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Abstract
Today’s cloud service providers (CSPs) use in-memory
caching engines to improve application performance and
server revenue. However, these caching engines exhibit
poor scaling, mainly because of high DRAM cost and en-
ergy consumption. On the other hand, the increasing use
of multi-tenancy requires effective and optimal resource
provisioning.

In this paper, we introduce ElCached, a multi-level
key-value cache based on Memcached. ElCached em-
ploys low-cost NAND flash memory as a lower layer of
caching. ElCached uses the reuse distance model to pre-
dict miss ratio, with high accuracy, under all storage ca-
pacity limits. The miss ratio prediction allows ElCached
to find the best resource allocation under multi-tenant
settings. We evaluate Elcached on workloads emulating
real-world applications. Our multi-tenant experiment in-
dicates that compared to a proportional allocation tech-
nique, ElCached can reduce the cost by up to 26%, while
delivering lower average latency. Meanwhile, by utiliz-
ing more flash storage, ElCached can reduce the total
memory consumption almost by half.

1 Introduction

Distributed memory caching systems such as Mem-
cached [7] and Redis [15] have become vital compo-
nents of many today’s web servers. The strong locality
in real world data [2] allows these systems to improve
user latency and total cost of ownership of the backend
databases. Considering the large gap between memory
and database latencies, achieving higher cache hit rates
is critical for overall cost and performance. However, in-
creasing DRAM capacity is challenging because of high
DRAM cost and power consumption. Thus the system
providers need to maximize DRAM efficiency and uti-
lization by deploying enough memory to meet the service
level agreement (SLA) while minimizing the total cost of
ownership (TCO). This becomes more important as more
cloud users (tenants) are added to the system. The ser-
vice provider must wisely allocate the resource so as to
guarantee each tenant’s SLA. Moreover, dynamic work-
load behaviors motivate elasticity, a capability to adapt
to workload changes by dynamic resource provisioning.

Recent studies have introduced various approaches to
utilize low-cost solid-state drives (SSD) to bridge the gap
between memory and HDDs [5, 11, 16, 9, 3]. While

these techniques properly serve their purpose, they add
another level of complexity to resource provisioning. A
tenant with a large working set may benefit from caching
in SSD, whereas one with smaller working set may be
able to achieve its desirable performance by mainly rely-
ing on DRAM.

In this paper, we propose ElCached, an elastic key-
value cache. ElCached builds on MlCached [3], a multi-
level caching system. ElCached exploits MlCached’s de-
coupled caching layers to perform independent resource
provisioning for both layers. ElCached implements a
new reuse-distance profiler to predict miss ratio for all
capacity limits. The profiling information allows the sys-
tem to find the best partition for both resources, under
multi-tenant settings, with various latency and cost con-
straints.

The rest of the paper is organized as follows. First we
give an overview of the base MlCached system and its
important decoupling property. Next in section 3, we ex-
plain the reuse-distance model and how we adapt it for
Memcached applications. Then in section 4 we explain
how ElCached formulates a resource provisioning prob-
lem, along with the miss ratio information, as a linear
programming problem. Finally, in section 5, we evalu-
ate ElCached under single and multi-tenant settings with
workloads emulating real-world applications.

2 MlCached

MlCached consists of a multi-level cache hierarchy. The
L1 cache is a common DRAM-based Memcached and
the L2 cache is an exclusive NAND-flash-based key-
value cache.

The key contribution of MlCached is removing the re-
dundant address mappings. Utilizing commodity SSDs
as another key-value caching layer is inefficient because
of their block interface. In particular, most flash transla-
tion layers (FTLs) are designed to translate logical block
addresses (LBA) to physical block addresses (PBA). As
a result, it is necessary to store key-to-LBA mapping ta-
bles in memory. These tables hamper the effective use
of memory for key-value pairs. MlCached removes the
need for storing redundant key-to-LBA mapping tables
by implementing direct key-to-PBA mappings on SSD.

