenecks by computing what fraction of the
critical path the activity occupies. Surprisingly, we find
that while most prior work focuses on network activity,
computation (mostly HTML parsing and JavaScript exe-
cution) comprises 35% of the critical path. Interestingly,
downloading HTML and synchronous JavaScript (which
blocks parsing) makes up a large fraction of the critical
path, while fetching CSS and asynchronous JavaScript
makes up little of the critical path. Second, we study
the effectiveness of different techniques for optimizing
web page load. Caching reduces the volume of data sub-
stantially, but decreases PLT by a lesser amount because
many of the downloads that benefit from it are not on
the critical path. Disappointingly, SPDY makes little dif-
ference to PLT under its default settings and low RTTs
because it trades TCP connection setup time for HTTP
request sending time and does not otherwise change page
structure. Mod pagespeed also does little to reduce PLT
because minifying and merging objects does not reduce
network time on critical paths.

We make three contributions in this paper. The first is
our activity dependency model of page loads, which cap-
tures the constraints under which real browsers load Web
pages. The second contribution is WProf, an in-browser
profiling tool that records page load dependencies and
timings with minimal runtime overhead. Our third con-
tribution is the study of extensive page loads that uses
critical path analysis to identify bottlenecks and explain
the limited benefits of SPDY and mod pagespeed.

In the rest of this paper, we describe the page load pro-
cess (§2) and our activity dependency model (§3). We
then describe the design and implementation of WProf
(§4). We use WProf for page load studies (§5) before
presenting related work (§6) and concluding (§7).

2 Background
We first provide background on how browsers load Web
pages. Figure 1 shows the workflow for loading a page.
The page load starts with a user-initiated request that
triggers the Object Loader to download the correspond-
ing root HTML page. Upon receiving the first chunk
of the root page, the HTML Parser starts to iteratively
parse the page and download embedded objects within
the page, until the page is fully parsed. The embed-
ded objects are Evaluated when needed. To visualize

UI
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Network

DOMD
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Figure 1: The workflow of a page load. It involves four
processes (shown in gray).

the page, the Rendering Engine progressively renders the
page on the browser. While the HTML Parser, Evalu-
ator, and Rendering Engine are computation processes,
the Object Loader is a network process.

HTML Parser: The Parser is key to the page load pro-
cess, and it transforms the raw HTML page to a docu-
ment object model (DOM) tree. A DOM tree is an in-
termediate representation of a Web page; the nodes in
the DOM tree represent HTML tags, and each node is
associated with a set of attributes. The DOM tree repre-
sentation provides a common interface for programs to
manipulate the page.

Object Loader: The Loader fetches objects requested
by the user or those embedded in the HTML page. The
objects are fetched over the Internet using HTTP or
SPDY [28], unless the objects are already present in the
browser cache. The embedded objects fall under dif-
ferent mime types: HTML (e.g., IFrame), JavaScript,
CSS, Image, and Media. Embedded HTMLs are pro-
cessed separately and use a different DOM tree. Inlined
JavaScript and inlined CSS do not need to be loaded.

Evaluator: Two of the five embedded object types,
namely, JavaScript and CSS, require additional evalua-
tion after being fetched. JavaScript is a piece of soft-
ware that adds dynamic content to Web pages. Evalu-
ating JavaScript involves manipulating the DOM, e.g.,
adding new nodes, modifying existing nodes, or chang-
ing nodes’ styles. Since both JavaScript Evaluation
and HTML Parsing modify the DOM, HTML parsing
is blocked for JavaScript evaluation to avoid conflicts in
DOM modification. However, when JavaScript is tagged
with an async attribute, the JavaScript can be down-
loaded and evaluated in the background without block-
ing HTML Parsing. In the rest of the paper, JavaScript
refers to synchronous JavaScript unless stated.

Cascading style sheets (CSS) are used for specifying
the presentational attributes (e.g., colors and fonts) of
the HTML content and is expressed as a set of rules.
Evaluating a CSS rule involves changing styles of DOM
nodes. For example, if a CSS rule specifies that certain
nodes are to be displayed in blue color, then evaluating
the CSS involves identifying the matching nodes in the
DOM (known as CSS selector matching) and adding the
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style to each matched node. JavaScript and CSS are com-
monly embedded in Web pages today [7].

Rendering engine: Browsers render Web pages progres-
sively as the HTML Parser builds the DOM tree. Render-
ing involves two processes–Layout and Painting. Layout
converts the DOM tree to the layout tree that encodes the
size and position of each visible DOM node. Painting
converts this layout tree to pixels on the screen.

3 Browser Dependency Policies
Web page dependencies are caused by various factors
such as co-dependence between the network and the
computation activities, manipulation of common objects,
limited resources, etc. Browsers use various policies to
enforce these dependencies. Our goal is to abstract the
browser dependency policies. We use this policy abstrac-
tion to efficiently extract the dependency structure of any
given Web page (§4).

3.1 Dependency definition

Ideally, the four processes involved in a page load (de-
scribed in Figure 1) would be executed in parallel, so that
the page load performance is determined by the slow-
est process. However, the processes are inter-dependent
and often block each other. To represent the dependency
policies, we first discretize the steps involved in each
process. The granularity of discretization should be fine
enough to reflect dependencies and coarse enough to pre-
serve semantics. We consider the most coarse-grained
atomic unit of work, which we call an activity. In the
case of HTML Parser, the activity is parsing a single tag.
The Parser repeatedly executes this activity until all tags
are parsed. Similarly, the Object Loader activity is load-
ing a single object, the Evaluator activity is evaluating a
single JavaScript or CSS, and the activity of the Render-
ing process is rendering the current DOM.

We say an activity ai is dependent on a previously
scheduled activity aj , if ai can be executed only after
aj has completed. There are two exceptions to this defi-
nition, where the activity is executed after only a partial
completion of the previous activity. We discuss these ex-
ceptions in §3.3.

3.2 Methodology

We extract browser dependency policies by (i) inspect-
ing browser documentation, (ii) inspecting browser code
if open-source code is available, and (iii) systematically
instrumenting test pages. Note that no single method
provides a complete set of browser policies, but they
complement each other in the information they provide.
Our methodology assumes that browsers tend to parse
tags sequentially. However, one exception is preloading.
Preloading means that the browser preemptively loads
objects that are embedded later in the page, even before

their corresponding tags are parsed. Preloading is often
used to speed up page loads.

Below, we describe how we instrument and experi-
ment with test pages. We conduct experiments in four
browsers: Chrome, Firefox, Internet Explorer, and Sa-
fari. We host our test pages on controlled servers. We
observe the load timings of each object in the page using
Developer Tools [8] made available by the browsers. We
are unable to infer dependencies such as rendering using
Developer Tools. Instead, for open-source browsers, we
inspect browser code to study the dependency policies
associated with rendering.

Instrumenting test pages (network): We instrument
test pages to exhaustively cover possible loading sce-
narios: (i) loading objects in different orders, and (ii)
loading embedded objects. We list our instrumented test
pages and results at wprof.cs.washington.edu/
tests. Web pages can embed five kinds of objects as
described in §2. We first create test pages that embed
all combinations of object pairs, e.g., the test page may
request an embedded JavaScript followed by an image.
Next, we create test pages that embed more than two
objects in all possible combinations. Embedded objects
may further embed other objects. We create test pages for
each object type that in-turn embeds all combinations of
objects. To infer dependency policies, we systematically
inject delays to objects and observe load times of other
objects to see whether they are delayed accordingly, sim-
ilar to the technique used in WebProphet [16]. For exam-
ple, in a test page that embeds a JavaScript followed by
an image, we delay loading the Javascript and observe
whether the image is delayed.

Instrumenting test pages (computation): Developer
tools expose timings of network activities, but not tim-
ings of computational activities. We instrument test
pages to circumvent this problem and study dependen-
cies during two main computational activities: HTML
parsing and JavaScript evaluation. HTML parsing is of-
ten blocked during page load. To study the blocking be-
havior across browsers, we create test pages for each ob-
ject type. For each page, we also embed an IFrame in
the end. During page load, if the IFrame begins load-
ing only after the previous object finishes loading, we in-
fer that HTML parsing is blocked during the object load.
IFrames are ideal for this purpose because they are not
preloaded by browsers. To identify dependencies related
to JavaScript evaluation, we create test pages that con-
tain scripts with increasing complexity; i.e., scripts that
require more and more time for evaluation. We embed
an IFrame at the end. As before, if IFrame does not load
immediately after the script loads, we infer that HTML
parsing is blocked for script evaluation.
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Dependency Name Definition

Flow

F1 Loading an object → Parsing the tag that references the object
F2 Evaluating an object → Loading the object
F3 Parsing the HTML page → Loading the first block of the HTML page*
F4 Rendering the DOM tree → Updating the DOM
F5 Loading an object referenced by a JavaScript or CSS → Evaluating the JavaScript or CSS*
F6 Downloading/Evaluating an object → Listener triggers or timers

Output
O1 Parsing the next tag → Completion of a previous JavaScript download and evaluation
O2 JavaScript evaluation → Completion of a previous CSS evaluation
O3 Parsing the next tag → Completion of a previous CSS download and evaluation

Lazy/Eager
binding

B1 [Lazy] Loading an image appeared in a CSS → Parsing the tag decorated by the image
B2 [Lazy] Loading an image appeared in a CSS → Evaluation of any CSS that appears in front of the tag

decorated by the image
B3 [Eager] Preloading embedded objects does not depend on the status of HTML parsing. (breaks F1)

Resource
constraint

R1 Number of objects fetched from different servers → Number of TCP connections allowed per domain
R2 Browsers may execute key computational activities on the same thread, creating dependencies among

the activities.This dependency is determined by the scheduling policy.
* An activity depends on partial completion of another activity.

Table 1: Summary of dependency policies imposed by browsers. → represents “depends on” relationship.

3.3 Dependency policies

Using our methodology, we uncover the dependency
policies in browsers and categorize them as: Flow de-
pendency, Output dependency, Lazy/Eager binding de-
pendency, and dependencies imposed by resource con-
straints. Table 1 tabulates the dependency policies.
While output dependencies are required for correctness,
the dependencies imposed by lazy/eager binding and re-
source constraints are a result of browser implementation
strategies.

Flow dependency is the simplest form of dependency.
For example, loading an object depends on parsing a tag
that references the object (F1). Similarly, evaluating a
JavaScript depends on loading the JavaScript (F2). Of-
ten, browsers may load and evaluate a JavaScript based
on triggers and timeouts, rather than the content of the
page (F6). Table 1 provides the complete set of flow de-
pendencies. Note that dependencies F3 and F5 are spe-
cial cases, where the activity only depends on the par-
tial completion of the previous activity. In case of F3,
the browser starts to parse the page when the first chunk
of the page is loaded, not waiting for the entire load to
be completed. In case of F5, an object requested by a
JavaScript/CSS is loaded immediately after evaluation
starts, not waiting for the evaluation to be completed.

Output dependency ensures the correctness of execu-
tion when multiple processes modify a shared resource
and execution order matters. In browsers, the shared re-
source is the DOM. Since both JavaScript evaluation and
HTML parsing may write to the DOM, HTML parsing
is blocked until JavaScript is both loaded and evaluated
(O1). This ensures that the DOM is modified in the or-

der specified in the page. Since JavaScript can modify
styles of DOM nodes, execution of JavaScript waits for
the completion of CSS processing (O2). Note that async
JavaScript is not bounded by output dependencies be-
cause the order of script execution does not matter.

Lazy/Eager binding: Several lazy/eager bindings tech-
niques are used by the browser to trade off between
decreasing spurious downloads and improving latency.
Preloading (B3) is an example of an eager binding tech-
nique where browsers preemptively load objects that are
embedded later in the page. Dependency B1 is a result of
a lazy binding technique. When a CSS object is down-
loaded and evaluated, it may include an embedded im-
age, for example, to decorate the background or to make
CSS sprites. The browser does not load this image as
soon as CSS is evaluated, and instead waits until it parses
a tag that is decorated by the image. This ensures that the
image is downloaded only if it is used.

Resource constraints: Browsers constrain the use of
two resources—compute power and network resource.
With respect to network resources, browsers limit the
number of TCP connections. For example, Firefox limits
the number of open TCP connections per domain to 6 by
default. If a page load process needs to load more than
6 embedded objects from the same domain simultane-
ously, the upcoming load is blocked until a previous load
completes. Similarly, some browsers allocate a single
compute thread to execute certain computational activi-
ties. For example, WebKit executes parts of rendering in
the parsing thread. This results in blocking parsing un-
til rendering is complete (R2). We were able to observe
this only for the open-source WebKit browser because
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<html>
  <head>
    <link href='a.css'
       rel='stylesheet'>
    <script src='b.js' />
  </head>
  <!-- req a JS -->
  <body onload='...'>
    <img src='c.png' />
  </body>
</html>

Figure 4: Corresponding
example code.

Dependency IE Firefox WebKit
Output all no O3 no O3
Late binding all all all
Eager ∗Preloads Preloads Preloads
Binding img, JS, CSS img, JS, CSS JS, CSS
Resource (R1) 6 conn. 6 conn. 6 conn.

Table 2: Dependency policies across browsers.

we directly instrumented the WebKit engine to log pre-
cise timing information of computational activities.

Figure 2 summarizes how these dependencies affect
the four processes. Note that more than one dependency
relationship can exist between two activities. For exam-
ple, consider a page containing a CSS object followed by
a JavaScript object. Evaluating the JavaScript depends
on both loading the JavaScript (F2) and evaluating the
previously appearing CSS (O3). The timing of these two
dependencies will determine which of the two dependen-
cies occur in this instance.

3.4 Dependency policies across browsers

Table 2 show the dependency policies across browsers.
Only IE enforces dependency O3 that blocks HTML
parsing to download and evaluate CSS. The preloading
policies (i.e., when and what objects to preload) also
differ among browsers, while we note that no browser
preloads embedded IFrames. Note that flow dependency
is implicitly imposed by all browsers. We were unable to
compare the compute dependency (R2) across browsers
because it requires modification to the browser code.

3.5 Dependency graph of an example page

Figure 3 shows a dependency graph of an example
page. The DOMContentLoaded refers to the event
that HTML finishes parsing, load refers to the event
that all embedded objects are loaded, and DOMLoad
refers to the event that DOM is fully loaded. Our ex-
ample Web page (Figure 4) contains an embedded CSS,
a JavaScript, an image, and a JavaScript triggered on the
load event. Many Web pages (e.g., facebook.com)
may load additional objects on the load event fires.

The page load starts with loading the root HTML page
(a1), following which parsing begins (a2). When the
Parser encounters the CSS tag, it loads the CSS (a4) but
does not block parsing. However, when the Parser en-
counters the JavaScript tag, it loads the JavaScript (a5)
and blocks parsing. Note that loading the CSS and the
JavaScript subjects to a resource constraint; i.e., both
CSS and JavaScript can be loaded simultaneously only
if multiple TCP connections can be opened per domain.
CSS is evaluated (a6) after being loaded. Even though
JavaScript finishes loading, it needs to wait until the CSS
finishes evaluating, and then the JavaScript is evaluated
(a7). The rendering engine renders the current DOM (a8)
after which HTML parsing resumes (a9). The Parser
then encounters and loads an image (a10) after which
HTML parsing is completed and fires a load event. In
our example, the triggered JavaScript is loaded (a12) and
evaluated (a13). When all embedded objects are eval-
uated and the DOM is updated, the DOMLoad event is
fired. Even our simple Web page exhibits over 10 depen-
dencies of different types. For example, a2 → a1 is a
flow dependency; a7 → a6 is an output dependency; and
a9 → a8 is a resource dependency.

The figure also illustrates the importance of using
dependency graphs for fine-grained accounting of page
load time. For example, both activity a4 and a5 are net-
work loads. However, only activity a4 contributes to
page load time; i.e., decreasing the load time of a5 does
not decrease total page load time. Tools such as HTTP
Archival Records [12] provide network time for each ac-
tivity, but this cannot be used to isolate the bottleneck
activities. The next section demonstrates how to isolate
the bottleneck activities using dependency graphs.

4 WProf
We present WProf, a tool that captures the dependency
graph for any given Web page and identifies the delay
bottlenecks. Figure 5 shows WProf architecture. The
primary component is an in-browser profiler that instru-
ments the browser engine to obtain timing and depen-
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Figure 5: The WProf Architecture. WProf operates just
above the browser engine, allowing it to collect precise
timing and dependency information.

dency information at runtime. The profiler is a shim layer
inside the browser engine and requires minimal changes
to the rest of the browser. Note that we do not work at
the browser extension or plugin level because they pro-
vide limited visibility into the browser internals. WProf
then analyzes the profiler logs offline to generate the de-
pendency graphs and identify the bottleneck path. The
profiler is lightweight and has negligible effect on page
load performance (§4.4).

4.1 WProf Profiler

The key role of WProf profiler is to record timing and
dependency information for a page load. While the de-
pendency information represents the structure of a page,
the timing information captures how dependencies are
exhibited for a specific page load; both are crucial to pin-
point the bottleneck path.

Logging Timing: WProf records the timestamps at the
beginning and end of each activity executed during the
page load process. WProf also records network tim-
ing information, including DNS lookup, TCP connec-
tion setup, and HTTP transfer time. To keep track of the
number of TCP connections being used/re-used, WProf
records the IDs of all TCP connections.

Logging dependencies: WProf assumes the dependency
policies described in §3 and uses different ways to log
different kinds of dependencies. Flow dependencies are
logged by attaching the URL to an activity. For example
in Figure 3, WProf learns that the activity that evaluates
b.js depends on the activity that loads b.js by recording
b.js. WProf logs resource constraints by IDs of the con-
strained resources, e.g., thread IDs and TCP IDs.

To record output dependencies and lazy/eager bind-
ings, WProf tracks a DOM-specific ordered sequence
of processed HTML tags as the browser loads a page.
We maintain a separate ordered list for each DOM tree
associated with the page (e.g., the DOM for the root

page and the various IFrames). HTML tags are recorded
when they are first encountered; they are then attached to
the activities that occur when the tags are being parsed.
For example, when objects are preloaded, the tags under
parsing are attached to the preloading activity, not the
tags that reference the objects. For example in Figure 4,
the Parser first processes the tag that references a.css, and
then processes the tag that references b.js. This ordering,
combined with the knowledge of output dependencies,
result in the dependency a7 → a6 in Figure 3. Note that
the HTML page itself provides an implicit ordering of
the page activities; however, this ordering is static. For
example, if a JavaScript in a page modifies the rest of the
page, statically analyzing the Web page provides an in-
correct order sequence. Instead, WProf records the Web
page processing order directly from the browser runtime.

Validating the completeness of our dependency poli-
cies would require either reading all the browser code or
visiting all the Web pages, neither of which is practical.
As browsers evolve constantly, changes in Web standard
or browser implementations can change the dependency
policies. Thus, WProf needs to be modified accord-
ingly. Since WProf works as a shim layer in browsers
that does not require knowledge about underlying com-
ponents such as CSS evaluation, the effort to record an
additional dependency policy would be minimal.

4.2 Critical path analysis

To identify page load bottlenecks, we apply critical path
analysis to dependency graphs. Let the dependency
graph G = (V,E), where V is the set of activities re-
quired to render the page and E is the set of dependencies
between the activities. Each activity a ∈ V is associated
with the attribute that represents the duration of the activ-
ity. The critical path P consists of a set of activities that
form the longest path in the dependency graph such that,
reducing the duration of any activity not on the critical
path (a /∈ P ), will not change the critical path; i.e., opti-
mizing an activity not on the critical path will not reduce
page load performance. For example, the critical path for
the dependency graph shown in Figure 3 is (a1, a2, a4,
a6, a7, a8, a9, a11, a12, a13).

We estimate the critical path P of a dependency graph
using the algorithm below. We treat preloading as a spe-
cial case because it breaks the flow dependency. When
preloading occurs, we always add it to the critical path.

4.3 Implementation

We implement WProf on Webkit [33], an open source
Web browser engine that is used by Chrome, Safari, An-
droid, and iOS. The challenge is to ensure that the WProf
shim layer is lightweight. Creating a unique identifier
for each activity (for logging dependency relationship) is
memory intensive as typical pages require several thou-
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P ← ∅; a ← Activity that completes last;
P ← P ∪ a;
while a is not the first activity do

A ← Set of activities that a is dependent on;
if a is preloaded from an activity a′ in A then

a ← a′;
else

a← Activity in A that completes last;
end
P ← P ∪ a;

end
return P

WProf CPU % Memory %
on 58.5 65.5
off 53.5 54.9

Table 3: Maximum sampled CPU and memory usage.

sands of unique identifiers (e.g., for HTML tags). In-
stead, we use pointer addresses as unique identifiers. The
WProf profiler keeps all logs in memory and transfers
them to disk after the DOM is loaded, to minimize the
impact on page load.

We extended Chrome and Safari by modifying 2K
lines of C++ code. Our implementation can be easily
extended to other browsers that build on top of Webkit.
Our dependency graph generation and critical path anal-
ysis is written in Perl and PHP. The WProf source code
is available at wprof.cs.washington.edu.

4.4 System evaluation

In this section, we present WProf micro-benchmarks. We
perform the experiments on Chrome. We use a 2GHz
CPU dual core and 4GB memory machine running Ma-
cOS. We load 200 pages with a five second interval be-
tween pages. The computer is connected via Ethernet,
and to provide a stable network environment, we limit
the bandwidth to 10Mbps using DummyNet [10].

Figure 6(a) shows the CDF of page load times with
and without WProf. We define page load time as the time
from when the page is requested to when the DOMLoad
(Figure 3) event is fired. We discuss our rationale for the
page load time definition in §5.1. The figure shows that
WProf’s in-browser profiler only has a negligible effect
on the page load time. Similarly, Figure 6(b) shows the
CDF of size of the logs generated by the WProf profiler.
The median log file size is 268KB even without com-
pression, and is unlikely to be a burden on the storage
system. We sample the CPU and memory usage at a rate
of 0.1 second when loading the top 200 web pages with
and without WProf. Table 3 shows that even in the maxi-
mum case, WProf only increases the CPU usage by 9.3%
and memory usage by 19.3%.
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Figure 6: WProf evaluation.

5 Studies with WProf
The goal of our studies is to use WProf’s dependency
graph and critical path analysis to (i) identify the bottle-
neck activities during page load (§5.2), (ii) quantify page
load performance under caching (§5.3), and (iii) quantify
page load performance under two proposed optimization
techniques, SPDY and mod pagespeed (§5.4).

5.1 Methodology

Experimental setup: We conduct our experiments on
default Chrome and WProf-instrumented Chrome. We
automate our experiments using the Selenium Web-
driver [27] that emulates browser clicks. By default,
we present experiments conducted on an iMac with a
3GHz quad core CPU and 8GB memory. The computer
is connected to campus Ethernet at UW Seattle. We use
DummyNet [10] to provide a stable network connection
of 10Mbps bandwidth; 10Mbps represents the average
broadband bandwidth seen by urban users [6]. By de-
fault, we assume page loads are cold, i.e., the local cache
is cleared. This is the common case, as 40%–60% of
page loads are known to be cold loads [18]. We report
the minimum page load time from a total of 5 runs.

Web pages: We experiment with the top 200 most vis-
ited websites from Alexa [3]. Because some websites
get stuck due to reported hang bugs in Selenium Web-
driver, we present results from the 150 websites that pro-
vide complete runs.

Page load time metric: We define Page Load Time
(PLT) as the time between when the page is requested
and when the DOMLoad event is fired. Recall that the
DOMLoad event is fired when all embedded objects are
fetched and added to the DOM (see Figure 3). We ob-
tain all times directly from the browser engine. There
are a few alternative definitions to PLT. The above-the-
fold time [1] metric is a user-driven metric that mea-
sures the time until the page is shown on the screen.
However, this metric requires recording and manually
analyzing page load videos, a cumbersome and non-
scalable process. Other researchers use load [7] or
DOMContentLoaded [18] events logged in the HTTP
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Archival Record (HAR) [12] to indicate the end of the
page load process. Since we can tap directly into the
browser, we do not need to rely on the external HAR.

We perform additional experiments with varying lo-
cation, compute power, and Internet speeds. To exclude
bias towards popular pages, we also experiment on 200
random home pages that we choose from the top 1 mil-
lion Alexa websites. We summarize our results of these
experiments in §5.5.

5.2 Identifying load bottlenecks (no caching)

The goal of this section is to characterize bottleneck ac-
tivities that contribute to the page load time. Note that all
of these results focus on delays on critical paths. In ag-
gregate, a typical page we analyzed contained 32 objects
and 6 activities on the critical path (all median values).
Computation is significant: Figure 7 shows that 35% of
page load time in the critical path is spent on computa-
tion; therefore computation is a critical factor in model-
ing or simulating page loads. Related measurements [14]
do not estimate this computational component because
they treat the browser engine as a black box.

We further break down computation into HTML pars-
ing, JavaScript and CSS evaluation, and rendering in Fig-
ure 8. The fractions are with respect to the total page load
time. Little time on the critical path is spent on firing
timers or listeners, and so we do not show them. Inter-
estingly, we find that HTML parsing costs the most in
computation, at 10%. This is likely because: (i) many
pages contain a large number of HTML tags, requiring
a long time to convert to DOM; (ii) there is a significant
amount of overhead when interacting with other compo-
nents. For example, we find an interval of two millisec-
onds between reception of the first block of an HTML
page and parsing the first HTML tag. JavaScript evalu-
ation is also significant as Web pages embed more and

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Fractions

 by objects
 by bytes

 by domains

Figure 9: Fractions of domains, objects, and bytes on
critical paths.

more scripts. In contrast, CSS evaluation and rendering
only cost a small fraction of page load time. This sug-
gests that optimizing CSS is unlikely to be effective at
reducing page load time.
Network activities often block parsing. First, we break
down network time by how it interacts with HTML pars-
ing in Figure 10(a): pre-parsing, block-parsing, and post-
parsing. As before, the fractions are with respect to the
total page load time. The pre-parsing phase consists of
fetching the first chunk of the page during which no con-
tent can be rendered. 15% of page load time is spent
in this phase. The post-parsing phase refers to load-
ing objects after HTML parsing (e.g., loading a10 and
a12 in Figure 3). Because rendering can be done be-
fore or during post parsing, post parsing is less impor-
tant, though significant. Surprisingly, much of the net-
work delay in the critical path blocks parsing. Recall
that network loads can be done in parallel with parsing
unless there are dependencies that block parsing, e.g.,
JavaScript downloads. Parsing-blocking downloads of-
ten occur at an early stage of HTML parsing that blocks
loading subsequent embedded objects. The result sug-
gests that a large portion of the critical path delay can
be reduced if the pages are created carefully to avoid
blocked parsing.

Second, we break down network time by functional-
ity in Figure 10(b): DNS lookup, TCP connection setup,
server roundabouts, and receive time. DNS lookup and
TCP connection setup are summed up for all the objects
that are loaded, if they are on the critical path. Server
roundabout refers to the time taken by the server to pro-
cess the request plus a round trip time; again for every
object loaded on the critical path. Finally, the receive
time is the total time to receive each object on the criti-
cal path. DNS lookup incurs almost 13% of the critical
path delay. To exclude bias towards one DNS server, we
repeated our experiments with an OpenDNS [21] server,
and found that the lookup time was still large. Our results
suggest that reducing DNS lookup time alone can reduce
page load time significantly. The server roundabout time
is 8% of the critical path.

Third, we break down network time by MIME type in
Figure 10(c). We find that loading HTML is the largest
fraction (20%) and mostly occurs in the pre-parsing
phase. Loading images is also a large fraction on critical
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Figure 10: A breakdown of fractions of network time on the critical path.
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Figure 11: Warm and hot loads results. All results are a fraction of total page load time.

paths. Parsing-blocking JavaScript is significant on criti-
cal paths while asynchronous JavaScript only contributes
a small fraction. Interestingly, we find a small fraction of
CSS that blocks JavaScript evaluation and thus blocks
HTML parsing. This blocking can be reduced simply by
moving the CSS tag after the JavaScript tag. There is
almost no non-blocking CSS on critical paths, and there-
fore we omit it in Figure 10(c).

Last, we look at the page load time for external objects
corresponding to Web Analytics and Ads but not CDNs.
We find that one fourth of Web pages have downloads
of external objects on their critical path. Of those pages,
over half spends 15% or more page load time to fetch
external objects and one even spends up to 60%.
Most object downloads are non-critical: Figure 9 com-
pares all object downloads and the object downloads only
on the critical path. Interestingly, only 30% bytes of con-
tent is on critical paths. This suggests that minifying and
caching content may not improve page load time, unless
they reduce content downloaded along the critical path.
We analyze this further in the next section. Note that ob-
ject downloads off the critical paths are not completely
unimportant. Degrading the delay of some activities that
are not on the critical path may cause them to become
critical.

5.3 Identifying load bottlenecks (with caching)

We analyze the effects of caching under two conditions:
hot load and warm load. Hot loads occur when a page
is loaded immediately after a cold load. Warm loads oc-
cur when a page is loaded a small amount of time after
a cold load when the immediate cache would have ex-
pired. We set a time interval of 12 minutes for warm
loads. Both cases are common scenarios, since users of-

ten reload pages immediately as well as after a short pe-
riod of time.

Caching gains are not proportional to saved bytes. Fig-
ure 11(a) shows the distributions of page load times un-
der cold, warm, and hot loads. For 50% of the pages,
caching decreases page load time by over 40%. How-
ever, further analysis shows that 90% of the objects were
cached during the experiments. In other words, the de-
crease in page load time is not proportional to the cached
bytes. To understand this further, we analyze the fraction
of cached objects that are on and off the critical path, dur-
ing hot loads. Figure 11(b) shows that while caching re-
duces 65% of total object loads (marked objs-all), it only
reduces 20% of object loads on the critical path (marked
objs-cp). Caching objects that are not on the critical path
leads to the disproportional savings.

Caching also reduces computation time. Figures 11(c)
and 11(d) compare the network times and computation
times of hot, warm, and cold loads, on the critical path.
As expected, hot and warm loads reduce DNS lookup
time and TCP connection setup. Especially during hot
loads, DNS lookup time is an insignificant fraction of
the page load time in contrast to cold loads. Interest-
ingly, caching not only improves network time, but also
computation time. Figure 11(d) shows the time taken by
compute and layout activities during page load time. The
figure suggests that modern browsers cache intermediate
computation steps, further reducing the page load time
during hot and warm loads.

