
Accelerating External Sorting via On-the-fly Data Merge in Active SSDs

Young-Sik Lee†, Luis Cavazos Quero§, Youngjae Lee§, Jin-Soo Kim§, and Seungryoul Maeng†

†KAIST, §Sungkyunkwan University

Abstract

The concept of active SSDs (solid state drives) has been
introduced in order to cope with the demands required
to process the ever-increasing volumes of data. In active
SSDs, some of the data-processing tasks are offloaded
to SSDs, freeing host system resources and improving
overall performance of data analysis.

In this paper, we propose a novel active SSD architec-
ture focused on improving the external sorting algorithm
that is used extensively in data-intensive computing. By
performing merge operations on-the-fly in active SSDs,
our method can remove the extra data transfer and en-
hance the lifetime of SSDs. Our evaluation results on a
real SSD platform indicate that the proposed scheme out-
performs the traditional external sorting by up to 39%.

1 Introduction

We are witnessing the proliferation of solid state drives
(SSDs) in various storage systems due to their high per-
formance, low power consumption, small form factor,
light weight, and shock resistance. In particular, SSDs
are being widely adopted for data-intensive computing
as the I/O performance becomes critical in processing the
ever-increasing volumes of data.

The recent trend is to make SSDs play a more impor-
tant role in data-intensive computing by revisiting the
notion of active disks [6]. The so-called active SSDs
offload data-processing functions (e.g., min/max, scan,
count, histogram, etc.) to SSDs where the data is already
stored [7, 8, 12, 13, 17]. The host system reads the results
directly from active SSDs without excessive data trans-
fer nor host-side computation, thereby improving perfor-
mance and saving energy. As the computing capability
of SSDs becomes more powerful, this approach will be
more promising to enhance the efficiency and scalability
of data-intensive computing.

In this paper, we propose a novel active SSD architec-
ture which performs external sorting efficiently, leverag-
ing the characteristics of SSDs. External sorting is one
of the core data-processing algorithms in data-intensive

computing because of its need to handle large-scale data
using very limiting memory. For example, the MapRe-
duce frameworks extensively utilize external sorting to
generate intermediate and final outputs from map/reduce
tasks [1, 9]. Also, external sorting is a key component
for many query processing algorithms in database sys-
tems [10].

The key idea behind the proposed architecture is to let
the host system avoid computing the final sorted output
of external sorting, and storing it in SSDs. Instead, the fi-
nal output is created in real time from the partially sorted
data inside the active SSD, when the host system issues
read requests to the result. In other words, the active SSD
internally performs data merge operations on-the-fly and
transfers the merged data to the host as a result of read
requests. What makes this feasible is that (1) SSDs al-
ready exploit parallelism across multiple flash channels
operating independently, and (2) reads can be done much
faster than writes in SSDs.

The benefits of the propose scheme can be summa-
rized as follows. First, it eliminates extra data trans-
fer and host-side merge operations which are otherwise
needed to compute and store the final output. This re-
duces the processing power and memory requirements
of the host system. Second, the lifetime of SSDs is en-
hanced as the expensive writes are replaced with reads,
not to mention that performance and energy efficiency
are improved. Our experimental results with a proto-
type on a real SSD platform indicate that the proposed
scheme outperforms the traditional external sorting by
up to 39%.

2 Background

2.1 Solid State Drives (SSDs)
A typical SSD is composed of a single SSD controller,
DRAM, and an array of NAND flash memory chips. Un-
like hard disk drives, NAND flash memory has several
unique characteristics. First, the previous data should be
erased before another data is written into the same area.
Second, write operations are much slower than read op-



Input data

1111) ) ) ) WriteWriteWriteWrite

SSD

Sorted data

Sort Sort Sort Sort
Merge

2222) ) ) ) ReadReadReadRead

Sorted data

3333) ) ) ) WriteWriteWriteWrite

Next 
processing

4444) ) ) ) ReadReadReadRead

Figure 1: The process of the traditional external sorting.

erations. Finally, as flash memory cells wear out over
time, there is a limitation in the number of erase opera-
tions that can be performed.

