
Mobile GPU Power Consumption Reduction via

Dynamic Resolution and Frame Rate Scaling

Kent W. Nixon†‡, Xiang Chen†‡, Hucheng Zhou‡, Yunxin Liu‡, Yiran Chen†

Microsoft Research
‡

Beijing, China 100080
ECE Department, University of Pittsburgh†

Pittsburgh, PA, USA 15261

Abstract

The emerging industry trend of ever-increasing display

density on mobile devices has dramatically increased

workload placed on a mobile GPU’s. Because mobile

GPU power consumption increases almost linearly with

workload, increasing the display density directly de-

creases battery life of a device. While this tradeoff is ac-

ceptable if user experience is improved, display densities

beyond that which the human eye can perceive would re-

sult in decreased device battery life for no perceptible

gain. Further, the workload imposed by such high den-

sity displays may invalidate the previous requirement

that the interface always run at high frame rates.

In this paper, we show that the display on some modern

devices already exceeds human perceptive capabilities, a

feature which can be exploited at runtime in order to re-

duce GPU power consumption. Our proposed method in-

cludes both resolution and refresh rate scaling, which are

shown to reduce mobile GPU power consumption by up

to 33% and 38%, respectively. We conclude with a dis-

cussion of how such a system may be implemented on

existing devices.

1. Introduction

The electronics industry has recently begun trending to-

wards extremely high density displays. With the release

of the iPhone 4 in 2010, Apple began to popularize “Ret-

ina displays,” or displays on which individual pixels can-

not be optically isolated by the human eye [1]. Most

manufacturers are now participating in similar ventures,

with many televisions, laptops, and recently phones, be-

ing released with heavy marketing emphasis being

placed on the devices having QHD (2560x1400 pixels),

WQXGA+ (3200x1800 pixels), or UHD (3840x2160

pixels) resolution.

While high density displays allow for sharper images and

more content to be legibly displayed, they also come

with larger system resource requirements. Modern sys-

tems must maintain multiple frame buffers for the dis-

play; Android utilizes as many as 3, requiring approxi-

mately 100MB of memory for a UHD display using 32

bit color - 4x the space required for FHD (1920x1080

pixels). This increased frame buffer size also requires

higher memory bandwidth, which is a limited resource

on mobile devices where both CPU and GPU share main

memory. The addition of a high definition display also

increases system power consumption due to the extra

power required to update and illuminate the more com-

plex display. This is in addition to the increased work-

load experienced by the GPU, which must render the

content displayed on the now expansive screen.

The additional resources required by a high density dis-

plays can be justified if the result is an improved user

experience - i.e. visibly sharper content and interfaces.

However, even though the iPhone 4 utilized pixels which

were purportedly too small to individually observe with

the human eye at 326 pixels per inch (ppi), display den-

sities have continued to increase [1]. As an example of

this, the recently released LG G3 utilizes a display with

538 ppi [2], while the Galaxy S5 LTE-A utilizes a 577

ppi display [3]. Clearly, an examination of the tradeoff

between screen density and power consumption is re-

quired.

In this paper, we utilize existing knowledge of the human

visual system in an attempt to define the maximum ob-

servable display density in multiple use cases (Section

2). Using this, we then examine if a system able to dy-

namically adjust display resolution can be utilized to re-

duce system power consumption with the changes re-

maining imperceptible to a user (Section 3). We further

the investigation by additionally examining how dynam-

ically adjusting rendered frame rate while a system is be-

ing utilized can be used to accomplish similar goals (Sec-

tion 4). Both proposed methods are examined exclu-

sively from the perspective of a mobile device’s GPU.

We also briefly discuss recent, related works (Section 5),

and how our proposed methods may be implemented on

modern mobile devices (Section 6).

2. Human Visual Acuity and Display Density

Human visual acuity depends on three main factors: (i)

the ability of the eye to correctly focus on an image, (ii)

the functionality of the retina, and (iii) the ability of the

brain to sample and process incoming data. As technol-

ogy does not yet exist which can test each of these factors

individually, existing measurements of human percep-

tive ability test combined functionality of all three. This

is generally accomplished by utilizing a Snellen or Lan-

dolt C chart, on which multiple, similar characters of set

sizes are printed. A user is then asked to stand a set dis-

tance from the chart and identify the smallest characters

that are legible to them. A human adult is considered to

have normal vision when they are able to correctly iden-

tify 8.86 mm tall characters on the chart when standing

20 feet away.