5.4 Evaluating proposed techniques

This section evaluates two Web optimization techniques,
SPDY [28] and mod pagespeed [19].

9
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Figure 12: SPDY and mod pagespeed results.

5.4.1 SPDY

SPDY is an application-level protocol in place of HTTP.
The key ideas in SPDY are—(i) Multiplexing HTTP
transactions into a single TCP connection to reduce TCP
connection setup time and to avoid slow start, (ii) priori-
tizing some object loads over others (e.g., JavaScript over
images), and (iii) reducing HTTP header sizes. SPDY
also includes two optional techniques—Server Push and
Server Hint. Exploiting these additional options require
extensive knowledge of Web pages and manual configu-
rations. Therefore, we do not include them here.

We evaluate SPDY with controlled experiments on our
own server with 2.4GHz 16 core CPU 16GB memory
and Linux kernel 2.6.39. By default, we use a link with
a controlled 10Mbps bandwidth, and set the TCP initial
window size to 10 (increased from the default 3, as per
SPDY recommendation). We use the same set of pages
as the real-world experiments and download all embed-
ded objects to our server1 to avoid domain sharding [20].
We run SPDY version 2 over SSL.
SPDY only improves performance at high RTTs. Fig-
ure 12(a) and Figure 12(b) compares the page load time
of SPDY versus non-SPDY (i.e., default HTTP) under
20ms and 200ms RTTs, respectively. SPDY provides
few benefits to page load time under low RTTs. How-
ever, under 200ms RTT, SPDY improves page load time
by 5%–40% for 30% of the pages. We conduct additional
experiments by varying the TCP initial window size and
packet loss, but find that the results are similar to the de-
fault setting.

1Because we are unable to download objects that are dynamically
generated, we respond to these requests with a HTTP 404 error.

SPDY reduces TCP connection setup time but increases
request sending time. To understand SPDY performance,
we compare SPDY and non-SPDY network activities on
the critical path and break down the network activities
by functionality; note that SPDY does not affect compu-
tation activities. For the 20ms RTT case, Figure 12(c)
shows that SPDY significantly reduces TCP connection
setup time. However, since SPDY delays sending re-
quests to create a single TCP connection, Figure 12(d)
shows that SPDY increases the time taken to send re-
quests. Other network delays such as server roundabout
time and total receive time remained similar.

Further, Figure 12(e) shows that although SPDY re-
duces TCP setup times, the number of TCP connection
setups in the critical path is small. Coupled with the in-
crease in request sending time, the total improvement due
to SPDY cancels out, resulting in no net improvement in
page load time.

The goal of our evaluation is to explain the page load
behavior of SPDY using critical path analysis. Improv-
ing SPDY’s performance and leveraging SPDY’s op-
tional techniques are part of future work.

5.4.2 mod pagespeed

mod pagespeed [19] is an Apache module that enforces
a number of best practices to improve page load perfor-
mance, by minifying object sizes, merging multiple ob-
jects into a single object, and externalizing and/or inlin-
ing JavaScripts. We evaluate mod pagespeed using the
setup described in §5.4.1 with a 20ms RTT.

Figure 12(f) compares the page load times with
and without mod pagespeed on top 200 Alexa pages.
mod pagespeed provides little benefits to page load time.

10
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Since the top 200 pages may be optimized, we load 200
random pages from the top one million Alexa Web pages.
Figure 12(g) shows that mod pagespeed helps little even
for random pages.

To understand the mod pagespeed performance, we
analyze minification and merging multiple objects. The
analysis is based on loading the top 200 Web pages. Fig-
ure 12(h) shows that the total number of bytes down-
loaded on the critical path remains unchanged with and
without mod pagespeed. In other words, minifying ob-
ject does not reduces the size of the objects loads on the
critical path, and therefore does not provide page load
benefits. Similarly, our experiments show that merging
objects does not reduce the network delay on the criti-
cal path, because the object loads are not the bottleneck
(not shown here). These results are consistent with our
earlier results (Figure 9) that shows that only 30% of the
object loads are on the critical path. We were unable to
determine how mod pagespeed decides to inline or exter-
nalize JavaScripts, and therefore are unable to conduct
experiments on how inlining/externalizing affects page
load performance.

5.5 Summarizing results from alternate settings

In addition to our default experiments, we conducted
additional experiments: (i) with 2 machines, one with
2GHz dual core 4GB memory, and another with 2.4GHz
dual core 2GB memory, (ii) in 2 different locations, one
at UMass Amherst with campus Ethernet connectivity,
and another in a residential area in Seattle with broad-
band connectivity, and (iii) using 200 random Web pages
chosen from the top 1 million Alexa Web pages. All
other parameters remained the same as default.

Below, we summarize the results of our experiments:

• The fraction of computation and network times on
the critical path were quantitatively similar in dif-
ferent locations.

• The computation time as a fraction of the total page
load time increased when using slower machines.
For example, computation time was 40% of the crit-
ical path for the 2GHz machine, compared to 35%
for the 3GHz machine.

• The 200 random Web pages experienced 2x page
load time compared to the top Web pages. Of all the
network components, the server roundabout time of
random pages (see Figure 10(b)) was 2.3x of that
of top pages. However, the total computation time
on the critical path was 12% lower compared to the
popular pages, because random pages embed less
JavaScript.

6 Discussion
In this work, we have demonstrated that WProf can help
identify page load bottlenecks and that it can help evalu-
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Figure 13: Median reduction in page load times if com-
putation and network speeds are improved.

ate evolving techniques that optimize page loads. WProf
can be potentially used in several other applications.
Here, we briefly discuss two applications: (i) Conduct-
ing what-if analysis, and (ii) identifying potential Web
optimizations.

What-if analysis: As CPUs and networks evolve, the
question we ask is—how can page load times benefit
from improving the network speed or CPU speed? We
use the detailed dependency graphs generated by WProf
to conduct this what-if analysis. Figure 13 plots the
reduction in page load time for a range of <network
speedup, CPU speedup> combinations. When computa-
tional time is zeroed but the network time is unchanged,
the page load time is reduced by 20%. If the network
time is reduced to one fourth, but the computational time
is unchanged, 45% of the page load time is reduced. Our
results suggest that speeding up both network and com-
putation together is more beneficial than just improving
one of them. Note that our what-if analysis is limited
as it does not capture all lower-level dependencies and
constraints, e.g., TCP window sizes. We view our results
here as estimates and leave a more extensive analysis for
future work.

Potential optimizations: Our own experience and stud-
ies with WProf suggest a few optimization opportunities.
We find that synchronous JavaScript significantly affects
page load time, not only because of loading and eval-
uation, but also because of block-parsing (Figure 10(a)).
Asynchronous JavaScript or in-lining the scripts can help
reduce page load times. To validate this opportunity, we
manually transform synchronous JavaScript to async
on top five pages and find that this helps page load time.
However, because asynchronous JavaScript may alter
Web pages, we need further research to understand how
and when JavaScript transformation affects Web pages.
Another opportunity is with respect to prioritizing object
loading according to the dependency graph. Prioritiza-
tion can be either implemented at the application level
such as SPDY or reflected using latency-reducing tech-
niques [31]. For example, prioritizing JavaScript loads
can decrease the time that HTML parsing is blocked. Re-
cently, SPDY considers applying the dependency graph
to prioritize object loading in version 4 [29]. Other op-

11
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portunities include parallelizing page load activities and
more aggressive preloading strategies, both of which re-
quire future exploration.

7 Related Work

Profiling page load performance: Google Pagespeed
Insight [22] includes a (non open-source) critical path
explorer. The explorer presents the critical path for the
specific page load instance, but does not extract all de-
pendencies inherent in a page. For example, the ex-
plorer does not include dependencies due to resource
constraints and eager/late binding. Also, the explorer
will likely miss dependencies if objects are cached, if the
network speed improves, if a new CDN is introduced,
if the DNS cache changes, and many other instances.
Therefore, it is difficult to conduct what-if-analysis or
to explain the behavior of Web page optimizations using
the explorer.

The closest research to WProf is WebProphet [16]
that identifies dependencies in page loads by systemat-
ically delaying network loads, a technique we borrow in
this work. The focus of WebProphet is to uncover de-
pendencies only related to object loading. As a result,,
WebProphet does not uncover dependencies with respect
to parsing, rendering, and evaluation. WebProphet also
predicts page load performance based on its dependency
model; we believe that WProf’s more complete depen-
dency model can further improve the page load perfor-
mance prediction.

Tools such as Firebug [11], Developer Tools [8], and
more recently HAR [12] provide detailed timings infor-
mation about object loading. While their information is
important to augment WProf profiling, they do not ex-
tract dependencies and only focus on the networking as-
pect of page loads.

Web performance measurements: Related measure-
ment studies focus on either network aspects of Web per-
formance or macro-level Web page characteristics. Ihm
and Pai [14], presented a longitudinal study on Web traf-
fic, Ager et al. [2] studied the Web performance with
respect to CDNs, and Huang et al. [13] studied the
page load performance under a slower cellular network.
Butkiewicz et al. [7] conducted a macro-level study,
measuring the number of domains, number of objects,
JavaScript, CSS, etc. in top pages. Others [26, 15]
studied the effect of dynamic content on performance.
Instead, WProf identifies internal dependencies of Web
pages that let us pinpoint bottlenecks on critical paths.

Improving page load performance: There has been
several efforts to improve page load performance by
modifying the page, by making objects load faster, or
by reducing computational time. At the Web page level,
mod pagespeed [19] and Silo [18] modify the structure

and content of the Web page to improve page load. At the
networking level, SPDY [28], DNS pre-resolution [9],
TCP pre-connect [30], TCP fast open [24], ASAP [35]
and other caching techniques [34, 32] reduce the time
taken to load objects. At the computation level, in-
line JavaScript caching [18] and caching partial lay-
outs [18, 17] have been proposed. While these tech-
niques provide improvement for certain aspects of page
loads, the total page load performance depends on sev-
eral inter-related factors. WProf helps understand these
factors to guide effective optimization techniques.

8 Conclusion
In this paper, we abstract a model of browser dependen-
cies, and design WProf, a lightweight, in-browser pro-
filer that extracts dependency graphs of any given page.
The goal of WProf is to identify bottleneck activities that
contribute to the page load time. By extensively loading
hundreds of pages and performing critical path analysis
on their dependency graphs, we find that computation is
a significant factor and makes up as much as 35% of the
page load time on the critical path. We also find that syn-
chronous JavaScript evaluation plays a significant role in
page load time because it blocks parsing. While caching
reduces the size of downloads significantly, it is less ef-
fective in reducing page load time because loading does
not always affect the critical path. We conducted exper-
iments over SPDY and mod pagespeed. While the ef-
fects of SPDY and mod pagespeed vary over pages, sur-
prisingly, we find that they help very little on average.
In the future, we plan to extend our dependency graphs
with more lower-level dependencies (e.g., in servers) to
understand how page loads would be affected by these
dependencies.
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Abstract
We present Dasu, a measurement experimentation

platform for the Internet’s edge. Dasu supports both
controlled network experimentation and broadband char-
acterization, building on public interest on the latter
to gain the adoption necessary for the former. We
discuss some of the challenges we faced building a
platform for the Internet’s edge, describe our current
design and implementation, and illustrate the unique
perspective it brings to Internet measurement. Dasu has
been publicly available since July 2010 and has been
installed by over 90,000 users with a heterogeneous set
of connections spreading across 1,802 networks and 147
countries.

1 Introduction
Our poor visibility into the network hampers progress
in a number of important research areas, from network
troubleshooting to Internet topology and performance
mapping. This well-known problem [8, 39] has served
as motivation for several efforts to build new testbeds
or expand existing ones by recruiting increasingly large
and diverse sets of measurement vantage points [15, 33,
37]. However, capturing the diversity of the commercial
Internet (including, for instance, end-hosts in homes and
small businesses) at sufficient scale remains an elusive
goal [17, 25].

We argue that, at its roots, the problem is one of
incentives. Today’s measurement and experimentation
platforms offer two basic incentive models for adoption –
cooperative and altruistic. In cooperative platforms such
as PlanetLab [31] and RIPE Atlas [35] an experimenter
interested in using the system must first become part
of it. Other platforms such as SatelliteLab [15] and
DIMES [37] have opted instead for an altruistic approach
in which users join the platform for the betterment of
science. All these efforts build on the assumption,
sometimes implicit, that the goals of those hosting the
platform and the experimenters that use it are aligned. As

much of the Internet’s recent growth occurs in residential
broadband networks [1] this assumption no longer holds.

This paper presents Dasu — a platform for network
measurement experimentation and the Internet’s edge
built with an alternate model that explicitly aligns the
objectives of platform hosts and experimenters. Dasu1

is designed to support both broadband characterization
and Internet measurement experiments and leverage their
synergies. Both functionalities benefit from wide net-
work coverage to capture network and broadband service
diversity. Both can leverage continuous availability
to capture time-varying changes in broadband service
levels and to enable long-running and time-dependent
measurement experiments. Both must support dynamic
extensibility to remain effective in the face of ISP policy
changes and to enable purposefully-designed, controlled
Internet experiments. Finally, both functionalities must
be available at the edge of the network to capture the end
users’ view of the provided services and offer visibility
into this missing part of the Internet [9].

This paper focuses on Dasu’s support for Internet mea-
surement experimentation, outlining our current design
and how it addresses some of the key challenges raised
by our goals.2 Dasu has been publicly available since
June 2010 and is currently in use by 90,222 users with
a heterogeneous set of connections spreading over 1,802
networks and across 147 countries.

We make the following contributions in this work:

• We present the design and implementation of Dasu
— an extensible platform for measurement experi-
mentation from the Internet’s edge.

• We describe the current deployment of Dasu and
present results demonstrating how the participating
nodes collectively offer broad network coverage,

1Dasu is a Japanese word that can mean “to reveal” or “to expose”.
2Please see [6] for a general description of Dasu’s support for

broadband characterization.
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high availability and fine-grained synchronization
to enable Internet measurement experimentation.

• We use three case studies to illustrate the unique
perspective that a platform like Dasu brings to In-
ternet measurement. In the process, we demonstrate
Dasu’s capabilities to (i) simplify traditional mea-
surements (e.g., examining routing asymmetry), (ii)
reveal fundamental shortcomings in existing mea-
surement efforts (e.g., mapping AS-level topology),
and (iii) conduct novel experiments for original sys-
tem evaluations (e.g., examining the effectiveness
of a recently-proposed DNS extension).

The rest of this paper is structured as follows. We
put our work in context and provide further motivation
in Sec. 2. In Sec. 3 and 4 we outline the design and
implementation of Dasu and characterize our current
deployment. We present cases studies that illustrate the
benefits of a measurement experimentation platform that
runs at the Internet’s edge in Sec. 5. Finally, we discuss
future work and present our conclusions in Sec. 6.

2 Background and Motivation
The lack of network and geographic diversity in cur-
rent Internet experimentation platforms is well a known
problem [8, 39]. Most Internet measurement and system
evaluation studies rely on dedicated infrastructures [3,
5, 7, 31] which provide relatively continuous availability
at the cost of limited vantage point diversity (i.e. with
nodes primarily located in well-provisioned academic or
research networks that are not representative of the larger
Internet).

Several research projects have pointed out the pit-
falls when attempting to generalize results of network
measurements taken with a limited network perspective
(e.g. [8, 10, 27, 32, 45]). For example, consider the dif-
ferences in paths between PlanetLab nodes and between
nodes in residential networks. These two sets traverse
different parts of the network [9], exhibit different la-
tency and packet loss characteristics [12, 20] and result
in different network protocol behaviors [16].

2.1 Goals and Approach

An experimental platform for the Internet should be
deployed at scale to capture network and service diver-
sity. It should be hosted at the network edge to provide
visibility into this opaque part of the Internet. Such a
platform should allow dynamic extensibility in order to
enable purposefully-designed, controlled measurement
experiments, without compromising end-host security.
To support time-dependent and long-running experi-
ments, it should offer (nearly) continuous availability.
Last, it should facilitate the design and deployment of
experiments at the network edge while controlling the

impact on the resources of participating nodes and the
underlying network resources.

Dasu is an experimental platform designed to match
these goals. To capture the diversity of the commercial
Internet, Dasu supports both Internet measurement ex-
perimentation and broadband characterization and lever-
ages their synergies. In its current version, Dasu is built
as an extension to the most popular large-scale peer-to-
peer system – BitTorrent.3 The typical usage patterns
and comparatively long session times of BitTorrent users
means that Dasu can attain nearly continuous availability
to launch measurement experiments. More importantly,
by leveraging BitTorrent’s popularity, Dasu attains the
necessary scale and coverage at the edge of the network.
Dasu is tailored for Internet network experimentation
and, unlike general-purpose Internet testbeds such as
PlanetLab, does not support the deployment of planetary-
scale network services.

2.2 Challenges

Both strengths and challenges of a platform like Dasu
stem from its inclusion of participating nodes at the
Internet’s edge. For one, the increased network coverage
from these hosts comes at the cost of higher volatility and
leaves the platform at the “mercy” of end users’ behavior.
The types of experiments possible in such a platform
depend thus on the clients’ availability and session times
since these partially determine the maximum length of
the experiment that can be safely assigned to clients.
Such a platform must provide a scalable way to share
measurement resources among concurrent experiments
with a dynamic set of vantage points. It must also guar-
antee the safety of the volunteer nodes where it is hosted
(for instance, by restricting the execution environment),
and ensure secure communication with infrastructure
servers. Last, to control the impact that experiments may
have on underlying network and system resources, the
system must support coordinated measurements among
large numbers of hosts worldwide, each of which is
subject to user interaction and interference.

2.3 Related Work

Dasu shares goals with and builds upon ideas from
several prior large-scale platforms targeting Internet ex-
perimentation. Most active measurement and experi-
mentation research relies on dedicated infrastructures
(PlanetLab [31], Ark [7], Looking Glass servers). Such
infrastructures provide relatively continuous availability
and nearly continuous monitoring at the cost of limited
vantage point diversity. Dasu targets the increasingly
“invisible” portions of the Internet, relying on a direct

3A stand-alone version of Dasu has been developed and we plan to
release it in June 2013.
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incentive model to ensure large-scale adoption at the
Internet edge.

Several related projects use passive measurements or
restricted active measurements from volunteer platforms
to capture this same perspective (e.g., [15, 33, 35, 37,
38, 42]). In contrast, Dasu is a software-based solution
with a much broader set of measurement vantage points
that has been achieved by altruistic and hardware-based
systems, and supports a programmable interface that
enables complex, coordinated measurements across the
participating hosts. As such, Dasu shares some design
goals with Scriptroute [40] and SatelliteLab [15]). Un-
like Scriptroute, Dasu is intended for large scale deploy-
ment on end users’ machines, and relies on incentives
for user adoption at scale. Dasu also enables pro-
gramable measurements without requiring root access,
avoiding potential security risks and barriers to adoption.
SatelliteLab adopts an interesting two-tier architecture
that links end hosts (satellites) to PlanetLab nodes and
separates traffic forwarding (done by satellites) from
code execution. In Dasu, experiment code generates
traffic directly from hosts at the network edge.

Several systems have proposed leveraging clients in
a P2P system to measure, diagnose and predict the
performance of end-to-end paths (e.g., [11, 28]. Dasu
moves beyond these efforts, exploring the challenges and
opportunities in supporting programmable experimenta-
tion from volunteer end hosts.

3 Dasu Design
In this section, we provide an overview of Dasu’s design,
discuss several system’s components and briefly describe
the API supporting measurement experiments.

3.1 System Overview

Dasu is composed of a distributed collection of clients
and a set of management services. Dasu clients provide
the desired coverage and carry on the measurements
needed for broadband characterization and Internet ex-
perimentation. The Management Services, comprising
the Configuration, Experiment Administration, Coordi-
nation and Data services, distribute client configuration
and experiments and manage data collection. Figure 1
presents the different components and their interactions.

Upon initialization, clients use the Configuration Ser-
vice to announce themselves and obtain various config-
uration settings including the frequency and duration of
measurements as well as the location to which experi-
ment results should be reported. Dasu clients period-
ically contact the Experiment Administration Service,
which assigns measurement tasks, and the Coordination
Service to submit updates about completed probes and
retrieve measurement limits for the different experiment
tasks. Finally, clients use the Data Service to report

Configuration Service
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Experiment
Admin Service

Activity
Measurement
Aggregated

Experiment
Lease
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Configuration

Registration

Experiment Task
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Figure 1: Dasu system components.

the results of completed experiments as they become
available.

3.2 Experiment Specification

Dasu is a dynamically extensible platform designed to
facilitate Internet measurement experimentation while
controlling the impact on hosts’ resources and the un-
derlying network. A key challenge in this context is
selecting a programming interface that is both flexible
(i.e., supports a wide range of experiments) and safe (i.e.,
does not permit run-away programs). We rejected several
approaches based on these constraints and our platforms
goals. These include offering only a small and fixed set
of measurement primitives as they would limit flexibility.
We also avoided providing arbitrary binary execution as
handling the ramifications of such an approach would be
needlessly complex.

We opted for a rule-based declarative model for ex-
periment specification in Dasu. In this model, a rule
is a simple when-then construct that specifies the set
of actions to execute when certain activation conditions
hold. A rule’s left-hand side is the conditional part
(when) and states the conditions to be matched. The
right-hand side is the consequence or action part of
the rule (then) i.e., the list of actions to be executed.
Condition and action statements are specified in terms
of read/write operations on a shared working memory
and invocation of accessor methods and measurement
primitives. A collection of rules form a program and a
set of related programs define an experiment.

The rule-based model provides a clean separation
between experiment logic and state. In our experience,
this has proven to be a flexible and lightweight approach
for specifying and controlling experiments. Experiment
logic is centralized, making it easy to maintain and
extend. Also, strict constraints can be imposed on rule
syntax, enabling safety verification through simple static
program analysis.

Dasu provides an extensible set of measurement
primitives (modules) and a programmable API to
combine them into measurement experiments. Tables 1
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Method Params. Description
addProbeTask <probe> <params>

[<times>] [<when>]
Submit measurement request of the specified type.

commitResult <report> Submit completed experiment results to data server.
getClientIPs [] Return network information about the client including the

list of IP addresses assigned (both public and private).
getDnsServers [] Return the list of DNS servers configured at the client.
getEnvInfo [] Return information about the plugin and the host node,

including OS information and types of measurement
probes available to the experimenter.

Table 1: Dasu API – Methods.

Probe Params. Description
PING <dest-list (IP/name)> Use the local host ping implementation to send

ECHO REQUEST packets to a host.
TRACEROUTE <dest-list (IP/name)> Print the route packets take to a network host.
NDT [<server>] Run the M-Lab Network Diagnostic Tool [29].
DNS [<server>] | [<timeout>] |

[<tcp/udp>] | [<options>] |
<DNS-msg>] | <dest-list>

Submit DNS resolution request to a set of servers.

HTTP [server] | [<port>] |
[<HTTP-Req>] | <url-list>

Submit HTTP request to a a given < host, port > pair.

Table 2: Dasu API – Measurement modules currently supported.

and 2 provide a summary of this API and the current set
of measurement primitives supported. The API includes
some basic accessor methods (e.g. getClientIps,
getDnsServers and getEnvInfo). The method
addProbeTask serves to request the execution
of measurements at a given point in time. The
commitResult method allows results from the
experiment to be submitted to the Data Service after
completion.

Dasu provides low-level measurement tools that can
be combined to build a wide range of measurement
experiments. Currently available measurement primi-
tives include traceroute, ping, Network Diagnostic Tool
(NDT) [29], HTTP GET and DNS resolution. While this
set is easily extensible (by the platform administrators)
we have found it sufficient to allow complex experiments
to be specified clearly and concisely. For instance,
the experiment for the Routing Asymmetry case study
(Sec. 5.1) was specified using only 3 different rules with
an average of 24 lines of code per rule.

Measurements primitives are invoked asynchronously
by the Coordinator, which multiplexes resources across
experiments. Progress and results are communicated
through a shared Working Memory; through this working
memory, an experiment can also chain rules that sched-
ule measurements and handle results.

In addition to these active measurements, Dasu lever-
ages the naturally-generated BitTorrent traffic as passive
measurements (particularly in the context of broadband
characterization [6]) by continuously monitoring the
end-host Internet connection. Devising an interface

to expose these passively collected measurements to
experimenters is part of future work.

A Simple Example. To illustrate the application of
rules, we walk through the execution of a simple experi-
ment for debugging high latency DNS queries. Figure 2
lists the rules that implement this experiment. When rule
#1 is triggered, it requests a DNS resolution for a domain
name using the client’s configured DNS server. When the
DNS lookup completes, rule #2 extracts the IP address
from the DNS result and schedules a ping measurement.
After the ping completes, rule #3 checks the ping latency
to the IP address and schedules a traceroute measurement
if this is larger than 50 ms.

3.3 Delegating Code Execution to Clients

Dasu manages concurrent experiments, including re-
source allocation, via the Experiment Administration
Service. As clients become available, they announce
their specific characteristics (such as client IP prefix,
connection type, geographic location and operating sys-
tem) and request new experiment tasks. The Experiment
Administration (EA) Service assigns tasks to a given
client based on experiment requirements and character-
istics of available clients (e.g. random sample of DSL
users in Boston).

In the simplest of experiments, every Dasu client
assigned to an experiment will receive and execute the
same experiment task (specified as a stand-alone rules
file). Dasu also enables more sophisticated experiments
where experimenters specify which clients to use and
how to execute tasks based on client characteristics.

4



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 491

rule "(1) Resolve IP address through local DNS"
when
$fact : FactFireAction(action=="resolveIp");
then
addProbeTask(ProbeType.DNS, "example.com");

end

rule "(2) Handle DNS lookup result"
when
$dnsResult : FactDnsResult(toLookup=="example.com")
then
String ip = $dnsResult.getSimpleResponse();
addProbeTask(ProbeType.PING, ip);

end

rule "(3) Handle ping measurement result"
when
$pingResult : FactPingResult()
then
if ( $pingResult.getRtt() > 50 )
addProbeTask(ProbeType.TRACEROUTE, $pingResult.ip );

end

Figure 2: Example measurement experiment for debugging
high latency DNS queries.

Dasu adopts a two-tiered architecture for the EA
Service, with a primary server, responsible for resource
allocation, and a number of secondary servers in charge
of particular experiments. The Primary EA server acts as
a broker, allocating clients to experiments, by assigning
them to the responsible secondary server, based on
clients’ characteristics and resource availability. The
Secondary EA server is responsible for task parame-
terization and allocation of tasks to clients according
to the experiment’s logic. While the customized task
assigned to a client is generated by the experiment’s
secondary server, all communication with Dasu clients
is mediated by the primary server who is responsible
for authenticating and digitally signing the assigned
experiments.

Submitting External Experiments. Dasu supports
third-party experiments through the two-tier architecture
described above. Authorized research groups host their
own Secondary EA server, with security and accountabil-
ity provided through the Primary EA server.

In addition to providing a safe environment for execut-
ing experiments, all experiments submitted to Dasu are
first curated and approved by the system administrators
before deployment. This curation process serves as an-
other safety check and ensures that admitted experiments
are aligned with the platform’s stated goals.

3.4 Security and Safety

Safely conducting measurements is a critical requirement
for any measurement platform and particularly for one
deployed at the Internet edge. We focus on two security
concerns: protecting the host and the network when
executing experiments. We expand on the former here
and discuss the latter in the following section.

To protect the host, Dasu uses a sandboxed environ-
ment for safe execution of external code, ensures secure

communication with infrastructure servers, and carefully
limits resource consumption.

Experiment Sandbox. To ensure the execution safety
of external experiments, Dasu confines each experiment
to a separate virtual machine, instantiated with limited
resources and with a security manager that implements
restrictive security polices akin to those applied to un-
signed Java applets. In addition, all Dasu experiments
are specified as a set of rules that are parsed for unsafe
imports at load time, restricting the libraries that can be
imported. Dasu inspects the experiment’s syntax tree
to ensure that only specifically allowed functionality is
included and rejects a submitted experiment otherwise.

Secure communication. To ensure secure commu-
nication between participating hosts and infrastructure
servers, all configuration and experiment rule files served
by the EA Service are digitally signed for authenticity
and all ongoing communications with the servers (e.g.
for reporting results) are established over secure chan-
nels.

Limits on resource consumption. Dasu must care-
fully control the load its experiments impose on the
local host, as well as minimize the impact that users’
interactions (i.e., with the host and the application)
can have on experiments’ results. To this end, Dasu
limits consumption of hosts’ resources4 and restricts the
launching of experiments to periods of low resource
utilization; the monitored resources include CPU time,
network bandwidth, memory and disk space.

To control CPU utilization, Dasu monitors the fraction
of CPU time consumed by each system component
(including the base system and each different probe
module). Dasu regulates average CPU utilization by
imposing time-delays on the activity of individual probe
modules whenever their “fair share” of CPU time has
been exceeded over the previous monitoring period.
Dasu also employs watchdog timers to control for long-
running experiments.

To control bandwidth consumption, Dasu passively
monitors the system bandwidth usage and launches ac-
tive measurements only when utilization is below certain
threshold (we evaluate the impact of this policy on
experiment execution time in Sec. 4.3). Dasu uses the
95th percentile of client’s throughput rates measured by
NDT to estimate the maximum bandwidth capacity of
the host and continuosly monitors host network activity
(using the commonly available netstat tool). Based
on pre-computed estimates of approximate bandwidth
consumption for each probe, Dasu limits probe execution
by only launching those that will not exceed the predeter-
mined average bandwidth utilization limit. Additionally
Dasu relies on a set of predefined limits on the number

4Currently 15% of any monitored resource.
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of measurement probes of each type that can be launched
per monitored interval. While clients are allowed to
dispense with their entire budget at once, the combined
bandwidth consumed by all probe modules must remain
below the specified limit.

To restrict memory consumption, Dasu monitors the
allocated memory used by its different data structures
and limits, for instance, the number of queued probe-
requests and results. Measurement results are offloaded
to disk until they can successfully be reported to the
Data Service. Disk space utilization is also controlled by
limiting the size of the different probe-result logs; older
results are dropped first when the pre-determined quota
limits have been reached.

3.5 Coordination

In addition to controlling the load on and guaranteeing
the safety of volunteer hosts, Dasu must control the
impact that measurement experiments collectively may
have on the underlying network and system resources.
For instance, although the individual launch rate of
ping measurements is limited, a large number of clients
probing the same destination can overload it.