In order to deal with these characteristics of NAND
flash memory, the SSD controller runs sophisticated
firmware called flash translation layer (FTL). FTL man-
ages the physical storage space in a log-structured man-
ner and performs wear-leveling to prolong the lifetime
of SSDs. The functions of FTL are getting complex to
match the increasing host interface speed and to exploit
parallelism across a number of NAND flash chips con-
nected to multiple channels. Accordingly, the hardware
computing resources of SSDs become more powerful;
Samsung 840 Evo, one of the latest high-end SSDs, fea-
tures ARM-based triple cores operating at 400MHz and
1GB of DRAM with eight parallel NAND channels [4].

2.2 External Sorting
External sorting is a type of sorting algorithms to handle
large-scale data efficiently which does not fit into mem-
ory. As illustrated in Figure 1, the traditional external
sorting consists of two phases: partial sorting and merge.

During the partial sorting phase, the input data is di-
vided into chunks where the size of a single chunk is
smaller than the available memory. The data of each
chunk is sorted via in-memory sorting algorithms and the
sorted data of the chunk is written to the disk (Step 1).
In the merge phase, the partially sorted chunks are read
from the disk and merged to produce the final sorted out-
put (Step 2). Some of read requests to the partially sorted
chunks can be served by page cache. However, since the
data size is much larger than the available memory size,
the hit ratio of the page cache is very low. The final sorted
output is written into the disk (Step 3), and usually sent
to the other task later for further data processing (Step 4).

3 Design and Implementation

3.1 External Sorting with Active SSDs
We propose a new external sorting scheme called Ac-
tiveSort using on-the-fly data merge in active SSDs.
In ActiveSort, the final sorted output is synthesized by

Input data

1111) ) ) ) WriteWriteWriteWrite

SSD

Sorted data

Sort Sort Sort Sort

2222) ) ) ) ReadReadReadRead

Next 
processing

Merge

Figure 2: The process of ActiveSort.

merging data on-the-fly from multiple partially sorted
chunks, when the host requires the final output. Since
the final sorted output is not stored in active SSDs, Ac-
tiveSort can remove the read and write operations (Step
2 and 3 in Figure 1) which are needed to merge partially
sorted chunks and to store the final output.

Figure 2 outlines the process of ActiveSort. In Ac-
tiveSort, the partial sorting phase is the same as that of
the traditional external sorting (Step 1). However, the
merge phase is skipped in ActiveSort until the host issues
read requests to the final sorted output. When a read re-
quest to the final output arrives from the host, ActiveSort
performs on-the-fly data merge inside active SSDs and
transfers the result as the response of the read request
(Step 2).

Compared to the traditional external sorting, Ac-
tiveSort requires only half of read and write operations
to obtain the final sorted output. Since writes take longer
than reads in SSDs, ActiveSort can achieve significant
performance gain in spite of the run-time data merge op-
erations during reads. Reducing the amount of writes is
also helpful to enhance the lifetime of SSDs.

3.2 On-the-fly Data Merge
The on-the-fly data merge is activated by the read request
for the final sorted output from the host. Initially, Ac-
tiveSort arranges a chunk buffer in DRAM for each par-
tially sorted chunk and prefetches several records from
each chunk to the associated chunk buffer. And then, Ac-
tiveSort compares the keys in chunk buffers which come
from different chunks. The record with the minimum
key value is copied to the output buffer for the read re-
quest. These steps are repeated until the output buffer
is filled, at which point the read request is returned to
the host. When the contents of a chunk buffer runs out,
ActiveSort issues another prefetch request to the NAND
flash memory to fill the chunk buffer.

The overhead of comparing keys and the additional
memory copy between the chunk buffer and the output
buffer is critical to the performance of ActiveSort be-
cause they are performed on-the-fly. Fortunately, the
overhead can be reduced by overlapping key compari-
son and memory copy with reading the data from NAND



flash memory to chunk buffers. This is possible because
SSDs have embedded CPUs for computation while data
transfer between DRAM buffers and NAND flash mem-
ory is done by another flash memory controller dedicated
to each NAND flash channel. In practice, ActiveSort
allocates more than one chunk buffer for each partially
sorted chunk to maximize the overlap between CPUs and
flash memory controllers even when there is a skew in the
key values.

