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Abstract

High performance storage layer is vital for allowing interactive ad hoc
SQL analytics (OLAP style) over Big Data. The paper makes a case
for leveraging flash in the Big Data stack to speed up queries. State-of-
the-art Big Data layouts and algorithms are optimized for hard disks
(i.e., sequential access is emphasized over random access) and result
in suboptimal performance on flash given its drastically different per-
formance characteristics. While existing columnar and row-columnar
layouts are able to reduce disk IO compared to row-based layouts, they
still end up reading significant columnar data irrelevant to the query as
they only employ coarse-grained, intra-columnar data skipping which
doesn’t work across all queries. FlashQueryFile’s specialized columnar
data layouts, selection, and projection algorithms fully exploit fast
random accesses and high internal I/O parallelism of flash to allow
fast and I/O-efficient query processing and fine-grained, intra-columnar
data skipping to minimize data read per query. FlashQueryFile results
in 11X-100X TPC-H query speedup and 38%-99.08% reduction in
data read compared to flash-based HDD-optimized row-columnar data
layout and its associated algorithms.

1. Introduction

Big Data warehouses such as Hive, BigQuery, BigSQL, Impala,
and HAWQ are becoming common-place. Ability to interac-
tively run ad hoc analytical OLAP queries over petabytes of data
is becoming extremely important for businesses [12]. Traditional
OLAP techniques for speeding up analytical queries such as pre-
computed cubes don’t work in the case of Big Data; dimensions
in Big Data sets are many-fold and maintaining a cube across
all dimensions is prohibitively expensive. Techniques such as
indexing or caching don’t help either given the ad hoc nature
and the sheer size of the historical and recent data required by
the queries. Recently proposed solutions for interactive analytics
may not feasible for all as they rely on extreme scale-out [12], or
approximate query processing [1]. A high performance storage
layer that allows fast selections, projections, and joins over in-
situ data is vital for interactive processing of ad hoc queries.
The Big Data warehouses don’t manage the raw storage
themselves and rely on the underlying distributed file system to
store the data for them; F1/BigQuery uses Colossus file system
and SQL over Hadoop systems such as Hive and Impala use
Hadoop distributed file system (HDFES). Serializers/deserializers
(serdes) such as RCFile [6], ORCFile [13], and Parquet [14]
are used to store, read and write table data to the file system.
While the columnar and hybrid row-columnar data layouts and
algorithms of these serdes reduce disk IO by limiting data reads
only to the columns present in the query [15], they still read
significant data irrelevant to the query as illustrated in Section
I-B. In these layouts, each column is horizontally partitioned
into multiple row groups, and each row group consists of a

configurable number of rows. A coarse-grained, intra-columnar
data skipping technique was introduced in ORCFile to skip
processing of some row groups; this technique yields effective
data reduction only in a few scenarios (e.g., when column is
sorted and has high cardinality). There is a need to develop
[/O-efficient layouts and algorithms that allow fine-grained data
skipping to reduce the irrelevant data read per query.

A majority of recent work leverages in-memory processing
for interactive analytics [1], [12] and mandates large memory
footprints. Flash is less expensive and allows much large capac-
ities than DRAM; a DRAM + flash hierarchy stands to achieve
much higher performance/$ than a large DRAM-only solution.
DRAM’s volatility mandates an additional durable copy of the
data in a non-volatile medium, resulting in significant data
duplication (not that desirable with Big Data). Flash is non-
volatile and obviates the need for data duplication; it can serve
as the primary and only storage for the data. Flash offers a
40-1000X improvement in random accesses and allows much
higher degree of internal I/O parallelism than disks [3]. We
make a case for leveraging high performance, non-volatile, small
footprint, and low power storage mediums such as flash in the
Big Data stack to speedup ad hoc query processing.

Architectural decisions of the storage layer in Big Data ware-
houses are based on the fundamental performance characteristics
of HDDs; random I/O is avoided because of high seek times
inherent with HDDs and sequential access is favored as much
as possible. Fine-grained data skipping is avoided as it involves
frequent seeks which come with huge performance penality
on HDDs. Flash has a totally different performance paradigm
from HDDs: seek times are negligible and random reads are
much faster than sequential reads. A single flash device allows
channel-, package-, die-, and plane-level I/O parallelism and can
process multiple I/O requests concurrently unlike HDDs. HDD-
optimized file formats and data access algorithms stand to attain
suboptimal performance/$ by being placed in flash; sequential
bandwidth of flash is only 2-7X higher than disks. In order to
extract optimal performance/$ with flash, the transition from
sequentially accessed HDDs to randomly and parallely accessi-
ble storage mediums such as flash mandates a reexamination of
fundamental design decisions.