To this end, Dasu introduces two new constructs - ex-
periment leases and elastic budgets, to efficiently allow
the scalable and effective coordination of measurements
among potentially thousands of hosts. In the following
paragraphs, we describe both constructs and Dasu’s
approach to coordination.

Experiment Leases. To support the necessary fine-
grained control of resource usage, we introduce the
concept of experiment leases. In general, a lease is
a contract that gives its holder specified rights over a
set of resources for a limited period of time [19]. An
experiment lease grants to its holder the right to launch
a number of measurement probes, using the common
infrastructure, from/toward a particular network location.
Origin and/or targets for the probes can be specified
as IP-prefixes or domain names (other forms, such as
geographic location, could be easily incorporated).

Experiment leases are managed by the EA Service.
The Primary EA server ensures that the aggregated use
of resources by the different experiments is within the
specified bounds. Secondary EA servers are responsi-
ble for managing experiment leases to control the load
imposed by their particular experiments. To coordinate
the use of resources by the Dasu clients taking part in
an experiment, we rely on a distributed coordination
service [23]. The Coordination Service runs on well-
provisioned servers (PlanetLab nodes) using replication
for availability and performance. Clients receive the
list of coordination servers as part of the experiment
description.

Before beginning an experiment, clients must contact
a coordinator server to announce they are joining the
experiment and obtain an associated lease. As probes
are launched, the clients submit periodic updates to
the coordination servers about the destinations being
probed. The EA Service uses this information to com-
pute estimated aggregate load per destination and to
update the associated entries in the experiment lease.
Before running a measurement, the Coordinator checks
whether it violates the constraint on the number of probes
allowed for the associated source and destination, and
if so delays it. After a lease expires, the host must
request a new lease or extend the previous one before
issuing a new measurement. The choice of the lease
term presents a trade-off between minimizing overhead
on the EA Service versus minimizing client overhead and
maximizing its use.

Elastic Budget. An experiment lease grants to its
holder the right to launch a number of measurement
probes (i.e., a budget) from/toward a particular network
location. Due to churn and user-generated actions, the
number of measurement probes a Dasu client can launch
before lease expiration (i.e., the fraction of the allocated
budget actually used) can vary widely. To account for
this, Dasu introduces the idea of elastic budgets that
expand and contract based on system dynamics.

Elastic budgets are computed by the EA Service and
used to update bounds on experiment leases distributed
to Dasu clients. The EA Service calculates the elastic
budget periodically based on the current number of
clients participating in the experiment, the number of
measurement probes allowed, assigned and completed
by each client. The EA Service uses this elastic budget
to compute measurement probe budgets for the next lease
period for each participating client. This approach is well
suited for experiments where the server knows a priori
what destinations each client should probe. In the case
of experiments where the destinations to be probed are
not assigned by the server, but obtained by the clients
themselves (through a DNS resolution for example), the
same approach can be used if we conservatively assume
that a client will launch the maximum number of probes
per unit of time whenever it is online.

3.6 Synchronization

Dasu also provides support for Internet experiments that
require synchronized client operation (e.g. [34, 41]).

For coarse-level synchronization, Dasu clients include
a cron-like probe-scheduler that allows the scheduling of
measurements for future execution. All Dasu clients pe-
riodically synchronize their clocks using NTP. Assuming
clients’ clocks are closely synchronized, an experiment
can request the “simultaneous” launch of measurements
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Region Penetration Dasu Dasu Total
Total Countries

North America 78.6 % 21.45 % 60 %
Oceania/Australia 67.5 % 3.82 % 6 %
Europe 61.3 % 59.25 % 73 %
L. America/Carib. 39.5 % 1.68 % 65 %
Middle East 35.6 % 1.52 % 73 %
Asia 26.2 % 2.59 % 57 %
Africa 13.5 % 9.66 % 34 %

Table 3: Internet penetration6 and Dasu coverage (as
percentage of its total population of 90,222) by January 2013.

by a set of clients. We have found this to be sufficient to
achieve task synchronization on the order of 1-3 seconds.

For finer-grained synchronization (on the order of
milliseconds), Dasu adopts a remote triggered execution
model. All synchronized clients must establish persistent
TCP connections with one of the coordination servers.
These connections are later used to trigger clients actions
at a precise moment, taking into account network delays
between clients and coordination servers.

4 Deployment
We have implemented Dasu as an extension to a popular
BitTorrent client [43] as it offers a large and widespread
client population and a powerful interface for extensions.
We have made Dasu publicly available since June 2010.

To participating users, Dasu provides information
about the service they receive from their ISP [6, 36].
Access to such information has proven sufficient
incentive for widespread subscription with over 90K
users who have adopted our extension with minimum
advertisement.5

This section demonstrates how Dasu clients collec-
tively provide broad network coverage, sufficiently high
availability and fine-grained synchronization for Internet
experimentation.

4.1 Dasu Coverage

We show the coverage of Dasu’s current deployment
in terms of geography and network topology. Table 3
lists broadband penetration in each primary geographic
region and compares these numbers with those from our
current Dasu’s deployment.

Given the high Internet penetration numbers in Europe
and North America, the distribution of Dasu clients per
region is not surprising. Note, however, the penetration
of Dasu clients per region, measured as the percentage of
countries covered. As the table shows, Dasu penetration
is over 57% for most regions and is particularly high
for Latin America/Caribbean (65%) and the Middle East

5Upon download, users are informed of both roles of Dasu. Users
can, at any point, opt to disable experiments from running and/or
reporting performance information, without losing access to Dasu’s
broadband benchmarking information.

6http://www.internetworldstats.com
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Figure 3: Distribution of Dasu peers per AS (left). Distribution
of ASes covered by Dasu peers (right).

(73%), two of the fastest growing Internet regions. Even
in Africa Dasu penetration reaches 34%.

We also analyze Dasu’s network coverage in terms of
ASes where hosts are located. With our existing user-
base at the end of January 2013, we have Dasu clients in
1,802 different ASes. We classify these ASes following
a recently proposed approach [13], as follows:

• Tier-1: 11 known Tier-1s
• LTP: Large (non tier-1) transit providers and large

(global) communications service providers
• STP: Small transit providers and small (regional)

communication service providers
• Eyeball: Enterprise customers or access/hosting

providers

Figure 3a uses this classification to illustrate where
Dasu peers are deployed. As the figure shows, 93%
of Dasu peers are located in small transit providers and
eyeball ASes; with only minimal presence in large transit
and Tier-1 providers. Figure 3b presents the distribution
of all the ASes covered by Dasu peers. This figure shows
that 73% of the ASes covered by Dasu are eyeball ASes,
highlighting the effectiveness of Dasu as a platform for
capturing the view from the network edge.

4.2 Dasu Dynamics

In this section, we show that the churn from Dasu clients
is sufficiently low to support meaningful experimenta-
tion. This churn is a result of both the volatility of
Dasu’s current hosting application (i.e. BitTorrent) and
that of the end systems themselves. In the following
analysis, we focus on the hosting application dynamics.
In particular, we investigate what portion of clients are
online at any moment, and whether their session times
support common measurement durations.

First, we analyze Dasu clients’ availability, using the
percentage of clients online at any given hour over a 31-
day period. Figure 4 plots this for the month of January
2013. The fraction of available clients during the period
varies, on average, between 39% and 44% of the total
number of unique users seen during a day, with a total of
1,473 active unique users for the month. With respect to
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Figure 4: Number of online Dasu clients over a 24-hour
period. The fraction ranges from 39-44% of the total number
of unique users, on average.

Figure 5: Session time distribution of Dasu clients (time
between their joining and leaving the system).

the overall stability of the platform, for the same month
of January 2013, we saw a total of 1,303 installs, 61
user uninstalls and 21 users who disabled reporting while
continuing to run Dasu.

Next, we analyze how the duration of experiments is
limited by client session times. Session time is defined
as the elapsed time between it joining the network and
subsequently leaving it. The distribution of clients’
session times partially determines the maximum length
of the measurement tasks that can be “safely” assigned
to Dasu clients. Figure 5 shows the complementary
cumulative distribution function of session times for the
studied period. The distribution is clearly heavy-tailed,
with a median session time for Dasu clients of 178
minutes or ≈ 3 hours.

Given an average session time, the fraction of tasks
that are able to complete depends on the duration of the
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Figure 6: Task time distribution for completed tasks by Dasu
clients. The median task successfully completes in < 5 minutes.
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Figure 8: Distribution of experiment probe submission for
clients. Over 55% are launched < 1sec. after being scheduled.

task – a function of the number of actual measurements
and the load at the client. Figure 6 shows the distribution
of task completion times for all experiments completed
by Dasu peers over a 3-week period. All experiments
during this period were done in the context of the case
study on IXP mapping (Sec. 5), were an experiment
task consists of a set of traceroutes issued by clients to
discover potential peerings. The figure shows that the
median task is able to successfully complete in less than
5 minutes. The plot also shows that nearly all tasks are
able to complete successfully in the face of churn, with
70% of tasks finishing in less than 12 minutes.

4.3 Controlling Experimentation Load

To minimize Dasu’s impact on host application per-
formance and to ensure that user interactions do not
interfere with scheduled measurements, Dasu enforces
pre-defined limits on the number of probes executed
per unit time and schedules measurements during low
utilization periods. We evaluate the impact of one of
these restrictions (on bandwidth utilization) on experi-
ment execution by determining the portion of scheduled
measurements delayed.

Figure 7 shows a CDF of the fraction of probes
delayed by clients due to different bandwidth utilization
constraints (60%, 70% and 80%), taken from a random
subset of clients over a two-week period. The distribu-
tion shows, for instance, that capping at a download uti-
lization of 80%, every scheduled probe can be launched
immediately for 85% of the peers, and that for 98% of
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Figure 9: Request arrival times at the target server.
Approximately 80% of requests arrive within 300 ms.

the peers less than 20% of the probes would require
any delay. In contrast, a smaller fraction of probes
(60%) experience no delay when an 80% utilization limit
is imposed on the upload direction. This is expected,
since broadband users are often allocated lower upload
bandwidth than download.

Fig. 8 shows the queueing time of probes assigned
to Dasu clients for a given experiment over a 1-week
period. The figure shows that over 55% of the probes
are launched in less than a second after being scheduled.

4.4 Client Synchronization

To evaluate the granularity of Dasu’s fine-grain syn-
chronization capabilities, we run an experiment where
Dasu clients were instructed to simultaneously launch an
HTTP request to an instrumented web server. For a span
of five minutes, approximately 30 clients were recruited
to cooperate in the experiment. Following Ramamurthy
et al. [34], as clients joined the experiment they were
instructed to measure their latency to the target server
as well as to the Coordination Server and to report back
their findings.

At the end of the five minutes, clients were scheduled
to launch their measurements (having adjusted each
request based on their measured latencies) while we
logged the arrival times of each incoming HTTP request
at the target server. We repeated this experiment 10
times. Figure 9 shows the mean arrival time of each
request with a crowd size of 31 clients. About 80% of the
requests arrive within 300ms of each other, and 91% of
the requests arrive within 1s of each other. This result is
on par with the synchronization of 100s of milliseconds
reported by Ramamurthy et al. [34]

Variations in the arrival times of the top 20% of
requests are due to queuing delays in broadband net-
works [16] and errors in estimating the latency between
clients and the coordinator server.

5 Case Studies
In this section, we present three case studies that il-
lustrate the unique perspective our edge-based platform

Figure 10: CCDF of fraction of Dasu-PL path hops that can
be directly measured using IP Options probes. 17% of paths
reply to probes at each hop, meaning that we can determine the
complete reverse path.

brings to Internet measurement and serve as examples of
experiments made possible using Dasu.

5.1 Extending Earlier Experiments: Routing Asym-
metry

Routing asymmetry can impact the results of measure-
ment tools such as traceroute. For instance, estimates of
delay between hosts are subject to errors if the forward
and reverse path differ. We extend the work by He et
al. [21], comparing routing asymmetry for research and
commercial networks, by examining the paths between
stub (Dasu) and research (PlanetLab) networks.

Ideally, one would like to control the hosts at both
ends of a path to determine the forward and reverse
paths between them, and have both endpoints probe the
path concurrently to minimize the impact of factors such
as network load or time-of-day on routing decisions.
The Reverse Traceroute system [24] provides a useful
approach to determine the reverse path even when one
controls only one of the end points. The approach,
however, is not always effective as it cannot probe
reverse paths in networks where routers do not reply to
IP Options probes.

A number of features of Dasu make it possible to
conduct an accurate analysis of path asymmetry between
nodes located in stub networks vs. research networks
including the ability to schedule experiments and to syn-
chronize the launching of measurements across nodes.

We find that for ≈28% of the paths tested between
Dasu clients and PlanetLab nodes (out of 8,046) reverse
traceroute would be forced to make an incorrect sym-
metry assumption because a segment of the reverse path
transits at least one AS that does not appear on the for-
ward path and that does not respond to IP Options probes.
Figure 10 shows that only 17% of the paths between
Dasu and PlanetLab nodes respond to IP Options probes
at every hop, this in contrast to the over 40% of paths
between PlanetLab nodes reported in [24].

To study routing asymmetry between pairs of Dasu-
PlanetLab (Dasu-PL) and PlanetLab-PlanetLab (PL-PL)

9
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(a) Absolute Asymmetry

(b) Normalized Asymmetry

Figure 11: CDFs of AS-level asymmetry in Dasu-PL and
PL-PL paths; ≈60% of Dasu-PL paths show some degree of
asymmetry, vs. 48% of PL-PL paths.

nodes, we launched probes across 8,046 paths between
Dasu clients and PlanetLab nodes, and across 10,067
paths between two PlanetLab nodes. To ensure accurate
measures of routing asymmetry we had hosts at both
endpoints probe the path concurrently.

We measure routing asymmetry by following the
methodology described in [21]. This method maps hops
in the forward path to those of the reverse path (either
at the link-level or AS-level) and assigns a value of 0
if the hops are identical and a value of 1 if they are
different. Through dynamic programming, it then selects
the mappings for each path that results in the minimal
distance. The minimal composite dissimilarity between
a forward and reverse path is referred to as the Absolute
Asymmetry (AA), while the length-based Normalized
Asymmetry (NA) is defined as AA normalized by the
length of the round-trip path.

To compare the asymmetry in the AS-level paths
between the two sets of paths (i.e., Dasu-PL and PL-PL),
figures 11a and 11b show the cumulative distributions
of the AS-level AA and NA metrics, respectively. It
can be observed that the Dasu-PL paths not only have a
higher percentage of asymmetric routes, but also display
a higher magnitude of asymmetry than the PL-PL paths.
To compare the two datasets at the link-level, we again
follow the approach described in He et al. [21] and
use their heuristics to determine if two IP addresses
correspond to the interfaces of the same link. These
heuristics consider two IP addresses to belong to the

(a) PlanetLab-PlanetLab

(b) Dasu-PlanetLab

Figure 12: CDFs of link-level normalized asymmetry using
different heuristics for IP to link mapping. Link-level NA is
much lower for PL-PL paths than Dasu-PL paths.

same point-to-point link if they belong to the same
/30, /24, /16, or AS. For each of the four heuristics,
Figures 12a and 12b show the cumulative distributions
of the resulting NA metric for the PL-PL and Dasu-PL
paths, respectively. As noted in [21], the first (/30) and
last (AS) heuristics provide the upper and lower bounds,
on the observed Internet routing asymmetry at the link
level. While figures 11a and 11b show that the two sets
of paths exhibit differences in routing asymmetry at the
AS-level, figures 12a and 12b show these differences
are significantly more pronounced at the link-level but
depend greatly on the heuristics used.

5.2 Questioning Existing Experiments: Inferring
AS-level Connectivity

The model of the Internet as a hierarchically-structured
or “tiered” network of networks is changing [14, 18, 26].
The emergence of new types of networks (e.g., content
providers, web hosting companies, CDNs) and their
resulting demands on the Internet have induced changes
in the patterns of interdomain connections; however,
the precise degree and nature of these changes remains
poorly understood.

Internet exchange Points (IXPs) are an important part
of the rapidly developing Internet ecosystem because
they facilitate the changes, enabling direct connections
between member ASes. A recent study of a large
European IXP has shown that some of the largest IXPs
(e.g., DEC-IX and AMS-IX) handle traffic volumes that

10
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Table 4: Prefix-based peering at Amsterdam Internet Exchange (AMS-IX) between two ASes. Columns show the hour, local time.
Legend: ‘�’ probes crossed IXP; ‘x’ probes did not cross IXP; ’-’ no probes.

are comparable to those carried by some of the largest
global ISPs and support peering fabrics consisting of
more than 60% of all possible peerings among their
400-500 member ASes [2]. However, despite their
importance, there exists little to no publicly available
information about who is peering with whom nor about
the nature of these peerings.

These changes in the network’s structure demand
changes to how we have traditionally conducted exper-
iments. For instance to question the standard assumption
of homogeneity that has been made when inferring AS-
level connectivity at IXPs [4, 22, 44] – where a single
traceroute between two ASes members of an IXP is
sufficient to declare that these ASes are, as a whole,
connected in the AS graph by a peer-peer link – we
require an endemic population of vantage points that
allows for finer-grained measurements.

Dasu provides an ideal platform to examine the va-
lidity of such assumptions. Its widespread and diverse
user base provides vantage points in multiple prefixes
within the same AS which allows us to identify prefix-
specific features that could not be identified from a single
location in the network. Additionally, Dasu’s near-
continuous availability of vantage points allows us to
study temporal effects that are critical for the observed
kind of peering. Lastly, conducting this kind of targeted
experiments involving specific prefixes in specific ASes
at particular IXPs relies critically on the programmability
of Dasu.

To evaluate the validity of this homogeneity assump-
tion, we set up an experiment to launch multiple tracer-
oute probes, between the same pair of member ASes of
a given IXP, from vantage points located inside different
prefixes of the source AS and at different hours of the
day. We found that about 15% of the peering links
that Dasu discovered violated the assumed homogeneity
condition. Depending on the prefixes, the probes either
crossed the given IXP or were sent instead via one of
the source AS’s upstream providers.7 Table 4 shows a
concrete example of such fine-grained peering observed
between two ASes at AMS-IX. By probing for peerings
between AS1 and AS2 repeatedly from different prefixes
in the ASes and separating the probes by the peers’ local
time, we obtained a view of these well-covered peerings
throughout the day. For each data point in the table we
corroborated the result across multiple traceroute probes

7The various reasons for why certain ASes engage in such non-
traditional peering arrangements is beyond the scope of this paper.

and obtained thus an example of a consistent prefix-
based peering – while probes launched from source
prefix A towards AS2 are never seen crossing the IXP,
probes launched from source prefix B towards AS2 seem
to always go through the IXP.

In short, the discovery of such fine-grained or prefix-
specific peering arrangements is proof that the traditional
view that a single type of AS peering applies uniformly
across all prefixes of an AS is no longer tenable. This
finding has clear implications for measurement and infer-
ence of AS-level connectivity and poses new challenges
and requirements for the platforms and techniques used
for this type of studies.

5.3 Performing Novel Experiments: Evaluating a
Recently-proposed DNS Extension

The edns-client-subnet EDNS0 extension (ECS) was
developed to address the problems raised by the inter-
action between the DNS-based redirection techniques
commonly employed by CDNs and the increasing use
of remote DNS services. CDNs typically map clients
to replicas on the location of the client’s local resolver;
since the resolvers of remote DNS services may be
far from the users, this can result in reduced CDN
performance. ECS aims to improve the quality of CDN
redirections by enabling the DNS resolver to provide
partial client location (i.e. client’s IP prefix) directly to
the CDN’s authoritative DNS server. ECS is currently
being used by a few public DNS services (e.g., Google
DNS) and CDNs (e.g. EdgeCast) and can improve CDN
redirections without modifications to end hosts.

To understand the performance benefits of the pro-
posed ECS extension and capture potential variations
across geographic regions would require access to a large
set of vantage points. These vantage points should be
located in access networks around the world and allow
issuing the necessary interrelated measurement probes.
These are some of the unique features that Dasu offers.

Dasu’s extensibility allows for the creation and ad-
dition of a new probe module to generate and parse
ECS-enabled DNS messages. Additionally, Dasu’s user
base allows us to obtain representative measurement
samples from diverse regions and compare trends across
geographic areas by looking at the relationships between
raw CDN performance, relative proportions of clients
affected by the extension, and the degree of performance
improvement provided by the extension.

This experiment extends the work by Otto et al. [30],
which examined the impact of varying the amount of
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information shared by ECS (i.e. prefix length) and
compared its performance to a client-based solution. We
first obtain CDN redirections to edge servers both with
the ECS extension enabled and disabled. Specifically, we
query Google DNS (8.8.8.8) for an EdgeCast hostname.
To obtain a redirection with ECS disabled, our DNS
probe module sends a query with the ECS option that
specifies 0 bytes of the client’s IP prefix—this effectively
disables the extension’s functionality. For the ECS-
enabled query, we provide the client’s /24 IP prefix.
After obtaining CDN edge server redirections with and
without ECS’s help, we conduct HTTP requests to both
sets of CDN edge servers to measure the application-
level performance in terms of latency to obtain the first
byte of content. For the results from each client, we
compare the median performance with and without ECS
being enabled.

We analyze results from a subset of 1,185 Dasu
clients that conducted this experiment over a 4 month
period from September 12th, 2011 to January 16th,
2012.8 Figure 13 shows the relationship between HTTP
latency with ECS disabled and the performance benefits
(latency savings) with ECS enabled. We classify users by
geographic region; the percentages listed in the legend
indicate the fraction of all sampled clients from that
region. In all regions, sampled clients are located in
a diverse set of networks; even in Oceania—the region
with fewest clients—we cover 9 ISPs in Australia and 4
in New Zealand. The figure plots the subset of samples
in which EDNS impacted HTTP performance.

While we find clients in all these regions that obtained
HTTP performance improvements with ECS enabled,
the samples tend to cluster by region. Although clients
in North America and Western Europe both typically
see HTTP latencies between 20 and 200 ms, the North
American clients generally obtain higher percentage sav-
ings. This would indicate that the CDN’s infrastructure
in North America is relatively dense in comparison to
that of the public DNS service’s deployment. Clients
in Oceania typically have relatively high HTTP laten-
cies between 200 and 1000 ms with ECS disabled—but
commonly realize savings of 70–90% with ECS enabled.
This is likely a result of the specific deployments of
the CDN and DNS services; although there are actually
CDN edge servers near to clients in this region, it appears
that the nearest Google DNS servers are farther away,
resulting in reduced HTTP performance when ECS is
disabled. Finally, we compare the number of clients with
benefits from ECS between Eastern Europe and Oceania;
while clients in Oceania actually comprise a slightly
smaller fraction of the overall sample, the number of

8Each participating client runs the experiment once over that time.
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Figure 13: HTTP latency vs. the performance benefits
provided by ECS, by geographic region. Percentages in the
legend indicate the geographic composition of the dataset.

clients that actually observed better performance is much
higher than for clients in Eastern Europe.

6 Conclusion
We presented Dasu, a measurement experimentation
platform for the Internet’s edge that supports and builds
on broadband characterization as an incentive for adop-
tion. We described Dasu’s design and implementation
and used our current deployment to demonstrate how
participating nodes collectively offer broad network cov-
erage, high availability and fine-grained synchronization
to enable Internet measurement experimentation.

Dasu represents but a single point in a large design
space. We described our rational for our current design
choices, but expect to revisit some of these decisions as
we learn from our own and other experimenters’ use of
the platform.

We presented three case studies that demonstrate
Dasu’s capabilities and illustrate the unique perspective
it brings to Internet measurement. As part of ongoing
work, we are exploring the use of node availability
prediction for experimentation, approaches to ensure
the integrity of experimental results, and allowing
fine-grained control of experiments by end users.

The Dasu client is open source and available for
download from http://azureus.sourceforge.
net/plugin_details.php?plugin=dasu.
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Abstract
We present πBox, a new application platform that pre-

vents apps from misusing information about their users.
To strike a useful balance between users’ privacy and
apps’ functional needs, πBox shifts much of the respon-
sibility for protecting privacy from the app and its users
to the platform itself. To achieve this, πBox deploys (1)
a sandbox that spans the user’s device and the cloud, (2)
specialized storage and communication channels that en-
able common app functionalities, and (3) an adaptation
of recent theoretical algorithms for differential privacy
under continual observation. We describe a prototype im-
plementation of πBox and show how it enables a wide
range of useful apps with minimal performance overhead
and without sacrificing user privacy.

1 Introduction

On mobile platforms such as iOS and Android, Web
browsers such as Google Chrome, and even smart tele-
visions such as Google TV or Roku, hundreds of thou-
sands of software apps provide services to users. Their
functionality often requires access to potentially sensi-
tive user data (e.g., contact lists, passwords, photos), sen-
sor inputs (e.g., camera, microphone, GPS), and/or infor-
mation about user behavior.

Most apps use this data responsibly, but there has also
been evidence of privacy violations [2, 36, 43, 54, 56].
Corporations often restrict what apps employees can in-
stall on their phones to prevent an untrusted app—or a
cloud provider that an app communicates with—from
leaking proprietary information [11, 28].

There is an inherent trade-off between users’ privacy
and apps’ functionality. An app with no access to user
data (e.g., one running in Native Client [39]) cannot leak
anything sensitive, but many apps cannot function with-
out such data. For example, a password management app
needs access to passwords, an audio transcription app
needs access to the recordings of user’s speech, etc.

Existing confinement mechanisms deployed on plat-
forms such as iOS and Android rely on users to explic-
itly grant permissions to apps. In theory, users can de-
cide how much privacy to sacrifice for functionality. In
practice, permissions are very coarse-grained (e.g., an
app that has permission to access the network can send
out whatever it wishes to whomever it wishes), and apps
often request more permissions than they need [19, 25]
and use granted permissions in unexpected ways (e.g., an
app with permission to show the user’s location on a map
may transmit this location to other parties). Users—who
are inundated with permission requests and may not fully
understand the implications—often blindly grant all re-
quests [20] or even disable notifications [37], implicitly
entrusting all apps with their private data.
Our contributions. This paper describes πBox, a new
platform for confining untrusted apps that balances apps’
functional needs against their users’ privacy, largely pre-
serving both. To achieve this balance, πBox isolates
each user’s instance of an app from the other instances
and users, and only allows communication through a
few well-defined channels whose functionality meets the
needs of many apps. Because these channels are con-
trolled by πBox, πBox can give rigorous privacy guar-
antees about the information that flows through them.

The key idea behind πBox is to shift much of the re-
sponsibility for protecting user privacy from the apps to
the platform. We use three novel technical mechanisms:

1. A sandbox that spans a user’s device and a cloud
back-end. The latter may be supplied by the device’s
platform provider (e.g., Apple or Google) or another
entity (e.g., the user’s employer).

2. Five specialized storage and communications sys-
tems that enable a variety of apps to do useful work
within πBox while preserving user privacy.

3. An adaptation and implementation of differential
privacy under continual observation that improves
the trade-off between accuracy and privacy of re-
leased statistics (e.g., ad impression counts).

1
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Because πBox’s sandbox spans the device and the
cloud, πBox can help enterprises deploy bring-your-
own-app (BYOA) policies that allow users to execute
apps from untrusted publishers on a trusted platform.
This platform may run on the premises under the en-
terprise’s direct control or be part of an external “app
store” or hosting infrastructure. Similar to bring-your-
own-device (BYOD) policies, where companies install
profiles and security software on employee-owned de-
vices used for work, a company might restrict apps to run
only within πBox, thus ensuring that these apps—and
any information they access—are securely confined.

This paper addresses three research questions raised
by this architecture. Can we construct useful apps under
these constraints? Can we adapt differentially private ag-
gregation to an environment where app providers need
to query periodically updated statistics of user activities?
Are the overheads of πBox acceptable?

To answer these questions, we constructed (1) a pro-
totype of πBox and (2) a set of sample apps that rep-
resent common app types and demonstrate the util-
ity of our platform: a cloud-backed password vault, an
ad-supported news reader, and a transcription service.
We also ported two open-source Android apps: the Os-
mAnd navigation app [41] and ServeStream, an HTTP-
streaming media player and media server browser [51].
In Section 2.5, we explain in more detail the classes of
apps and app features supported by πBox.
πBox uses differential privacy to prevent aggregate

statistics from leaking too much information about users
to app publishers. Conventional differentially private
queries on static datasets can be very inaccurate when the
input data is changing due to user behavior. Instead, we
apply algorithms for differential privacy under continual
observation [16]—in particular, delayed-output counters.
We also list the parameters that enable an app publisher
to tune the amount, frequency, and/or accuracy of the re-
ported statistics subject to the platform’s bound on the
rate of information leakage. The resulting relative error
rates on real-world traces are five times lower than with
conventional differentially private counters.

The paper proceeds as follows. Section 2 presents an
overview of πBox’s design. Section 3 shows how πBox
deploys differential privacy under continual observation
and privacy-preserving top-K lists to implement aggre-
gate channels. Section 4 describes our prototype imple-
mentation. Section 5 evaluates it and describes the apps
we developed or ported to πBox. Section 6 discusses re-
lated work. Section 7 concludes.

2 Design

πBox is a platform for executing apps and associated
remote services. There are three types of principals in-
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volved in πBox: (1) the platform provider who sup-
plies the client (either software, e.g., Google Chrome, or
both hardware and software, e.g., Apple iPhone, Google
Nexus 7, or Kindle Fire), as well as the cloud resources
on which app instances execute, and deploys πBox on
both the client and the cloud; (2) users who invoke and
use untrusted apps on their local devices and their slice of
the cloud; and (3) publishers who provide apps, content
for apps, and/or advertisements.

2.1 Threat model
πBox is based on the following design philosophy: do
not trust the apps nor rely on the users to make fine-
grained privacy decisions; instead, trust the platform
to enforce privacy. We argue that trusting the platform
provider is far more reasonable than expecting users to
judge the trustworthiness of many different, often ob-
scure app publishers. After all, users must already trust
the platform provider to not leak their private data. Fur-
thermore, third-party platform providers are often trusted
brands such as Google, Apple, and Amazon that have
strong incentives to take care of their customers’ data.
Therefore, we assume that both users and app publishers
trust the platform, but users do not trust the publishers.
Furthermore, we neither assume that the provider trusts
the publishers, nor rely on auditing by the provider to
eliminate misbehaving apps.1

πBox is thus designed for the scenario where an un-
trusted app runs in a trusted sandbox. In this model, the
app’s publisher may be malicious, the code of the app
may attempt to leak users’ private data or reveal infor-
mation about its users to the publisher, some of the app’s
users may be colluding with the app in an attempt to learn
other users’ data, etc. That said, the attacker is subject to

1Platforms that do audit apps such as Google Play provide addi-
tional assurance that is complementary to what πBox provides.
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standard computational feasibility constraints (e.g., the
attacker cannot subvert cryptographic primitives).