3.3 Prototype Implementation
To evaluate the performance of ActiveSort, we imple-
ment a prototype SSD based on the OpenSSD plat-
form [3]. The OpenSSD platform consists of 87.5MHz
ARM7TDMI embedded CPU, 64MB DRAM, and four
32GB flash memory modules each connected to the dif-
ferent flash channel. The prototype SSD is connected to
the host machine via the SATA2 interface. The on-the-fly
data merge has been implemented by modifying a page-
mapped FTL.

For fast prototyping, we statically fix the locations of
partially sorted chunks and the final sorted output in the
prototype SSD’s address space and access them directly
without passing file system layers. The other information
such as key length and record length has been delivered
to the prototype SSD using a special sector as in [17].
The contents of each partially sorted chunk are striped
across four flash channels to maximize sequential per-
formance.

4 Experiments

4.1 Evaluation Methodology
We compare the performance of ActiveSort with that
of two other sorting algorithms: NSORT and QSORT.
NSORT [2] is a representative external sorting library
which records good performance in the Sort Benchmark
contest [5]. QSORT is a famous quick sort implementa-
tion for in-memory sorting available in the Linux library.

For all the experiments, we use a Linux machine
equipped with a 3.4GHz Intel Core i5 CPU and 16GB of
memory running the Ubuntu 12.04. It also has a separate
commercial Samsung 840 Pro SSD for its root file sys-
tem and swap device. All of input, output, and intermedi-
ate results are stored in the prototype SSD when we run
the three sorting algorithms. For NSORT and QSORT,
the prototype SSD acts like a normal SSD with the un-
modified page-mapped FTL. For input data, we generate
a 2GB data set using the gensort program from the Sort
Benchmark contest homepage. Each record is set to 4KB
in size including a 10-byte key to focus on the I/O traffic.
The original record size of the benchmark is 100 bytes.

Table 1: The base performance of the prototype SSD
Operation Bandwidth (MB/s)
WRITE 61.04
READ 137.07
READ with merge (sorted) 116.38
READ with merge (random) 85.81

In order to evaluate the effect of the available memory on
the performance, the main memory size is varied from
1GB to 3GB using the Linux kernel boot option.

4.2 Base Performance

Table 1 shows the bandwidth of sequential read and write
operations of the prototype SSD. We have also measured
the read bandwidth when we enable the on-the-fly data
merge on the already sorted data set (sorted) and on the
randomly generated data set (random).

When we fully utilize four NAND flash channels, the
read bandwidth achieves 137MB/s which is almost two
times higher than the write bandwidth. If we perform the
on-the-fly data merge on the sorted data, the read band-
width drops to 116MB/s due to the overhead of com-
paring keys and copying records. When the data set is
already sorted, the partially sorted chunks are perfectly
striped into four NAND channels and ActiveSort can re-
trieve data sequentially with the full bandwidth provided
by four channels. On the other hand, the random data set
hurts the interleaving efficiency since ActiveSort some-
times has to read two or more records from the same
chunk. Although the on-the-fly data merge lowers the
read bandwidth slightly, the resulting bandwidth is still
higher than the write bandwidth. Since ActiveSort re-
moves expensive writes during sorting, we can expect
improved performance.

4.3 Sort Benchmarks

While running the three sorting algorithms, we mea-
sure the elapsed time to compare the performance. The
elapsed time includes the time for reading the input data
set, performing sorting, and writing the sorted output.
Since ActiveSort does not write the final output, we also
include the time for reading the final output after the sort-
ing is completed.

Figure 3 compares the elapsed times for each sort-
ing algorithm with various memory size. We can see
that QSORT suffers from excessive page swapping when
the memory is not enough to contain the input data.
With 1GB of memory, the number of swapped-out and
swapped-in pages in QSORT is 3.3x and 300x higher
than that in ActiveSort, respectively.

ActiveSort shows the steady performance independent



 0

 50

 100

 150

 200

 250

 300

 350

 400

A
ct

iv
eS

or
t

N
S

O
R

T

Q
S

O
R

T

A
ct

iv
eS

or
t

N
S

O
R

T

Q
S

O
R

T

A
ct

iv
eS

or
t

N
S

O
R

T

Q
S

O
R

T

E
la

ps
ed

 ti
m

e 
(s

)
Sorting

Reading

3GB2GB1GB

Figure 3: The elapsed times for each sorting algorithm
with varying the memory size from 1GB to 3GB.