Previous work on using flash in databases mostly focuses
on update-heavy, transactional databases and addresses slower
random write performance of flash [8], [10], exploits flash as
a buffer pool extension [5], or uses flash to store transactional
logs [9], etc. [4]. Limited work has been done for leveraging
flash in analytical processing (OLAP) workloads [11], [16], and
no known work exists for leveraging flash for read-only Big
Data SQL analytics ( [7] for Big Data analytics is orthogonal).
Tsirogiannis et. al. utilize PAX format [2] as-is, don’t leverage
I/O parallelism possible with flash, and intra-columnar data
skipping happens only in the projection phase while entire



columnar data is read during selection phase.

A. Contributions

To the best of our knowledge, we are the first to propose
flash-optimized data layouts and algorithms to speedup Big Data
analytical SQL query processing. The specific contributions are:

¢ New columnar data layouts and algorithms that leverage
high random access performance and high internal I/O
parallelism and concurrency of flash to perform fine-
grained, intra-columnar data skipping and to speed up
query processing as shown in Figure 1.

« New specialized selection-optimized columnar data layout
and algorithm to allow very fast in-situ predicate match
and reduce data read during selection phase.

« Specialized projection-optimized columnar data layout and
algorithm that leverages late materialization and fine-
grained data skipping to allow very fast data projection.

o High-performance, flash-aware coding to derive optimal
performance/$ from flash.
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Fig. 1. Fine-Grained vs. coarse-grained data skipping

B. Opportunity for Intra-Columnar Data Skipping

To illustrate opportunities for data reduction via fine-grained
data skipping in analytical queries, we consider TPC-H, an
ad hoc decision support benchmark and we measure the data
actually relevant to the queries by measuring selectivity (i.e.,
number of rows that match the predicate) of each selection
column occurring in the TPC-H queries. As a motivating exam-
ple, selectivity of each column in TPC-H Query 6 is shown in
Figure 2. Only 15% of rows in selection column L_SHIPDATE,
18% in L_DISCOUNT, and 46% in L_QUANTITY match
individual column query predicates. Only 1% of the rows match
all the predicates across the three selection columns rendering
only 1% data in projection columns L_ EXTENDEDPRICE and
L_DISCOUNT relevant to the query. Overall, only 16% data
across the five columns is relevant to the query. Existing serdes
may read as high as 99% of extra data from the two projection
columns just to project 1% relevant data and as high as 50%
extra data from the three selection columns. Similar trend exists
in other queries and the selectivity of selection columns ranges

from 1%-63% for a majority of TPC-H queries. Hence, an intra-
row-group fine-grained data skipping technique that reads only
the columnar data relevant to the query, in both the selection
and projection phases, can lead to significant reduction in the
data read per query.

50%

W ow s A
a8 0 g @
X R X RXRR

Selectivity
BoNoN
un o
RS

i
Q
x

5%
0% -

L_SHIPDATE L_DISCOUNT L_QUANTITY Overall

Fig. 2. Overall and per-column selectivity of each selection column in
TPC-H query 6.

II. FlashQueryFile

In this section, we describe the data layouts, selection, and
projection algorithms of FlashQueryFile.

A. Optimized Columnar Data Layouts

A table is logically represented as a FlashQueryFile file
and consists of multiple distributed file system (DFS) blocks.
Each block contains a block-level header (RCHeader) which
contains sub-headers for each row-group (RGHeader) and each
column (ColHeader) in the block. Rest of the block contains
columnar data. Each RGHeader maintains offset to the start
of the corresponding row-group in the block. Column headers
contain offsets and synopsis (min, max, mid, and avg, count,
sort order, cardinality, and field length) of the columnar data
in the block. All the structures have been carefully selected
with space-efficiency and performance in perspective. Instead
of laying out columnar data exactly as ingested, FlashQueryFile
lays out data by default in a hybrid selection- and projection-
optimized manner to facilitate fast selection and projection.
The choice of the layout is based on column characteristics
(cardinality, popularity, sort order, etc.). The two layouts can
be used independently as well. We first cover the selection part
and then, the projection part of the layouts.