The sandbox provided by πBox is assumed to be
trusted. This includes both the components running on
the client device and those running in the cloud. Like any
software, if πBox is implemented incorrectly, it may be
subject to code injection and other attacks that compro-
mise the “ideal sandbox” abstraction. These attacks are
outside the scope of this paper, which focuses primarily
on the design of the sandbox. Another way in which the
“ideal sandbox” abstraction may be violated is via covert
(e.g., timing) channels between processes running in the
sandbox and those outside the sandbox [33, 47]. If an
implementation of πBox is vulnerable to such channels,
apps may be able to exfiltrate private data.

There has been much research on sandboxing mecha-
nisms (e.g., [27, 31, 60], among others). This work is or-
thogonal and complementary to the design of πBox and
can be applied to any implementation thereof.

2.2 Extended sandbox
Apps in πBox have two halves: one runs locally on the
user’s device, the other (optional) runs remotely in the
cloud. πBox, executing as the platform both on the de-
vice and in the cloud,2 supplies a per-user, per-app sand-
box that spans the device and the cloud. In effect, πBox
provides the abstraction that a slice of the cloud is part
of the user’s device: all of the app’s computations and
storage are done within this “distributed” device, which
is otherwise isolated to protect the user’s privacy.

The local half of an app running on the user’s device
can only connect to the remote half associated with the
same app and user. The local half does so by making a
request to the authentication service running as part of
the platform on the device. This service sends the user’s
credentials and the app’s ID to the authentication man-
ager running as a part of the platform in the cloud (see
Figure 1). Upon successful authentication, the authenti-
cation manager starts up the requesting app’s remote half
for that specific user and opens a secure channel between
the local and remote halves.

2.3 Storage and communication
An app running within πBox cannot write data or es-
tablish network connections outside of the sandbox. To
support app functionality, πBox provides five restricted
storage and communication channels (see Table 1).

The private vault provides per-sandbox (i.e., per-user,
per-app) storage that lets an app instance store data spe-
cific to a particular user (e.g., user profile, location, query

2Apple (iOS/iCloud) and Google (Android/Cloud Services) already
provide app platforms that extend from users’ devices to the cloud.

Written by Read by Purpose
Shared channels for all users of an app
Content
storage

Publisher App Store app data
and content

Aggregate
channel

App Publisher Collect usage
statistics

Individual channels for each app instance
Private
vault

App App App-specific

Inbox App (via
sharing
channel),
Publisher

App Receive shared
content, noti-
fications from
publisher

Sharing
channel

App App (via
inbox)

Share content

TABLE 1—Channels in πBox.

history, etc.) in order to provide personalized services.
For example, a password app may use the vault to store
the user’s passwords, while a news reader app may store
keywords of the articles the user has read. Each sand-
boxed app instance has read/write access to its own pri-
vate vault; no one else has any access rights.

The content storage provides per-publisher storage for
the content that app instances need to function, e.g., maps
for a navigation app. Each publisher has read/write ac-
cess to its own content storage so that the publisher can
(1) update the content and (2) grant read-only access to
apps that need this content. Apps may draw content from
multiple publishers’ content storage. For example, an ad-
supported news reader may load news articles from a
news publisher’s storage and ads from an ad broker’s
storage. Although content storage is shared across all
sandboxes that have access to it, read-only access pre-
vents communication between app instances.

The aggregate channel provides a per-app channel
(shared among all instances of an app) for publishers
to collect statistics on users’ collective behavior while
protecting privacy of individual users. For example, pub-
lishers of advertising-supported apps may collect the to-
tal number of ad impressions, but not which user viewed
which ad. Similarly, publishers of news or video stream-
ing apps may learn which articles or videos are popular,
but not who viewed what content. Publishers have read
access to their respective aggregate channels, and each
app has write access to its channel. In Section 3, we de-
scribe how πBox employs differential privacy to protect
data released via this channel.

The inbox provides per-sandbox storage for the user of
a particular app instance to receive information from the
app’s publisher as well as the content, if any, shared by
other users of the same app. Each sandbox has read/write
access to its inbox. All writes from the publisher or other
users must go through πBox; when publishers want to
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communicate with their apps’ users, they submit mes-
sages with the user as the recipient, and πBox delivers
the message to the appropriate inbox.

Finally, the sharing channel provides a per-sandbox
method for sharing content with other users of the same
app. To ensure that all recipients of the shared content
are explicitly approved by the user, we rely on a trusted,
platform-controlled dialog box (similar to a “powerbox,”
which is traditionally used to restrict the paths an app
can access [34, 50]). When a user wants to share content
from an app, the app writes the data to be shared into its
own sharing channel (to which no other sandbox has ac-
cess) and notifies the platform. πBox controls the rest of
the sharing process: it (1) reads in the data, (2) presents
the data to the user in a dialog box that explicitly noti-
fies the user about the imminent sharing of the presented
data, (3) prompts the user to confirm the recipients, and,
upon confirmation, (4) writes the shared content to the
inboxes of the designated recipients’ sandboxes. This de-
sign ensures that users are aware when and with whom
sharing occurs, but it cannot prevent the app from surrep-
titiously leaking private information in the shared data
(e.g., through steganography).

2.4 Advertising and third-party services

Advertising. To broadly support free apps, many of
which are financed by ads, πBox must support in-app
advertising. Traditionally, advertisers tell ad networks
which ads to display, how much they are willing to pay
per impression, and the interests they are targeting. Ad
networks organize ads into lists ranked by factors such as
the bid, number of impressions already made, etc. When
an app wants to display an ad, the ad network provides
an ad based on the user’s perceived interests.

To prevent apps from leaking users’ private data to ad-
vertisers, πBox changes this process: (1) the ad network
must store its ads in content storage on the πBox cloud
platform, (2) the number of impressions must be released
via the aggregate channel (see Section 3.1), and (3) the
logic for selecting and fetching an ad from content stor-
age (based on the user’s profile, activities, etc.) and the
logic for outputting to the aggregate channel must be im-
plemented inside the app (e.g., as part of a SDK or li-
brary) and executed inside the sandbox. For efficiency,
πBox allows publishers to share content storage across
multiple apps. Since apps have read-only access, this
does not affect privacy guarantees.
πBox protects users’ identities and thus prevents ad

networks from singling out individuals who may be en-
gaged in ad impression/click fraud. That said, other de-
fenses [22]—per-user thresholds on the number of im-
pressions/clicks, bait ads, and using historical statis-
tics to detect apps that pad the number of impres-

sions/clicks—continue to be effective even with πBox.
Ads that click-through to external sites can leak a

user’s identity (or at least the IP address) and other pri-
vate information.3 In πBox, arbitrary network traffic out
of the sandbox is not allowed, and click-through ads must
redirect the user to trusted platform resources, e.g., an ad
page in the ad network’s content storage.

Although not yet implemented, conventional click-
through ads can be supported in πBox with some mod-
ifications. First, all click-through URLs must be pre-
specified and static for all app instances (they cannot be
dynamically generated or otherwise based on the infor-
mation observed by a given instance). This still allows
a potential leak because the app’s choice of predefined
ads to show to the user may depend on the user’s private
information, but requiring static URLs limits the rate of
leakage. Second, the platform must verify that the click
indeed originated from the user. To support this, πBox
can use a trusted powerbox dialog to prompt the user
for explicit consent, similar to the sharing channel, be-
fore permitting the click to go through. We believe, how-
ever, that this point in the design space for ad support
sacrifices privacy, complicates the guarantees provided
by πBox, and forces users to make privacy decisions for
which they may not fully understand the implications.
πBox does not currently support ad networks that

choose which ads to serve via a real-time auction. Such
auctions require either that users’ profiles be sent to the
advertisers (so they know what they are bidding on),
or that all bidding logic be part of the sandbox. Alter-
natively, there exist proposals for privacy-preserving ad
auctions [46]. Advertising based on real-time bidding ac-
counts for less than 30% of all advertising sales [45], and
the introduction of “Do Not Track” in Web browsers may
adversely impact auction-based advertising [17].
Third-party services. Because πBox does not allow
apps to communicate outside of the platform, apps can-
not use external third-party services such as content de-
livery networks (CDNs). As with ads, apps running on
πBox can only access content and use services that are
hosted by the platform provider and published in the
read-only content storage. Fortunately, many platform
providers already provide services for apps, e.g., maps
from Apple, Google, and Bing, or CDN services such as
Amazon CloudFront and Google PageSpeed.

2.5 Apps supported by πBox
Figure 2 lists many app features and indicates whether
and how πBox protects user privacy for each of them.
In general, apps that do not involve sharing between

3For example, a set of ads may only be shown to (and thus clicked
by) users matching certain criteria or even maliciously micro-targeted
to specific individuals [30].
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FIGURE 2—πBox support for different app features.

users are well-suited for πBox. This includes, for ex-
ample, multimedia, reference, weather, and utility apps,
many of which handle sensitive data (e.g., navigation,
personal finance, password management, malware detec-
tion, speech recognition, etc.). πBox supports the report-
ing of usage statistics, user feedback, and ad impressions.

Some apps only share content occasionally, e.g.,
games that let users share their scores, or camera apps
that let users share some of their pictures. For these apps,
πBox protects user privacy with respect to the app’s core
functionality. Furthermore, the πBox sharing channel en-
sures that any content sharing is explicitly authorized by
the user (malicious apps may still exfiltrate sensitive data
by hiding it in shared content—see Section 2.6).

Finally, there are apps—e.g., Facebook, Twitter, or
multiplayer online games—whose sole purpose is to
allow users to connect, communicate, collaborate, and
share content with other users. Users of such apps al-
ready expect to lose some of their privacy, and πBox can
guarantee relatively little for them.

Each πBox-supported app is assigned a privacy rat-
ing determined by the channels it uses. Apps that only
use the private vault, content storage, or inbox are green:
they never export any data from the sandbox and cannot
leak anything. Apps that use the aggregate channel are
yellow: they may release differentially private statistics
but there is a provable bound on the amount of informa-
tion leaked. Finally, apps that use the sharing channel are
red: they rely on explicit user consent to export infor-
mation and are at a higher risk of leaking private data.
In Section 5.4, we describe how many top apps from the
Google Play store fall into these categories.

2.6 Limitations and scope
πBox reduces privacy risks to the users of many apps
and makes it more difficult to harvest large amounts of
private user information, but it is not a privacy panacea.

First, the differentially private aggregate channel leaks
a little information with every output. This is inevitable,
and we quantify this leakage in Section 3. Note that
no covert communication beyond this leakage is possi-
ble over the aggregate channel because differential pri-
vacy holds regardless of the recipient’s auxiliary (includ-
ing covert) information. In the case of πBox’s aggregate

channel, the timing of the release is differentially private,
too, precluding a malicious app from encoding covert in-
formation in the timing of its aggregate outputs.

Second, while πBox’s sharing channel guarantees that
only the specified recipient can read the shared content, a
malicious app may hide private information in this con-
tent via steganography. Several factors mitigate this risk.
First, πBox shows the content to be shared to the user
and uses the powerbox mechanism to directly confirm
the user’s consent to share. Second, πBox restricts the
type of content to be shared: only plain text and images
are allowed in our prototype.

This is a trade-off between usability and privacy. The
design philosophy behind πBox is to avoid involving
users in privacy-critical decisions (in contrast to the An-
droid permission system). At the same time, sharing is
important for many applications, and πBox lets users ex-
plicitly accept a privacy risk when sharing content.

Most importantly, πBox guarantees that shared con-
tent can only be viewed by the recipients who have been
explicitly approved by the user. While a malicious app in-
stance may be able to embarrass the user by sending pri-
vate information to an approved recipient, the app pub-
lisher still does not have access to this data unless the
recipient (or the user who is sharing) cooperates.

In general, we believe that πBox will be appealing to
entities looking to (1) enhance or safeguard their exist-
ing app platforms by improving user privacy, (2) rent
privacy-preserving cloud resources to app publishers,
and/or (3) provide a curated version of their standard app
store that offers privacy-enhanced apps to enterprise cus-
tomers. πBox is an especially good fit for enterprise en-
vironments, where apps typically contain content from
a single external publisher, do not require (in fact, fre-
quently forbid) sharing of content outside the enterprise,
do not rely on ads, and do not involve functionalities with
multiple external parties such as brokered ad auctions.

3 Protecting privacy

The functionality of many apps depends, both technically
and financially, on some information about their users.
Aggregate statistics are often sufficient—for example,
some ad-supported apps only need to track the number
of ad impressions, not whether a particular user viewed
a given ad—but even they may reveal information about
individuals [8, 14].
πBox uses differential privacy [14] to enable app pub-

lishers to collect relatively accurate statistics on users’
behavior while limiting information leaks about any in-
dividual user. Informally, differential privacy is a frame-
work for designing computations where the influence of
any single input on the output is bounded, regardless
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of the adversary’s knowledge and/or external (auxiliary)
sources of information the adversary may have access to.

“Conventional” differential privacy techniques such as
the Laplacian mechanism (described in the following
section) are primarily intended to protect individual in-
puts in computations on static datasets. By contrast, apps
keep generating new data: for example, an app may con-
tinuously update the number of times a news article has
been read or an ad has been shown. Moreover, app pub-
lishers may be interested in rankings, such as the most
popular news articles or the most frequently misrecog-
nized words in a transcription app. As we will show, con-
ventional mechanisms, while privacy-preserving, result
in an unacceptable loss of accuracy in these settings.

To balance privacy and accuracy, πBox deploys re-
cently developed algorithms for differentially private
counters under continual observation [16] and differen-
tially private ranked lists [7]. To the best of our knowl-
edge, πBox is the first system that uses differential pri-
vacy under continual observation in a working system.

3.1 Counters and top-K lists
In πBox, the key building block for the aggregate chan-
nel is a set of platform-controlled counters. As an app
executes, it may increment one or more counters. Even-
tually, the (randomly perturbed) values of these counters
are released to the app publisher. The list of counters
must be defined by the publisher in advance. Therefore,
a malicious app instance cannot encode user-specific in-
formation in its choice of counter names. The released
counter values are differentially private and thus proba-
bilistically hide the influence of any given user’s data.
πBox enforces user-level differential privacy on these

counters, i.e., the privacy of all data, actions, and any
other inputs associated with a particular user, as opposed
to the privacy of a single input. Formally, for some pri-
vacy parameter ε (described further in Section 3.2), a
computation F satisfies user-level ε-differential privacy
if, (1) for all input datasets D and D′ that differ only in a
single individual user whose inputs are present in D but
not in D′, and (2) all outputs S ⊆ Range(F ),

Pr[F (D) ∈ S] ≤ eε · Pr[F (D′) ∈ S] (1)

A standard mechanism for making any computation F
differentially private is the Laplacian mechanism, which
adds random noise from a Laplace distribution to the out-
put of F before it is released, i.e., F (x) + Lap

(

∆F
ε

)

.
Here Lap(y) is a Laplace-distributed random variable
with mean 0 and scale y, and ∆F is the maximum pos-
sible change in the value of F (F ’s sensitivity) when a
single user’s inputs are removed from the dataset.

Intuitively, the more sensitive a computation is to its
inputs, the more random noise is needed to ensure a

Parameter chosen by platform provider
Per-period privacy budget (R)
Parameters chosen by app publisher
List of counters (L)
Frequency of output release (f )
Privacy parameter (ε)
Max. # counters app instance can update per period (n)
Max. contribution to each counter per period (s)
Buffer size (b)
# of ranked counters (K)

TABLE 2—Parameters for aggregate counters. b and K only
apply to delayed-output and top-K counters, respectively.

given level of privacy. Consequently, ∆F in πBox—and,
therefore, the amount of noise that πBox adds to the re-
leased counter values—depends on the number of coun-
ters a user can update (which we denote as n) and the
maximum amount by which a user can affect any sin-
gle counter (s). There is an important trade-off in the
Laplacian mechanism between privacy (ε) and accuracy:
higher accuracy requires giving up more privacy. We
will revisit this trade-off in detail in Section 3.2.
Supporting periodic updates. Many apps dynami-
cally update counters during execution and then need to
periodically release them. The Laplacian mechanism can
be applied to every release, but if the timing of releases
is independent of the counter’s true value, the random
noise added by the mechanism (which, too, is indepen-
dent of the counter’s value) can be much larger than the
true value, resulting in high relative error. This arises, for
instance, when counting the number of impressions for
rarely displayed ads targeting a niche group of users.
πBox uses delayed-output counters [16] instead. Fig-

ure 3 describes how such a counter is implemented. Intu-
itively, this mechanism randomly delays releases of the
counter value; if the value is small relative to the noise
that must be added, the release is likely to be postponed.

Furthermore, rather than allowing counters to be con-
tinuously queried, πBox enforces a minimum interval
between releases (line 5). Thus, even the counters that
have internally accumulated a large number of updates
may not be immediately released. Delaying the release
may affect the freshness of the released values, but the
relative error will be smaller.
Supporting ranked top-K lists. To release top-K
lists, πBox adapts techniques by Bhaskar et al. [7]. The
app publisher specifies K beforehand, and the amount of
noise that is added is proportional to K, which is typi-
cally smaller than the amount of noise (proportional to
n) that would have been added if we had used the Lapla-
cian mechanism on every counter to determine the top
K. To generate a ranking of the counters without their
associated values, the algorithm adds Lap(4Ks/ε) ran-
dom noise to the values of all counters and picks the

6



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 507

1: Vi : true count in period i
2: λ ⇐ s·n

ε
3: A ⇐ 0
4: D ⇐ b+ Lap(λ)
5: for each period i of duration 1/f do
6: A ⇐ A+ Vi

7: if A−D > Lap(λ) then
8: Release A+ Lap(λ)
9: A ⇐ 0

10: D ⇐ b+ Lap(λ)
11: end if
12: end for

FIGURE 3—Delayed-output counter.

top K counters based on these noisy values. If an app
publisher needs to know the actual values of the associ-
ated counters as well, the algorithm adds an additional
Lap(2Ks/ε) noise to the true values of the selected K
counters before releasing their values.

It may appear that the ability to release top-K lists al-
lows apps to leak sensitive information. For example, the
publisher of a password management app could learn the
K most common user passwords (in any case, these are
already well-known). Note, however, that the publisher
cannot learn the password of any given user. Similarly,
conventional differential privacy allows the publisher to
ask how many users have a particular password, but the
answer does not reveal any specific user’s password.

Finally, πBox’s aggregate channel can be extended
to support other differentially private functions such as
mean and threshold [48].

3.2 Choosing privacy parameters

Absolute privacy cannot be achieved: as long as the re-
leased values have any utility, the original data can be
reconstructed after observing at most a linear (in the size
of the dataset) number of values [13]. To model the cu-
mulative loss of privacy after multiple computations on
the same private data, differential privacy uses the notion
of a privacy budget [15, 35]. Every ε-private computa-
tion charges ε cost to this budget. The higher the value of
ε, the less noise is added, thus the released value is more
accurate, but the privacy cost is correspondingly higher,
too. The budget is pre-defined by the data owner. Once it
is exhausted, no further release is allowed.

In our setting, it is undesirable for an app to lose func-
tionality after a while. Instead, πBox enforces a per-
period privacy budget that bounds privacy loss per pe-
riod by parameter R, which is chosen by the platform
provider. For a given R, the app publisher may specify
the types of the counters the app will release (delayed-
output and/or top-K with or without associated values),

as well as the relevant parameters in Table 2, so long as

c · f ≤ R (2)

where c = ε/2 for top-K counters without associated
values and ε for the other two types of counters.

To understand how c and ε relate to the amount of in-
formation leaked, let P be an adversary’s prior proba-
bility of the user’s private data having a particular value
and P ′ be the posterior probability after observing the re-
leased counters. Condition (1) ensures that P ′ ≤ ec · P ,
i.e., any released value changes the adversary’s prior
probabilities (no matter what they are!) by no more than a
constant multiplicative factor. If uncertainty is measured
as min-entropy of the adversary’s probability distribution
over the private data,4 every release yields (c log2 e) bits
of information to the adversary [1, 6]. Given this repre-
sentation of uncertainty, πBox’s counters release at most
(f · c log2 e) = (R log2 e) bits per period. For example,
an app that uses delayed-output counters with ε = 1 and
the release frequency f of once per day leaks at most
1.44 bits of information daily.

While it is straightforward to calculate how much
noise should be added for a given choice of counter type
and ε, the utility of a particular counter arguably depends
not just on the amount of noise added, but also the ac-
tual true counter value, i.e., the relative amount of noise
matters. The larger the true value, the larger the absolute
noise that can be tolerated for a given relative error, thus
allowing for smaller values of ε.

As long as condition (2) is followed, app publishers
are free to choose the types of the counters used by their
apps and the values of the parameters listed in Table 2.
For example, a publisher may want more frequent output
(f ), at the expense of lower ε, higher λ and thus lower ac-
curacy. To maintain the same accuracy, the publisher may
keep the same λ at the cost of decreasing the maximum
number of counters a single app instance can update (n)
and/or the maximum amount it can contribute (s).

4 Implementation

We implemented a prototype of πBox using Android 2.3
(Gingerbread) for the device client; Jetty [29], a Java
servlet container, for the remote services; and HBase [23]
for the cloud communication and storage channels. The
trusted computing base (TCB) consists of the above soft-
ware, cloud operating system (Linux in our case), and
the πBox implementation, which itself is approximately
7,500 lines of code for the cloud half and 2,700 for the
device half. The design of πBox is largely agnostic to
the specific sandboxing technology and could have used

4The min-entropy of a probability distribution that assigns proba-
bility pi to some event i is −(maxi log2(pi)).
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virtual machines, Native Client [39], or more advanced
sandboxes, which would change the size of the TCB.

4.1 Isolation and authentication

Client isolation. To implement the sandbox on the
device, we augmented Android’s built-in sandboxing
mechanism. By default, Android assigns each app a
unique user identifier (UID). πBox allows non-privacy-
preserving apps to coexist with privacy-preserving apps
on the same device, but assigns UIDs from different
ranges to apps of different types. This makes isolation
enforcement simpler in the kernel code.

Android uses standard Linux permissions to isolate
apps from each other, but this is not enough to prevent
an app from abusing the permissions it has. To prevent
πBox-confined apps from leaking private data, we mod-
ify Android to block them from creating world-readable
files or directories, and from writing to files or directo-
ries owned by another app’s UID.5 πBox does not allow
confined apps to communicate with other non-system
apps via IPC, including Binder IPC (the basic primitive
for various higher-level Android IPC mechanisms). Fi-
nally, we use iptables to confine the apps’ network traf-
fic. These changes are applied at the kernel level only to
πBox-confined apps (recognized by their UIDs).
Cloud isolation. We implement the server-side func-
tionality for πBox apps as Java servlets using Jetty. Many
existing Web apps, e.g., those on Google App Engine [4],
can thus be easily adapted to πBox.

In Jetty, each app is isolated in a separate Web app con-
text (a container that shares the same Java class loader).
In πBox, each user of an app is also isolated in a sepa-
rate context, achieving classloader-level isolation. To re-
strict the servlet’s communication via system resources,
we rely on Java’s security monitor. Our sandbox also in-
cludes many other restrictions used by Google App En-
gine, e.g., disallowing reflection and controlling access
to JVM-wide resources such as system properties.
Authentication. When an app on the user’s device
wants to communicate with its cloud-based half, it sends
an “intent” (a high-level IPC mechanism in Android) to
πBox’s local trusted authentication service, implemented
as a system app. After identifying the requesting app, the
authentication service requests the user’s credentials via
user input or from a cache and sends them, along with the
app’s ID, through a TLS tunnel to πBox’s authentication
manager in the cloud. Upon successful authentication,
the authentication manager sets up a new servlet instance
at a specific URL, establishes an IPsec endpoint on the
machine where the servlet is instantiated, and sends this

5This implies that an app can only write to directories that it alone
has read access to and that other apps cannot see the files it has written.

URL, a one-time password that is required to access the
servlet instance, and the IPsec key to the authentication
service on the user’s device.

The authentication service establishes the other end of
the IPsec tunnel on the device, updates iptables to al-
low the app to communicate with the servlet, and passes,
via intent, the URL and password to the app. IPsec en-
sures that all communication to and from the servlet is
encrypted, and iptables ensure that the app on the user’s
device can only communicate with the user’s servlet in-
stance via this IPsec tunnel. Finally, the app running lo-
cally on the user’s device authenticates using the pro-
vided password via HTTP basic authentication over the
IPsec tunnel (which encrypts the credentials); this step
ensures that only this specific app can communicate with
the servlet. Once this process is complete, the app can
send HTTP requests to the provided URL and receive
HTTP responses from its cloud component.

4.2 Storage and communication channels

πBox’s storage systems use local device storage and
HBase, a popular NoSQL storage system. Local device
storage is part of πBox’s private vault. Any data that is
written to local storage is secured as described in Sec-
tion 4.1 and cannot be exported from the sandbox. Ac-
cess to cloud storage is provided via a HBase-like API.

When an app publisher submits an app to the plat-
form, the publisher provides a WAR (Web application
ARchive) file that contains the app’s servlet code and
XML files that describe the schemas of the HBase ta-
bles that the app needs for each type of cloud storage.
To implement various channels, πBox provides wrap-
pers of the HBase client that expose the appropriate in-
terfaces to servlet instances. For example, the interface
to content storage exposes read-only operations on the
storage’s shared tables. The interface to the cloud-backed
private vault provides both read and write access to the
per-sandbox table. The wrapper for the aggregate chan-
nel exposes an update-only interface for the counters,
which are stored in the HBase tables by πBox. Stored
counter values are periodically released by (1) sanitizing
them via the differential privacy module using the param-
eters provided by the app publisher (Section 3.2) and (2)
writing them to a table that can be read by the publisher.

The per-sandbox inbox allows a user’s servlet to re-
ceive messages from the app publisher or from another
user’s servlet for the same app. This inbox is imple-
mented using an HBase table in which each row cor-
responds to a single message. The row includes the
sender’s platform username (the name used to authen-
ticate with the authentication service or a special user-
name reserved for the app’s publisher), a timestamp, and
the message body. Messages from the publisher are de-
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FIGURE 4—Latency vs. throughput for πBox mechanisms.

livered to the recipient’s inbox by a designated servlet,
which can be invoked only by the authorized publisher.

Lastly, when an app wants to share content through
the sharing channel, it sends an intent, along with the
content to be shared, to πBox’s sharing service, which
is implemented as part of the authentication service. The
sharing service prompts the user for the recipients’ user-
names and sends the message, along with the usernames
of the sender and the recipients, to a designated servlet
that only the platform can access. This servlet then adds
the message to the inbox of each recipient.

5 Evaluation

5.1 Performance overhead
We evaluate πBox using a server with two four-core
Xeon E5430 CPUs and 16 GB RAM and 4 clients with
a single-core 3 GHz Pentium 4 Xeon CPU with hyper-
threading and 1 GB of RAM, all running Fedora 8.

We first use micro-benchmarks to measure the
throughput and response time of the various mechanisms
employed by πBox on two types of workloads: a simple
static workload where the server responds with about 10
bytes of static HTTP body data, and a computationally
intensive workload where the server randomly generates
1 MB of data and calculates its SHA-256 hash. We gener-
ate the workloads by having a varying number of clients
continuously submit requests over a 30-second interval.

Figure 4 shows the results with different components
turned on. In the base configuration, we run the server
with the Java security monitor disabled, no isolation
(i.e., a single servlet instance serves all client requests),
and without an IPsec tunnel between the server and the
clients. We then enable the security monitor, run multiple
servlet instances to serve different clients, and/or enable
IPsec. For the simple static workload, πBox reduces the
throughput of the system by roughly 50%, incurring an
overhead of 0.17 ms per operation. For the heavier SHA-
256 workload, however, the computation required to gen-
erate the hash effectively hides the overhead of πBox.

To measure the overhead of isolating app instances,
we fix the load offered to the server (i.e., the number
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FIGURE 6—Fraction of time the true top-K documents appear
in the noisy top-K list.

of requests generated by the clients) and vary the num-
ber of Web app containers (i.e., per-client servlet con-
texts) on the server. Figure 5 shows the throughput and
response time of πBox for three types of workloads, with
requests uniformly distributed across the containers. The
static and SHA-256 workloads are the same as in the pre-
vious experiment. In the news reader workload, clients
request a list of new articles (about 300) and a specific
article (5 to 10 KB) from the servlet half of our news
reader app (Section 5.3). This causes many I/O-intensive
operations on the small HBase instance that stores the ar-
ticles. As Figure 5 shows, the overhead of user isolation
is insignificant for all three workload types.

5.2 Privacy vs. accuracy
To show that the differential privacy mechanisms em-
ployed by πBox provide reasonable accuracy in real-
world scenarios, we first apply the top-K mechanism
to the 60-day Web server trace of the 1998 World Cup
website [59]. For each day, we calculate the top 5 and
top 10 most frequently accessed documents and use the
πBox’s aggregate channel to output “noisy” top-5 and
top-10 lists. The total number of daily accesses for a top-
10 document ranged from 6,000 to 14,000.

Figure 6 shows, as a function of the privacy parameter
ε, how often the true top-5 and top-10 documents on a
particular day appeared in the noisy, privacy-preserving
top-5 and top-10 lists output by the aggregate channel.
As ε increases, the accuracy of the noisy rank lists im-
proves. For example, the 8th-ranked item appears in the
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FIGURE 8—Accuracy of delayed-output counter on two differ-
ent documents. We use ε = 1, |L| = 100, and b = 500.

noisy top-10 list 75% of the time when ε = 0.05, but
95% of the time when ε = 0.2. This percentage is even
higher for items with higher true ranks. Figure 7 shows
the average noisy rank given to true top-5 and top-10
documents. The accuracy of the noisy rank improves
with higher ε; with ε = 0.2, all ranks are correct.

To illustrate the advantages of the delayed-output
mechanism for releasing infrequently updated counters,
we use a trace from the University of Saskatchewan Web
server [49] which contains a variety of access patterns.
For this experiment, we set ε = 1, the total number of
delayed-output counters (|L|) to 100, the buffer size (b)
to 500, and the release frequency to 1 week. We com-
pare the delayed-output counter to a basic counter that
simply outputs its differentially private value every week.
Figure 8 shows the values of the delayed-output counter
and the basic counter over a 30-week span for two doc-
uments with different access patterns. For the frequently
accessed document, the delayed-output counter is off by
12.9% on average vs. 19.6% for the basic counter. For the
less frequently accessed document, the delayed-output
counter is much more accurate, with a relative error of
15.6% vs. 83.1% for the basic counter.

