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Abstract
This paper makes a case for the multi-streamed solid-
state drive (SSD). It offers an intuitive storage interface
for the host system to inform the SSD about the expected
lifetime of data being written. We show through experi-
mentation with a real multi-streamed SSD prototype that
the worst-case update throughput of a Cassandra NoSQL
DB system can be improved by nearly 56%. We discuss
powerful use cases of the proposed SSD interface.

1 Introduction
NAND flash based solid-state drives (SSDs) are widely
used for main storage, from mobile devices to servers to
supercomputers, due to its low power consumption and
high performance. Most SSD users do not (have to) re-
alize that the underlying NAND flash medium disallows
in-place update; the illusion of random data access is of-
fered by the SSD-internal software, commonly referred
to as flash translation layer or FTL. The block device ab-
straction paved the way for wide adoption of SSDs be-
cause one can conveniently replace a HDD with an SSD
without compatibility issues.

Unfortunately, maintaining the illusion of random data
access through the block device interface comes at costs.
For example, as the SSD is continuously written, the un-
derlying NAND flash medium can become fragmented.
When the FTL tries to reclaim free space to absorb fur-
ther write traffic, internal data movement operations are
incurred between NAND flash locations (i.e., garbage
collection or GC) [6], leaving the device busy and some-
times unable to properly process user requests. The re-
sultant changing performance behavior of a given SSD is
hard to predict or reason about, and remains an impedi-
ment to full-system optimization [1].

In order to address the problem from the root, we pro-
pose and explore multi-streaming, an interface mecha-
nism that helps close the semantic gap between the host
system and the SSD. With the multi-streamed SSD, the

host system can explicitly open “streams” in the SSD and
send write requests to different streams according to their
expected lifetime. The multi-streamed SSD then ensures
that the data in a stream are not only written together to
a physically related NAND flash space (e.g., a NAND
flash block or “erase unit”), but also separated from data
in other streams. Ideally, we hope the GC process would
find the NAND capacity unfragmented and proceed with
no costly data movements.

In the remainder of this paper, we will delve first into
the problem of SSD aging and data fragmentation in Sec-
tion 2, along with previously proposed remedies in the
literature. Section 3 will explain our approach in detail.
Experimental evaluation with a prototype SSD will be
presented in Section 4. Our evaluation looks at Cassan-
dra [7], a popular open-source key-value store, and how
an intuitive data mapping to streams can significantly im-
prove the worst-case throughput of the system. We will
conclude in Section 5.

2 Background

2.1 Aging effects of SSD
SSD aging [16] explains why the SSD performance may
gradually degrade over time; GC is executed more fre-
quently as the SSD is filled with more data and frag-
mented. Aging effects start to manifest when the “clean”
NAND flash capacity is consumed, and in this case, the
FTL must proactively recover a sufficient amount of new
capacity by “erasing” NAND flash blocks before it can
digest new write data. The required erase operations are
often preceded by costly GC; to make matters worse, a
NAND block, a unit of erase operation, is fairly large in
modern NAND flash memory with 128 or more pages in
it [15]. When the SSD is filled up with more and more
data, statistically, the FTL would need to copy more valid
pages for GC before each NAND flash erase operation.
This phenomenon is analogous to “segment cleaning” of
a log-structured file system [13] and is well studied.



Figure 3 (in Section 4) clearly depicts the effects of
SSD aging: The performance of Cassandra throughput
(in the case of “Normal” SSD) is seriously degraded as
the data set in the SSD is continuously updated—by as
much as ∼56%. This problem will be exacerbated in sys-
tems with many threads (or virtual machines) that per-
form I/O concurrently. Moreover, for density improve-
ment, a NAND block size will only grow in the future,
adding to the cost of GC in general.

2.2 Prior work to mitigate SSD aging
Prior proposals reduce GC overheads by classifying ac-
cess patterns and adapting to workloads inside a storage
device [8, 12]. Since the effectiveness of these propos-
als depends on the accuracy of workload classification—
random or sequential, they are especially vulnerable to
workloads that have frequently changing behavior.

In another approach, the device detects and separates
hot data from cold data [2, 4]. These techniques deter-
mine “hotness” of data based on access history of loca-
tions and require sizable resources to bookkeep the his-
tory information. Chiang et al. [2] use “time-stamps”, to
indicate how old given data are, and Hsieh et al. [4] em-
ploy multi-hashing to reduce the size of history informa-
tion. The accuracy and benefits of hot data identification
decrease when the access pattern of specific locations is
changed, e.g., as in a log-structured file system.