1) Selection-Optimized Data Layout: FlashQueryFile uses a
selection optimized columnar data layout shown in Figure 3
to faciliate fast predicate match by quickly returning the set
R =[rj,...,rj] of row ids that contain a given predicate value v,
and to facilitate fine-grained data skipping. During the ingestion
time, for each row group in the column, FlashQueryFile creates
a dictionary of unique values from columnar data and lists of
row ids where each unique value occurs in the row group.
The dictionary is sorted and serialized contiguously on storage.
Sorting is important for allowing fast predicate match and
clustered reads of lists of row ids. Next, list of row ids and
an offset to list is serialized for each unique value.
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Storing columnar data as a dictionary of unique values and
associated list of row ids is very space-efficient when size of
the column data type is > 4 bytes and when the cardinality is
low/medium. Some exceptions to the layout: 1) if the cardinality
of the column is 1 (i.e., all values are unique), there is no value
in creating a dictionary and data is laid out as is, and 2) if
the column is sorted, a more concise data structure is used that
stores just the start and end row id for each unique value instead
of storing all intermediate row ids.
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Fig. 4. Projection optimized layout and algorithm

2) Projection-Optimized Data Layout: The projection op-
timized data layout as shown in Figure 4, is designed to
quickly read column value v stored at given a row id r;. The
layout has three flavors based on column cardinality, sort order,
and data type (fixed vs. variable length). Space-efficiency and
performance considerations play a role in the layout decision.
If the column cardinality is small/medium, a lookup structure
is created to map each row id to the dictionary (described in
selection layout) index of its column value; the space overhead
of the lookup structure gets fully masked by the space savings
achieved by storing data in a dictionary format.

If column cardinality is = 1, no lookup structure is used.
If column is sorted, an optimized lookup structure is used that

maps ranges of row ids as opposed to individual row ids. If
column cardinality is very high and column is not sorted, no
dictionary layout is used in a projection-only layout; data is
simply laid out sequentially in interest of performance. While,
the simple layout is not as space-efficient as the dictionary
layout, it yields higher performance as it eliminates a large
dictionary read and enables clustered read of row id values
which leads to better performance. If column is variable length,
a lookup structure is maintained that maps each row id in the
column to the offset of its column value in the columnar data.
If column is fixed length, no lookup structure is used and offset
of column value of interest is simply calculated using specified
row id and field length. Column header maintains the offset of
the lookup structure and the dictionary and/or data.

B. Flash-Optimized Algorithms

FlashQueryFile’s algorithms are designed to fully leverage
flash’s high performance random accesses and high internal 10
parallelism. The algorithms are coded using high-performance
apis/methods, a mandatory feat for leveraging performance from
flash. Low-level NIO file channel api, and non blocking, direct,
and asynchronous IO was used instead of high-level buffered file
streams to prevent unnecessary data prefetches, data copies, and
to randomly access data at desired offset with minimal overhead.
Instead of using inefficient inbuilt Java class serialization and
deserialization, highly efficient data marshalling is used. The
selection and projection algorithms are described in detail below.

1) Flash-Optimized Selection Algorithm: The selection al-
gorithm described in Algorithm 5 is designed for fast predicate
match and coarse- and fine-grained data skipping. Steps 2-8
perform coarse-grained inter-row group skipping for all selec-
tion columns by examining summary information in the column
subheaders stored in RCHeader. All the row groups whose min
and max values are out-of-range compared to query predicates
are skipped.

Steps 11-32, describe the fine-grained data skipping part of
the algorithm. FlashQueryFile spawns threads in parallel to
process data in each of the remaining row groups; parallelism
is enabled by high internal I/O parallelism allowed in flash. The
desired portion of the dictionaries of the selection columns are
deserialized from respective file offsets u_offset or u_mid_offset
specified in the column headers. The size of dictionary read is
much smaller than the actual columnar data if the cardinality
of the column is low/medium, or else, if only a portion of the
dictionary is relevant to the predicates.