5.3 Apps
To illustrate how to build useful privacy-preserving apps
in πBox, we developed three sample apps and ported two
existing open-source apps.
Password manager. A password manager is an exam-
ple of an app that needs to keep (but not share) sensitive

Content storage
(news, ads)

Aggregate channels
(# views, # displays)

Private vault
(settings, history)

Publishers
(news, ads)

(1a)

(1b)

(2a)

(2b)

(3a)

(4a)

(4b)

(5b)

(5a)

(3b)

Private vault
(settings, history)

FIGURE 9—Interactions and data flow between the news reader
app and πBox. The dark (solid, dotted) lines represent the flow
from the (content, ad) publisher. The lighter lines represent the
same flows for another user of the same app.

data, e.g., store a user’s credentials in the cloud so that
the user can access them from different devices and to
avoid keeping them on the devices themselves. Although
many such apps use encryption, the user must trust that
the app’s publisher is neither malicious nor incompetent.

Our πBox-based password manager app simply stores
the user’s passwords in its cloud-backed private vault, en-
abling their retrieval from multiple devices. Despite its
simple design, the app guarantees that (1) only a specific
user can access the stored password via the app, and (2)
the app cannot leak the stored passwords to anyone else
(i.e., this app is “green”; see Section 2.5). This benefits
both the user, who does not have to worry about the trust-
worthiness of the app, and the app publisher, who can
rely on πBox to secure the publisher’s app’s storage.
News reader. Our news reader app is an example of
an ad-supported media browsing and consumption app
that uses πBox’s storage systems and involves multiple
publishers. Figure 9 shows the flow of data between the
publishers, the app, and the platform.

The main functionality in any news reader app is dis-
playing content (news articles) to the user. In our imple-
mentation, the publisher supplies the articles by adding
to, updating, and removing from the app’s content stor-
age located on πBox’s cloud platform (Figure 9, 1a). The
app has read-only access to this storage (Figure 9, 2a).

The news reader may provide personalized content to
the user, for example, recommend certain articles based
on the user’s reading history. It can track the user’s read-
ing history by writing to its private vault (Figure 9, 3a).
Because the vault is per-user and per-app, this data can-
not leak to other app instances or the app publisher.

Many apps of this type are ad-supported. The ads may
be published by either the app publisher or a separate en-
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tity, e.g., an advertising network partnering with the app
publisher. Like the news articles, the ads are published
and updated by their publisher and viewed by the user via
content storage (Figure 9, 1b and 2b). Any personaliza-
tion and micro-targeting is done by writing the relevant
data to the private vault (Figure 9, 3b).

Both news and ad publishers may want to know how
often their articles and ads have been viewed. Our app
keeps one counter per article and ad. We use a top-10
list to track the most popular articles (Figure 9, 5a) and
delayed-output counters for ad impressions (Figure 9,
5b), since the latter do not need to be released frequently.

The news reader app is a “yellow” app: although it ex-
ports statistics, πBox provides differential privacy guar-
antees to its users. It is straightforward to extend the news
reader to let users share interesting articles with other
users, which would make the app “red.”
Transcription. Our transcription app uses cloud-
based voice recognition. It records the user’s speech on
the device and transmits it to a servlet, which writes the
recording to per-sandbox temporary scratch space and
executes Sphinx-4 [53], an open-source speech recog-
nition toolkit, to transcribe the text. The transcription is
then sent back to and displayed by the app on the device.
Our current prototype keeps the dictionary in the app’s
binary but we could also use content storage for this pur-
pose, allowing the publisher to update the dictionary.

This app uses the aggregate channel to release the
confidence scores of speech recognition for each l-gram
(l = 1 in our prototype). First, the app publisher defines
counters for all words in the Sphinx-4 dictionary (per Ta-
ble 2, L is the list of these counters, n = |L|). Sphinx-4
provides confidence scores that range from 0 (low confi-
dence) to 1. Because the publisher is likely interested in
the most misrecognized words, our app inverts the score
(thus making higher scores reflect lower confidence, up
to a maximum of s = 1) before adding it to the previous
value of the counter. The top-K list thus contains the K
(10 in our prototype) most misrecognized words.

The transcription app is a “yellow” app. πBox guar-
antees that, even if the recordings of the user’s speech
contain highly sensitive data, the app can leak this data
only through the differentially private aggregate channel
as (noisy) top-K word lists, which do not identify the
actual words spoken by specific users.
Porting existing apps. We ported OsmAnd [41], an
Android navigation app based on OpenStreetMap [40],
and ServeStream [51], an HTTP-streaming media player
and media server browser, to πBox.

The major changes to the apps involved (1) adding
code to initiate authentication via πBox’s authentication
service, (2) modifying all HTTP requests app to include
the authentication credentials provided by the authentica-
tion service (Section 4.1), and (3) moving map and media
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Business!

Cards/Casino!
Casual!
Comics!

Communication!
Education!

Entertainment!
Finance!

Health/Fitness!
Lifestyle!

Live Wallpaper!
Media/Video!

Medical!
Music/Audio!

News/Magazines!
Personalization!

Photography!
Productivity!

Racing!
Shopping!

Social!
Sports!

Sports Games!
Tools!

Transportation!
Travel/Local!

Weather!

Paid apps! Free apps!

FIGURE 10—Number of top-10 apps in Google Play categories
(as of Feb. 2013) that can be supported by πBox. Unsupported
apps are uncolored/white. Stripes represent apps that, due to
non-core sharing or unsupported functionality, are one color but
whose core functionality is another color, e.g., a PDF viewer
that allows sharing is red, but its core is green.

content into πBox’s content storage and serving them via
servlets. The use of HTTP as the communication proto-
col simplified porting these apps to πBox, but this sim-
plification is likely to apply to many other apps. Overall,
for OsmAnd, we modified or added 174 out of 119,147
lines of code; for ServeStream, 133 out of 13,193 lines.

Both ported apps use only the private vault and content
storage, making them “green.”

5.4 Coverage of existing apps
To further evaluate how well πBox can support existing
app functionalities, we surveyed the top 10 free apps and
top 10 paid apps from all categories excluding wallpaper,
widget, and library in the Google Play app store, for a to-
tal of 30 categories and 600 apps. This survey was based
solely on the developer’s description of the app in Google
Play, thus the reported numbers are only estimates.

Figure 10 shows how many apps can be supported by
πBox and the degree of support. Among the paid apps,
46% are green, 18% red, and 36% unsupported; consid-
ering only core functionality, 74% are green. Among the
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free apps, 37% are yellow, 21% red, and 42% unsup-
ported; considering only core functionality, 67% are yel-
low. Unsurprisingly, many of the unsupported apps are
those that are categorized as “communication” or “so-
cial” and thus require frequent sharing of data. Free apps
are largely ad-supported and thus at least yellow.

6 Related work

xBook [52] and the system of Viswanath et al. [57] em-
ploy an extended sandbox mechanism similar to πBox
for social-networking services. These systems protect
user information stored on the platform (e.g., users’ pro-
files and social relationships). Hails [21] protects user
data on the platform using language-level information
flow control. Unlike πBox, none of these systems can
protect private information that apps directly receive or
infer from their interactions with the users.

In xBook, each user decides whether to allow a partic-
ular domain to access a given part of the user’s profile.
By contrast, πBox simplifies users’ decision-making by
color-coding the apps based on their potential for privacy
violations. xBook anonymizes app statistics (with no for-
mal privacy guarantees), while the system of Viswanath
et al. uses conventional differential privacy. As we show
in Section 5.2, this can lead to high relative errors when
releasing rarely updated values.

Embassies [26] is somewhat similar to πBox in that
it aims to secure apps through a minimal interface that
allows most apps to function correctly. Unlike in πBox,
app publishers are not viewed as adversaries with respect
to the user data collected by the app.

Dynamic taint analysis tracks the flow of sensitive
data through program binaries [10, 24, 62] and can
help protect user privacy. For example, TaintDroid [18]
detects (rather than prevents) privacy violations, while
AppFence [25] uses data shadowing and exfiltration
blocking to prevent tainted data from leaving the device.
Neither system handles implicit leaks. While taint-based
systems can track specific data items such as device ID,
they cannot prevent the app from leaking information
about the user’s behavior (e.g., articles the user has read).
In general, dynamic taint tracking is complementary to
the guarantees provided by πBox. For example, it can be
used to prevent certain data items from being declassified
even via differentially private channels.

Bubbles [55] aims to capture privacy intentions by
clustering data into “bubbles” based on explicit user be-
havior. The privacy guarantee is similar to that of πBox’s
sharing channel: once the user adds a friend to a bubble,
this friend gains access to all data in that bubble. Bubbles
is limited to apps that run on the client device only.

ObliviAd [5] and PrivAd [22] are privacy-preserving
online advertising systems that aim to protect user pro-

files from ad brokers. ObliviAd creates a black box at
the ad broker using a secure coprocessor and oblivious
RAM. This black box serves ads to clients, receives re-
ports about ad clicks and impressions from clients via
a secure TLS channel, records which ads were clicked
or viewed (but not who viewed an ad), and only releases
these records in large batches to make it difficult to deter-
mine who saw which ad. In PrivAd, clients fetch a large
set of ads that are roughly based on users’ interests; more
accurate targeting is done only at the client. When the
client reports which ads have been shown, a trusted third
party anonymizes his identity before sending the data to
the ad broker. By contrast, πBox aims to provide rigor-
ous privacy guarantees without sacrificing the ability of
advertisers to obtain accurate impression counts.

PINQ [35] and Airavat [48] are centralized platforms
for differentially private computations on static datasets.
PDDP [9] is a distributed differential privacy system in
which participants maintain their own data.

While the cloud provider is trusted in πBox, Cloud-
Visor [61] and CryptDB [44] focus on untrusted
clouds. CloudVisor hides users’ data from the hypervi-
sor using nested virtualization, CryptDB uses encryp-
tion. CLAMP [42] employs isolation and authentication
mechanisms that are similar to πBox to protect private
data in LAMP-like Web servers. It focuses on compro-
mised servers rather than malicious applications.
πBox can be viewed as imposing a mandatory infor-

mation flow policy on untrusted apps. Previous work on
information flow control includes [12, 32, 38, 60] and
hundreds of other papers.

Bring-Your-Own-Device approaches that support dual
workspaces [3, 58] enable personal and corporate data to
coexist on the same device while permitting only trusted
apps to access the corporate data. πBox takes this idea a
step further and allows untrusted apps to run on corporate
data, thus realizing the idea of Bring-Your-Own-App.

7 Conclusion

πBox is a new app platform that combines support for
apps’ functional needs with rigorous privacy protec-
tion for their users. Our evaluation demonstrates that
πBox can be used in many practical scenarios, includ-
ing “bring-your-own-app” enterprise deployments where
external apps operate on proprietary company data.
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Abstract

With increasing use of mobile devices, photo shar-
ing services are experiencing greater popularity. Aside
from providing storage, photo sharing services enable
bandwidth-efficient downloads to mobile devices by
performing server-side image transformations (resizing,
cropping). On the flip side, photo sharing services have
raised privacy concerns such as leakage of photos to
unauthorized viewers and the use of algorithmic recog-
nition technologies by providers. To address these con-
cerns, we propose a privacy-preserving photo encoding
algorithm that extracts and encrypts a small, but signif-
icant, component of the photo, while preserving the re-
mainder in a public, standards-compatible, part. These
two components can be separately stored. This technique
significantly reduces the accuracy of automated detec-
tion and recognition on the public part, while preserving
the ability of the provider to perform server-side trans-
formations to conserve download bandwidth usage. Our
prototype privacy-preserving photo sharing system, P3,
works with Facebook, and can be extended to other ser-
vices as well. P3 requires no changes to existing services
or mobile application software, and adds minimal photo
storage overhead.

1 Introduction
With the advent of mobile devices with high-resolution
on-board cameras, photo sharing has become highly pop-
ular. Users can share photos either through photo sharing
services like Flickr or Picasa, or popular social network-
ing services like Facebook or Google+. These photo
sharing service providers (PSPs) now have a large user
base, to the point where PSP photo storage subsystems
have motivated interesting systems research [10].

However, this development has generated privacy con-
cerns (Section 2). Private photos have been leaked
from a prominent photo sharing site [15]. Furthermore,
widespread concerns have been raised about the appli-
cation of face recognition technologies in Facebook [3].
Despite these privacy threats, it is not clear that the us-
age of photo sharing services will diminish in the near
future. This is because photo sharing services provide
several useful functions that, together, make for a seam-
less photo browsing experience. In addition to provid-

ing photo storage, PSPs also perform several server-side
image transformations (like cropping, resizing and color
space conversions) designed to improve user perceived
latency of photo downloads and, incidentally, bandwidth
usage (an important consideration when browsing photos
on a mobile device).

In this paper, we explore the design of a privacy-
preserving photo sharing algorithm (and an associated
system) that ensures photo privacy without sacrificing
the latency, storage, and bandwidth benefits provided by
PSPs. This paper makes two novel contributions that, to
our knowledge, have not been reported in the literature
(Section 6). First, the design of the P3 algorithm (Sec-
tion 3), which prevents leaked photos from leaking infor-
mation, and reduces the efficacy of automated processing
(e.g., face detection, feature extraction) on photos, while
still permitting a PSP to apply image transformations. It
does this by splitting a photo into a public part, which
contains most of the volume (in bytes) of the original, and
a secret part which contains most of the original’s infor-
mation. Second, the design of the P3 system (Section 4),
which requires no modification to the PSP infrastructure
or software, and no modification to existing browsers or
applications. P3 uses interposition to transparently en-
crypt images when they are uploaded from clients, and
transparently decrypt and reconstruct images on the re-
cipient side.

Evaluations (Section 5) on four commonly used image
data sets, as well as micro-benchmarks on an implemen-
tation of P3, reveal several interesting results. Across
these data sets, there exists a “sweet spot” in the param-
eter space that provides good privacy while at the same
time preserving the storage, latency, and bandwidth ben-
efits offered by PSPs. At this sweet spot, algorithms
like edge detection, face detection, face recognition, and
SIFT feature extraction are completely ineffective; no
faces can be detected and correctly recognized from the
public part, no correct features can be extracted, and a
very small fraction of pixels defining edges are correctly
estimated. P3 image encryption and decryption are fast,
and it is able to reconstruct images accurately even when
the PSP’s image transformations are not publicly known.

P3 is proof-of-concept of, and a step towards, easily
deployable privacy preserving photo storage. Adoption
of this technology will be dictated by economic incen-
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tives: for example, PSPs can offer privacy preserving
photo storage as a premium service offered to privacy-
conscious customers.

2 Background and Motivation
The focus of this paper is on PSPs like Facebook, Picasa,
Flickr, and Imgur, who offer either direct photo shar-
ing (e.g., Flickr, Picasa) between users or have integrated
photo sharing into a social network platform (e.g., Face-
book). In this section, we describe some background be-
fore motivating privacy-preserving photo sharing.

2.1 Image Standards, Compression and Scalability

Over the last two decades, several standard image for-
mats have been developed that enable interoperability
between producers and consumers of images. Perhaps
not surprisingly, most of the existing PSPs like Face-
book, Flickr, Picasa Web, and many websites [6, 7, 41]
primarily use the most prevalent of these standards, the
JPEG (Joint Photographic Experts Group) standard. In
this paper, we focus on methods to preserve the privacy
of JPEG images; supporting other standards such as GIF
and PNG (usually used to represent computer-generated
images like logos etc.) are left to future work.

Beyond standardizing an image file format, JPEG per-
forms lossy compression of images. A JPEG encoder
consists of the following sequence of steps:

Color Space Conversion and Downsampling. In this
step, the raw RGB or color filter array (CFA) RGB im-
age captured by a digital camera is mapped to a YUV
color space. Typically, the two chrominance channels (U
and V) are represented at lower resolution than the lumi-
nance (brightness) channel (Y) reducing the amount of
pixel data to be encoded without significant impact on
perceptual quality.

DCT Transformation. In the next step, the image is
divided into an array of blocks, each with 8× 8 pixels,
and the Discrete Cosine Transform (DCT) is applied to
each block, resulting in several DCT coefficients. The
mean value of the pixels is called the DC coefficient. The
remaining are called AC coefficients.

Quantization. In this step, these coefficients are quan-
tized; this is the only step in the processing chain where
information is lost. For typical natural images, informa-
tion tends to be concentrated in the lower frequency co-
efficients (which on average have larger magnitude than
higher frequency ones). For this reason, JPEG applies
different quantization steps to different frequencies. The
degree of quantization is user-controlled and can be var-
ied in order to achieve the desired trade-off between qual-
ity of the reconstructed image and compression rate. We
note that in practice, images shared through PSPs tend to

be uploaded with high quality (and high rate) settings.
Entropy Coding. In the final step, redundancy in the
quantized coefficients is removed using variable length
encoding of non-zero quantized coefficients and of runs
of zeros in between non-zero coefficients.

Beyond storing JPEG images, PSPs perform several
kinds of transformations on images for various reasons.
First, when a photo is uploaded, PSPs statically resize the
image to several fixed resolutions. For example, Face-
book transforms an uploaded photo into a thumbnail, a
“small” image (130x130) and a “big” image (720x720).
These transformations have multiple uses: they can re-
duce storage1, improve photo access latency for the com-
mon case when users download either the big or the small
image, and also reduce bandwidth usage (an important
consideration for mobile clients). In addition, PSPs per-
form dynamic (i.e., when the image is accessed) server-
side transformations; they may resize the image to fit
screen resolution, and may also crop the image to match
the view selected by the user. (We have verified, by an-
alyzing the Facebook protocol, that it supports both of
these dynamic operations). These dynamic server-side
transformations enable low latency access to photos and
reduce bandwidth usage. Finally, in order to reduce user-
perceived latency further, Facebook also employs a spe-
cial mode in the JPEG standard, called progressive mode.
For photos stored in this mode, the server delivers the
coefficients in increasing order (hence “progressive”) so
that the clients can start rendering the photo on the screen
as soon as the first few coefficients are received, without
having to receive all coefficients.

In general, these transformations scale images in one
fashion or another, and are collectively called image
scalability transformations. Image scalability is crucial
for PSPs, since it helps them optimize several aspects
of their operation: it reduces photo storage, which can
be a significant issue for a popular social network plat-
form [10]; it can reduce user-perceived latency, and re-
duce bandwidth usage, hence improving user satisfac-
tion.

2.2 Threat Model, Goals and Assumptions

In this paper, we focus on two specific threats to pri-
vacy that result from uploading user images to PSPs. The
first threat is unauthorized access to photos. A concrete
instance of this threat is the practice of fusking, which
attempts to reverse-engineer PSP photo URLs in order
to access stored photos, bypassing PSP access controls.
Fusking has been applied to at least one PSP (Photo-
bucket), resulting in significant privacy leakage [15]. The

1We do not know if Facebook preserves the original image, but
high-end mobile devices can generate photos with 4000x4000 resolu-
tion and resizing these images to a few small fixed resolutions can save
space.
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Figure 1: Privacy-Preserving Image Encoding Algorithm

second threat is posed by automatic recognition tech-
nologies, by which PSPs may be able to infer social con-
texts not explicitly specified by users. Facebook’s de-
ployment of face recognition technology has raised sig-
nificant privacy concerns in many countries (e.g., [3]).

The goal of this paper is to design and implement a
system that enables users to ensure the privacy of their
photos (with respect to the two threats listed above),
while still benefiting from the image scalability optimiza-
tions provided by the PSP.

Implicit in this statement are several constraints,
which make the problem significantly challenging. The
resulting system must not require any software changes
at the PSP, since this is a significant barrier to deploy-
ment; an important implication of this constraint is that
the image stored on the PSP must be JPEG-compliant.
For a similar reason, the resulting system must also be
transparent to the client. Finally, our solution must not
significantly increase storage requirements at the PSP
since, for large PSPs, photo storage is a concern.

We make the following assumptions about trust in the
various components of the system. We assume that all lo-
cal software/hardware components on clients (mobile de-
vices, laptops etc.) are completely trustworthy, including
the operating system, applications and sensors. We as-
sume that PSPs are completely untrusted and may either
by commission or omission, breach privacy in the two
ways described above. Furthermore, we assume eaves-
droppers may attempt to snoop on the communication
between PSP and a client.

3 P3: The Algorithm

In this section, we describe the P3 algorithm for ensuring
privacy of photos uploaded to PSPs. In the next section,
we describe the design and implementation of a complete
system for privacy-preserving photo sharing.

3.1 Overview

One possibility for preserving the privacy of photos is
end-to-end encryption. Senders2 may encrypt photos be-
fore uploading, and recipients use a shared secret key
to decrypt photos on their devices. This approach can-
not provide image scalability, since the photo represen-
tation is non-JPEG compliant and opaque to the PSP so
it cannot perform transformations like resizing and crop-
ping. Indeed, PSPs like Facebook reject attempts to up-
load fully-encrypted images.

A second approach is to leverage the JPEG image
compression pipeline. Current image compression stan-
dards use a well-known DCT dictionary when computing
the DCT coefficients. A private dictionary [9], known
only to the sender and the authorized recipients, can be
used to preserve privacy. Using the coefficients of this
dictionary, it may be possible for PSPs to perform im-
age scaling transformations. However, as currently de-
fined, these coefficients result in a non-JPEG compliant
bit-stream, so PSP-side code changes would be required
in order to make this approach work.

A third strawman approach might selectively hide
faces by performing face detection on an image before
uploading. This would leave a JPEG-compliant image
in the clear, with the hidden faces stored in a separate
encrypted part. At the recipient, the image can be re-
constructed by combining the two parts. However, this
approach does not address our privacy goals completely:
if an image is leaked from the PSP, attackers can still ob-
tain significant information from the non-obscured parts
(e.g., torsos, other objects in the background etc.).

Our approach on privacy-preserving photo sharing
uses a selective encryption like this, but has a different
design. In this approach, called P3, a photo is divided
into two parts, a public part and a secret part. The pub-
lic part is exposed to the PSP, while the secret part is
encrypted and shared between the sender and the recipi-
ents (in a manner discussed later). Given the constraints
discussed in Section 2, the public and secret parts must
satisfy the following requirements:

• It must be possible to represent the public part as a
JPEG-compliant image. This will allow PSPs to per-
form image scaling.

• However, intuitively, most of the “important” informa-
tion in the photo must be in the secret part. This would
prevent attackers from making sense of the public part of
the photos even if they were able to access these photos.
It would also prevent PSPs from successfully applying
recognition algorithms.

• Most of the volume (in bytes) of the image must reside
in the public part. This would permit PSP server-side

2We use “sender” to denote the user of a PSP who uploads images
to the PSP.
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image scaling to have the bandwidth and latency benefits
discussed above.

• The combined size of the public and secret parts of the
image must not significantly exceed the size of the orig-
inal image, as discussed above.

Our P3 algorithm, which satisfies these requirements,
has two components: a sender side encryption algorithm,
and a recipient-side decryption algorithm.

3.2 Sender-Side Encryption

JPEG compression relies on the sparsity in the DCT do-
main of typical natural images: a few (large magnitude)
coefficients provide most of the information needed to
reconstruct the pixels. Moreover, as the quality of cam-
eras on mobile devices increases, images uploaded to
PSPs are typically encoded at high quality. P3 leverages
both the sparsity and the high quality of these images.
First, because of sparsity, most information is contained
in a few coefficients, so it is sufficient to degrade a few
such coefficients, in order to achieve significant reduc-
tions in quality of the public image. Second, because the
quality is high, quantization of each coefficient is very
fine and the least significant bits of each coefficient repre-
sent very small incremental gains in reconstruction qual-
ity. P3’s encryption algorithm encode the most signifi-
cant bits of (the few) significant coefficients in the secret
part, leaving everything else (less important coefficients,
and least significant bits of more important coefficients)
in the public part. We concretize this intuition in the fol-
lowing design for P3 sender side encryption.

The selective encryption algorithm is, conceptually,
inserted into the JPEG compression pipeline after the
quantization step. At this point, the image has been
converted into frequency-domain quantized DCT coef-
ficients. While there are many possible approaches to
extracting the most significant information, P3 uses a rel-
atively simple approach. First, it extracts the DC coeffi-
cients from the image into the secret part, replacing them
with zero values in the public part. The DC coefficients
represent the average value of each 8x8 pixel block of
the image; these coefficients usually contain enough in-
formation to represent thumbnail versions of the original
image with enough visual clarity.

Second, P3 uses a threshold-based splitting algorithm
in which each AC coefficient y(i) whose value is above a
threshold T is processed as follows:

• If |y(i)| ≤ T , then the coefficient is represented in the
public part as is, and in the secret part with a zero.

• If |y(i)|> T , the coefficient is replaced in the public part
with T , and the secret part contains the magnitude of the
difference as well as the sign.

Intuitively, this approach clips off the significant coef-
ficients at T . T is a tunable parameter that represents the
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Figure 2: P3 Overall Processing Chain

trade-off between storage/bandwidth overhead and pri-
vacy; a smaller T extracts more signal content into the
secret part, but can potentially incur greater storage over-
head. We explore this trade-off empirically in Section 5.
Notice that both the public and secret parts are JPEG-
compliant images, and, after they have been generated,
can be subjected to entropy coding.

Once the public and secret parts are prepared, the se-
cret part is encrypted and, conceptually, both parts can be
uploaded to the PSP (in practice, our system is designed
differently, for reasons discussed in Section 4). We also
defer a discussion of the encryption scheme to Section 4.

3.3 Recipient-side Decryption and Reconstruction

While the sender-side encryption algorithm is concep-
tually simple, the operations on the recipient-side are
somewhat trickier. At the recipient, P3 must decrypt the
secret part and reconstruct the original image by com-
bining the public and secret parts. P3’s selective encryp-
tion is reversible, in the sense that, the public and secret
parts can be recombined to reconstruct the original im-
age. This is straightforward when the public image is
stored unchanged, but requires a more detailed analysis
in the case when the PSP performs some processing on
the public image (e.g., resizing, cropping, etc) in order to
reduce storage, latency or bandwidth usage.

In order to derive how to reconstruct an image when
the public image has been processed, we start by express-
ing the reconstruction for the unprocessed case as a series
of linear operations.

Let the threshold for our splitting algorithm be denoted
T . Let y be a block of DCT coefficients correspond-
ing to a 8 × 8 pixel block in the original image. De-
note xp and xs the corresponding DCT coefficient values
assigned to the public and secret images, respectively,
for the same block3. For example, if one of those co-
efficients is such that abs(y(i)) > T , we will have that
xp(i) = T and xs(i) = sign(y(i))(abs(y(i))−T ). Since in
our algorithm the sign information is encoded either in
the public or in the secret part, depending on the coef-
ficient magnitude, it is useful to explicitly consider sign
information here. To do so we write xp = Sp · ap, and
xs = Ss · as, where ap and as are absolute values of xp
and xs, Sp and Ss are diagonal matrices with sign infor-
mation, i.e., Sp = diag(sign(xp)),Ss = diag(sign(xs)).
Now let w[i] = T if Ss[i] �= 0, where i is a coefficient

3For ease of exposition, we represent these blocks as 64x1 vectors
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index, so w marks the positions of the above-threshold
coefficients.

The key observation is that xp and xs cannot be di-
rectly added to recover y because the sign of a coef-
ficient above threshold is encoded correctly only in the
secret image. Thus, even though the public image con-
veys sign information for that coefficient, it might not
be correct. As an example, let y(i) < −T , then we will
have that xp(i) = T and xs(i) = −(abs(y(i))− T ), thus
xs(i)+xp(i) �= y(i). For coefficients below threshold, y(i)
can be recovered trivially since xs(i) = 0 and xp(i) = y(i).
Note that incorrect sign in the public image occurs only
for coefficients y(i) above threshold, and by definition,
for all those coefficients the public value is xp(i) = T .
Note also that removing these signs increases signifi-
cantly the distortion in the public images and makes it
more challenging for an attacker to approximate the orig-
inal image based on only the public one.

In summary, the reconstruction can be written as a se-
ries of linear operations:

y = Sp ·ap +Ss ·as +
(

Ss −Ss
2) ·w (1)

where the first two terms correspond to directly adding
the correspondig blocks from the public and secret im-
ages, while the third term is a correction factor to account
for the incorrect sign of some coefficients in the public
image. This correction factor is based on the sign of the
coefficients in the secret image and distinguishes three
cases. If xs(i) = 0 or xs(i) > 0 then y(i) = xs(i)+ xp(i)
(no correction), while if xs(i)< 0 we have

y(i) = xs(i)+ xp(i)−2T = xs(i)+T −2T = xs(i)−T.

Note that the operations can be very easily represented
and implemented with if/then/else conditions, but the al-
gebraic representation of (1) will be needed to determine
how to operate when the public image has been subject to
server-side processing. In particular, from (1), and given
that the DCT is a linear operator, it becomes apparent
that it would be possible to reconstruct the images in the
pixel domain. That is, we could convert Sp · ap, Ss · as
and

(

Ss −Ss
2) ·w into the pixel domain and simply add

these three images pixel by pixel. Further note that the
third image, the correction factor, does not depend on the
public image and can be completely derived from the se-
cret image.

We now consider the case where the PSP applies a lin-
ear operator A to the public part. Many interesting image
transformations such as filtering, cropping4, scaling (re-
sizing), and overlapping can be expressed by linear op-
erators. Thus, when the public part is requested from the

4Cropping at 8x8 pixel boundaries is a linear operator; cropping at
arbitrary boundaries can be approximated by cropping at the nearest
8x8 boundary.

PSP, A ·Sp ·ap will be received. Then the goal is for the
recipient to reconstruct A · y given the processed public
image A ·Sp ·ap and the unprocessed secret information.
Based on the reconstruction formula of (1), and the lin-
earity of A, it is clear that the desired reconstruction can
be obtained as follows

A ·y = A ·Sp ·ap +A ·Ss ·as +A ·
(

Ss −Ss
2) ·w (2)

Moreover, since the DCT transform is also linear, these
operations can be applied directly in the pixel domain,
without needing to find a transform domain representa-
tion. As an example, if cropping is involved, it would be
enough to crop the private image and the image obtained
by applying an inverse DCT to

(

Ss −Ss
2) ·w.

