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Abstract
Cloud-of-clouds storage exploits diversity of cloud stor-
age vendors to provide fault tolerance and avoid vendor
lock-ins. Its inherent diversity property also enables us
to offer keyless data security via dispersal algorithms.
However, the keyless security of existing dispersal al-
gorithms relies on the embedded random information,
which breaks data deduplication of the dispersed data.
To simultaneously enable keyless security and dedupli-
cation, we propose a novel dispersal approach called con-
vergent dispersal, which replaces original random in-
formation with deterministic cryptographic hash infor-
mation that is derived from the original data but can-
not be inferred by attackers without knowing the whole
data. We develop two convergent dispersal algorithms,
namely CRSSS and CAONT-RS. Our evaluation shows
that CRSSS and CAONT-RS provide complementary
performance advantages for different parameter settings.

1 Introduction
The advent of cloud computing motivates individuals
and enterprises to outsource data storage to the cloud.
However, storing all data in a single cloud is suscepti-
ble to the single-point-of-failure problem [6] and vendor
lock-in [4]. A concept of a cloud-of-clouds (also called
an intercloud) is proposed and studied in recent years
[1, 3, 4, 7, 10, 14, 26]. In a cloud-of-clouds, we disperse
data, with a certain degree of redundancy, across mul-
tiple independent clouds managed by different vendors,
such that the stored data can always be available even if
a subset of clouds becomes inaccessible.

The cloud-of-clouds model inherently possesses the
diversity property, which enables us to offer keyless se-
curity (without using encryption keys) via dispersal algo-
rithms [8, 15, 22, 24]. By transforming a data object into
multiple shares using a dispersal algorithm and dispers-
ing the shares across multiple clouds, the secrecy of the
data object can be maintained even if a subset of shares
are leaked. Unlike traditional key-based security, keyless
security eliminates the need of cloud users to store and
manage a large number of keys. However, the keyless
security property of existing dispersal algorithms relies
on the random information embedded in the dispersed

data. This randomness prohibits deduplication [19] (a
technique that exploits content similarity of data to re-
duce storage space) on the dispersed data.

To provide storage-efficient security, we propose a
novel dispersal approach called convergent dispersal.
The idea is inspired by that of convergent encryption
[11], which encrypts data with a cryptographic hash key
derived from the data itself rather than a random key.
Instead of embedding random information into the dis-
persed data, convergent dispersal embeds deterministic
cryptographic hash information that is derived from the
original data but cannot be inferred by attackers without
knowing the whole data. Thus, the dispersed data pre-
serves content similarity and can be deduplicated.

To this end, we construct two convergent dispersal al-
gorithms, namely CRSSS and CAONT-RS, both of which
augment existing dispersal algorithms with the dedupli-
cation property. We show that although the original
dispersal algorithms introduce redundancy, both CRSSS
and CAONT-RS can effectively reduce storage space via
deduplication. We further evaluate the computational
throughput of CRSSS and CAONT-RS, and show that
the two algorithms provide complementary performance
advantages for different parameter settings.

Deployment: Convergent dispersal is applicable to the
following deployment scenario. Consider an organiza-
tion in which users store their backup data in a cloud-
of-clouds. The organization may rent a compute server
in each cloud for deduplication. To reduce both storage
and bandwidth overheads, each user deduplicates its own
dispersed data by checking with each compute server for
the existence of duplicate data. Cross-user deduplication
should be avoided on the user side due to side-channel at-
tacks [13], but instead should be performed by each com-
pute server to achieve additional storage saving. Con-
vergent dispersal enables deduplication on both user and
server sides since it preserves content similarity.

2 Background: Dispersal Algorithms
We consider a cloud-of-clouds consisting of n clouds
owned by different vendors, as shown in Figure 1. A
client disperses its data into the n clouds using a disper-
sal algorithm. The following provides a formal definition
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Table 1: Properties of existing dispersal algorithms.
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Figure 1: Data dispersal in a cloud-of-clouds.

of general dispersal algorithms:

Definition 1 An (n, k, r) dispersal algorithm (where
n > k > r ≥ 0) disperses a secret into n shares such that
(1) the secret can be reconstructed from any k shares,
and (2) the secret cannot be inferred (even partially) from
any r shares.