While these tests provide a useful baseline in attempting

to define expected perceivable detail, describing the ob-

jects in question in terms of both their real size and dis-

tance from an observer quickly becomes tedious, and is

also of little use in this case as mobile devices are likely

viewed from much closer than 20 feet away. Instead, a

more useful method of describing and object’s observed

size is to define it in angular terms.

An object, depending on its actual size and distance from

an observer, takes up a portion of the visual field which

can be described in terms of angular size. The observed

size of an object relative to a user can be easily and port-

ably described using the equation

𝛿 = 2 tan−1 (
𝑑

2𝐷
) (1)

where 𝑑 is the actual size of an object or feature, 𝐷 is its

distance from the observer (both measured with the same

unit), and 𝛿 is the angular size of the object in radians.

When the characters on the Snellen chart are described

in this manner, each one subtends an area of 5 arc

minutes (5/60 of a degree) by 5 arc minutes within the

subject’s field of view. However, the chart is designed so

that the very similar characters can only be correctly

identified if 25 critical, contrasting subregions within

each one is clearly perceived. Each of these subregions

is one square arc minute in size, and represents the small-

est individually observable detail to a human with nor-

mal vision. This provides a quantitative basis for select-

ing an appropriate display density on a mobile device –

each display pixel should, at its smallest, be one square

arc minute in size; shrinking pixels beyond that would

result in no perceptible benefit.

While it may be relatively simple to create a device with

a display density high enough to be held, for example, 8

inches away from a user’s face without any pixels being

individually visible, recall that angular size of an object

depends on both the actual size of the object as well as

its distance from an observer. It is unlikely that a real-

world user will always hold a device that exact same dis-

tance from their face. With mobile devices especially,

the distance a user is from the screen likely varies de-

pending on when and where it is being used. Further, dif-

ferent users likely have different preferences regarding

interaction with a device, making the common viewing

distance highly varied within a population. Because of

this, a more accurate description of real-world use is to

define a range of distances that a device is likely to be

viewed from. These ranges are defined by industry

guidelines and are based on device form factor and size.

Table 1 lists these ranges, in addition to the minimum

and maximum observable pixel density calculated from

this range using Equation 1.

Interestingly, Table 1 indicates that no matter the form

factor or viewing distance of the display, pixels become

smaller than the smallest human-observable feature long

before the display reaches UHD resolution. This means

that the emerging industry standard of “4K” resolution is

much more beneficial to the marketing departments of

electronics companies than it is to any end user.

The table also serves to illustrate that the level of dis-

cernable detail changes dramatically as the user moves

closer to and farther from the display during normal use.

For example, in the best-case scenario (device is farthest

from the face), a tablet’s GPU need only render images

to 40% the number of pixels required in the worst-case

scenario (minimum distance from the face) in order to

maintain the same perceived level of sharpness.

3. Dynamic Resolution Scaling

Based on the calculations performed in Table 1, it is clear

that existing mobile displays already allow for a level of

Device
Viewing Distance Pixel Density

Screen Size
Display Resolution

Min Max Min Max Min Max

Phone 8 inches 12 inches 286 ppi 430 ppi 4.7 inches 1173x660 1760x990

Tablet 10 inches 16 inches 215 ppi 344 ppi 8 inches 1498x843 2397x1348

Desktop 20 inches 40 inches 86 ppi 172 ppi 21 inches 1573x885 3146x1770

Television 84 inches 133 inches 26 ppi 41 ppi 70 inches 1577x887 2496x1404

Table 1: Maximum observable display densities when utilizing devices of varying form factors and holding them the

industry recommended distance from the face [4][5]. The right side of the table also includes the display resolution

required to achieve this density on an example screen of a given size.

Figure 1: The test bench setup with Monsoon Power

Monitor connected to Nexus 4 and Nexus 5.

detail beyond that perceptible to human beings. Even on

devices with comparatively lower density displays, the

rendered resolution is likely still over-provisioned when

the device is held far from the user’s face. This can be

used as inspiration for a new power saving technique we

term “Dynamic Resolution Scaling” (DRS). This tech-

nique reduces the workload placed on a device’s GPU by

dynamically adjusting the display resolution during use

in order to render only the level of detail that is observa-

ble given the user’s current viewing distance.

To determine if the expected power savings are signifi-

cant, a test bench is constructed utilizing LG Nexus 4 and

Nexus 5 development devices running Android 4.4.2. To

record power utilization, each device’s battery is re-

moved allowing it to instead be powered by a Monsoon

Power Monitor (Figure 1). In both cases, all non-essen-

tial applications are removed from the system.

