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Abstract
State-of-the-art flash-optimized KV stores frequently

rely upon a log structure and/or compaction-based strat-
egy to optimally organize content on flash. However,
these strategies lead to excessive I/O, beyond the write
amplification generated within the flash itself, with both
the application and the flash device constantly rearrang-
ing data. In this paper, we explore the other extreme
in the design space: minimal data management at the
KV store and heavy reliance on theFlash Translation
Layer (FTL) capabilities. NVMKV is a scalable and
lightweight KV store that leverages advanced capabili-
ties that are becoming available in modern FTLs. We
demonstrate that NVMKV(i) performs KV operations
at close to native device access speeds forget oper-
ations, (ii) outperforms state of the art KV stores by
50%-300%,(iii) significantly improves performance pre-
dictability for the YCSB KV benchmark when compared
with the popular LevelDB KV store, and(iv) reduces
data written to flash by as much as 1.7X and 29X for
sequential and random write workloads relative to Lev-
elDB, thereby dramatically increasing device lifetime.

1 Introduction

Key-value (KV) stores are ubiquitous, having become
the default data management software for many Inter-
net services [8, 10, 21, 22, 32]. They serve application
needs in a variety of different domains that demand high-
throughput and low-latency data access [1, 3].

The performance, capacity, and power consumption
mix of flash-based storage makes it an attractive medium
for KV stores [12, 15, 19, 20, 27]. To get the best perfor-
mance from both HDDs and low-end SSDs, many KV
stores use some form of log structured writing to op-
timize data layout on media. Since log structured up-
dates require eventual compaction or garbage collection,
the consequence isauxiliary write amplification, i.e., ad-
ditional write amplification introduced at the KV store
besides the write amplification introduced by the Flash
Translation Layer (FTL). For instance, the SILT work in-
troduces an auxiliary write amplification of 5.4 [27]. The
recent LevelDB KV store from Google [22] also exhibits
rather dramatic auxiliary write amplification. Figure 1
reveals a minimum of 2.5x auxiliary write amplification
for sequential asynchronous writes and a maximum of
43x for random synchronous writes. Prior research on
auxiliary write amplification in caching application data
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Figure 1: A comparison of write amplification.LevelDB
variants are RW: Random asynchronous writes, RW-S: random
synchronous writes, SW: sequential asynchronous writes, SW-
S: sequential synchronous writes.

in flash demonstrates that the cumulative write amplifi-
cation is multiplicative, causing even a small user update
to result in massive writing to the flash over time [33].

Three trends force us to rethink KV store design
choices. First, NAND flash endurance is getting poorer
with every new media generation [25]. With fewer Pro-
gram/Erase cycles to begin with, the auxiliary write am-
plification further reduces the device lifetime and in-
creases the KV store’s total cost of ownership. Sec-
ond, the gap between sequential and random write per-
formance has significantly narrowed in state of the art
SSDs today [26], calling into question the need for ap-
plication level log structuring and compaction. Third,
modern FTLs are much more powerful than the tradi-
tional block devices. New FTL interfaces have recently
been developed to provide advanced capabilities to ac-
cess data to (or from) NAND Flash [7, 9, 26, 29, 30].

In this paper, we explore a new design for a KV store
— one that relies upon cooperative design with an FTL
to minimize auxiliary write amplification and maximize
application-level performance. The resulting KV store,
NVMKV, is lightweight and fully exploits native charac-
teristics of the FTL to achieveget performance equiv-
alent to raw device read speeds andput operations that
are significant fractions of raw device write speeds.

NVMKV makes several novel contributions. While
many flash and disk optimized KV stores exist (see
Figure 2), NVMKV is the first to leverage native FTL
layer primitives such asatomic multi-block write, atomic
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Figure 2:Categorizing Existing KV stores. This figure
shows a broad categorization of existing KV stores based on
primarily being hard-disk- or flash-optimized and on leverag-
ing capabilities surfaced by modern FTLs.

multi-block persistent trim, exists, and iterate to im-
plement KV functionality. NVMKV demonstrates how
strong consistency and atomic guarantees provided by
the underlying FTL can be used to achieve atomicity and
isolation, low write amplification, and performance close
to that of the raw device. NVMKV is also the first KV
store that uses a small (close to zero), constant, amount
of in-memory metadata that is independent of both the
number of keys stored and the workload intensity.