In a practical sense, robustly deriving accurate infor-
mation about data hotness and future access patterns is
hard. Accordingly, enterprise SSDs where consistent ac-
cess latency is of paramount importance, tend to set aside
(“overprovision” or sacrifice) a generous amount of flash
capacity to increase the efficiency of GC [17].

Lastly, “TRIM” is a standardized SSD command (not
applicable to HDDs in general), with which the host sys-
tem can pass information about what LBAs have been
“unmapped” by the upper-layer software (typically the
file system). This information is useful for the SSD’s
GC efficiency, because without the information the SSD
has to assume conservatively that all NAND flash pages
mapped to previously written LBAs (not overwritten) are
valid and their content must be copied for preservation
when the NAND flash blocks having those pages are
vacated. Figure 3 shows that TRIM improves Cassan-
dra’s update throughput significantly; however, it does
not alone match the full benefits of multi-streaming.

3 The Multi-streamed SSD
Before describing the proposed multi-stream approach,
let’s consider revealing examples that explain why tradi-
tional write pattern optimizations like append-only log-
ging do not fully address the SSD aging problem. Fig-
ure 1 gives the examples, where two NAND flash blocks,
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Figure 1: Relationship between data placement and updates. For
simplicity, we assume that there are four pages per block.

Block 0 and Block 1, have been filled up and new data
are written to fill Block 2. In the first example (left), a
sequential write pattern was applied, and as the result,
some data become invalid in Block 0 and 1. On the other
hand, in the second example, a random write pattern was
applied, invalidating all data in Block 0 but none in Block
1. Clearly, future GC will proceed more efficiently in this
example, because an empty NAND flash block (Block 0)
can be reclaimed quickly without copying data around.
These examples demonstrate that an SSD’s GC over-
heads depend not only on the current write pattern but
on how data have been already placed in the SSD.

Naturally, one might argue that re-scheduling of future
write requests to the SSD might solve the aging problem
(like in Figure 1(b)). However, it is next to impossible for
an application (and the host system in general) to know
where exactly previously written data have been placed
within the SSD, because the algorithms in the FTL vary
from SSD to SSD and the written data are moved around
by the internal GC process. Moreover, modern OS has
a layered I/O subsystem comprised of file system, buffer
cache, I/O scheduler and volume manager. So, perfectly
controlling the order and target of writes would be ex-
tremely challenging.

3.1 Our approach
At the heart of the SSD aging problem are the issues of
how to predict the lifetime of data written to the SSD and
how to ensure that data with similar lifetime are placed in
the same erase unit. This work proposes multi-streaming,
an interface that directly guides data placement within
the SSD, separating the two issues. We argue that the
host system should (and can) provide adequate informa-
tion about data lifetime to the SSD. It is the responsibility
of the SSD, then, to place data with similar lifetime (as
dictated by the host system) into the same erase unit.

Our design introduces the concept of stream. A stream
is an abstraction of SSD capacity allocation that stores a
set of data with the same lifetime expectancy. An SSD
that implements the proposed multi-stream interface al-
lows the host system to open or close streams and write to
one of them. Before writing data, the host system opens
streams (through special SSD commands) as needed.
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Figure 2: The multi-streamed SSD writes data into a related NAND
flash block according to stream ID regardless of LBA. In this example,
three streams are introduced to store different types of host system data.

Both the host system and the SSD share a unique stream
ID for each open stream, and the host system augments
each write with a proper stream ID. A multi-streamed
SSD allocates physical capacity carefully, to place data
in a stream together and not to mix data from different
streams. Figure 2 illustrates how this can be achieved.

We believe that the multi-stream interface is abstract
enough for the host system to be able to tap, with con-
vincing use cases and results (as discussed in Section 4).
Furthermore, the level of information delivered through
the interface is concrete enough for the SSD to optimize
its behavior with. There are other proposals to specify
write data attributes, like access frequency [11]. How-
ever, it is not straightforward for the SSD to derive data
lifetime from the expected frequency of data updates.

3.2 Implementation
We implemented the proposed multi-stream interface on
the currently marketed Samsung 840 Pro SSD [14]. Be-
cause 840 Pro is based on the SATA III interface, we pig-
gyback stream ID on a reserved field of both regular and
queued write commands as specified in the AT attached
(ATA) command set [5]. Our multi-streamed SSD proto-
type currently supports four streams (Stream 1 to 4) on
top of the default stream (Stream 0).