Table 2: The amount of I/O of ActiveSort and NSORT
with 1GB of memory.

Sorting method READ (MB) WRITE (MB)
ActiveSort 4100 2048
NSORT 6157 4106

of the available memory size, especially achieving best
performance when the memory size is smaller than the
data set size. Compared to NSORT, ActiveSort takes
slightly longer time to read the sorted result due to on-
the-fly data merge, but overall it generates the final sorted
result more quickly. This is because ActiveSort reduces
the amount of I/O needed to merge intermediate results.

Table 2 shows the amount of I/O received by the pro-
totype SSD while running ActiveSort and NSORT with
1GB of memory. ActiveSort just issues one read for
the input data and one read/write for the partially sorted
chunks. On the other hand, NSORT generates more reads
and writes as the merge phase of NSORT requires data
transfer between the main memory and the prototype
SSD. From Table 2, it is apparent that ActiveSort can
almost double the lifetime of SSDs.

Note that NSORT performs even better than QSORT
when the memory size is 3GB. This is because NSORT
switches to in-memory sorting when the memory is suf-
ficiently large to maintain all of the input data. In all ex-
periments, ActiveSort and NSORT have about 6% CPU
usages because of I/O-bound processing.

5 Discussion

The current implementation of ActiveSort has several
limitations as well as rooms for improvements. First,
we note that the computing resource of the prototype
SSD is much inferior to the latest SSDs described in
Section 2.1 in aspects of embedded CPU power, DRAM

size, and internal bandwidth. We expect that the over-
head of comparing keys and the additional memory copy
can be reduced as the number of CPU cores and its pro-
cessing power increase. The interleaving efficiency dur-
ing on-the-fly data merge can be improved with the in-
creased number of flash channels and the use of aggres-
sive prefetching and more sophisticated buffer manage-
ment techniques.

Second, the current implementation performs the par-
tial sorting phase in the host as in the traditional external
sorting. However, if the computing resource is sufficient,
the partial sorting phase can be also offloaded into active
SSDs further reducing the amount of I/O.

Another possible approach is to use multiple active
SSDs to enhance the scalability of data-intensive com-
puting. Similar to the scheme presented in [16], the scal-
ability of external sorting can be improved by partition-
ing the input data into multiple active SSDs and then per-
forming partial sorting completely in each active SSD. In
this way, low-power microservers combined with multi-
ple active SSDs can be a new energy-efficient vehicle for
next-generation data-intensive computing.

To enable the on-the-fly data merge, the information
on key length, key type, record length, sizes and loca-
tions of partially sorted chunks that constitute the final
output should be available to active SSDs. Those in-
formation can be delivered to active SSDs by defining
an additional interface [17] or more easily by using the
object-based interface [14].

With the object-based interface, active SSDs can man-
age the locations of partially sorted chunks by itself.
The other information to identify keys and records can
be transferred through the object attributes. To support
variable-length records, the record header can be used
for obtaining the size of each record.

6 Related Work

The concept of the active disk has been extensively stud-
ied from the past. There are several researches to offload
data-processing functions to hard disk drives (HDDs) for
improving performance [6, 11, 15, 16].

As SSDs have emerged as an alternative storage de-
vice, several studies have been conducted to apply the
concept of the active disk to SSDs. Bae et al. [7]
have presented the performance model of the active SSD
which performs data processing functions for big data
mining and analyzed its performance benefits. Kim et
al. [13] and Cho et al. [8] have proposed an active SSD
architecture which executes several data processing func-
tions not only on the embedded CPU(s) of the SSD con-
troller but also on flash memory controllers. A flash
memory controller is a hardware logic of the SSD con-
troller which is responsible for data transfer between



NAND flash memory and DRAM.
The aforementioned studies focus on data processing

functions, whose results are much smaller than the input
data. In this case, the data transfer between the host sys-
tem and SSDs is dramatically reduced, thereby improv-
ing the performance of data processing. In this paper, we
propose an active SSD architecture to accelerate external
sorting, which is one of the core data-processing algo-
rithms. We have shown that even such applications as
external sorting, whose output size is same as input size,
can benefit from active SSDs.