Our evaluation of NVMKV reveals the following.
NVMKV performsget operations at close to the native
device access speeds. Relative to LevelDB, a popular
KV store in wide use today, NVMKV reduces auxiliary
write amplification by as much as 1.7X and 29X for se-
quential and random write workloads respectively. For
the YCSB KV benchmark, NVMKV outperforms Lev-
elDB by 50%-300% besides significantly reducing the
variance of KV operation latencies when compared with
LevelDB. Finally, NVMKV provides significantly bet-
ter performance when using a fourth of the user-level
DRAM cache size compared to LevelDB and unlike Lev-
elDB, without using any OS-level DRAM caching.

2 Leveraging Flash Devices

Modern FTLs are powerful software layers that include
functions such as log-structuring, dynamic data remap-
ping, indexing, transactional updates, and thin provision-
ing [26, 29], which are superficially similar to the func-
tionality being built into many KV stores. For instance,
FTLs implement an indirection map to manage the log-
ical to physical block address mapping and write log-
ging to guarantee durability on a medium that implic-
itly forces out-of-place writes. There is ongoing effort to
surface these advanced capabilities through standardized
primitives for use by operating systems and user space
software [7, 9]. Table 1 lists some of the primitives that
can be surfaced by a modern FTL. Recent work has uti-
lized such primitives for implementing efficient file sys-
tems [26], databases [29], and caching [30].

API Description
EXISTS queries if an address is populated
ATOMIC-WRITE writes an address range as ACID tx.
ATOMIC-TRIM deletes an address range as ACID tx.
ITERATE returns all populated addresses

Table 1:FTL Primitives. These primitives can be used for ei-

ther individual or ranges of (both sparse and non-sparse) locations.

Additionally, batch operations ofATOMIC-WRITE, ATOMIC-TRIM,

and combinations are also possible, allowing the write of some loca-

tions and the deletion of other locations as a single transaction.

2.1 Dynamic Mapping
FTLs maintain an indirection map translating logical
block addresses to physical locations. This mapping is
required to organize data for minimal write amplification
and best wear leveling. Most KV stores also maintain a
mapping engine that converts keys to storage addresses
where the values are stored.

To leverage an FTL based remapping engine for map-
ping key-value pairs, we extend the FTL indirection
map to asparse map, similar to that used in previous
work [26]. A sparse map provides a few orders of mag-
nitude more addressable logical addresses (LBAs) for the
same physical capacity, thinly provisioning physical lo-
cations only for LBAs that have been written. Leverag-
ing the underlying sparse addressing, NVMKV replaces
the indirection maps found in most KV stores with hash-
ing functions over the sparse address space. Through this
approach,put andget operations are simply mapped to
write and read operations in the FTL, respectively. A
delete of a key removes the KV pair from the storage
device using thetrim operation.

2.2 Persistence and Transactional Support
FTLs maintain both data and metadata, and in particular,
persistent indirection maps to recover data upon restart.
Since FTLs operate as copy-on-write, they can provide
high performance transactional write semantics [29]. KV
stores can leverage this capability to ensure thatputsof
KV pairs are atomic without additional journaling, and
providing nearly the same performance as that of conven-
tional writes. Access to the transactional persistence ca-
pabilities of the FTL can be provided through two prim-
itives,ATOMIC-WRITE andATOMIC-TRIM.

2.3 Highly parallel operations
FTLs support highly parallel read/write operations to
match the parallelism available inside the NAND die of
most flash devices. By utilizing the atomic operations,
we can minimize locking within the KV store and better
leverage the inherent parallelism within the flash device.

3 NVMKV Design

NVMKV is designed as a user space library that exports
a KV API and leverages the publicly available FTL prim-
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Figure 3: NVMKV Hash model.How NVMKV retrieves
and stores KV pairs in a flash device. First, for bothget and
put operations, a hash function computes the starting LBA
(i.e., slot number) in the FTL’s sparse address space. Second,
NVMKV issues a read or write operation to the LBA range,
which in turn gets translated (via the FTL) to the mapped phys-
ical address(es). Onput operations, NVMKV adds metadata
to each KV pair to help identify and resolve collisions.

itives (see Table 1) to access flash devices [9]. These
primitives are implemented within Fusion-io’s ioMem-
ory FTL [23] and exported as a set of IOCTLs.

3.1 Sparse Addressing
Leveraging sparse addressing is central to NVMKV
since it allows minimizing I/O amplification during both
get andput operations. In the absence of collisions,
eachget orput operation translates into exactly one I/O
to flash. The elimination of an indirection map results in
fixed (nearly zero) metadata at the KV store.