An Android benchmarking application is created which

allows for the generation of an arbitrary computational

load for both the CPU and GPU. The former is accom-

plished though a simple busy loop, the latter by creating

an OpenGL scene consisting of a single 3D cone com-

posed of a user-designated number of vertices/triangles.

To isolate the power consumed by the GPU, the power

utilized by the rest of the system while idling is first rec-

orded. GPU power consumption is then determined by

subtracting this baseline from the total system power

consumption while a 3D scene is being drawn at 60

frames per second (fps).

Multiple modifications are made at both the application

and system level in order to reduce measurement varia-

tion. First, the benchmarking application is coded to run

with the display of the device turned off, removing any

variance from advanced display power scaling tech-

niques. Second, the CPU is kept in an active state via a

wake lock, and all cores but one are disabled. Dynamic

voltage and frequency scaling are disabled for both the

CPU and GPU to provide a more stable power profile

while the tests are being conducted. Finally, all tests are

conducted with airplane mode enabled and sound output

disabled on both devices.

As Android 4.4.2 is OpenGL ES 2.0 compatible, both the

vertex and fragment shaders of the GPU are programma-

ble. Vertex shaders govern calculations that are per-

formed for each vertex in a 3D scene, while fragment

shaders define operations performed for each output

pixel. In the benchmarking application, vertex shaders

perform 9000 floating point operations per vertex, while

the fragment shaders simply assign a previously calcu-

lated color value to each pixel. The artificial load was

added to the vertex shaders as without it, it was found

that memory bandwidth became the GPU’s bottleneck

far before possible floating point operations per second

(FLOPS). Conversely, fragment shader complexity was

kept artificially low so that collected data would repre-

sent the lower bound of power reduction possible

through DRS.

Figures 2 and 3 display the data gathered while utilizing

the benchmarking application. In each figure, the GPU

utilization when rendering to different density displays

is recorded for scenes of varying complexity (number of

triangles). As may be expected, a higher resolution dis-

play results in higher GPU utilization, indicating that a

dynamic resolution scaling scheme would serve well to

reduce system power consumption. It is interesting to

note that, based on the utilization results in Figure 2, the

graphics hardware or drivers on the LG Nexus 4 have

been specifically optimized for rendering at the display’s

native resolution of 768x1280, or 317 ppi. In such a case,

DRS would actually increase GPU power consumption,

even if display density was reduced. However, as the

data recorded from the Nexus 5 shows no sign of similar

optimizations, it is concluded that this is either a special

case, or that more recent and complex device designs

have abandoned such low level optimizations.

Using the power consumption data recorded at the same

time as GPU utilization, it is possible to compare the to-

tal power cost that increasing display density incurs on

Figure 2: Recorded GPU utilization for Nexus 4

for different screen resolutions.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1375 2750 4125 5500

G
P

U
 U

ti
li

za
ti

o
n

Number of Triangles

193 ppi 218 ppi

243 ppi 268 ppi

293 ppi 317 ppi

423 ppi 635 ppi

Figure 3: Recorded GPU utilization for Nexus 5

for different screen resolutions.

0.00

0.20

0.40

0.60

0.80

1.00

0 1600 3200 4800 6400

G
P

U
 U

ti
li

za
ti

o
n

Number of Triangles

198 ppi 237 ppi

297 ppi 317 ppi

371 ppi 445 ppi

593 ppi 890 ppi

the GPU. Figures 4 and 5 show the power consumption

of the Nexus 4 and Nexus 5 GPU when rendering at dif-

ferent densities. In each case, the power consumed by

each device is normalized about the power required to

render to the lowest tested display resolution. This is

done in order to simplify comparison between the power

levels, and because actual power consumption would

likely vary greatly between different devices. Again, as

expected, power consumption increases along with dis-

play density. It is interesting, however, to combine this

data with the values in Table 1, as it is then possible to

determine the difference in power cost from when each

phone is held the minimum to the maximum distance

away from the face (286 ppi to 430 ppi). For the Nexus

4, this incurs an increase of anywhere from 36-50% in

the GPU’s power envelope, and anywhere from 12-31%

for the Nexus 5. Again, it is worth mentioning that these

results are the lower bound of what would be observed

in real-world situations as the fragment shaders have re-

mained artificially simplified.

4. Dynamic Refresh Rate Scaling

A further source of GPU load is the target frame rate the

system attempts to render at. By default, the Android op-

erating system runs natively at 60 fps. This provides for

a very smooth and “buttery” user experience, yet incurs

a high overhead in power costs as the GPU must actively

render the application or user interface 60 times per sec-

ond. This problem is compounded with the with new,

high resolution displays which require far more calcula-

tions and resources to populate.