A dispersal algorithm achieves both availability and
security for the data (called secret) to be stored: (1) the
secret is available as long as k clouds are accessible (i.e.,
the algorithm can tolerate the failures of m = n − k
clouds); and (2) the secret is secure as long as not more
than r clouds are compromised by an attacker. On the
other hand, the dispersal algorithm increases the storage
space required for storing the data. We define storage
blowup (denoted by Ω) as the ratio of the resulting data
size after dispersal to the original secret size. Note that
Ω ≥ n

k , since any k out of n clouds contain at least the
information of the original secret.

Several dispersal algorithms have been proposed in
the literature. We summarize their properties in Table 1.
Among these algorithms, the ramp secret sharing scheme
(RSSS) [8] with any r ∈ [0, k − 1] is actually the gen-
eralization of both Rabin’s information dispersal algo-
rithm (IDA) [20] with r = 0 and Shamir’s secret sharing
scheme (SSSS) [24] with r = k − 1. In addition, both
the secret sharing made short (SSMS) scheme [15] and
AONT-RS [22] make improvements over SSSS on stor-
age blowup while keeping r = k − 1, but SSMS has
slightly higher storage blowup than AONT-RS. Thus, we
only choose RSSS and AONT-RS as representatives, and
they work as follows.
• RSSS evenly divides the secret into k − r pieces,

and generates r random pieces of the same size. It then

transforms the k pieces into n shares using Rabin’s IDA.
• AONT-RS combines Rivest’s all-or-nothing trans-

form (AONT) [23] for security and Reed-Solomon (RS)
coding [9, 21] for availability. It first transforms the se-
cret into an AONT package with a random key, such that
an attacker has no knowledge about the AONT package
unless the whole package is obtained. The AONT pack-
age is then equally divided into k shares, which are fi-
nally encoded into n shares that contain the original k
shares using a systematic RS code.

Keyless security is realized in real storage systems,
such as POTSHARDS [25], DepSky [7], and Cleversafe
[22], which build on SSSS, SSMS, and AONT-RS, re-
spectively. Note that the security of existing dispersal al-
gorithms depends on the embedded random information
(like random pieces in RSSS and a random key in AONT-
RS). Due to randomness, distinct secrets with identical
content lead to different sets of shares, which would
impede data deduplication [19]. To provide storage-
efficient security, we need to develop new dispersal al-
gorithms that can produce deduplicable shares while en-
suring data security.

3 Convergent Dispersal Algorithms
Inspired by the idea of convergent encryption [11], we
propose convergent dispersal, which replaces the origi-
nal random information in existing dispersal algorithms
with deterministic hashes generated from the secret. We
construct two convergent dispersal algorithms, namely
CRSSS and CAONT-RS, which build on RSSS [8] and
AONT-RS [22], respectively. We also analyze the dedu-
plication efficiencies for these two algorithms.

3.1 CRSSS
Convergent RSSS (CRSSS) is a convergent dispersal al-
gorithm based on RSSS [8], a generalization of both
SSSS [24] and Rabin’s IDA [20]. Its basic idea is to re-
place the r random pieces in RSSS with cryptographic
hashes derived from the secret. To ensure security, each
hash should be generated using a different hash function.
When the size of each random piece is small compared to
that of a hash, we can simply fill the r random pieces with
hashes generated from the whole secret [16]. However,
the size of each random piece is often much larger than
that of a hash. If we still fill the r random pieces with
hashes generated from the whole secret, a large number
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Figure 2: An example of CRSSS with n = 6, k = 5, and
r = 2.

of hashes of the whole secret have to be generated, which
will consume a large amount of computational resource.
To reduce computational overhead, we propose to imple-
ment CRSSS as follows. Figure 2 shows the idea of the
CRSSS algorithm.
Algorithm: Given a secret, we split it into a number of
words that have the same size as hashes. For example, if
we use SHA-256 to generate hashes, the word size is set
to be 32 bytes. Each time we process a group of k − r
words. We generate r hashes from the k− r words using
r different cryptographic hash functions. For example,
we can use the following set of r hash functions:

hi = H(D, i), for i = 0, 1, · · · , r − 1, (1)

where D represents the data block composed of the k −
r secret words, i is an index, and H is a cryptographic
hash function (e.g., SHA-256) that generates the hash hi

from both D and i. The k− r secret words together with
the generated r hashes are then transformed into n share
words, which will be appended to n different shares (see
Figure 2), using Rabin’s IDA [20].
Remark: In CRSSS, each of the r hashes cannot be
guessed by an attacker unless all the k − r secret words
are obtained. Thus, a security degree of r can still be
guaranteed. In addition, since there is no random infor-
mation in CRSSS, distinct secrets with identical content
can always be transformed into the same set of shares.
Thus, we can perform data deduplication on shares (gen-
erated from distinct secrets).