A predicate match is performed on the unique values con-
tained in the dictionary. The predicate match considers the
cardinality of the selection columns in its column processing
order as that has a direct impact on the data reduction. If
predicate match fails, none of the row id blobs are read for
the column and processing of the entire row group is skipped.
Such skips significantly reduce the amount of data read by the
query. As an illustration, consider column L_QUANTITY, one
of the selection columns in TPC-H query 6. Its cardinality is
0.0008%; resulting in a dictionary with 83 unique values (< 500



Require: Column predicates in query
1: return Set of row ids that match the all the query predicates

2: Fetch the block header RCHeader from the FlashQueryFile block. Cache it for future
queries
3: for all Row groups in the FlashQueryFile block do
4 for all Selection columns do
5 Compare the predicate with the min and max value stored
RCHeader— >RGHeader— >ColHeader
6: if predicate is smaller than min or greater than the max then
7: Skip the row group from processing completely by marking it skipped
8: end if
9: end for
10: end for
11: for all Remaining row groups that needs to be processed do
12: Spawn a thread to process the row group
13: Order selection columns based on cardinality
14: for all Selection columns in query do
15: if Predicate value > mid value of column then
16: Retrieve column’s dictionary from file block offset (tiq_of fset)
17: else
18: Retrieve column’s dictionary from file block offset (u_of fset)
19: end if
20: Match predicate value with unique values in column’s dictionary
21: end for
22: if Predicate matches in all selection columns then
23: for all Selection columns in query do
24: Read offsets of row ids list blobs from file block
25: for all Unique values that match predicate do
26: if Unique values are consecutive then
27: Coalesce multiple row id list blobs and read them in one call
28: else
29: Read each individual row ids list blob from file block
30: end if
31: end for
32: end for
33: else
34: Stop processing the entire row group and rest of the columns
35: end if
36: Find sorted intersection of row ids that satisfy all the predicates

37: end for

Fig. 5. Flash-Optimized Selection Algorithm

bytes in size) and associated list of row ids with approximately
12k row ids each for a row group of 10 million rows. If predicate
match were to fail for L_QUANTITY, a minuscule read of <
500 bytes leads to a skip of 83 lengthy lists of row ids. If
predicate matches one or more unique values, the list of row
ids of these values are read in parallel. Remaining lists of row
ids are skipped, resulting in significant data reduction when the
query selectivity and cardinality of the column is low (i.e., very
few unique values match the predicate).

Finally, a sorted intersection of row ids that match all the
predicates is passed to the projection algorithm discussed next.
While the selection algorithm performs best on flash, it also
performs well with data present on disk. Flash’s advantage
shows up at higher cardinality and in situations needing a lot
of data skips and very small data reads.

2) Flash-Optimized Projection Algorithm: FlashQueryFile
reads data from projection columns only after the selection
phase is completed. Such late materialization allows Flash-
QueryFile to limit the data that needs to be read during the
projection phase to only the relevant row ids. For example, in
the illustrative query 6 in Section I-B, only 1% of rows will need
to be read for each of the two projection columns, resulting in
an impressive skip of of 99% data per column. In contrast, the
existing serdes don’t use late materialization and the data for
the selection and projection columns is usually read upfront.

FlashQueryFile carefully considers the selectivity (i.e., size

Require: Set of row ids that match all the query predicates
1: return Projection of the desired attributes from database matching the predicates
2: for all Projection columns do
for all Row groups with non-empty set of final row ids do
4 if Projection column is laid out as-is then
S: if Row ids are not clustered together then
6 Examine the column header and identify the offset of the lookup data
(I_of fset) structure and offset of data (I_data)

(98]

7T: Calculate index of desired row id in the lookup data structure
8: Calculate file offset of the column value pertaining to the row id =
d_of fset + offset stored in lookup
9: Seek to the offset of the column value in file block and read column
value
10: else
11: Cluster row ids into multiple projection buffer size chunks and read each
chunk
12: end if
13: else
14: Read in the dictionary
15: if Row ids are not clustered together then
16: Calculate index of desired row id in the lookup data structure and read
dictionary index stored there
17: Lookup dictionary value at the index
18: else
19: Cluster row ids and read portions of lookup structure for each cluster
20: Figure out dictionary entry pertaining to each row id
21: end if
22: end if
23: end for
24: end for