Tiwari et al. [17] have studied an approach to utilize
active SSDs in the high performance computing (HPC)
environment on large-scale supercomputers. They ana-
lyze the energy and performance models of active SSDs
and discuss how to utilize multiple SSDs on supercom-
puters. They present that adopting active SSDs is a
promising approach for improving both performance and
energy efficiency.

7 Conclusion

We propose an active SSD architecture to perform exter-
nal sorting efficiently, which is one of the core algorithms
in data-intensive computing. By performing merge op-
erations on-the-fly inside of SSDs, the proposed scheme
can eliminate extra data transfer and improve the lifetime
of SSDs. The experimental results show that the active
SSDs are a promising approach to enhance the perfor-
mance in data-intensive computing.

As future work, we plan to integrate the proposed
scheme into the Hadoop MapReduce framework. Since
external sorting is extensively used in the Hadoop frame-
work, we expect that the proposed scheme can improve
the performance and energy efficiency of MapReduce
applications.

8 Acknowledgments

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea Gov-
ernment (MSIP) (No. 2013R1A2A1A01016441). This
work was also supported by the IT R&D program of
MKE/KEIT (No.10041244, SmartTV 2.0 Software Plat-
form).

References

[1] Apache hadoop. http://hadoop.apache.org/.

[2] Nsort. http://www.ordinal.com/.

[3] The openssd project. http://www.

openssd-project.org.

[4] Samsung SSD 840 evo. http://www.samsung.

com/global/business/semiconductor/

minisite/SSD/global/html/about/

SSD840EVO.html.

[5] Sort benchmark. http://sortbenchmark.org/.

[6] ACHARYA, A., UYSAL, M., AND SALTZ, J. Ac-
tive disks: Programming model, algorithms and
evaluation. In Proc. ASPLOS (1998).

[7] BAE, D.-H., KIM, J.-H., KIM, S.-W., OH, H.,
AND PARK, C. Intelligent SSD: A turbo for big
data mining. In Proc. CIKM (2013).

[8] CHO, S., PARK, C., OH, H., KIM, S., YI, Y.,
AND GANGER, G. R. Active disk meets flash: A
case for intelligent SSDs. In Proc. ICS (2013).

[9] DEAN, J., AND GHEMAWAT, S. Mapreduce: Sim-
plified data processing on large clusters. In Proc.
OSDI (2004).

[10] GRAEFE, G. Implementing sorting in database sys-
tems. ACM Computing Surveys 38, 3 (September
2006), 1–37.

[11] HUSTON, L., SUKTHANKAR, R., WICK-
REMESINGHE, R., M.SATYANARAYANAN,
R.GANGER, G., RIEDEL, E., AND AILAMAKI,
A. Diamond: A storage architecture for early
discard in interactive search. In Proc. FAST (2004).

[12] KANG, Y., KEE, Y.-S., MILLER, E. L., AND
PARK, C. Enabling cost-effective data processing
with smart SSD. In Proc. MSST (2013).

[13] KIM, S., OH, H., PARK, C., CHO, S., AND LEE,
S.-W. Fast, energy efficient scan inside flash mem-
ory solid-state drives. In Proc. ADMS (2011).

[14] LEE, Y.-S., KIM, S.-H., KIM, J.-S., LEE, J.,
PARK, C., AND MAENG, S. OSSD: A case for
object-based solid state drives. In Proc. MSST
(2013).

[15] RIEDEL, E., FALOUTSOS, C., GIBSON, G. A.,
AND NAGLE, D. Active disks for large-scale data
processing. Computer 34, 6 (June 2001), 68–74.

[16] RIEDEL, E., FALOUTSOS, C., AND NAGLE,
D. Active disk architecture for database. Tech.
Rep. CMU-CS-00-145, Carnegie Mellon Univer-
sity, April 2000.

[17] TIWARI, D., BOBOILA, S., VAZHKUDAI, S. S.,
KIM, Y., MA, X., DESNOYERS, P. J., AND SOLI-
HIN, Y. Active flash: Towards energy-efficient, in-
situ data analytics on extreme-scale machines. In
Proc. FAST (2013).