3.2 CAONT-RS
Convergent AONT-RS (CAONT-RS) is a convergent dis-
persal algorithm based on AONT-RS [22]. Its basic idea
is to replace the random key employed in the AONT step
of AONT-RS with a cryptographic hash generated from
the secret. CAONT-RS comprises two steps: convergent
AONT (CAONT) and RS coding, which are described
below. Figure 3 shows the idea of CAONT-RS.
Algorithm: The first step is CAONT. Given a secret, we
split it into a number of words that have the same size
as hashes, as in CRSSS. Suppose that the secret con-
sists of s words. We transform these s secret words into

RS
module

… 0

Hash
module

… Hash
module

Cipher
module

XOR 
module

…

…

1

2

k
n

0

1

2

3

Figure 3: An example of CAONT-RS with n = 4 and
k = 3 (implying r = 2).

s + 1 CAONT words, such that the attacker cannot in-
fer any of the s + 1 CAONT words unless all the s + 1
CAONT words are obtained. Let d0, d1, · · · , ds−1 and
c0, c1, · · · , cs be the s secret words and the s+1 CAONT
words, respectively. We first generate each of the first s
CAONT words by

ci = di ⊕E(hkey, i), for i = 0, 1, · · · , s− 1, (2)

where ‘⊕’ is the XOR operator, hkey is the hash key gen-
erated from the secret using a cryptographic hash func-
tion (like SHA-256), i is an index, and E is an encryption
function (like AES-256) that encrypts the index i with
the hash key hkey . After generating the first s CAONT
words, we generate the last CAONT word by

cs = hkey ⊕H(c0, c1, · · · , cs−1), (3)

where H is a cryptographic hash function (like SHA-
256) that generates a hash from c0, c1, · · · , cs−1. The
s + 1 CAONT words now form a CAONT package.

The second step is RS coding. We evenly divide the
CAONT package into k shares. We encode the k shares
into n shares using a systematic RS code [9, 21] as in
AONT-RS, such that the n shares contain the original k
shares.
Remark: In CAONT-RS, the hash key cannot be
guessed by an attacker unless the whole CAONT pack-
age is obtained. Thus, a security degree of r = k − 1
can still be guaranteed. In addition, since there is no ran-
dom key in the CAONT step, distinct secrets with iden-
tical content can always be transformed into the same
CAONT package, and hence the same set of shares in the
RS coding step. Thus, with CAONT-RS, we can perform
deduplication on shares (generated from distinct secrets).

3.3 Analysis on Deduplication Efficiency
We first discuss the configurations of secret and share
sizes of CRSSS and CAONT-RS, which may influence
their deduplication efficiencies. Suppose that deduplica-
tion is performed at the granularity of fixed-size chunks.
We assume that the share sizes of both CRSSS and
CAONT-RS are equal to the chunk size (e.g., 4KB [12]
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Figure 4: One-to-one mappings between secrets on the
client side and shares on the cloud side when n = 4.

or 8KB [27]). To produce shares with the chunk size,
in CRSSS, we set the secret size to be k − r times the
chunk size, while in CAONT-RS, we set the secret size
to be k − 1 times the chunk size for address alignment.
For CAONT-RS, we need to pad zero-filled bytes to the
end of the generated CAONT package, so as to form a
package that can be equally divided into k shares. Conse-
quently, the storage blowup of CRSSS is still Ω = n

k−r ,
while that of CAONT-RS becomes Ω = n

k−1 .

We now analyze the deduplication efficiencies of both
CRSSS and CAONT-RS. In both approaches, there is
a one-to-one mapping between each secret and its n
shares. Consider an example in Figure 4, in which three
clients disperse three data files (composed of a number of
secrets) to four clouds. In each of the four clouds, dedu-
plication is performed on the stored files (composed of a
number of shares). From this example, we see that the
deduplication ratio for encoded shares in each cloud is
the same as that for unencoded secrets among all clients
(both are 2 : 1). Suppose that we do not consider the
additional storage overhead for the metadata used in data
deduplication. Then for both CRSSS and CAONT-RS,
we consider a case in which the deduplication ratio for
unencoded secrets among all clients is denoted by a sin-
gle constant Λ : 1 (e.g., Λ = 20 for backup workloads
[5]). We then define the effective deduplication ratio as:

Λ

Ω
=

{
k−r
n × Λ, for CRSSS;

k−1
n × Λ, for CAONT-RS.