MlCached’s new key-value device not only improves
efficiency, but also decouples the two caching layers by
making the address mappings in the two layer completely



independent of each other. This allows for independent
resource provisioning within each layer. Resource provi-
sioning becomes more important and challenging when
workloads dynamically change over time. Our new Elas-
tic Key-Value Cache (ElCached) uses the reuse-distance
theory to profile the requests and predict the performance
under all storage capacity limits. Based on the profiling
information, latency, and cost constraints, it allocates re-
sources to deliver the best utilization and performance.

We model the performance of MlCached in terms of
end-to-end latencies of MlCached’s components: Mem-
cached, exclusive SSD cache, and the backend DB. Let
us represent these latencies, respectively, by `m, `s, and
`db. Additionally, let Mm and Ms be the miss ratio of
Memcached and SSD, respectively. The total average la-
tency of MlCached is equal to

Lat = `m + `s ×Mm + `db ×Ms.

The key to optimal resource provisioning is to find the
miss ratio curve. That is a function mr that gives the miss
ratio for all capacities. Given this curve, for Memcached
of size cm and SSD of size cs, the total average latency is
equal to

Lat(cm,cs) = `m + `s ×mr(cm)+ `db ×mr(cm + cs).

Additionally, The total cost for the system is equal to

Cost(cm,cs) = pmcm + pscs,

where pm and ps are respectively the price per unit of
DRAM and SSD.

3 Reuse Distance

We use the reuse distance theory to compute the miss
ratio curve. The reuse distance model is described as
follows. Consider a memory access trace. Let x be an
arbitrary element in the trace, representing an access to
memory location a. Let y be the previous access to a.
The reuse distance for x is defined as the number of dis-
tinct memory locations accessed between y and x (includ-
ing a). If x is the first access to a, its reuse distance is ∞

by definition.
For example, Trace 3.1 shows a short sample trace,

along with reuse distance for every access. In this trace,
four accesses occur between the two accesses to b, which
include accesses to only three distinct memory locations
(b, c, and d). Thus the reuse distance for the second ac-
cess to b is 3, as shown.

Trace 3.1 a b c d b a c
∞ ∞ ∞ ∞ 3 4 4

The reuse distance information is best represented by
the reuse distance histogram, which shows the frequency
for every reuse distance. We can compute the miss-rate
curve (MRC) from the reuse distance histogram. The
miss rate for every cache size is equal to the total num-
ber of reuse distances that are larger than that cache size.
That is, the fraction of the histogram which lies on the
right side of the cache size.

3.1 Reuse Distance for Memcached
Traditionally, the reuse distance model has been used to
analyze workloads for LRU-based virtual memory sys-
tems and caching systems. Memcached workloads pose
several new challenges for this reuse distance model.

First, Memcached distributes items among different
slab classes, according to their sizes. The default slab al-
location scheme allocates memory during the cold start.
Once the Memcached system reaches its memory limit,
replacement is done separately for every slab class. Thus,
rather than analyzing the whole Memcached system in a
single reuse distance model, we model each slab class
separately.

Second, Memcached applications have some control
over the storage content: loading is fully controlled by
the application. For a GET request that misses in Mem-
cached, the Memcached server does not automatically
load the item. Rather, the application must issue a SET
request to load the item in the Memcached server. Fur-
thermore, apart from the server-level evictions due to the
LRU replacement policy, Memcached applications are
allowed to issue DELETE requests to remove arbitrary
items from the server.

To cope with these challenges, we adapt the reuse dis-
tance model and implement it on the Memcached server
side. we represent every Memcached request by the three
attributes: type of request (GET, SET, DELETE), key
hash, and the slab class id for SET requests.

The SET requests may modify the slab class for a
key, and therefore, need an additional slab class attribute.
Since the model is implemented on the server side, ob-
taining the slab class for SET requests is straightforward
and can be done before searching for the item in Mem-
cached.