We have left an exploration of nonlinear operators to
future work. It may be possible to support certain types
of non-linear operations, such as pixel-wise color remap-
ping, as found in popular apps (e.g., Instagram). If such
operation can be represented as one-to-one mappings for
all legitimate values5, e.g. 0-255 RGB values, we can
achieve the same level of reconstruction quality as the
linear operators: at the recipient, we can reverse the map-
ping on the public part, combine this with the unpro-
cessed secret part, and re-apply the color mapping on
the resulting image. However, this approach can result
in some loss and we have left a quantitative exploration
of this loss to future work.

3.4 Algorithmic Properties of P3

Privacy Properties. By encrypting significant signal in-
formation, P3 can preserve the privacy of images by dis-
torting them and by foiling detection and recognition al-
gorithms (Section 5). Given only the public part, the at-
tacker can guess the threshold T by assuming it to be the
most frequent non-zero value. If this guess is correct,
the attacker knows the positions of the significant coef-
ficients, but not the range of values of these coefficients.
Crucially, the sign of the coefficient is also not known.
Sign information tends to be “random” in that positive
and negative coefficients are almost equally likely and
there is very limited correlation between signs of differ-
ent coefficients, both within a block and across blocks. It
can be shown that if the sign is unknown, and no prior in-
formation exists that would bias our guess, it is actually
best, in terms of mean-square error (MSE), to replace the
coefficient with unknown sign in the public image by 0.6

Finally, we observe that proving the privacy proper-
ties of our approach is challenging. If the public part is

5Often, this is the case for most color remapping operations.
6If an adversary sees T in the public part, replacing it with 0 will

have an MSE of T 2. However, if we use any non-zero values as a
guess, MSE will be at least 0.5× (2T )2 = 2T 2 because we will have a
wrong sign with probability 0.5 and we know that the magnitude is at
least equal to T.
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Figure 3: P3 System Architecture

leaked from the PSP, proving that no human can extract
visual information from the public part would require
having an accurate understanding of visual perception.
Instead, we rely on metrics commonly used in the sig-
nal processing community in our evaluation (Section 5).
We note that the prevailing methodology in the signal
processing community for evaluating the efficacy of im-
age and video privacy is empirical subjective evaluation
using user studies, or objective evaluation using met-
rics [44]. In Section 5, we resort to an objective metrics-
based evaluation, showing the performance of P3 on sev-
eral image corpora.
Other Properties. P3 satisfies the other requirements
we have discussed above. It leaves, in the clear, a JPEG-
compliant image (the public part), on which the PSP can
perform transformations to save storage and bandwidth.
The threshold T permits trading off increased storage for
increased privacy; for images whose signal content is in
the DC component and a few highly-valued coefficients,
the secret part can encode most of this content, while the
public part contains a significant fraction of the volume
of the image in bytes. As we show in our evaluation later,
most images are sparse and satisfy this property. Finally,
our approach of encoding the large coefficients decreases
the entropy both in the public and secret parts, result-
ing in better compressibility and only slightly increased
overhead overall relative to the unencrypted compressed
image.

However, the P3 algorithm has an interesting conse-
quence: since the secret part cannot be scaled (because,
in general, the transformations that a PSP performs can-
not be known a priori) and must be downloaded in its
entirety, the bandwidth savings from P3 will always be
lower than downloading a resized original image. The
size of the secret part is determined by T : higher val-
ues of T result in smaller secret parts, but provide less
privacy, a trade-off we quantify in Section 5.

4 P3: System Design
In this section, we describe the design of a system for
privacy preserving photo sharing system. This system,

also called P3, has two desirable properties described
earlier. First, it requires no software modifications at
the PSP. Second, it requires no modifications to client-
side browsers or image management applications, and
only requires a small footprint software installation on
clients. These properties permit fairly easy deployment
of privacy-preserving photo sharing.

4.1 P3 Architecture and Operation

Before designing our system, we explored the protocols
used by PSPs for uploading and downloading photos.
Most PSPs use HTTP or HTTPS to upload messages;
we have verified this for Facebook, Picasa Web, Flickr,
PhotoBucket, Smugmug, and Imageshack. This suggests
a relatively simple interposition architecture, depicted in
Figure 3. In this architecture, browsers and applications
are configured to use a local HTTP/HTTPS proxy and all
accesses to PSPs go through the proxy. The proxy ma-
nipulates the data stream to achieve privacy preserving
photo storage, in a manner that is transparent both to the
PSP and the client. In the following paragraphs, we de-
scribe the actions performed by the proxy at the sender
side and at one or more recipients.
Sender-side Operation. When a sender transmits the
photo taken by built-in camera, the local proxy acts as
a middlebox and splits the uploaded image into a public
and a secret part (as discussed in Section 3). Since the
proxy resides on the client device (and hence is within
the trust boundary per our assumptions, Section 2), it is
reasonable to assume that the proxy can decrypt and en-
crypt HTTPS sessions in order to encrypt the photo.

We have not yet discussed how photos are encrypted;
in our current implementation, we assume the existence
of a symmetric shared key between a sender and one or
more recipients. This symmetric key is assumed to be
distributed out of band.

Ideally, it would have been preferable to store both the
public and the secret parts on the PSP. Since the public
part is a JPEG-compliant image, we explored methods to
embed the secret part within the public part. The JPEG
standard allows users to embed arbitrary application-
specific markers with application-specific data in im-
ages; the standard defines 16 such markers. We at-
tempted to use an application-specific marker to embed
the secret part; unfortunately, at least 2 PSPs (Facebook
and Flickr) strip all application-specific markers.

Our current design therefore stores the secret part on a
cloud storage provider (in our case, Dropbox). Note that
because the secret part is encrypted, we do not assume
that the storage provider is trusted.

Finally, we discuss how photos are named. When a
user uploads a photo to a PSP, that PSP may transform
the photo in ways discussed below. Despite this, most
photo-sharing services (Facebook, Picasa Web, Flickr,
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Smugmug, and Imageshack7) assign a unique ID for all
variants of the photo. This ID is returned to the client, as
part of the API [21, 23], when the photo is updated.

P3’s sender side proxy performs the following oper-
ations on the public and secret parts. First, it uploads
the public part to the PSP either using HTTP or HTTPS
(e.g., Facebook works only with HTTPS, but Flickr sup-
ports HTTP). This returns an ID, which is then used to
name a file containing the secret part. This file is then
uploaded to the storage provider.
Recipient-side Operation. Recipients are also config-
ured to run a local web proxy. A client device downloads
a photo from a PSP using an HTTP get request. The
URL for the HTTP request contains the ID of the photo
being downloaded. When the proxy sees this HTTP re-
quest, it passes the request on to the PSP, but also initiates
a concurrent download of the secret part from the stor-
age provider using the ID embedded in the URL. When
both the public and secret parts have been received, the
proxy performs the decryption and reconstruction pro-
cedure discussed in Section 3 and passes the resulting
image to the application as the response to the HTTP
get request. However, note that a secret part may be
reused multiple times: for example, a user may first view
a thumbnail image and then download a larger image.
In these scenarios, it suffices to download the secret part
once so the proxy can maintain a cache of downloaded
secret parts in order to reduce bandwidth and improve
latency.

There is an interesting subtlety in the photo recon-
struction process. As discussed in Section 3, when the
server-side transformations are known, nearly exact re-
construction is possible8. In our case, the precise trans-
formations are not known, in general, to the proxy, so the
problem becomes more challenging.

By uploading photos, and inspecting the results, we
are able to tell, generally speaking, what kinds of trans-
formations PSPs perform. For instance, Facebook trans-
forms a baseline JPEG image to a progressive format and
at the same time wipes out all irrelevant markers. Both
Facebook and Flickr statically resize the uploaded image
with different sizes; for example, Facebook generates at
least three files with different resolutions, while Flickr
generates a series of fixed-resolution images whose num-
ber depends on the size of the uploaded image. We
cannot tell if these PSPs actually store the original im-
ages or not, and we conjecture that the resizing serves to

7PhotoBucket does not, which explains its vulnerability to fusking,
as discussed earlier

8The only errors that can arise are due to storing the correction term
in Section 3 in a lossy JPEG format that has to be decoded for pro-
cessing in the pixel domain. Even if quantization is very fine, errors
maybe introduced because the DCT transform is real valued and pixel
values are integer, so the inverse transform of

(

Ss −Ss
2)w will have to

be rounded to the nearest integer pixel value.

limit storage and is also perhaps optimized for common
case devices. For example, the largest resolution photos
stored by Facebook is 720x720, regardless of the original
resolution of the image. In addition, Facebook can dy-
namically resize and crop an image; the cropping geom-
etry and the size specified for resizing are both encoded
in the HTTP get URL, so the proxy is able to determine
those parameters. Furthermore, by inspecting the JPEG
header, we can tell some kinds of transformations that
may have been performed: e.g., whether baseline image
was converted to progressive or vice a versa, what sam-
pling factors, cropping and scaling etc. were applied.

However, some other critical image processing param-
eters are not visible to the outside world. For example,
the process of resizing an image using down sampling is
often accompanied by a filtering step for antialiasing and
may be followed by a sharpening step, together with a
color adjustment step on the downsampled image. Not
knowing which of these steps have been performed, and
not knowing the parameters used in these operations, the
reconstruction procedure can result in lower quality im-
ages.

To understand what transformations have been per-
formed, we are reduced to searching the space of possi-
ble transformations for an outcome that matches the out-
put of transformations performed by the PSP9. Note that
this reverse engineering need only be done when a PSP
re-jiggers its image transformation pipeline, so it should
not be too onerous. Fortunately, for Facebook and Flickr,
we were able to get reasonable reconstruction results on
both systems (Section 5). These reconstruction results
were obtained by exhaustively searching the parameter
space with salient options based on commonly-used re-
sizing techniques [27]. More precisely, we select sev-
eral candidate settings for colorspace conversion, filter-
ing, sharpening, enhancing, and gamma corrections, and
then compare the output of these with that produced by
the PSP. Our reconstruction results are presented in Sec-
tion 5.

4.2 Discussion

Privacy Properties. Beyond the privacy properties of
the P3 algorithm, the P3 system achieves the privacy
goals outlined in Section 2. Since the proxy runs on the
client for both sender and receiver, the trusted computing
base for P3 includes the software and hardware device on
the client. It may be possible to reduce the footprint of
the trusted computing base even further using a trusted
platform module [47] and trusted sensors [30], but we
have deferred that to future work.

9This approach is clearly fragile, since the PSP can change the kinds
of transformations they perform on photos. Please see the discussion
below on this issue.
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P3’s privacy depends upon the strength of the sym-
metric key used to encrypt in the secret part. We assume
the use of AES-based symmetric keys, distributed out of
band. Furthermore, as discussed above, in P3 the stor-
age provider cannot leak photo privacy because the secret
part is encrypted. The storage provider, or for that mat-
ter the PSP, can tamper with images and hinder recon-
struction; protecting against such tampering is beyond
the scope of the paper. For the same reason, eavesdrop-
pers can similarly potentially tamper with the public or
the secret part, but cannot leak photo privacy.

PSP Co-operation. The P3 design we have described as-
sumes no co-operation from the PSP. As a result, this im-
plementation is fragile and a PSP can prevent users from
using their infrastructure to store P3’s public parts. For
instance, they can introduce complex nonlinear transfor-
mations on images in order to foil reconstruction. They
may also run simple algorithms to detect images where
coefficients might have been thresholded, and refuse to
store such images.

Our design is merely a proof of concept that the tech-
nology exists to transparently protect the privacy of pho-
tos, without requiring infrastructure changes or signifi-
cant client-side modification. Ultimately, PSPs will need
to cooperate in order for photo privacy to be possible, and
this cooperation depends upon the implications of photo
sharing on their respective business models.

At one extreme, if only a relatively small fraction of
a PSP’s user base uses P3, a PSP may choose to benev-
olently ignore this use (because preventing it would re-
quire commitment of resources to reprogram their infras-
tructure). At the other end, if PSPs see a potential loss
in revenue from not being able to recognize objects/faces
in photos, they may choose to react in one of two ways:
shut down P3, or offer photo privacy for a fee to users.
However, in this scenario, a significant number of users
see value in photo privacy, so we believe that PSPs will
be incentivized to offer privacy-preserving storage for a
fee. In a competitive marketplace, even if one PSP were
to offer privacy-preserving storage as a service, others
will likely follow suit. For example, Flickr already has a
“freemium” business model and can simply offer privacy
preserving storage to its premium subscribers.

If a PSP were to offer privacy-preserving photo stor-
age as a service, we believe it will have incentives to
use a P3 like approach (which permits image scaling and
transformations), rather than end to end encryption. With
P3, a PSP can assure its users that it is only able to see
the public part (reconstruction would still happen at the
client), yet provide (as a service) the image transforma-
tions that can reduce user-perceived latency (which is an
important consideration for retaining users of online ser-
vices [10]).

Finally, with PSP co-operation, two aspects of our P3
design become simpler. First, the PSP image transfor-
mation parameters would be known, so higher quality
images would result. Second, the secret part of the im-
age could be embedded within the public part, obviating
the need for a separate online storage provider.
Extensions. Extending this idea to video is feasible,
but left for future work. As an initial step, it is possi-
ble to introduce the privacy preserving techniques only
to the I-frames, which are coded independently using
tools similar to those used in JPEG. Because other frames
in a “group of pictures” are coded using an I-frame as
a predictor, quality reductions in an I-frame propagate
through the remaining frames. In future work, we plan
to study video-specific aspects, such as how to process
motion vectors or how to enable reconstruction from a
processed version of a public video.

5 Evaluation
In this section, we report on an evaluation of P3. Our
evaluation uses objective metrics to characterize the pri-
vacy preservation capability of P3, and it also reports,
using a full-fledged implementation, on the processing
overhead induced by sender and receiver side encryption.

5.1 Methodology

Metrics. Our first metric for P3 performance is the stor-
age overhead imposed by selective encryption. Photo
storage space is an important consideration for PSPs, and
a practical scheme for privacy preserving photo storage
must not incur large storage overheads. We then evalu-
ate the efficacy of privacy preservation by measuring the
performance of state-of-the-art edge and face detection
algorithms, the SIFT feature extraction algorithm, and
a face recognition algorithm on P3. We conclude the
evaluation of privacy by discussing the efficacy of guess-
ing attacks. We have also used PSNR to quantify pri-
vacy [43], but have omitted these results for brevity. Fi-
nally, we quantify the reconstruction performance, band-
width savings and the processing overhead of P3.
Datasets. We evaluate P3 using four image datasets.
First, as a baseline, we use the “miscellaneous” volume
in the USC-SIPI image dataset [8]. This volume has
44 color and black-and-white images and contains var-
ious objects, people, scenery, and so forth, and contains
many canonical images (including Lena) commonly used
in the image processing community. Our second data
set is from INRIA [4], and contains 1491 full color im-
ages from vacation scenes including a mountain, a river,
a small town, other interesting topographies, etc. This
dataset contains has greater diversity than the USC-SIPI
dataset in terms of both resolutions and textures; its
images vary in size up to 5 MB, while the USC-SIPI
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Figure 4: Screenshot(Facebook) with/without decryption

dataset’s images are all under 1 MB.
We also use the Caltech face dataset [1] for our face

detection experiment. This has 450 frontal color face
images of about 27 unique faces depicted under different
circumstances (illumination, background, facial expres-
sions, etc.). All images contain at least one large domi-
nant face, and zero or more additional faces. Finally, the
Color FERET Database [2] is used for our face recog-
nition experiment. This dataset is specifically designed
for developing, testing, and evaluating face recognition
algorithms, and contains 11,338 facial images, using 994
subjects at various angles.
Implementation. We also report results from an im-
plementation for Facebook [20]. We chose the An-
droid 4.x mobile operating system as our client plat-
form, since the bandwidth limitations together with the
availability of camera sensors on mobile devices mo-
tivate our work. The mitmproxy software tool [36] is
used as a trusted man-in-the-middle proxy entity in the
system. To execute a mitmproxy tool on Android, we
used the kivy/python-for-android software [29]. Our al-
gorithm described in Section 3 is implemented based on
the code maintained by the Independent JPEG Group,
version 8d [28]. We report on experiments conducted
by running this prototype on Samsung Galaxy S3 smart-
phones.

Figure 4 shows two screenshots of a Facebook page,
with two photos posted. The one on the left is the view
seen by a mobile device which has our recipient-side de-
cryption and reconstruction algorithm enabled. On the
right is the same page, without that algorithm (so only
the public parts of the images are visible).

5.2 Evaluation Results

In this section, we first report on the trade-off between
the threshold parameter and storage size in P3. We
then evaluate various privacy metrics, and conclude with
an evaluation of reconstruction performance, bandwidth,
and processing overhead.

5.2.1 The Threshold vs. Storage Tradoff
In P3, the threshold T is a tunable parameter that trades
off storage space for privacy: at higher thresholds, fewer
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Figure 5: Threshold vs. Size (error bars=stdev)

(a) Public Part

(b) Secret Part

Figure 6: Baseline - Encryption Result (T: 1,5,10,15,20)

coefficients are in the secret part but more information
is exposed in the public part. Figure 5 reports on the
size of the public part (a JPEG image), the secret part (an
encrypted JPEG image), and the combined size of the
two parts, as a fraction of the size of the original image,
for different threshold values T . One interesting feature
of this figure is that, despite the differences in size and
composition of the two data sets, their size distribution
as a function of thresholds is qualitatively similar. At
low thresholds (near 1), the combined image sizes exceed
the original image size by about 20%, with the public and
secret parts being each about 50% of the total size. While
this setting provides excellent privacy, the large size of
the secret part can impact bandwidth savings; recall that,
in P3, the secret part has to be downloaded in its entirety
even when the public part has been resized significantly.
Thus, it is important to select a better operating point
where the size of the secret part is smaller.

Fortunately, the shape of the curve of Figure 5 for both
datasets suggests operating at the knee of the “secret”
line (at a threshold of in the range of 15-20), where the
secret part is about 20% of the original image, and the
total storage overhead is about 5-10%. Figure 6, which
depicts the public and secret parts (recall that the secret
part is also a JPEG image) of a canonical image from the
USC-SIPI dataset, shows that for thresholds in this range
minimal visual information is present in the public part,
with all of it being stored in the secret part. We include
these images to give readers a visual sense of the efficacy

9
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of P3; we conduct more detailed privacy evaluations be-
low. This suggests that a threshold between 10-20 might
provide a good balance between privacy and storage. We
solidify this finding below.

5.2.2 Privacy
In this section, we use several metrics to quantify the pri-
vacy obtained with P3. These metrics quantify the ef-
ficacy of automated algorithms on the public part; each
automated algorithm can be considered to be mounting
a privacy attack on the public part.

Edge Detection. Edge detection is an elemental process-
ing step in many signal processing and machine vision
applications, and attempts to discover discontinuities in
various image characteristics. We apply the well-known
Canny edge detector [14] and its implementation [24] to
the public part of images in the USC-SIPI dataset, and
present images with the recognized edges in Figure 8.
For space reasons, we only show edges detected on the
public part of 4 canonical images for a threshold of 1
and 20. The images with a threshold 20 do reveal several
“features”, and signal processing researchers, when told
that these are canonical images from a widely used data
set, can probably recognize these images. However, a
layperson who has not seen the image before very likely
will not be able to recognize any of the objects in the
images (the interested reader can browse the USC-SIPI
dataset online to find the originals). We include these
images to point out that visual privacy is a highly subjec-
tive notion, and depends upon the beholder’s prior expe-
riences. If true privacy is desired, end-to-end encryption
must be used. P3 provides “pretty good” privacy together
with the convenience and performance offered by photo
sharing services.

It is also possible to quantify the privacy offered by
P3 for edge detection attacks. Figure 7(a) plots the frac-
tion of matching pixels in the image obtained by running
edge detection on the public part, and that obtained by
running edge detection on the original image (the result
of edge detection is an image with binary pixel values).
At threshold values below 20, barely 20% of the pixels
match; at very low thresholds, running edge detection
on the public part results in a picture resembling white
noise, so we believe the higher matching rate shown at
low thresholds simply results from spurious matches. We
conclude that, for the range of parameters we consider,
P3 is very robust to edge detection.
Face Detection. Face detection algorithms detect hu-
man faces in photos, and were available as part of Face-
book’s face recognition API, until Facebook shut down
the API [3]. To quantify the performance of face de-
tection on P3, we use the Haar face detector from the
OpenCV library [5], and apply it to the public part of im-
ages from Caltech’s face dataset [1]. The efficacy of face

(a) T=1

(b) T=20

Figure 8: Canny Edge Detection on Public Part

1 5 10 15 20
0

50

100

150

200

Threshold

Ba
nd

w
id

th
 (K

By
te

) Uploaded Size−720x720
Overhead−720x720
Overhead−130x130
Overhead−75x75

Figure 9: Bandwidth Usage Cost (INRIA)

detection, as a function of different thresholds, is shown
in Figure 7(b). The y-axis represents the average number
of faces detected; it is higher than 1 for the original im-
ages, because some images have more than one face. P3
completely foils face detection for thresholds below 20;
at thresholds higher than about 35, faces are occasionally
detected in some images.

SIFT feature extraction. SIFT [33] (or Scale-invariant
Feature Transform) is a general method to detect features
in images. It is used as a pre-processing step in many im-
age detection and recognition applications from machine
vision. The output of these algorithms is a set of fea-
ture vectors, each of which describes some statistically
interesting aspect of the image.

We evaluate the efficacy of attacking P3 by perform-
ing SIFT feature extraction on the public part. For this,
we use the implementation [32] from the designer of
SIFT together with the default parameters for feature ex-
traction and feature comparison. Figure 7(c) reports the
results of running feature extraction on the USC-SIPI
dataset.10 This figure shows two lines, one of which mea-
sures the total number of features detected on the public
part as a function of threshold. This shows that as the

10The SIFT algorithm is computationally expensive, and the INRIA
data set is large, so we do not have the results for the INRIA dataset.
(Recall that we need to compute for a large number of threshold val-
ues). We expect the results to be qualitatively similar.
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Figure 7: Privacy on Detection and Recognition Algorithms

threshold increases, predictably, the number of detected
features increases to match the number of features de-
tected in the original figure. More interesting is the fact
that, below the threshold of 10, no SIFT features are de-
tected, and below a threshold of 20, only about 25% of
the features are detected.

However, this latter number is a little misleading, be-
cause we found that, in general, SIFT detects different
feature vectors in the public part and the original image.
If we count the number of features detected in the public
part, which are less than a distance d (in feature space)
from the nearest feature in the original image (indicating
that, plausibly, SIFT may have found, in the public part,
of feature in the original image), we find that this number
is far smaller; up to a threshold of 35, a very small frac-
tion of original features are discovered, and even at the
threshold of 100, only about 4% of the original features
have been discovered. We use the default parameter for
the distance d in the SIFT implementation; changing the
parameter does not change our conclusions.11

Face Recognition. Face recognition algorithms take an
aligned and normalized face image as input and match it
against a database of faces. They return the best possi-
ble answer, e.g., the closest match or an ordered list of
matches, from the database. We use the Eigenface [48]
algorithm and a well-known face recognition evaluation
system [13] with the Color FERET database. On Eigen-
Face, we apply two distance metrics, the Euclidean and
the Mahalinobis Cosine [12], for our evaluation.

We examine two settings: Normal-Public setting con-
siders the case in which training is performed on normal
training images in the database and testing is executed
on public parts. The Public-Public setting trains the
database using public parts of the training images; this
setting is a stronger attack on P3 than Normal-Public.

Figure 7(d) shows a subset of our results, based on

11Our results use a distance parameter of 0.6 from [32]; we used
0.8, the highest distance parameter that seems to be meaningful ( [33],
Figure 11) and the results are similar.

the Mahalinobis Cosine distance metric and using the
FAFB probing set in the FERET database. To quantify
the recognition performance, we follow the methodol-
ogy proposed by [38, 39]. In this graph, a data point
at (x,y) means that y% of the time, the correct answer
is contained in the top x answers returned by the Eigen-
Face algorithm. In the absence of P3 (represented by the
Normal-Normal line), the recognition accuracy is over
80%.

If we consider the proposed range of operating thresh-
olds (T=1-20), the recognition rate is below 20% at rank
1. Put another way, for these thresholds, more than 80%
of the time, the face recognition algorithm provides the
wrong answer (a false positive). Moreover, our maxi-
mum threshold (T=20) shows about a 45% rate at rank
50, meaning that less than half the time the correct an-
swer lies in the top 50 matches returned by the algorithm.
We also examined other settings, e.g., Euclidean distance
and other probing sets, and the results were qualitatively
similar. These recognition rates are so low that a face
recognition attack on P3 is unlikely to succeed; even if
an attacker were to apply face recognition on P3, and
even if the algorithm happens to be correct 20% of the
time, the attacker may not be able to distinguish between
a true positive and a false positive since the public image
contains little visual information.

5.3 What is Lost?

P3 achieves privacy but at some cost to reconstruction
accuracy, as well as bandwidth and processing overhead.
Reconstruction Accuracy. As discussed in Section 3,
the reconstruction of an image for which a linear trans-
formation has been applied should, in theory, be perfect.
In practice, however, quantization effects in JPEG com-
pression can introduce very small errors in reconstruc-
tion. Most images in the USC-SIPI dataset can be re-
constructed, when the transformations are known a pri-
ori, with an average PSNR of 49.2dB. In the signal pro-
cessing community, this would be considered practically

11
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lossless. More interesting is the efficacy of our recon-
struction of Facebook and Flickr’s transformations. In
Section 4, we described an exhaustive parameter search
space methodology to approximately reverse engineer
Facebook and Flickr’s transformations. Our methodol-
ogy is fairly successful, resulting in images with PSNR
of 34.4dB for Facebook and 39.8dB for Flickr. To an
untrained eye, images with such PSNR values are gener-
ally blemish-free. Thus, using P3 does not significantly
degrade the accuracy of the reconstructed images.
Bandwidth usage cost. In P3, suppose a recipient down-
loads, from a PSP, a resized version of an uploaded im-
age12. The total bandwidth usage for this download is the
size of the resized public part, together with the complete
secret part. Without P3, the recipient only downloads the
resized version of the original image. In general, the for-
mer is larger than the latter and the difference between
the two represents the bandwidth usage cost, an impor-
tant consideration for usage-metered mobile data plans.
This cost, as a function of the P3 threshold, is shown
in Figure 9 for the INRIA dataset (the USC dataset re-
sults are similar). For thresholds in the 10-20 range, this
cost is modest: 20KB or less across different resolutions
(these resolutions are the ones Facebook statically re-
sizes an uploaded image to). As an aside, the variabil-
ity in bandwidth usage cost represents an opportunity:
users who are more privacy conscious can choose lower
thresholds at the expense of slightly higher bandwidth
usage. Finally, we observe that this additional bandwidth
usage can be reduced by trading off storage: a sender
can upload multiple encrypted secret parts, one for each
known static transformation that a PSP performs. We
have not implemented this optimization.
Processing Costs. On a Galaxy S3 smartphone, for a
720x720 image (the largest resolution served by Face-
book), it takes on average 152 ms to extract the public
and secret parts, about 55 ms to encrypt/decrypt the se-
cret part, and 191 ms to reconstruct the image. These
costs are modest, and unlikely to impact user experience.

6 Related Work
We do not know of prior work that has attempted to ad-
dress photo privacy for photo-sharing services. Our work
is most closely related to work in the signal processing
community on image and video privacy. Early efforts
at image privacy introduced techniques like region-of-
interest masking, blurring, or pixellation [17]. In these
approaches, typically a face or a person in an image is
represented by a blurred or pixelated version; as [17]
shows, these approaches are not particularly effective
against algorithmic attacks like face recognition. A sub-

12In our experiments, we mimic PSP resizing using ImageMagick’s
convert program [26]

sequent generation of approaches attempted to ensure
privacy for surveillance by scrambling coefficients in a
manner qualitatively similar to P3’s algorithm [17, 18],
e.g., some of them randomly flips the sign information.
However, this line of work has not explored designs un-
der the constraints imposed by our problem, namely the
need for JPEG-compliant images at PSPs to ensure stor-
age and bandwidth benefits, and the associated require-
ment for relatively small secret parts.

This strand is part of a larger body of work on selective
encryption in the image processing community. This re-
search, much of it conducted in the 90s and early 2000s,
was motivated by ensuring image secrecy while reducing
the computation cost of encryption [35, 31]. This line of
work has explored some of the techniques we use such as
extracting the DC components [46] and encrypting the
sign of the coefficient [45, 40], as well as techniques
we have not, such as randomly permuting the coeffi-
cients [46, 42]. Relative to this body of work, P3 is novel
in being a selective encryption scheme tailored towards
a novel set of requirements, motivated by photo sharing
services. In particular, to our knowledge, prior work has
not explored selective encryption schemes which permit
image reconstruction when the unencrypted part of the
image has been subjected to transformations like resizing
or cropping. Finally, a pending patent application by one
of the co-authors [37] of this paper, includes the idea of
separating an image into two parts, but does not propose
the P3 algorithm, nor does it consider the reconstruction
challenges described in Section 3.

Tangentially related is a body of work in the computer
systems community on ensuring other forms of privacy:
secure distributed storage systems [22, 34, 11], and pri-
vacy and anonymity for mobile systems [19, 25, 16].
None of these techniques directly apply to our setting.

7 Conclusions
P3 is a privacy preserving photo sharing scheme that
leverages the sparsity and quality of images to store most
of the information in an image in a secret part, leaving
most of the volume of the image in a JPEG-compliant
public part, which is uploaded to PSPs. P3’s public parts
have very low PSNRs and are robust to edge detection,
face detection, or sift feature extraction attacks. These
benefits come at minimal costs to reconstruction accu-
racy, bandwidth usage and processing overhead.
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Embassies: Radically Refactoring the Web
Jon Howell, Bryan Parno, John R. Douceur, Microsoft Research

Abstract
Web browsers ostensibly provide strong isolation for

the client-side components of web applications. Unfor-
tunately, this isolation is weak in practice; as browsers
add increasingly rich APIs to please developers, these
complex interfaces bloat the trusted computing base and
erode cross-app isolation boundaries.

We reenvision the web interface based on the notion
of a pico-datacenter, the client-side version of a shared
server datacenter. Mutually untrusting vendors run their
code on the user’s computer in low-level native code con-
tainers that communicate with the outside world only via
IP. Just as in the cloud datacenter, the simple semantics
makes isolation tractable, yet native code gives vendors
the freedom to run any software stack. Since the datacen-
ter model is designed to be robust to malicious tenants, it
is never dangerous for the user to click a link and invite
a possibly-hostile party onto the client.