To effectively utilize the sparse address space,
NVMKV divides the sparse address into two parts: the
Key Bit Range(KBR) and theValue Bit Range(VBR).
By default, NVMKV uses 36 bits for the KBR and 12
bits for the VBR in a 48 bit address space, with alter-
natives configurable by the user when the KV store is
created. The VBR defines the amount of contiguous ad-
dress space (i.e., maximum value size) reserved for each
KV pair, ensuring that KV pairs mapped into the sparse
address space to not overlap each other in logical ad-
dress space. The KBR determines the maximum num-
ber logical hash slots that each KV pair can be placed
into. User supplied keys are mapped to LBA addresses
through a simple hash model (Figure 3). Keys can be
variable length up to the maximum supported key size
(2MB for a 12 bit VBR).

3.2 Hashing and Collision Handling
Since each VBR will contain exactly one KV pair, hash
conflicts only occur in the KBR. The design of NVMKV
assumes that the KBR is kept sufficiently large, relative
to the number of keys that can be stored in a flash device,
to reduce the chances of a hash collision. For example,
1TB of flash can contain a maximum of 2 billion 512B

1 2 3 4 5 6 7 8

Threads

0

10

20

30

40

50

60

T
h
ro
u
g
h
p
u
t 
(x
1
0
0
0
 o
p
s/
se
c)

Reads

1 2 3 4 5 6 7 8

Threads

0

20

40

60

80

100

120

140

160
Writes

LevelDB

LevelDB-Sync

NVMKV

FIO

Figure 4: Microbenchmark comparing LevelDB,
NMVKV and Raw Block Device (FIO).

KV pairs. With the default KBR of 36 bits which sup-
ports 64 billion hash slots, and uniform hashing of KV
pairs across KBR space, the chances of a new KV pair
inserted into even a full device causing a collision is3̃%.

Collisions are handled within the library by deter-
ministically computing an alternate hash location (via
polynomial probing) within the KBR. Up to eight
hash locations are tried before the KV Store refuses
to accept a new key. Assuming that the hash func-
tion uniformly distributes keys, the probability of a
PUT failing in the above example equals the proba-
bility of 8 consecutive collisions and is approximately
(1/(64 billion / 2 billion)8 = 1/240 is vanishingly
small. The sparse address bits can be increased propor-
tionately as device capacities increase to maintain low
hash collision probability.

3.3 KV Storage and Caching
The minimum unit of storage in NVMKV is a sector
where keys and values smaller than 512B will consume
a full 512B sector. Each KV pair will also contain some
metadata in a header stored on media. NVMKV packs
and stores the metadata, the key, and the value in a sin-
gle sector if the sum of their individual sizes is less than
or equal to the sector size. Our instance of NVMKV
implements a DRAM cache which can be used to hold
KV pairs. Separately, a collision cache holds informa-
tion about recent hash collisions, reducing the need for
additional flash lookups at collision time.

4 Evaluation

We evaluated the performance, overhead, and auxiliary
write amplification of NVMKV, comparing it to the raw
device and LevelDB 1.14 [22]. We used the FIO bench-
mark, the YCSB KV benchmark [17], and the LevelDB
suite of micro-benchmarks for our workloads. Our ex-
periments were performed on a system with a Quad-Core
2.5 GHz AMD Opteron(tm) Processor, 8GB of DDR2
RAM, and a 825GB Fusion-io ioScale2 drive running
Linux Ubuntu 12.04 LTS.
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4.1 Raw Device Performance Comparison
Our first experiment evaluates the overhead of the
NVMKV stack and LevelDB relative to the raw flash de-
vice. Get andput used 512B values and key sizes rang-
ing from 1 byte to 128 bytes and for these sizes, NVMKV
issues I/O operations of size 1KB. The FIO tool was con-
figured to generate 1KB I/Os to the raw device. Figure 4
shows that as the thread count increases, the through-
put for NVMKV’s get operations tracks the FIO bench-
mark’s read rate. Forput operations, NVMKV sig-
nificantly outperforms both the asynchronous and syn-
chronous versions of LevelDB. Additional overheads in
NVMKV such as checking for collisions cause perfor-
mance to be lower than the underlying native device
write performance extracted by FIO.