We use the Olken algorithm [13] to compute the reuse
distance histogram. Our data structure consists of a red-
black tree for each slab class. The tree for a slab class
includes a node for each key that belongs to that class.
Conceptually, the nodes in a tree are ordered with respect
to the last (logical) access times of their keys. The Olken
tree augments each node by the weight of its subtree (to-
tal number of nodes in its subtree). This attribute helps
us compute the reuse distance for every incoming access
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by following the path along the parent pointers.
Technically, tree nodes are always inserted at the right

end of the tree. Therefore, storing the access times is
unnecessary. In fact, we only store the weight at tree
nodes.

Different Memcached requests are handled in some-
what different ways. For a GET request, we first compute
its reuse distance. Subsequently, we update the tree by
removing the old node and inserting a new node. Upon a
SET request, we remove the corresponding node from its
current tree and insert a node into its new tree (based on
its new slab class). Finally, for a DELETE request, we
only remove the node from its current tree. Each opera-
tion takes O(lgN) where N is the total number of keys.

For reuse distance analysis, the storage overhead is in-
evitable. It is linear in the total number of distinct keys.
However, since we only store hash values, the overhead
may only be a fraction of the total key-value storage.

To lower the running time overhead, we run the pro-
filer in a producer-consumer framework. Memcached’s
server threads insert requests into a lock-free queue,
while a separate thread sequentially applies the analy-
sis on the items. Overlapping the analysis with Mem-
cached’s service times and inter-arrival times signifi-
cantly reduces its overhead.

To find the miss-rate curve, we profile the workload
under adequate resource provisioning. Memcached allo-
cates slabs on demand, during the initial warmup phase.
We assume that under any other provisioning, the slab
allocation is proportional to the profiled setting. For in-
stance, suppose that under the profiling scheme, Mem-
cached allocates twice as many slabs for slab 1 as it does
for slab 2. The assumption asserts that the same hap-
pens under any other provisioning. This is a logical as-
sumption for workloads that can be modeled by a distri-
bution. Moreover, it allows us to distribute the total re-
source among all slab classes, under any resource provi-
sioning. Once we have the miss rates for all slabs classes,
we can compose them to compute the total miss rate for
the workload.

4 Resource Provisioning as a Linear Pro-
gram

In a single-tenant system, the resource provisioning
problem can be described in one of the two ways.

• Minimize Cost(cm,cs) such that Lat(cm,cs)≤ SLA.

• Minimize Lat(cm,cs) such that Cost(cm,cs)≤ TCO.

To formulate these problems as linear programs, we must
represent cost and latency as linear functions of cm and
cs. Based on our model, cost is a linear function of cm

and cs, but latency is only linear in terms of the miss ra-
tio, which is a non-linear function of capacity. However,
we observe that the miss ratio curves in our workloads
are always convex. That is, the reduction in miss ratio
constantly lowers as we increase the capacity. We ex-
plain how we can use this assumption to formulate the
miss ratio curve as linear constraints. To illustrate, con-
sider the miss ratio curve shown in Figure 1. We approx-
imate this curve using three representative points (A, B,
and C). Each two consecutive points specify a line, along
with one flat line for each of the two endpoints. For each
line, we limit the feasibility region to above the line. The
intersection specifies a region above the miss ratio curve
(shaded area in Figure 1). Since we are always inter-
ested in minimizing cost and latency (alternatively, ca-
pacity and miss ratio), the linear program is guaranteed
to output a point on the boundary of this region, which
approximates the miss ratio curve.

Figure 1: Formulating MRC (red curve) as linear con-
straints: only the points on the blue dashed lines result in
optimal solutions.

A multi-tenant system introduces more constraints.
For example, bounding the total available storage for
each level (partitioning), or average latency. Neverthe-
less, our linear program can be solved efficiently and in
polynomial time.

5 Experimental Evaluation

In this section we report our off-line study for elastic re-
source provisioning. We compare costs of two different
approaches: elastic and proportional. Figure 1 shows our
latency/cost parameters.

cost ($/GB) latency

DRAM 10
SSD 0.68

Memcached 100µs
KVD 200µs

Back-end DB 10ms

Table 1: Cost and latency parameters

The proportional approach fixes the ratio between
DRAM and SSD capacities as many current CSPs1 do.