1 Introduction
A defining feature of the web application model is its

ostensibly strong notion of isolation. On the desktop, a
user use caution when installing apps, since if an app
misbehaves, the consequences are unbounded. On the
web, if the user clicks on a link and doesn’t like what she
sees, she clicks the ‘close’ button, and web app isolation
promises that the closed app has no lasting effect on the
user’s experience.

Sadly, the promise of isolation is routinely broken, and
so in practice, we caution users to avoid clicking on “dan-
gerous links”. Isolation fails because the web’s API, re-
sponsible for application isolation, has simultaneously
pursued application richness, accreting HTTP, MIME,
HTML, DOM, CSS, JavaScript, JPG, PNG, Java, Flash,
Silverlight, SVG, Canvas, and more. This richness intro-
duces so much complexity that any precise specification
of the web API is virtually impossible. Yet we can’t hope
for correct application isolation until we can specify the
API’s semantics. Thus, the current web API is a battle
between isolation and richness, and isolation is losing.

The same battle was fought—and lost—on the desk-
top. The initially-simple conventional OS evolved into a
rich, complex desktop API, an unmanageable disaster of
complexity. Is there hope? Or do isolation (via simple
specification) and richness inevitably conflict?

There is, in fact, a context in which mutually-
untrusting participants interact in near-perfect auton-
omy, maintaining arbitrarily strong isolation in the face

of evolving complexity. On the Internet, application
providers, or vendors, run server-side applications over
which they exercise total control, from the app down
to the network stack, firewall, and OS. Even when ven-
dors are tenants of a shared datacenter, each tenant au-
tonomously controls its software stack down to the ma-
chine code, and each tenant is accessible only via IP.
The strong isolation among virtualized Infrastructure-as-
a-Service datacenter tenants derives not from physical
separation but from the execution interface’s simplicity.

This paper extends the semantics of datacenter rela-
tionships to the client’s web experience. Suspending dis-
belief momentarily, suppose every client had ubiquitous
high-performance Internet connectivity. In such a world,
exploiting datacenter semantics is easy: The client is
merely a screencast (VNC) viewer; every app runs on
its vendor’s servers and streams a video of its display to
the client. The client bears only a few responsibilities,
primarily around providing a trusted path, i.e., enabling
the user to select which vendor to interact with and pro-
viding user input authenticity and privacy.

We can restore reality by moving the vendors’ code
down to the client, with the client acting as a notional
pico-datacenter. On the client, apps enjoy fast, reliable
access to the display, but the semantics of isolation re-
main identical to the server model: Each vendor has au-
tonomous control over its software stack, and each ven-
dor interacts with other vendors (remote and local) only
through opt-in network protocols.

The pico-datacenter abstraction offers an escape from
the battle between isolation and richness, by deconflating
the goals into two levels of interface. The client imple-
ments the client execution interface (CEI), which is dedi-
cated to isolating applications and defines how a vendor’s
bag of bits is interpreted by the client. Different ven-
dors may employ, inside their isolated containers, differ-
ent developer programming interfaces (DPIs). Today’s
web API is stuck in a painful battle because it conflates
these goals into a single interface [11]: The API is simul-
taneously a collection of rich, expressive DPI functions
for app developers, and also a CEI that separates vendors.
The conflated result is a poor CEI that is neither simple
nor well-defined. Indeed, this conflation explains why it
took a decade to prevent text coloring from leaking pri-
vate information [63], and why today’s web allows cross-
site fetches of JPGs or JavaScript but not XML [67]. The
semantics of web app isolation wind through a teetering
stack of rich software layers.
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We deconflate the CEI and DPI by following the pico-
datacenter analogy, arriving at a concrete client archi-
tecture called Embassies.1 We pare the web CEI down
to isolated native code picoprocesses [25], IP for com-
munication beyond the process, and minimal low-level
UI primitives to support the new display responsibilities
identified above.

The rich DPI, on the other hand, becomes part of the
web app itself, giving developers unparalleled freedom.
This proposal doesn’t require Alice, a web app devel-
oper, to start coding in assembly. When she writes a
geotagging site, she codes against the familiar HTML,
CSS, and JavaScript DPI. But, per the datacenter model,
that DPI is implemented by the WebKit library [62] that
Alice’s client code links against, just as her server-side
code links against PHP. Because Alice chooses the li-
brary, browser incompatibilities disappear.

Suppose a buffer overflow is discovered in libpng [50],
a library Alice’s DPI uses to draw images. Because Al-
ice links WebKit by reference, as soon as the WebKit
developers patch the bug, her client code automatically
inherits the fix. Just like when Alice fixes a bug in libphp
on her server, the user needn’t care about this update.

Later, Alice adds a comment forum to her application.
Rendering user-generated HTML has always been risky,
often leading to XSS vulnerabilities [29]. But Alice
hears about WebGear, a fork of WebKit, that enhances
HTML with sandboxes that solve this problem robustly.
DPI libraries like WebGear can innovate just as browser
vendors do today, but without imposing client browser
upgrades; Alice simply changes her app’s linkage.

Ultimately, independent development of alternative
DPIs outpace WebGear, and Alice graduates to a .NET
or GTK+ stack that is more powerful, or more secure, or
more elegant. Alice chooses a feature-full new frame-
work, while Bob sticks with WebBSD, a spartan frame-
work renowned for robustness, for his encrypted chat
app. Taking the complex, rich semantics out of the
CEI gives developers more freedom, while making cross-
vendor isolation—the primary guarantee established by
the client—more robust than today’s web API.

Via the pico-datacenter model, we develop a CEI with:
• a minimal native execution environment,
• a minimal notion of application identity,
• a minimal primitive for persistent state,
• an IP interface for all external app communication,
• and a minimal blit-based UI semantically equivalent

the screencast (VNC) model discussed above.
Such an ambitious refactoring of the web interface is

necessary to finally resolve the battle between rich DPIs

1An embassy is an autonomous enclave executing the will of its
home country; the host territory enables multiple embassies to operate
side-by-side in isolation.

and a simple, well-specified CEI. While it’s difficult to
prove such a radical change unequivocally superior, this
paper aims to demonstrate that the goal is both realistic
and valuable. It makes these contributions:

• With the pico-datacenter model, we exploit the
lessons of autonomous datacenter tenancy in the
client environment (§3), and argue that the collat-
eral effects of the shift are mostly harmless (§8).

• We show a small, well-defined CEI specification
(§3) that admits small implementations (§6.1) and
hence suggests that correct isolation is achievable.

• With a variety of rich DPI implementations running
against our CEI, we demonstrate that application
richness is not compromised but enhanced (§6.2).

• We show how to replace the cross-app interactions
baked into today’s browser with bilateral protocols
(§4), maintaining familiar functionality while obey-
ing pico-datacenter semantics.

• We implement this refactoring (§5) and show that it
can achieve plausible performance (§6.3, 6.4).

2 Trends in Prior Work
Embassies is not the first attempt to improve web app

isolation and richness, and indeed prior proposals im-
prove on one or both of these axes. However, they do not
provide true datacenter-style isolation — they incorpo-
rate, for reasons of compatibility, part or all of the aggre-
gate web API inside their trusted computing base (TCB).

2.1 Better Browsers for the Same API
Chrome and IE8+ both shift from a single process

model to one that encapsulates each tab in a separate host
OS process. This increases robustness to benign failures,
but these modifications don’t change the web interface—
multiple apps still occupy one tab, and complex cross-
app interactions still occur across tabs—hence isolation
among web apps is still weak. OP’s browser refactor-
ing [20] is also constrained by the web API’s complex
semantics.

Given this constraint, IBOS pushes the idea of refac-
toring the browser quite far [55]. It realizes the idea of
sites as first-class OS principals [26, 57], and container-
izes renderers to improve isolation. IBOS must still in-
clude HTTP to define 〈scheme, host, port〉 web prin-
cipals, and must use deep-packet inspection on HTML
and MIME to partially enforce the Same-Origin Policy
(SOP) [67]. IBOS cannot enforce the full SOP, such as
the restriction on image fetching (§3.1.4).

The Gazelle browser [58] treats sites and browser
plug-ins as principals to improve isolation, but like the
above systems, it maintains the existing web interface.
The follow-on Service OS project [59] extended this
work to encompass desktop apps, flexible web princi-
pals [45], device access, and resource management [44].
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All of these systems restructure the browser to im-
prove isolation, but they are hampered by adherence
to the complex web interface, in which the isolation
boundary is defined in part by images, JavaScript ex-
ecution [67], and fonts [4, 63]. In contrast, the pico-
datacenter model imposes a new interface that makes the
isolation boundary obvious and sustainable.

2.2 Changing the Web API
Many have observed that the HTML DPI isn’t the best

API for all web apps. An early alternative was Java [19]:
a new execution and isolation model. However, because
the execution model was new, and no conventional li-
braries worked with it, Java’s CEI had to incorporate a
new batch of rich interfaces and functionality, starting
with the AWT GUI library. These libraries expanded the
CEI (and hence the TCB), weakening the promise of iso-
lation. The practical need for a rich DPI combined with
a non-native execution model led to CEI bloat.

Atlantis [41] replaces the web’s DPI with a lower-level
CEI. Its executes a high-level language, and hence prac-
tical deployment of the model faces the same constraints
as Java: Either it offers a limited DPI until a massive
effort ports existing libraries to the new language, or it
caves in and admits rich native libraries as part of the
CEI (such as its renderGUIWidget call).

Our pico-datacenter proposal naturally evokes
Tahoma [9], which defines the CEI as a hardware-
compatible virtual machine. However, the Tahoma CEI
isn’t minimal; it includes all of HTTP and XML to
specify app launch, and full hardware virtualization is
needlessly broad, including x86 intricacies such as I/O
ports and APICs that are irrelevant to web apps. More
importantly, apps interact locally through “bins,” but
Tahoma doesn’t explain how to use them to replace con-
ventional web-style interactions without expanding the
CEI (cf. §4), or even how to download big applications
without adding a trusted cache to the CEI (cf. §3.1.3).

Various browser plug-ins, such as Flash and Sil-
verlight, expand the existing web API to give develop-
ers options other than HTML and JavaScript. Xax [25]
and Native Client [66] introduced the idea of native
code web plug-ins. NaCl’s SFI-based isolation requires
architecture-specific reasoning, significant changes to
DPI toolchains, and runtime overhead. Xax uses OS
page tables, an approach that our CEI maps naturally to.

While the technologies above improve various aspects
of the web, the broad approach of unioning a new inter-
face onto the existing web API does nothing to decon-
flate the web’s DPI and CEI and may actually introduce
to security vulnerabilities [28, 60].

Mobile app platforms, such as Android, introduce an
app model competitive with the web’s click-anything
model. But Android’s permissions are closer in spirit

to the desktop’s model: the device and its data are sa-
cred; installing an app explicitly welcomes the app into
that sacred domain. In practice, users incorrectly trust
app stores to vouch for app fidelity [31]. Our inter-
application protocols (§4) evoke Android’s Intents, but
Embassies communication uses IP, emphasizing that a
message’s local origin implies nothing about its author-
ity. At a low level, Android isolation is implemented
with Linux user IDs [46], a subtle isolation specification
wound throughout a complex kernel.

At the architectural level, our proposal employs the
principle of a native, low-level interface to execution and
I/O, similar to the Exokernel [30]. The Exokernel, how-
ever, aimed to expose app-specific performance oppor-
tunities; in Embassies, the low-level interface serves to
maximally enforce isolation boundaries among vendors.
The Exokernel project said little about how to restore
inter-app functionality in a principled fashion.

3 Embassies: A Client’s Pico-Datacenter
Section 1 proposed a model in which the client be-

comes a pico-datacenter hosting mutually distrusting
apps. This section describes a specific instantiation of
that idea (Fig. 1), starting with the basic execution en-
vironment offered by the pico-datacenter (§3.1). The
whole reason for running an app on the client (rather than
in a real data center) is proximity to the UI; to exploit
this, the pico-datacenter provides each app with a mini-
mal pixel blitting interface (for transferring pixel arrays
to the screen), and the primitives needed for app-to-app
display management (§3.2).

The resulting CEI (Fig. 2) has only 30 system calls,
each with very simple semantics. There are no deep re-
cesses of functionality hiding behind ioctls, making the
implementation, or client kernel, quite small (§6.1).

3.1 Execution Environment
In the datacenter, each vendor defines its own app

down to native code. Applying the pico-datacenter
metaphor, our proposed CEI defines an application as a
process started from a boot block of native code, running
in isolation in a native environment with access to ba-
sic, microkernel-like services such as memory, synchro-
nization and threads. An app communicates with remote
servers and other local apps via IP packets, and it boot-
straps storage from a single simple CEI call.
3.1.1 Execution: Native Code

Our client-side pico-datacenter is inspired by the suc-
cess of server-side Infrastructure-as-a-Service (IaaS) sys-
tems, wherein mutually distrusting server apps occupy a
shared datacenter. Server-side developers can build apps
atop their choice of standard virtual machine images, or
they can fine-tune or even replace the entire OS, mak-
ing it easier to port existing apps. Platform-as-a-Service



532 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

TFTP

JPEG
MIME
HTTP

TCP

C
TFTP
TCP

Webkit

photo albumemail untrusted
storage

10.1.0.9 10.1.2.7 10.1.0.3

IE
JavaScript

CSS
HTTP
TCP

C#
IronPython
.NET CLR

SOAP
TCP

shopping site

10.1.2.11

C++
Qt

XML
CORBA

TCP

3D globe

10.1.1.6
CEI

DPI

client kernel: mem/thread alloc, IP router, UI blitter

web
runtimes

to origin
server
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Figure 2: The Complete Embassies CEI. All 30 functions are
non-blocking, except futex wait, which can be used to wait
on events that signal the completion of long-running calls.

(PaaS) layers elegantly and efficiently on top of IaaS. Be-
cause of the simplicity of the IaaS interface, it can clearly
deliver on its promise of inter-tenant isolation. Indeed,
both Google [18] and Microsoft [43] started with PaaS
but then shifted to IaaS.

By analogy, our model allows vendors to build client-
side apps atop their choice of standard DPIs, including
high-level languages, or they can fine-tune or replace
them as desired. This reduces the pressure to bloat the
CEI with new features (§2.2), since the apps can link to
new feature libraries, above the level of the CEI.

While the CEI executes native-code instructions, de-
velopers obviously won’t be writing code in assembly
(§1). A developer writes to a high-level DPI, and the DPI
implementation emits native code, including the machin-
ery to assemble the app from a boot block.

In particular, for web apps written against the current
web DPI, the functions described in this section are hid-
den from the developer. These functions are used by a
code module called the web runtime (§5.2.5), which im-
plements the web DPI.

3.1.2 Identity: Public Keys
The pico-datacenter identifies its tenants the same way

entities anywhere on the open Internet are robustly iden-
tified: by associating each process with the public key
of the vendor responsible for it. In other words, Em-
bassies’s principals are public keys, so an app may con-
sist of multiple processes running different code, but Em-
bassies will treat them all as a single principal.

Embassies identifies the principal for a process during
process start. Each process starts from a self-contained,
native-code boot block (§3.1.1). That boot block is
signed by a private pair held by the process’ principal.
Before a process starts, the client kernel checks the sig-
nature, and henceforth it associates the new process with
the corresponding public key; §3.2 discusses how this
identity is conveyed to the user.

The CEI does not specify how the signed boot block is
acquired, leaving it up to the DPIs to define and evolve
suitable mechanisms — see §4.1 for an example.

The CEI also takes a data-center-based approach to
handling app instances, i.e., multiple processes that be-
long to the same principal (i.e., public key). When a cus-
tomer contacts a data-center tenant, e.g., Netflix, she con-
tacts the vendor, rather than directly specifying a particu-
lar virtual machine running a particular binary. Similarly,
with Embassies, the CEI does not specify how to contact
a specific process belonging to a principal. Instead, each
app vendor can choose to make all of its processes avail-
able for communication, or the vendor may choose to
use one process to dispatch requests to other processes it
controls.

This minimal notion of app identity contrasts with to-
day’s web, which distinguishes principals based on the
protocol, host, and port used to fetch the app; thus the
very specification of app identity incorporates the com-
plexity of TCP, HTTP, HTTPS, and MIME.

Embassies’s minimal definition provides a strong no-
tion of identity, making it simple to determine when a
message speaks for an application and to enable secure
communication amongst apps (§3.1.4). Many awkward
consequences of the web’s cobbled-together definition
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vanish [27]; today a vendor may own two domain names
but cannot treat them as one principal, or a single do-
main may represent multiple entities (e.g., GeoCities or
MySpace) but is treated as one principal.

However, defining and verifying app identity on an
end user’s client is more challenging than for a remote
server, because it is not safe to download a vendor’s pri-
vate key to a client. For instance, Flickr uses its private
key to authenticate its server, but it would never embed
that key in the code it downloads to a client.

Our solution is based on the observation that, after ver-
ifying a vendor’s signature on a binary, the client kernel
can authoritatively state that the app speaks for [35] that
vendor on this machine. The endorse me call allows
an app to obtain such a certification for a crypto key it
generates, and other apps on the local machine can verify
this with verify endorsement, similar to authenti-
cation in the Nexus OS [54]. Since local apps already
depend on the client kernel for correctness and security,
this introduces no new dependencies.

Endorsing apps via crypto keeps the client kernel sim-
ple and makes explicit the guarantees the return value
provides. It also further emphasizes the pedagogical
point that each app should treat communications with lo-
cal apps with as much suspicion as it would treat com-
munications with remote apps.
3.1.3 Persistent State: Pseudorandom Keys

The current web interface specifies several local stor-
age services as part of the CEI: an object cache, cookies,
and local storage. Each service must be correct to pre-
serve app isolation; for instance, the cache can violate
an app’s security or correctness if it misidentifies the ori-
gin of an object. Worse, these services have complex
semantics apps cannot control; for example, the browser
delivers cookies on one app’s behalf when a different app
makes certain requests; flaws in this design lead to Cross-
Site Request Forgery (CSRF) vulnerabilities [6].

By contrast, in a shared data center, apps cannot even
assume the presence of local storage, let alone complex
storage APIs for caches or cookies. Instead, the app’s
developer uses a remote storage service, such as Ama-
zon’s S3 or Azure Storage. Even if she trusts Amazon,
a sensible developer uses SSL to connect to the storage
service, and a less trusting developer can use additional
cryptography to avoid trusting Amazon.

Hence, following the pico-datacenter analogy, our
CEI does not provide any storage services directly. In-
stead, apps bootstrap all of their storage needs via the
get app secret call, which returns a secret specific
to both the app’s identity and the client machine.

The app secret is stable, so when the app restarts later,
it gets the same secret. An app library can use the app
secret as key material to build encrypted and authen-
ticated storage from any untrusted external store, such

as a daemon on the local client machine, a server-based
cloud service, or even a peer-to-peer service. Apps use
this secure storage facility to save cookies and other app-
specific state.

In addition, mutually-distrusting apps can share an
untrusted store that acts as a common content cache
(§5.2.2); each app independently authenticates (e.g., via
a MAC with the app secret as a key) the cache’s content.

In both cases, replay or rollback attacks can be pre-
vented via standard techniques [38, 48].

Our client kernel implements this interface by storing
a symmetric key for a pseudorandom function (AES). It
applies the function to the hash of the app’s public key to
generate a secret unique to the (app, host) pair.
3.1.4 External Interface: IP Only

Today’s web API supplies an ever-expanding set of
communication primitives, including content retrieval
via HTML src attributes, form submissions, links,
JavaScript XMLHttpRequests, PostMessage, and Web-
Sockets. Each expands the complexity of the CEI.

In contrast, our pico-datacenter follows the commu-
nication model of Internet servers: It offers only IP,
with simple best-effort, non-private, non-authenticated
semantics. Using IP even for messages traveling on the
same machine sounds slow and counterintuitive. How-
ever, it imitates the physical constraints that guided the
evolution of robust inter-server protocols. Servers com-
municate only by value, not by mapping shared address
spaces; such decoupling leaves room to design robust
protocols and select robust implementations. We can
keep IP’s semantics while exposing good performance
by supporting bulk transfer with IPv6 jumbo frames, and
by exposing a zero-copy packet interface (§5).

In practice, the client kernel assigns each app an IPv6
address and a NATed IPv4 address. The client kernel’s
responsibility is that of any other Internet router: best-
effort delivery, with no particular guarantees on integrity
or privacy.

As with any other Internet interaction, to communi-
cate securely with other parties, an app uses cryptogra-
phy. For example, the app might include a server’s public
key, or a public key for the root of a PKI, and then com-
municate with the server over SSL. The CEI does not
provide cryptographic operations; the app must incorpo-
rate (e.g., via a library) any crypto code it needs. How-
ever, the CEI’s get random call provides a supply of
secure randomness for seeding cryptographic operations,
like nonce or key generation.
Communicating with Remote Servers.

In today’s web, communication with remote servers
is deeply complicated by the web’s breathtakingly am-
biguous Same Origin Policy (SOP), which refers to an
ad-hoc collection of browser behaviors that attempt to
selectively isolate sites from one another [67].
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Locally, the SOP prevents most but not all
DOM-based interactions; following the pico-datacenter
metaphor, Embassies enforces a stronger, simpler policy:
strictly isolate apps, with interactions only via IP.

When communicating with remote servers, the SOP
primarily affects when the browser attaches cookies to
an outbound request, and when a webpage can fetch con-
tent from a remote server. We discard the restrictions
on cookies, since in Embassies, each app, via its DPI,
governs access to its own cookies and decides when to
include them in a request (§4.2). The CEI never adds
ambient authority [23] to an app’s communications.

The SOP’s restrictions on fetching remote content
aren’t so easily dismissed. Since a web client may be
running behind a firewall, allowing untrusted apps to
freely use its network connection creates a confused-
deputy vulnerability [23]. For example, an evil app on
a user’s web client may request content from the internal
corporate payroll server, which the server allows because
the request originates behind the firewall. The SOP ad-
dresses this with complicated rules such as allowing an
app to retrieve an image from any site and display it, but
not examine its pixels. Such rules require reasoning at a
high level to know that a retrieved file is an image.

We observe that a much simpler policy addresses the
confused-deputy threat. The threat arises from allowing
untrusted apps to inherit the web client’s privileged po-
sition on the network; thus, we disallow that privilege.
In Embassies, every app receives, either via IT network
configuration or via an explicit proxy, an IP connection
logically outside any firewall. We call this “coffee-shop
networking” (CSN), since apps use an IP connection se-
mantically equivalent to a public network, e.g., in a cof-
fee shop. An app that accesses enterprise resources can
include a VPN library. To avoid asking the user to au-
thenticate more than once, the app may choose to share
its VPN connection with other enterprise-approved apps
that it authenticates cryptographically (§3.1.2).

In fact, the necessary environment for CSN is emerg-
ing due to the “consumerization of IT” [47], which
encourages institutions to make logically-external con-
nections available for untrusted devices and to harden
internal servers. Windows 8 grants apps an “in-
ternetClientServer” permission, a policy equivalent to
CSN. [42]

We discuss the potential for resource abuse (e.g.,
Denial-of-Service) in §7.
Communicating with Local Applications.

In the pico-datacenter, a local app is just another server
sitting on the network, and thus intra-client communica-
tion, just as app-to-server communication, is simply IP.
This keeps the CEI simple and encourages defensive app
design; local apps appear no different than servers be-
cause they are no more trustworthy than servers.

However, communicating with local apps differs from
servers in a crucial aspect: It is reasonable to assume
that server processes are available; map.com can send a
message to flickr.com and reasonably expect a run-
ning process to receive it. In contrast, a web app cannot
safely assume any other app is currently running on the
local client.

Thus, the CEI provides the call ensure alive to
ensure a local process is indeed alive locally. We delib-
erately make the call’s semantics minimal, leaving most
of the work to the calling and target apps. The calling
app must somehow locate the target app’s binary boot
block, signed by the target app’s vendor, and pass it to
ensure alive. If no instance of the target app (as
identified by the public key that signed the boot block) is
yet running, the client kernel verifies the signature, starts
a container for the new app, and associates the vendor’s
key with the container. Thereafter, the caller app can
communicate with the target app by IP, for instance to
pass parameters to the second app.

Note how the ensure alive primitive contrasts
with a conventional OS process start: no parameters, en-
vironment, handles, or library paths. A single vendor
can use ensure alive to create multiple processes,
which may be helpful for benign fault isolation, but be-
cause each such process shares a common principal (the
vendor key of §3.1.2), there is no security isolation be-
tween such processes.

3.2 UI and Display Management
The preceding subsections carve up the client machine

into a fairly standard “shared datacenter”; however, a
pico-datacenter is interesting because it lives near the
user. Hence, unlike a traditional datacenter, we must also
specify how apps access the user interface, and how the
CEI handles display management. Our guiding princi-
ple is to reason about how remote, screencast apps (§1)
might coordinate to manage a dumb client’s UI.
User Interface. Today’s web apps specify user in-
terfaces via a complex amalgam of HTML, CSS,
JavaScript, DOM, and many other standards. Our goal
of a minimal CEI drives us to the leanest feasible inter-
face: An app may accept a rectangular viewport region
(accept viewport) and map a canvas into its ad-
dress space (map canvas) – see Figure 3. This allows
the client kernel to place it in a region of memory where
blitting is cheap; if the viewport is resized, another call
to map canvas recreates a matching framebuffer. After
painting pixels onto the canvas using the rendering stack
it prefers, the app asks the UI (via update canvas)
to blit the pixels onto the visible part of the app’s view-
port. When the user’s input focus is in the viewport, the
client kernel delivers mouse and keystroke events to the
app (receive ui event).
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Figure 3: UI Management. Sublet viewport lets the
newspaper nest the weather app’s display inside its region.
On the right, the user clicked a link on the Bing app, which
used transfer viewport to convert its viewport (access
to the screen) into a deed (a secret capability), and sent the
deed in a message to the kitchen app. The kitchen app will use
accept viewport to redeem the deed for its own viewport.

As with the choice of native code, this refactors rich
UI features into the apps, simplifying the CEI while en-
abling virtually any UI a DPI-developer can imagine (we
discuss GPUs in §8). Indeed, because Embassies exe-
cutes native code, we can employ a variety of mature UI
stacks (§5.2) as DPI-supported UIs for web apps.

The client kernel labels app windows with the app’s
identity, so the user can select a window and know which
app he is communicating with. The CEI does not use
cryptographic keys directly as labels, because such keys
are difficult for users to interpret. Instead, the CEI maps
keys to hierarchical DNS-style labels (e.g., bing.com),
based on and compatible with the DNSSEC PKI2. Be-
fore an app can accept a viewport (and hence appear on
screen), the app must gather a certificate chain authenti-
cating its label and call verify label.

Naming, labeling, and visual ambiguity are hard prob-
lems; users manage to ignore most cues [52]. Our client
kernel provides the minimal facility described above to
address this problem, consistent with the best known
methods [16, 53, 65], but we recognize that progress on
this problem [10] may require CEI evolution.
Display Management. Much of today’s browser func-
tionality, such as linking, embedding, navigation, history,
and tabs, are basically mechanisms for display manage-
ment. To adhere to the remote screencasting abstraction
(§1), we designed a viewport-management interface with
capability semantics. This interface has five calls and
primitive semantics; the rich browser-like functionality
is built up by apps themselves (§4).

2Experience with SSL/TLS illustrates that deploying a large-scale
PKI is challenging. Security is undermined by hundreds of certificate
authorities baked into common browsers. Thus, we choose a DNSSEC-
style PKI with few trust anchors and scoped naming authority.

Our CEI supports the transfer of a viewport from one
app to another via transfer viewport, which ac-
cepts a viewport and returns a deed, a secret capability
that can be passed to another app via a network mes-
sage. The receiving app can call accept viewport
to redeem the deed for a viewport it can draw in. Trans-
forming a viewport into a deed destroys the viewport,
and accepting a deed into a viewport destroys the deed;
thus only one app has access to a viewport at a time.

Rather than transfer an entire viewport, an app may
wish to delegate control over a rectangular sub-region
of its viewport via sublet viewport. This creates
a deed that can be passed to another app. It also yields
a handle to the sublet region, with which the parent app
can resize or move the region via modify viewport,
or revoke it with repossess viewport.

To allow communication (e.g., changes in viewport
size) between the app that sublets a viewport (the land-
lord) and the app that accepts it (the tenant), our CEI
provides each landlord-tenant pair with a fresh sym-
metric key that can be used to authenticate and option-
ally encrypt viewport-related communication. Since the
key provides secrecy, integrity, and authenticity, apps
may use anonymous communication mechanisms (e.g.,
anonymous broadcast from a random IP address) to bet-
ter protect the user’s privacy.

4 Refactoring Browser Interactions
§3 introduced a CEI with minimal support for hosting

pico-datacenter apps and enabling them to share the UI.
This section shows how we can build up equivalent func-
tionality inside the apps to restore the rich cross-app in-
teractions familiar in the classic browser. Less browser-
specific interactions, such as copy-and-paste, can be han-
dled via techniques from related work (e.g., [51]).

Rather than bake these rich interactions into the client,
each interaction is reconstructed as a bilateral protocol
between cooperating apps. This refactoring gives appli-
cation vendors the autonomy to make security/function-
ality tradeoffs, for example by choosing a more robust
implementation of a given protocol, implementing only
a subset of it, or even refusing it altogether.

More importantly, refactoring interactions as protocols
clarifies the underlying semantics, whereas in today’s
web, complex feature interactions lead to surprising se-
curity implications. For example, refactoring provides
new perspective on Cross-Site Request Forgery (CSRF)
(§4.2) and policies for visited-link coloring (§4.5).

4.1 Linking
When a classic web app includes a link to another app,

it is prepared to transfer control of its screen real estate in
response to the user’s click. In the current web API, the
hyperlink is a high-level function, bundling name reso-
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lution, app fetch, app start, app window labeling, param-
eter passing, cookie transmission, and screen real-estate
transfer into a single browser feature. In contrast, the
pico-datacenter model partitions these tasks mostly be-
tween the app that contains the link and the app being
linked to; the client kernel provides minimal support.

Consider caller.net, an Embassies app written in
a classic HTML DPI, containing a hyperlink:

<a href="target.org/foo?x=5&y=10">
When a user clicks the link, the caller app identifies and
contacts the target app. First, it translates target.org
into a strong identity, perhaps by resolving it, via DNS
or some stronger PKI, into a public key for the target app
(§3.1.2) — §8 discusses legacy servers. Second, it con-
tacts a local instance of the target app via local broadcast.