We modified the Linux kernel (3.13.3) to have a con-
duit between an application and the SSD, through the file
system and the layers below. More specifically, an appli-
cation passes a stream ID to the file system through the
fadvise system call, which, in turn, stores the stream ID
in the inode of the virtual file system. When dirty pages
are flushed into the SSD, or the application directly re-
quests a write operation with the direct I/O facility, we
send along the write request the stream ID (that can be
retrieved from the associated inode).

4 Evaluation

4.1 Experimental setup
To evaluate the multi-streamed SSD, we conduct exper-
iments that run Cassandra [7] (version 1.2.10), a widely
deployed open-source key value store. All experiments
were performed on a commodity machine with a quad-

Table 1: Stream ID Assignment
system Commit-

Log
flushed
data

compaction
data

Normal 0 0 0 0
Single 0 1 1 1
Multi-Log 0 1 2 2
Multi-Data 0 1 2 3∼4
Ratio of written
data (%)

1.0 48.6 31.3 4.4,
14.7

core Intel i7-3770 3.4GHz processor. We turned off
power management for reliable measurements.

Cassandra optimizes I/O traffic by organizing its data
set in or append-only “sorted strings tables” (SSTables)
in disk. New data are first written to a commit log
(CommitLog) and are put in a table in the main mem-
ory (MemTable) as they are inserted. Contents in the
MemTable are flushed to a SSTable once they accumu-
late to a certain size. Since SSTables are immutable, sev-
eral of them are “compacted” periodically to form a new
(large) SSTable to reduce the space and time overheads
of maintaining many (fragmented) SSTables. As the
compaction process repeats, valid data gradually move
from a (small) SSTable to another in a different size tier.
We take into account how data are created and destroyed
in Cassandra when we map writes to streams.

Table 1 lists four different mappings that we examine.
Normal implies that all data are mapped to the default
stream (Stream 0), equivalent to a conventional SSD with
no multi-streaming support and is the baseline configura-
tion. In Single, we separate all data from Cassandra into a
stream (Stream 1). System data, not created by the work-
load itself, include the ext4 file system meta and journal
data and still go to Stream 0. Multi-Log carves out the
CommitLog traffic to a separate stream, making the to-
tal stream count three (including the default stream). Fi-
nally, Multi-Data further separates SSTables in different
tiers to three independent streams. Intuitively, SSTables
in the same tier would have similar lifetime while SSTa-
bles from different tiers would have disparate lifetime.

For workloads, we employ the Yahoo! Cloud Serving
Benchmark (YCSB) [3] (0.1.4). We run both YCSB and
Cassandra on the same machine, not to be limited by the
1Gb Ethernet. In addition, we limit the RAM size to
2GB to accelerate SSD aging by increasing Cassandra’s
flush frequency. The compaction throughput parameter
of Cassandra was modified from 16 MB/s to 32 MB/s, as
recommended by the community for SSD users.

4.2 Results
Figure 3(a) plots the normalized update throughput of all
mapping configurations studied. We introduce a Normal
configuration with the TRIM facility turned off, to gain
insight about the impact of TRIM. We make the follow-
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(b) The number of valid pages copied during GC execution.

Figure 3: Cassandra update throughput and GC overheads, normal-
ized. The update throughput is shown to depend heavily on the GC
overheads. We estimate GC overheads with the number of valid NAND
flash pages that must be copied during GC. Trends of throughput and
GC activities are similar after the 40-min. period captured in the plots.

ing key observations: (1) TRIM is shown to be critically
important for the sustained performance; (2) GC over-
heads (Figure 3(b)) correlate very well with the through-
put; and (3) Multi-Data outperforms all other configura-
tions and sustains the throughput.

Without TRIM, Normal’s performance approaches a
dismal level—20% of the peak performance—, shown
only briefly at the beginning of the experiment (when the
SSD was relatively fresh). To put it in a different way,
TRIM is very effective for Cassandra because it orga-
nizes data in a log-structured manner, writes a large file
of data and deletes an entire file at a time. However, even
with the benefit of TRIM, Normal still performs poorly—
its performance drops from the peak by up to 53%! We
do not consider Normal without TRIM any further.

The (poor) performance of Normal and others can be
attributed well to the GC overheads: Valleys in plot (b)
match with peaks in plot (a), and vice versa. GC over-
heads can be approximated by the number of valid pages
that must be copied (to vacate a NAND flash block be-
fore erasing it). Because copying of valid pages involves
programming (and hence consuming the bandwidth of)
NAND flash memory, the ability of the SSD to serve user
requests is hurt in direct proportion.