Fig. 6. Flash-Optimized Projection Algorithm

of set of final row ids that match all predicates) of the query in
attaining a fine-balance between random and clustered calls. If
the selectivity of the query is very low (< 2%), FlashQueryFile
processes each row id of interest individually in the file block
and reads in column value; randomly accessible storage medi-
ums such as flash are a key enabler for making such targeted
random reads possible without a performance impact. While,
the targeted approach allows reading just the relevant data, it
also results in a separate file system call for each row id where
each call has a operating system overhead associated with it.
Hence, FlashQueryFile switches to a clustered read approach if
the selectivity of the query is high to reduce the overhead of
the file system calls. The dictionary is read in its entirety and
the lookup elements of the row ids of interest are clustered and
a projection buffer worth of data is read per file system call.

III. Evaluation

We used 40GB lineitem table (largest table in TPC-H bench-
mark) with 240+ million rows and 16 columns of varying
lengths and characteristics. We compared the performance of
FlashQueryFile serde with state-of-the-art ORCFile serde and
placed both on flash. The evaluation was done on a single
server of the IBM Research’s Accelerated Discovery Lab cluster.
The server had six quad-core Intel(R) Xeon(R) CPU E5645@
2.40GHz, Fusion-IO 825GB ioScale2, and 96GB RAM. Red
Hat Enterprise Linux Server release 6.5 (Santiago). Java(TM)
SE Runtime Environment (build 1.7.0_40-b43). Each row group
consisted of 10 million rows and 24 threads were used to process
each row group in parallel. Figure 7 shows the speedup of
query 1 with FlashQueryFile compared to ORCFile (also placed
on flash). Speedup of 11X-103X was achieved compared to
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ORCFile with selectivity ranging from <1% to 58%. Even
98% selectivity yields a speedup of 4X. Results reiterate the
importance of using flash-optimized layouts/algorithms to lever-
age full performance/$ from flash. Simply placing an HDD-
optimized layout on flash and accessing it using HDD-optimized
algorithms results in suboptimal performance on flash.
FlashQueryFile reduces overall data read during query cour-
tesy of its fine-grained data skipping and encoding as shown
in Figure 7. Figure 8 illustrates data read in the selection
and projection phase of TPC-H query 1 (with selectivity 40%)
with FlashQueryFile normalized to baseline (e.g., a serde like
RCFile which reads the columnar data in its entirety in both the
selection and projection phases as it doesn’t employ any data
skipping logic). ORCFile only has a coarse-grained mechanism
in place for filtering out row groups based on min and max
summary information. The mechanism fails to find any row
group to skip and ends up reading the entire data in the selection
column for query 1. On the other hand, FlashQueryFile yields
a reduction of 81% in the data from the selection column
1_shipdate. Cardinality of 1_shipdate is low; the dictionary size
is small and each row id blob is large. The row id blobs that
don’t match the predicate get skipped, resulting in a data read
of only 40% of row id blobs. Further reduction in data read is
courtesy of space-efficient dictionary based layout which is able
to mask other overheads introduced by the optimized layouts.

Data reduction happens during the projection phase as well as
FlashQueryFile uses late materialization and reads data only
for the final set of row ids that match all the predicates. The
data reduction depends on the projection buffer size; lower the
size, higher is the data reduction. However, performance suffers
at very small projection buffer sizes when selectivity is > 1%
because of the overhead of the increased system calls.

IV. Conclusion

Storage performance plays a vital role in the performance of
ad hoc analytics over Big Data. Existing columnar and row
columnar file formats and associated table scan algorithms
read lot more data than actually needed by the query and
are optimized for HDD performance characteristics. Simple
placement of HDD-optimized layouts on flash stands to derive
only limited performance/$; flash-optimized file formats and
algorithms are required to derive full benefit of flash. In this
paper, we proposed a new flash-optimized data layout called
FlashQueryFile and its associated selection, projection, and
injection algorithms. Evaluation results with TPC-H dataset
show that FlashQueryFile is able to significantly enhance query
Eerformance and throughput by: 1) reducing the data read during

oth selection and projection (Phases of query processing cour-
tesy of its data structures and layouts that allow fine-grained,
intra-row-group data skipping, 2) exploiting high internal 10
parallelism and fast random accesses allowed by flash, and 3)
using high performance flash-optimized code. Our results show
that flash can be effectively leveraged in Big Data stack to speed
up ad hoc OLAP style SQL queries.
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