Since the target app may not be running locally, the
caller uses ensure alive (§3.1.4) to ensure that the
target app has a presence on the client (in the local pico-
datacenter). This requires caller.net to fetch a signed
boot block matching the web runtime’s ISA; it finds it
as it found target.org’s public key. Target.org’s tiny
bootstrap executable retrieves and verifies the rest of its
code and data, by its own means. Once target.org’s
web runtime calls verify label (§3.2), the vendor
has a presence on the client.

From its client presence, target.org responds to
caller.net’s broadcast via unicast IP. The two web run-
times have their public keys endorsed by the client ker-
nel (§3.1.2), and use them to create a secure communi-
cation channel. Caller.net’s web runtime then transforms
its viewport into a deed (§3.2), and sends a message to
target.org containing the deed and the entry point
parameter /foo?x=5&y=10. If target.org wishes
to pass the request to its server, it does so itself (§4.2); the
client kernel has no notion of HTTP. If target.org
wishes to include a client-stored cookie, it fetches and
forwards its own cookies (§3.1.3); the client kernel has
no notion of HTTP cookies.

While the above process may sound heavyweight,
much of it is simply a refactoring of the work done today
by the browser. Furthermore, our results (§6.3) show that
the overhead of app start is quite reasonable.

4.2 Cross-Domain Communication
Today’s web offers many communication mecha-

nisms, such as XMLHttpRequest, script and image inclu-
sion, PostMessage, and third-party cookies. Refactoring
them into explicit app-implemented protocols is easy.

XMLHttpRequest and HTML script and image
tags use app libraries that employ TCP, HTTP, and XML
libraries to reproduce standard functionality internal to
the app, relying on the CEI only for IP (§3.1.4). The
simplicity stems from Embassies’s handling of confused-
deputy problems at the IP level (§3.1.4).

PostMessage lets one local client app send messages
to another. In Embassies, these messages simply become
IP packets, optionally protected cryptographically.

Automatic HTML cookie semantics mixed with im-
perative code lead to cross-site scripting vulnerabilities;
the HttpOnly attribute attempts to curtail the complexity
enough to mitigate the threat [5]. In Embassies, an app
can only manipulate a cookie belonging a separate ven-
dor via an explicit IP request to the cookie’s owner. The
owner enforces policies on which cookies are exposed
and to whom.

This refactoring reveals how CSRF threats can now be
addressed by individual vendors. CSRF occurs when a
malicious app dupes the browser into sending a request
to a valuable app’s server that’s indistinguishable from
a legitimate request: It looks like the user submitted a
form, and it contains the valuable app’s cookies. In the
refactored relationship, it is straightforward for the valu-
able app to implement separate mechanisms for its user
interactions versus its invocations from other apps.

4.3 Embedding
Visually embedding another app, such as in

an iframe, is just like navigation, except the
landlord uses sublet viewport rather than
transfer viewport. When a sublet viewport
is transferred to another app, three parties cooperate in
the transfer: the old tenant, the new tenant, and the land-
lord. At the conclusion of the transfer, the new tenant
but not the old tenant has access to the viewport, and the
new tenant can communicate with the landlord without
revealing its identity. The parties achieve this with a
three-way protocol that performs an atomic transfer. A
failed party can violate liveness, but the landlord can
recover after a timeout with repossess viewport.

4.4 Favorites
Classic browsers allow the user to bookmark favorite

pages. This interaction becomes a protocol in Embassies:
One client app acts as the user’s bookmark repository.
A user gesture tells an app to send a bookmark to the
repository, consisting of the app’s identity and an opaque
entry-point parameter the app can use to reconstruct the
user’s state. This refactoring makes it clear that the
repository gets to know which vendors the user has ex-
plicitly bookmarked, and nothing more.

4.5 Navigation Threading and History
A classic web browser tracks the user’s history, en-

abling different views of the link graph the user tra-
versed: the back button walks a path in the graph, history
records the graph’s nodes (i.e., sites the user visited), and
link coloring displays the nodes via the current app’s out-
bound links.
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One could implement these functions in an Embassies
ecosystem by declaring a trusted repository app, and
adding to the linking protocol (§4.1) a step that submits
a “bookmark” for the linked page to the repository.

Such a refactoring indicates that the repository is en-
trusted with quite a trove of private data. Further-
more, implementing link coloring reveals the reposi-
tory’s knowledge to every app. One could band-aid the
damage by having the repository render links as embed-
ded displays (§4.3) on behalf of apps, to avoid reveal-
ing the node graph to adversarial apps. This is essen-
tially how the classic browser, which acts a trusted his-
tory repository, protects user privacy. Achieving privacy
has been a long, complex battle [4]. In Embassies, such
a relationship is at least well-defined.

However, we find the relationship too promiscuous.
Instead, we deliberately abandon global history. For link
coloring, we accept downgraded behavior, leaving indi-
vidual applications to record their own outgoing clicks.
For example, Bing can remember which links you have
clicked on from Bing, and color such links purple. If
you’ve arrived at embarrassing.com via some other
path, but never from Bing, then the link to that site re-
mains blue on Bing’s results page. This provides weaker
semantics than the classic web, coloring links as edges
rather than nodes, but has simple privacy implications.

The back button requires each app only to know its lo-
cal neighborhood of the graph. An app can provide inter-
nal navigation itself. To span apps, the linking protocol
(§4.1) is extended to carry an app identity and an opaque
blob, a “bookmark” for the reverse edge. When the user
backs out of the target app, the target invokes the book-
mark with the linking protocol to replace its display with
the prior app. This allows an app to cause the back but-
ton to go to unexpected sites, break, or vanish entirely.
In the classic web, the complexity of redirects and au-
tomatic navigation can cause similar mischief, rendering
the browser’s back button similarly problematic.

This scheme reveals the identity of the caller app to the
target app, just as Referrer headers do today. The alter-
natives are to have a trusted, centralized store of the navi-
gation graph (the classic browser’s behavior, an approach
we dislike), or to let apps create anonymous proxy iden-
tities to hide their identity from those they link to.

4.6 Window Management and Tabs
Managing overlapping windows or tabs is achieved

using the same primitives that manage sublet viewports
(§3.2). Thus an ordinary application, typically the first
one Embassies starts, provides window resizing han-
dles and tabs, treating the enclosed content as embedded
iframes (§4.3). As with any such UI relationship in Em-
bassies, the window manager cannot violate the privacy
or integrity of the apps whose windows it manages.

The landlord controls the z-order of its tenants
(presently unimplemented). The client kernel provides
no support for transparency; if separate apps wish to im-
plement it, they must expose their pixels to some app
they trust to implement the blending.

5 Implementation
To evaluate the minimality and simplicity of the CEI,

we implement three instantiations (§5.1). To evaluate the
richness offered to developers, we port three full DPIs to
Embassies (§5.2). All the code is available [1].

5.1 CEI
We have built a complete CEI implementation for

Linux and a nearly complete one for the L4 microker-
nel [24]. For debugging purposes, we built, but omit for
space, a complete non-isolating Linux implementation.
5.1.1 The Linux KVM Monitor

The measurements in §6 all run on our linux kvm
monitor, which relies on Linux KVM [32] to provide a
virtual CPU for each app. For memory, the client ker-
nel allocates a large contiguous block of virtual memory,
and gives pieces of it to the app in response to mem-
ory requests. The client kernel performs thread schedul-
ing, and it maintains a table of futex queues to block app
threads performing futex wait. It also directly im-
plements the clock, timer, and crypto primitives.

A single central coordination process manages a con-
nection to an X display, our UI mechanism. It also im-
plements a logical IP subnet for routing packets between
apps and to the Internet. Each app communicates with
the coordinator using sockets. To connect to the Inter-
net, the coordinator injects and intercepts packets at the
IP layer using tun. To provide NAT, it employs the ipt-
ables functionality built into the Linux IP router. When
a client is behind a firewall, it routes packets over an IP
tunnel to a CSN proxy. For performance when moving
large data between apps, it provides a zero-copy path for
IPv6 jumbo frames, using shared memory.
5.1.2 The L4/Genode Monitor

We have also implemented the CEI on an
L4::Pistachio microkernel [24], building on the
Genode OS [14, 17] framework’s memory allocation,
RPC abstractions, and Nitpicker UI [15]. It runs all of
the rich-DPI applications the Linux KVM monitor does.
5.1.3 Alternatives

While the linux kvm monitor depends on hardware
virtualization, the CEI doesn’t require it. It supports any
computer with an MMU [25], perhaps using OS mecha-
nisms like seccomp [36] or PTRACE SYSEMU.

5.2 DPIs
We have linked three full DPIs against Embassies:

classic web, Gnome/Gtk, and KDE/Qt. The classic web
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DPI is built from a Webkit-based [62] browser, Mi-
dori [56], which is itself built on Gtk libraries. The
KDE/Qt toolkit is almost entirely distinct, but it shares
its bottom layers (X, libc) with Gtk. In addition, we built
a minimal DPI (§5.2.1) that runs native C code and ac-
cesses CEI facilities directly. Each DPI is a stack of soft-
ware that talks to the CEI at the bottom layer.
5.2.1 POSIX Emulation

Embassies’s POSIX emulation layer (EPE) lies at the
bottom of each DPI we implemented. It supports the
POSIX-facing libc, which in turn supports Gtk and Qt.
For instance, libc implements its malloc function by
calling brk or mmap, and EPE converts these into an
allocate memory call to our CEI.

Because POSIX identifies system resources via the
filesystem namespace, EPE includes a virtual in-process
filesystem (VFS) implementation, with several underly-
ing filesystems. Implementing facilities as VFSs is often
easier than modifying app logic in higher layers [25].
5.2.2 Virtual Filesystems

EPE includes a read-only filesystem that holds an im-
age of the applications’ executable and data files. EPE
also contains entry-point code, which maps a copy of the
dynamic loader ld and calls it with the path to the app
executable in the read-only filesystem.

This read-only filesystem accesses data from a stor-
age service (§3.1.3) via an FTP-like protocol. Files are
identified by their hash values, which are computed us-
ing Merkle trees [40] to facilitate content-based block
sharing with other apps. If the service doesn’t have a
requested block, the read-only filesystem contacts the
app’s origin server. Fetching files incurs costly round
trips, so the read-only filesystem initially prefetches a
tar-file of the app’s startup files. Requests that fail in the
tar-file fall through to individual cache requests.

To store an app’s temporary files, EPE provides a
RAM-disk VFS. For intra-app communication, EPE pro-
vides access to pipes and sockets via another VFS.
EPE translates app reads from /dev/random into
get random CEI calls. Reads from /proc are par-
tially emulated within EPE, e.g., to provide the stack
layout to garbage-collection libraries. A VFS provides
a filesystem for securely storing persistent data (§3.1.3),
e.g., cookies; these employ a local storage service. An-
other VFS provides access to a server-side store.
5.2.3 Xvnc

All our DPIs are currently based on X graphics. Our
implementation satisfies X requests via a modified Xvnc
library. Xvnc speaks the X protocol at the top and the
VNC remote-frame-buffer protocol at the bottom. We
replace the bottom with code that uses our CEI’s view-
port/canvas instead. This modified about 350 SLoC.

5.2.4 Gtk and Qt
Once these layers are in place, getting a much richer

toolkit in place is surprisingly straightforward, even
though these toolkits consist of 50–100 libraries. Some
Gnome-based applications were insistent that a Dbus ob-
ject broker be present; we satisfy them by simply spin-
ning one up within the app. Other apps, such as Gimp,
draw numerous toolboxes. We load a twm window man-
ager alongside Gimp to enable the user to manipulate the
toolboxes on a single Embassies viewport.
5.2.5 libwebkit and Midori

For our HTML DPI, we started with Midori [56], a
browser based on the libwebkit HTML DOM implemen-
tation [62]. Midori and Webkit are in turn Gtk apps, so
most of their requirements are satisfied by the techniques
above. We implemented a tab manager (§4.6) and in-
serted hooks in Webkit’s link, GET, and iframe mecha-
nisms to connect them to the linking (§4.1), navigation
(§4.5), and embedding (§4.3) protocols. For example,
in the link case, the hook retrieves the tenant viewport
from Xvnc, converts it into a deed, and forwards it to the
destination app. We have not yet implemented window
management, favorites, or history management, though
these should be straightforward, since window manage-
ment is a subset of tab management, and favorites and
history are handled by normal apps.
5.2.6 Alternative DPIs

Drawbridge ports Windows and .NET to a “picopro-
cess” interface close to our CEI, making it a good candi-
date for a web DPI [49].

5.3 Architectures
We have only implemented an x86-32 variant of the

CEI. Nothing in the CEI depends on the ISA; other archi-
tectures would be straightforward. The x86 CEI variant
inherits an ISA quirk: all popular x86 software frame-
works abuse an x86 segment register as a thread-local
store pointer to reduce pressure on the paltry x86 register
file. We support this by adding a x86 set segment
call to the x86 CEI variant. The call has trivial semantics
and no security impact; supporting it lets most library
binaries run unmodified, greatly easing porting effort.

6 Evaluation
This evaluation answers four questions: Does the CEI

achieve its goal of minimality (§6.1)? Does it support
diverse, rich DPIs (§6.2)? We shift the burden for ap-
plication bootstrapping onto apps themselves; how big is
the performance cost (§6.3)? When each app brings its
own DPI, is the memory burden acceptable (§6.4)?

We test with an HP z420 workstation with a four-core,
3.6GHz Intel Xeon E5-1620 CPU and 4GB of RAM.
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Client Kernel SLoC Underlying TCB
linux kvm 28,138 Linux (millions)
linux dbg 21,445 Linux (millions)
bare iron 16,714 Genode, L4 (˜70K)
Firefox 4,561,642 Linux (millions)
Chrome 6,722,375 Linux (millions)

Figure 4: TCB. Unlike today’s web API, the Embassies CEI
admits modest implementations.

Figure 5: Diverse DPIs. Native code as CEI enables diverse
DPIs. This screenshot shows apps Craigslist (Webkit/HTML),
Gimp (Gtk), Marble (KDE/Qt), Inkscape (Gtk), and Gnumeric
(Gtk) running on the Embassies CEI. Not shown are Abiword
(Gtk), Gnucash (Gtk), or Hyperoid (EPE).

6.1 Minimality/Simplicity of the CEI
CEI minimality both improves isolation by reducing

TCB size, and leaves richness up to the app’s libraries.
Figure 4 counts the client-kernel code sizes [64], which
represents the amount of code all apps must trust. Each
CEI implementation depends on some underlying OS.
Although Linux is huge, CEI safety depends only on a
subset of its semantics, memory management and the
kvm driver. Likewise, the display uses X, but only pixel
rectangles, not X’s security model. The L4 implemen-
tation further supports the hypothesis that the Embassies
CEI can be implemented with relatively little code.

Any application running on the CEI may include mil-
lions of lines of code, but the vendor controls which lines,
and none of this code increases the TCB of any other app.

6.2 Diversity of DPIs
We have demonstrated half a dozen applications run-

ning on three major DPIs—Gtk, Qt, and Webkit—
comprising 143 MB of binary in 200 libraries (Fig. 5).

6.3 Performance
We consider it worthwhile to spend some performance

for a richer, more secure web. How much performance
are we spending?

CPU Overhead. We ran a subset of the SunSpi-
der JavaScript benchmark [61] on both Linux and Em-
bassies. We also ran Gimp image rotations as a native
macrobenchmark. Unsurprisingly, in both cases the dif-
ference is negligible: results are within 2% with stan-
dard deviations of 1%. These results confirm that a
well-designed, low-level CEI need not add any additional
CPU overhead to such computations.

Communication. To evaluate the overhead of IP com-
munication between local apps, we measured the time
Midori takes to fetch its cookies from an untrusted store
(§3.1.3). This involves not only IP latency, but the cryp-
tographic overhead of decrypting and verifying the in-
tegrity of the data. Nonetheless, we find that Midori can
read or write a cookie in under a millisecond; refactoring
interactions into protocols adds negligible overhead.

As discussed below, we use zero-copy data transfers
and caching to reduce the overhead of transferring large
amounts of data (e.g., DPI images) between apps.

App Start. The most significant impact of our refactor-
ing is that, rather than intimately sharing a monolithic
browser’s heap, each app bootstraps its own DPI layers.
How much does this increase the latency between when
a user clicks a link and when the app launches?

The very first time the client ever encounters a new
DPI, she must, of course, download it, just as she would
if she selected a new browser. Subsequently, the DPI’s
files can be served rapidly out of a local, untrusted cache
(E-Hot in Figure 6). Indeed, clever caches will likely
preload popular DPIs to avoid even the first-time down-
load. In a “patched” start (E-Patch, Fig. 6), the app’s
image is absent from the cache, but another app based
on a similar DPI is present, and the Merkle tree reveals
that only a delta is needed (§5.2.2). Thus, deviation from
popular DPIs will result in an initial app load time pro-
portional to the amount of deviation. One reason a ven-
dor might deviate from a popular DPI is to fix a broken
library. For example, libpng patched an overflow vulner-
ability in February 2012 [50]. In this case, the “patched”
Midori is 76MB but differs from the cached Midori only
by the 0.5MB repaired libpng library. Once the delta has
been fetched, subsequent fetches by any other vendor us-
ing the patched libpng also hits the cache.

To reduce bootstrap time, we start each app from a tar
file, so the entire image is transferred from the untrusted
cache in one packet (§5.2.2), reducing overhead and en-
abling zero-copy optimizations. The first time an app
runs, its loader verifies the hash (SHA-1) of the tar file;
to save time on future loads, the app uses its platform-
specific secret key (§3.1.3) to MAC the tar file and stores
the MAC value in untrusted storage. MACs such as
VMAC [33] can be verified faster than a hash.
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Figure 6: App Startup Latency. Four web apps, a native
game (Hyperoid), and a splash screen. For the web apps “App
Load” is the time to fetch and render the HTML content. Error
bars show standard deviations of total time over 10 runs.

Figure 7: DPI Start Breakdown. Fetching the DPI from the
cache costs more in the warm case, due to fetching upstream
blocks and the need to hash rather than MAC for integrity.
Mean of 10 trials.

Figure 6 assumes zero network delay to avoid bury-
ing Embassies’s overheads in high network latencies.
Our untrusted cache only supports UDP, incurring many
RTTs hidden by this zero-delay assumption, but in de-
ployment, it would pipeline blocks with TCP, incurring
RTTs typical of HTTP transfers.

We load a set of popular websites in Midori on Linux,
which takes 102–373 ms. In contrast, a hot start on Em-
bassies takes 314–529 ms, and a patched start takes 335–
551 ms. Unsurprisingly, the app load (i.e., web page
fetch and render) step is similar in both cases. Em-
bassies’s overhead comes primarily from the need to
fetch, verify, and boot the Midori DPI. Most of that time
(Fig.7) comes from starting Midori from scratch, which
even on Linux requires 130 ms (σ = 7). This is un-
surprising, since Midori app starts are assumed rare, and
hence unoptimized. This overhead could be mitigated
by checkpointing to avoid library relocation [12, 39],
by applying Midori-specific tuning (e.g., not loading ev-
ery available font on startup), or by displaying a splash
screen until the app achieves interactivity. Figure 6
shows that Embassies can display such a splash screen
(1.5MB) in 15 ms (σ = 1). As an example of optimized
start time, we ported a game, Hyperoid, to Embassies. It
starts in 102 ms (σ = 15) when cached.

Figure 8: Memory. Embassies DPI implementations consume
virtual memory comparable to their POSIX progenitors.

These costs are within the ballpark of a page load, but
further improvements are possible. A hot app can remain
resident to avoid a start altogether. The tar file is captured
at file granularity, but many files are barely touched; page
granularity would reduce the 76MB image to 33MB.

In summary, while the 177–300 ms overhead of our
prototype is a non-trivial delay, there are plenty of op-
portunities to improve it; our refactoring makes those op-
portunities accessible to vendors. Overall, we are glad to
exchange the challenges of security and app richness for
the ordinary task of systems performance tweaking.

6.4 Memory Usage
If every vendor’s application loads its own copy of a

DPI implementation, will memory usage be overwhelm-
ing? Prior work shows that this style of statically linked
code need not cost significantly more memory than tra-
ditional shared code implementations [8, 22].

Figure 8 contrasts virtual memory usage of POSIX im-
plementations with those in Embassies. Since it incorpo-
rates the Xvnc rasterizer and other libraries, Midori in
Embassies uses 12MB (8%) more virtual memory than
its POSIX equivalent. Another DPI instance, Marble
running on Qt, shows similar growth, 11MB (5%).

In a conventional browser, one instance of the browser
serves many applications, amortizing fixed costs of both
libraries and some heap structures. The zero-copy IP
router in Embassies affords the same opportunity for
libraries—the untrusted cache could send the same pay-
load to multiple applications—but our prototype does
not yet implement copy-on-write. With regard to the
heap, more modern browsers (IE9 and Chrome) launch
one process-per-tab, creating more heaps; in Embassies,
process-per-app incurs additional heap costs.

7 Security Analysis
Embassies improves security by specifying such a

small, simple CEI that implementations thereof stand a
reasonable chance of truly fulfilling the web’s promise
of app isolation. The client kernel’s small TCB (§6.1)
means that the amount of code all apps must trust is
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tiny, and hence each vendor can independently choose
the right tradeoff between complex functionality and se-
curity. A gaming app can use a rich, full-featured DPI,
while a banking app may choose a conservative DPI en-
hanced with the latest security protections. One app’s
insecurity never undermines the security of other apps.
Finally, since the pico-datacenter model deconflates the
CEI from the DPI, Embassies provides an ecosystem that
resists pressure to expand the CEI, since developers can
achieve arbitrary richness inside their picoprocesses.

In contrast, in today’s web, many corporations still
run Internet Explorer 6 for the sake of a single business-
critical app. This compromise endangers all other apps
on the client and the client system itself. In Embassies,
the business app uses the Internet Explorer 6 DPI, which
is no more (or less) dangerous to the client or her apps
than a website that uses an old server-side library.

In addition to ecosystem-wide improvements, Em-
bassies’s design addresses specific web threats.
Cross-Site Request Forgery (CSRF). Today’s CSRF at-
tacks rely on the adversary’s ability to trick the browser
into sending out an app’s cookies inappropriately (§4.2).
The Embassies CEI never adds ambient authority [23] to
an app’s communications, so a banking app need never
fear that the browser will blindly hand out its cookies.
Cross-Site Scripting (XSS). XSS flaws spring from
poor library interfaces that fail to starkly distinguish
data from the code that contains it; they are a client-
side equivalent of server-side SQL-injection flaws. Em-
bassies enables the vendor to migrate to rendering li-
braries that safely encapsulate tainted input, just as smart
vendors use SQL libraries that safely encapsulate tainted
input in WHERE clauses.
Clickjacking. Embassies resists clickjacking in the spa-
tial domain by ensuring that each display region belongs
to one viewport managed by only one app (§3.2). Ven-
dors concerned about clickjacking in the temporal do-
main can implement client-side defenses, e.g., by ignor-
ing inputs until 200ms after painting the display.
Side Channels. As in modern data centers, Embassies’s
pico-datacenter does not take steps to prevent side chan-
nels; i.e., one vendor may be able to infer another ven-
dor’s presence from the kernel’s scheduling decisions or
shared cache effects [2]. Current browsers face the same
threats. Reducing the web’s security problems to the ex-
istence of such side channels would be valuable progress.
Hosted Denial-of-Service. Embassies’s minimality pre-
cludes it from reasoning about the Same-Origin Policy’s
content-based network restrictions; instead, Embassies
addresses the underlying threats with CSN (§3.1.4). The
consequence is developer freedom in network communi-
cation, but malefactors may abuse it to mount a denial-
of-service (DoS) attack or a spam campaign. Today’s
web already allows such botnet-like attacks [34]; for ex-

ample, to DoS a web server, the malefactor need only
include a file (e.g., an image or JavaScript) in a popular
website. Nonetheless, Embassies further enables such
attacks. One mitigation would be for the client kernel to
include a basic pushback mechanism [3] to allow remote
hosts to squelch outbound traffic to the victim.

8 Discussion
Indexing and Mashups. Because the current web’s CEI
is so high-level, a vendor can easily create an app that
interacts with other apps without their deliberate partic-
ipation. A prominent example is web indexing, which
works because the “internals” of most web content is in
HTML. While Embassies permits vendors to use propri-
etary or obfuscated software, such behavior already oc-
curs (e.g., Gmail’s JavaScript code); baking HTML into
the CEI does not guarantee hackability. In Embassies,
HTML isn’t required, but as with any popularity distribu-
tion, most apps will use one of a few popular DPI frame-
works, and hence will allow third-party inspection. Be-
cause indexing is now so valuable, all popular DPI stacks
will likely export an explicit indexing interface.

The “mashup” captures a broader category of
serendipitous innovative reuse, such as data streams dis-
played on a map. Again, mashups interpose on the un-
obscured client-server traffic of ancestor applications;
since those apps are likely to use popular frameworks,
the same possibilities will be open. Ecosystem diver-
sity is not enough to foil opportunistic extension; inten-
tional obfuscation is required, a hurdle no less present in
HTML than in Embassies.
Ad Blockers. Today, users can install browser exten-
sions that interpose on apps. In Embassies, cooperating
vendors could speak a bilateral protocol to a repository of
extensions, but some extensions, like ad blockers, repre-
sent an adversarial relationship between user and vendor.
Every user wants it, but no vendor does.

Since our CEI gives full control of an app to its the
vendor, it confounds users who want to alter it in an
unintended fashion. This tradeoff is deep. The client
system cannot distinguish between an enhancement and
a Trojan. Allowing extensions requires asking users to
make that distinction, a responsibility few users can ex-
ercise correctly. We consider it worth giving up the ad
blocker in exchange for a web where clicking links is al-
ways safe. Although this philosophy is new for the web,
proprietary platforms such as the iPhone and Windows
Phone deny unilateral app modifications.
Accessibility. Responsibility to provide accessibility
falls to the vendor of each app, just as all aspects of app
behavior do. However, we expect many vendors to write
their applications against a higher-level DPI. Any mature
DPI already incorporates accessibility features; thus any
app built on such a DPI will be accessible.
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Cross-Architecture Compatibility. Since our CEI
specifies native-code execution, it does not solve the
architecture portability problem in the CEI. We argue
that architecture portability is a problem that can—and
should—be solved in the vendor’s software stack. One
solution is to use a managed language (Java or .NET) or
a portable representation (LLVM [37]) as a DPI.

DPIs based on unmanaged languages such as C or C++
can emit binaries for multiple architectures, as Linux
distributions routinely do; this requires access to library
source code (or recompiled libraries) as well. App ven-
dors then face only the minor burden of hosting multiple
binaries, a task easily automated, and less burdensome
than dealing with today’s browser incompatibilities.

On the rare occasion when a hardware company de-
ploys a new Instruction Set Architecture (ISA), that ISA
defines a new instance of the CEI. Until app vendors pro-
duce native binaries for the new ISA, the ISA company
can implement, in their client kernel, an emulator for a
popular ISA, as Apple did when it migrated its product
line from 68K to PPC and again from PPC to x86.
GPUs. Today’s web exploits the GPU by baking in fur-
ther complexity, e.g., OpenGL or DirectX. Embassies’
long-term solution is to treat the GPU as a CPU [7, 13,
21]. In the medium term, most deployed GPUs use seg-
mented memory architectures adequate to isolate shader
programs at GPU-load time without the client kernel un-
derstanding shader semantics. At present, even the CPU
alone is pretty satisfying: Marble’s CPU-rendered spin-
ning globe (Fig. 5) is impressive.
Peripherals. Classic browsers expose printers and GPS.
Does extending Embassies to include local devices erode
the idea of the pico-datacenter? We think not.

Consider printing: Today, users can send photos from
the Flickr app to the Snapfish app; Snapfish is a web ser-
vice that includes a (remote) printer. Google Cloud Print
extends the same semantics to a nearby printer. Indeed,
many standalone printers already have IP interfaces. We
can treat printers not as PC peripherals, but as applica-
tions that have a physical presence.

The same principle applies to other peripherals. A
GPS with an IP interface need not be a PC peripheral;
it may as well be an app like any other, one that gives the
user control over which vendors see it. Of course, no IP
hardware is required; the GPS can use a picoprocess on
the client to host its IP stack.

Local storage is even simpler. Section 3.1.3 describes
how apps employ a local untrusted storage service to se-
curely store MACs and cookies. We have only imple-
mented a RAM-based untrusted local store and a cloud-
storage VFS module so far, but a disk could easily be
exposed: Just a single vendor can manage the printer,
Seagate might own the disk and offer untrusted, low-
reliability storage, perhaps without even a UI.

Of course, we have described Embassies as a browser
replacement, implying an underlying host OS; how does
it interact with the host file system? Ultimately, we envi-
sion rich Embassies apps as a viable alternative to desk-
top OS apps. In the meantime, we envision exposing the
host file system as another service, just as Google Cloud
Print exposes the host printer as a service.
Deployment. Deploying a new web architecture is hard.
However, Embassies apps can facilitate incremental de-
ployment by providing a fallback for “legacy” HTTP
links. With reference to Section 4.1, if caller.net’s web
runtime cannot resolve the name target.org using
the PKI, it obtains and launches a web runtime which
target.org might specify in a browser.txt file, or the
caller app may supply a default.

This web runtime fetches and renders target.org’s con-
tent via standard HTTP and HTML. However, the web
runtime does not have a certificate chain for the label
“target.org”. Instead, the web runtime passes its own
label (e.g., “mozilla.org”) to verify label. Thus,
client kernel strongly authenticates the web runtime,
which then attests, e.g., via its own intra-window dec-
oration, that it is rendering content from target.org.

9 Conclusion
We propose to radically refactor the web interface to

turn the client into a pico-datacenter in which app ven-
dors run rich applications that are strongly isolated from
each other. We described and implemented Embassies,
a concrete, minimal CEI to support this vision, and we
rebuilt existing browser-based app interactions atop the
CEI. Our implementation and evaluation indicate that the
CEI offers a significantly reduced TCB, yet supports a
diverse set of DPIs. App and protocol performance is
comparable to the existing web; app start time and mem-
ory usage is still higher than we would like, but there are
clear paths towards improving them. Once native DPIs
are available, and conventional apps can run in a web-like
deployment, the Embassies architecture may become a
compelling model for desktops or mobile platforms.
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