In general, our result shows that the use of multi-
streaming cuts down GC overheads and in turn increases
throughput (by nearly 56% when Multi-Data is com-
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Figure 4: Cassandra’s cumulated latency distribution. The long tail
of latency distribution is also shown to be subject to GC overheads.

pared to Normal). Also shown is that how streams are
allocated and mapped to application data makes a critical
impact. Single bears little difference to Normal—mainly
because the traffic separated with multi-streaming cor-
responds to only 1% of the total traffic. Multi-Log im-
proves GC efficiency and throughput much more notice-
ably. The throughput now lies in between 65% and 85%
of the peak. Lastly, Multi-Data, our best mapping, hits
roughly 90% of the peak performance sustainably. As
we intended, few GC activities are incurred, if any. We
also experimented with a 15K-RPM enterprise HDD (not
shown); it showed fairly consistent throughput that peaks
at less than one third the performance of Multi-Data.

Figure 4 presents the latency profile obtained from
the previous experiment. The plot shows that multi-
streaming improves latency as well: At the 99.9th per-
centile, Multi-Data lowers the latency by 54%, com-
pared with Normal and at the 99.99th percentile, by 61%.

In another experiment, we design and evaluate an in-
SSD mechanism that detects multiple sequential access
patterns on the fly and assigns an adequate stream ID.
The goal was to gain insights into how much improve-
ment we can obtain through automatic stream detection.
Note that write patterns in Cassandra are mostly sequen-
tial. In our implementation, we detect maximum four
concurrent sequential patterns and assign a stream ID
to each of them. If there are more than four sequential
patterns, we handed the stream ID of the least recently
used sequential pattern to a newly detected one. With
this mechanism, the SSD classified 71% of all data to be
sequential. However, the resultant performance gain was
rather marginal. This counter-intuitive result is due to
how LBAs are allocated by the ext4 file system: A large
file may not always get sequential LBAs due to fragmen-
tation. Moreover, successively created files may not get
consecutive LBAs as they expand. Accordingly, in Cas-
sandra, the chances that SSTables in the same size tier
are detected as a sequential stream decrease. In the end,
SSTables from different tiers and even CommitLog start
to mix up across streams. Our result underscores that
concrete semantic information passed by the host system



through the multi-stream interface is much more relevant
and robust than automatically learned access patterns.

Finally, we examine how multi-streaming can extend
the lifetime of SSDs. We have iterated a few times al-
ready that proper use of multi-streaming can improve GC
efficiency. Higher GC efficiency implies that the multi-
streamed SSD lowers the number of required NAND
flash erase operations. Indeed, we found that Multi-Data
would extend the SSD lifetime by 23%.

4.3 Discussion
Our study with Cassandra showed that an intuitive data
to stream mapping can lead to large benefits in through-
put, consistent latency and NAND flash lifetime on the
multi-streamed SSD. We further believe that many ap-
plications and use cases will enjoy similarly large gains
from the multi-streamed SSD, if reasonably good map-
ping is done. Other database management systems that
use log-structured merge trees (like Cassandra) include
HBase, LevelDB, SQLite4 and RocksDB. These appli-
cations explicitly manage data streams and orient their
I/O to be sequential. In another example, consider com-
mit (transaction) log, undo (roll-back) log and temporary
table data in OLTP applications [9]. They map nicely
into separate streams on the multi-streamed SSD. Lastly,
some multi-head log-structured file systems and flash
storage OS could relatively effortlessly steer their data
writes into streams for higher, consistent performance
and better media lifetime.

There are several avenues for further research. It will
be interesting to develop a systematic data to stream
mapping strategy that can handle multiple applications
(virtual machines) running concurrently. It is also worth-
while to look at if and how multi-streaming could pro-
vide performance and fault isolation [10]. How to effec-
tively support multi-streaming without application-level
changes remains a challenge and research question. How
to organize and utilize streams on multiple SSDs would
be a practical, rewarding topic to explore.

5 Conclusions

We made a case for the multi-streamed SSD in this paper.
We found the proposed multi-streaming concept power-
ful and the interface expressive; by mapping application
and system data with different lifetimes to SSD streams,
we demonstrated that the SSD throughput and latency
QoS are significantly improved. The data mapping used
in our Cassandra case study is intuitive, and similar ben-
efits are expected from other applications with proper
data to stream mapping. Our prototype SSD proves that
multi-streaming can be supported on a state-of-the-art
SSD and can co-exist with the traditional block interface.
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