4.2 LevelDB Comparison using YCSB
YCSB is a framework for comparing the performance
of KV stores and implements six workload personalities
A-F [17]. The YCSB dataset size was 10GB and we
evaluated both KV stores with caches of size 256MB (C:
256 MB) and 1GB (C: 1 GB). LevelDB implements write
buffering and utilizes the OS page cache (both active dur-
ing the experiment) while NVMKV does neither. Lev-
elDB was configured to perform asynchronous writes.

Figure 5 demonstrates throughput performance gains
of 50%-300% with NVMKV relative to LevelDB when
running the YCSB workloads. These performance gains
are even more significant when we consider that Lev-
elDB does not provide durability while NVMKV does,
and that LevelDB uses both a write buffer and the OS
buffer cache for additional DRAM caching/buffering,
while NVMKV does neither. We do not report results
for YCSB-E because it performs short range scans (short
sequential scans at randomly chosen locations), an oper-
ation not currently supported by the YCSB Java binding
for NVMKV.

We measured how KV operation latencies varied over
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Figure 6: KV operation latency over time for YCSB-
A. The two charts depict the update (top), and read (bottom)
phases of the workload.

time for each of the workloads (Figure 6). We include
data for bothasync(default) andsyncmodes for Lev-
elDB writes. There are a few interesting insights here.
First, NVMKV, which delivers atomic and durable up-
dates, significantly outperforms even the LevelDB’s best
performing, but weaker,asyncmode. Second, we note
that the performance variance in LevelDB is greater rela-
tive to NVMKV with significant latency spikes. We mea-
sured average/maximum KV read latencies of 0.33/1.38
and 0.33/1.39 ms for LevelDB and LevelDB-S respec-
tively, relative to 0.14/0.66 ms for NMVKV. Since the
LevelDB latency spikes seem to occur periodically, we
believe these are correlated with the internal compaction
mechanism. On the other hand, NVMKV offers much
more consistent latency performance over time.

Revisiting Figure 1, we see that for the LevelDB suite
of microbenchmarks [22], NVMKV incurs 1.7X to 29X
lower auxiliary write amplification than LevelDB. The
performance gains in NVMKV can be attributed to this
reduction, as well as eliminating layers of indirection and
metadata management overhead.

5 Discussion and Future Work

Besides NVMKV’s performance improvements and en-
durance gains, atomic durability guarantees for KV op-
erations are an added benefit. The need for such guaran-
tees is a topic of debate within the NoSQL community
with KV stores implementing different levels of even-
tual to strict consistency and varying degrees of durabil-
ity. In NVMKV, we were able to provide strictly atomic
and synchronous durability guarantees by leveraging the
underlying FTL capability. Thus, rather than adding
complexity and sacrificing performance to achieve strict
guarantees (and thereby feeling pressurized to give them
up), we found that leveraging their presence in the under-
lying FTL helped us simplify the NVMKV design with-
out sacrificing performance. We also observed that by
extracting more of the native performance of the flash de-
vice, we were able to deliver more KV operation perfor-
mance than LevelDB while consuming less DRAM. We
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believe that NVMKV represents a sound building block
on which scale-out KV stores can be built. This is an
area we intend to explore further in the future.

Due to lack of space, we did not include any de-
scriptions of how the FTL supported the primitives that
NVMKV relies upon. However, the implementations
of similar primitives have been discussed with descrip-
tions of possible FTL implementation designs [26, 29,
30]. In particular, FlashTier discusses sparse maps,
showing how an incremental extension to an existing
FTL data structure can enable dramatic DRAM reduc-
tions in applications while only causing moderate addi-
tional DRAM consumption at the FTL.

A limitation in our current design is the requirement to
map individual KV pairs to separate sectors. NVMKV
is best utilized for KV pairs which consume over 256
bytes. While many workloads fit this criterion, there are
also many that do not. For the second group of work-
loads, NVMKV will have poor capacity utilization. One
way to manage efficient storage of small KV pairs is to
follow a multi-level storage mechanism, as provided in
SILT [27], where small items are initially indexed sepa-
rately and later compacted into larger units such as sec-
tors. This is also a target area for future work.

6 Conclusions

We explored a novel concept of a KV store designed co-
operatively with an FTL to reduce redundant work across
the two layers. The result, NVMKV, is able to extract
significant fractions of the raw device performance and
outperform a state of the art KV store while minimizing
auxiliary write amplification. NVMKV is open source,
available athttps://github.com/opennvm/nvmkv.
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