1System configurations of (CPU ∝ Memory ∝ Storage) or (CPU ∝
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On the other hand, the elastic approach, the mechanism
ElCached uses, changes the ratio adaptively based on our
reuse-distance based miss-rate prediction to achieve bet-
ter elasticity. That is, different data locality determines
the optimal DRAM/SSD allocations to optimize either
latency or cost. We first investigate the accuracy of our
miss-rate prediction and then, show the increased elastic-
ity of Web caching service with ElCached.

For these experiments, we use Mutilate [1] to gener-
ate our workloads. Mutilate emulates the ETC work-
loads at Facebook using key size, value size, and inter-
arrival time distributions given by Atikoglu et al. [2]. The
mean key size and value sizes are respectively 31 and 247
bytes. We use Mutilate to generate two workloads. For
the first workload, we use a Zipfian key distribution with
α = 1.15. For the second workload, we use an exponen-
tial distribution with λ = 10−6. We set the both work-
load to issue 800 million requests to a range of 4 billion
keys. Note that this is a limit study to evaluate elastic-
ity of ElCached compared to existing work. Therefore,
it does not include the overheads and other tuning as-
pects of dynamic resource provisioning; data promotion,
demotion, eviction overheads and profiling window, re-
configuration frequencies, and its associated efficiencies
in time domain.

Prediction Accuracy We profile the workloads using
our model and predict miss rates on a logarithmic scale,
and compare the results to measurement. Figure 2 shows
the result for the Zipfian workload. The mean relative
error of prediction is 4%.
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Figure 2: Miss ratio prediction accuracy of our reuse dis-
tance model

Elastic Resource Provisioning Although both are dy-
namically allocating/deallocating resources, the propor-

Memory+Remote Storage) are common from Amazon EC2, Google
Cloud Platform, and Microsoft Azure. Remote storage is out of the
scope of this work.

tional approach does not change the ratio between
DRAM and SSD. In particular, we use 1:4 ratio follow-
ing the Pareto principle. On the other hand, the elas-
tic approach continuously changes the ratio based on
the reuse-distance based miss-rate prediction. Figure 3
shows minimum cost per latency for both techniques,
and for both workloads. For example, to guarantee the
average latency of 700µs for the Zipfian workload, elas-
tic costs 0.7 and proportional costs 8.1 (cost is normal-
ized with respect to the cost of proportional at 1ms). In
this case, elastic allocates 60MB/11.7GB while propor-
tional does 1.8GB/7.3GB for DRAM and SSD, respec-
tively. Assuming that CSPs bill tenants proportional to
actual cost, elasticity will save costs both for users and
CSPs. In particular, for the Zipfian workload, elastic-
ity saves around 60% of cost. Meanwhile, the Exponen-
tial workload exhibits around 10% reduction in cost un-
til 250µs latency requirement, but this rapidly changes
to more than 70% cost improvement after 300µs. This
is because the Exponential workload has much stronger
data locality than Zipfian. So DRAM allocation domi-
nates the performance before 300µs.
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Figure 3: Elastic vs. proportional resource provisioning

We also conduct a comparison between elastic and
proportional in a multi-tenant case. Here we assume a
virtual cloud instance with 3 GB memory. Figure 4a
shows latency for the two tenants when partitioning the
fixed amount of memory. In particular, proportional par-
titions memory and allocates each memory and SSD with
the fixed ratio of 1:4. On the other hand, elastic predicts
an optimal configuration per tenant and tests its feasibil-
ity. We compare the elastic approach to one particular
memory partition which allocates 1.63 GBs of DRAM
for tenant 1 (shown by a line in Figure 4a). As shown in
Figure 4b, both approaches result in the same latency for
tenant 2, whereas, for tenant 1, elastic improves latency
by 5%. Moreover, elastic reduces the cost for both ten-
ants by around 26%. Elastic also saves the total mem-
ory consumption by 46% by allocating only 1.63 GB
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compared to the 3 GB of physical memory. That is the
memory consumption of tenant 1 alone, when taking the
proportional approach. This means potential revenue for
CSP because it could potentially host more tenants as
long as other resources (CPU, network, etc.) are avail-
able.

l

l
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Figure 4: Multi-tenant resource provisioning: (a) latency
per DRAM partitioning with proportional SSD size (1:4
ratio) (b) elastic vs proportional with the specified mem-
ory partition

6 Online Resource Provisioning

Our study of online resource provisioning is preliminary
and remains as future work. Here, we explain the basics
of our online implementation.