(4)

We consider the following scenario. Suppose that Λ =
20, n = 8, and k = 6. For CRSSS, let r = 2, so its
effective deduplication ratio is 10 : 1; for CAONT-RS,
its effective deduplication ratio is 12.5 : 1. We see that
both CRSSS and CAONT-RS still have high deduplica-
tion efficiency.

In practice, for a given set of data files, the deduplica-
tion ratio is determined by different deduplication granu-
larities [27]. Since CRSSS and CAONT-RS have differ-
ent secret sizes, their actual deduplication ratios can be
different. We pose the formal analysis of the deduplica-
tion efficiency as future work.

4 Performance Evaluation
We evaluate the computational throughput of our pro-
posed CRSSS and CAONT-RS, which we measure by
the total amount of processed secret data divided by the
computational time of generating all shares. We imple-
ment both CRSSS and CAONT-RS in C. For compari-
son, we also implement RSSS [8] and AONT-RS [22].
We take SHA-256 and AES-256 as the default hash and
encryption functions, respectively, and implement them
using OpenSSL Version 1.0.1 [2]. In addition, we imple-
ment Rabin’s IDA [20] (for both CRSSS and RSSS) and
RS coding [9, 21] (for both CAONT-RS and AONT-RS)
using Jerasure Version 2.0 [17], which is integrated with
GF-complete Version 1.0 [18] for SSE acceleration. We
run our tests on an Intel Xeon E5530 server, which has
two Quad-Core CPUs at 2.40GHz with SSE4.2 support.

For both CRSSS and CAONT-RS, we set the share
size to be 4KB. In each test, we put 1GB of data into
a number of secrets of size 4(k − r)KB for CRSSS or
4(k − 1)KB for CAONT-RS, and process these secrets
in parallel with 8 threads. To ensure fair comparison,
both RSSS and AONT-RS use the same secret and share
sizes as CRSSS and CAONT-RS, respectively. For both
CRSSS and RSSS, we test the ranges of 3 ≤ n ≤ 12,
1 ≤ m ≤ 2, and n−m− 3 ≤ r ≤ n−m− 1; for both
CAONT-RS and AONT-RS, we test the same ranges of
n and m, while r is always equal to n−m− 1.

Figure 5 presents our test results. We first examine
the performance overhead of the convergence in CRSSS
and CAONT-RS by comparing them with RSSS and
AONT-RS, respectively. The convergence in CRSSS has
an overhead of 30.05% on average (in the range from
12.37% to 58.07%), while that in CAONT-RS has an
overhead of only 8.03% on average (in the range from
2.19% to 23.13%). The reason is that CRSSS needs to
compute more hashes than CAONT-RS.

We next compare CRSSS and CAONT-RS. For a given
m, the throughput of CRSSS decreases with n, since
CRSSS computes all n shares in the last step via Ra-
bin’s IDA; the throughput of CAONT-RS increases with
n, since CAONT-RS only needs to compute m shares in
the last step via RS coding, which would account for a
smaller proportion in the output n shares for a larger n.
In the case of r = n − m − 1, CRSSS and CAONT-
RS provide complementary performance advantages for
different values of n: CRSSS has higher throughput
when n is small, while CAONT-RS has higher through-
put when n is large. Also, for CRSSS, with the decrease
of r, its throughput can increase to a very high value
(sometimes over 800MB/s); while for CAONT-RS, its
throughput is always no more than 400MB/s due to the
fixed r = n − m − 1. Thus, CRSSS allows a more
flexible tradeoff between security and performance than
CAONT-RS.
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Figure 5: Throughput of various dispersal algorithms.

5 Conclusions
We present convergent dispersal, which supports keyless
security and deduplication for cloud-of-clouds storage.
Its main idea is to replace random information with de-
terministic cryptographic hash information derived from
original data. We construct two convergent dispersal al-
gorithms, namely CRSSS and CAONT-RS. We analyze
their deduplication efficiencies and evaluate their perfor-
mance via various parameter choices. In future work, we
plan to fully implement and evaluate convergent disper-
sal in a real-life dispersed setting.
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