Memcached allocates memory in units of fixed size
(called slabs) until it reaches its memory limit. Thus we
can control resource provisioning by dynamically recon-
figuring the memory limit parameter. Increasing this pa-
rameter allows Memcached to boost memory provision
to the new limit. To lower the provision, we must find
and deallocate victim slabs. Prior to deallocation, all
the items in the victim slabs must be removed from the
LRU chains. We choose victim slabs from different size
classes to ensure that the number of slabs in different size
classes remains proportional to the initial setting. To find
a victim slab in each size class, we monitor the activity of
all the slabs during a short period of time. Slab activity is
defined as the number of distinct items accessed during
that period. For each slab, we estimate its activity using
a Hyperloglog counter [8] with logarithmic space over-
head. After the monitoring period, we choose the least
active slabs as the victim slabs. We keep deallocating
slabs until the new memory limit is satisfied.

Our online analysis consists of a profiling window fol-
lowed by a release period. During the profiling period,
we use the reuse distance analysis to find the miss rate

for every cache size. At the end of the profiling window,
we formulate and solve a linear program according to the
constraints and the objective function. The solution gives
the new Memcached and KVD sizes. Then, we recon-
figure the ElCached system using our above-mentioned
procedure.

The study of online resource provisioning remains as
future work. An important question is how the profil-
ing window length affects the accuracy and optimality
of solution. Our future work also includes analyzing the
memory and time overheads of the online reuse distance
analysis.

7 Related Work

Our study is related to previous work on optimizing
Web caching applications. For example, Dynacache [4]
optimizes Memcached by profiling workloads and dy-
namically adjusting memory resources and eviction poli-
cies. Saemundsson et al. [14] introduced MIMIR, a
lightweight online profiler for Memcached. Analogous
to us, they used a tree-based scheme to estimate reuse
distance. To lower the overhead, MIMIR divides the
LRU stack into variable-sized buckets. However, con-
trary to us, MIMIR and Dynacache both assume a fixed
size for all cached elements, which isn’t the case in Mem-
cached. Hu et al. [10] introduced LAMA to improve slab
allocation in Memcached. Like us, they also estimate the
miss ratio for every slab class.

Reuse distance computation has been well-studied in
the past. Mattson et al. [12] introduced a basic stack sim-
ulation algorithm. Olken [13] gave the first tree-based
method using an AVL tree. Ding and Zhong [6] used
a similar technique to approximate reuse distance while
reducing the time overhead. Xiang et al. [18] defined
the footprint of a given trace to be the number of distinct
elements accessed in the window. They showed that un-
der a certain condition (reuse-window condition) reuse
distance is equal to the finite differential of average foot-
print. We implemented the footprint approach and found
its accuracy to be slightly lower than our tree-based algo-
rithm. These techniques all require a linear space over-
head. Wires et al. [17] used counter stacks to approxi-
mate the miss ratio curve with sublinear space overhead.
These studies can be integrated into ElCached to reduce
the space and time overhead in the online analysis.

8 Conclusion

In this paper, we described ElCached, a multi-level key-
value caching system that uses a reuse distance profiler
to estimate the miss rate curve across all capacity limits
with 4% relative error. ElCached solves the resource pro-

5



visioning problem by formulating it as a linear program.
Our single-tenant experiments show that ElCached can
reduce the total cost by up to around 60% compared to a
proportional resource provisioning scheme. On the other
hand, our 2-tenant experiment indicates that by finding
the optimal resource provisioning, we can improve la-
tency, cost, and total DRAM usage, compared to a pro-
portional scheme.
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