Given these concerns, it may not be entirely required or

even necessary to always update the display at 60 fps.

While 60 fps may remain in place while a device has an

excess of both system resources and battery power, the

frame rate could be reduced in restrictive cases. A “Dy-

namic Frame Rate Scaling” (DFRS) system is proposed

that will use information gathered regarding individual

usage patterns to intelligently reduce system frame rate

in order to maximize battery life. Such a case could occur

when, for example, a mobile device falls below 10% bat-

tery power remaining. On this trigger, the system could

reduce the target frame rate from 60 fps to 30 fps, im-

pacting user experience but increasing the usable

lifespan of the device.

While a reduction in frame rate from the proposed sys-

tem may be noticed by a particularly perceptive user, the

industry has shown that users will be willing to accept it

if they gain something in return. For example, while

most modern games run at 30 fps on console and films

are shown at only 24 fps, users accept it as in return they

gain increased image quality and graphical fidelity.

To verify that a significant amount of power would in-

deed be saved by such a method, the benchmarking ap-

plication utilized to record the data in Section 3 was

modified so that it could be set to render the 3D scene at

either 15, 20, 30, or 60 fps. GPU utilization and power

consumption were then recorded at each frame rate when

rendering a scene at the device’s native resolution, and

are shown in Figure 6. As may be expected, rendering at

60 fps required 2x the processing time as rendering at 30

fps, 3x rendering at 20 fps, and 4x rendering at 15 fps.

Although rendering at 60 fps fairly predictably required

4x the processing time as rendering at 15 fps, it only re-

quired between 1.6x and 3.0x as much power, as can be

seen in Figure 7. Even with this being the case, a reduc-

tion from 60 fps to 30 fps still causes, on average, a 38%

decrease in GPU power consumption.

5. Related Work

In [6] and [7], the authors provide a detailed analysis of

the effects of display resolution and refresh rate on users

playing a PC game or watching television. In [8] it is

proposed that lower frame rates may lead to system

power reduction, while in [9] and [10] it is explicitly

demonstrated that this is the case.

The methods in our paper more thoroughly investigate a

mathematical relationship between perceived detail and

display density. DRS and DFRS also more directly focus

Figure 4: Relative GPU power consumption for

different display resolutions on Nexus 4.

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

59 565 1485 2457 3428 4348

P
o

w
er

 C
o

n
su

m
p

ti
o

n

Number of Triangles

193 ppi

218 ppi

243 ppi

268 ppi

293 ppi

317 ppi

423 ppi

635 ppi

Figure 5: Relative GPU power consumption for

different display resolutions on Nexus 5.

0.9

1.3

1.7

2.1

2.5

59 565 1485 2457 3428 4348 5320

P
o

w
er

 C
o

n
su

m
p

ti
o

n

Number of Triangles

198 ppi

237 ppi

297 ppi

317 ppi

371 ppi

445 ppi

593 ppi

890 ppi

on reducing power consumption of the GPU by reducing

workload, with emphasis on avoiding any negative im-

pacts to user experience.

6. Implementation and Future Work

After it is verified that both DRS and DFRS can conserve

meaningful amounts of power, it is investigated if it is

possible to implement such mechanisms on existing mo-

bile devices. As Nexus devices are used for testing up

until this point, the target operating system is selected as

Android 4.4.2. To implement DRS, relatively few

changes are required to the operating system as Android

already allows for a user to set both the display resolution

and density. DFRS, however, requires the modification

of Android’s SurfaceFlinger binary and Settings applica-

tion. In stock Android, SurfaceFlinger handles updating

the display by synchronizing with a hardware v-sync sig-

nal and coordinating system draw events based on that.

To implement DFRS, SurfaceFlinger is modified so that

it instead updates the display based on a software inter-

rupt which is user-definable through the Settings appli-

cation.

Implemented in this manner, DFRS is entirely feasible to

integrate into existing systems as there is no perceptible

lag or stutter when a new target frame rate is set. DRS,

however, would require a large system overhaul to work

seamlessly on modern mobile devices, as the existing

implementation requires restarting the SurfaceFlinger

service, momentarily disabling the GUI altogether.

In future studies, we intend to implement a method of

automatically determining a user’s distance from their

device similar to the one discussed in [11]. Use case

studies utilizing the developed technique would provide

insight as to how often users change their distance from

a device, how much computational overhead is incurred

by polling for such a change, and the seamlessness of

density and frame rate changes in such a case.

References

[1] “Apple - IPhone." http://www.apple.com/iphone/fea-

tures/retina-display.html. June 2010.

[2] "LG G3: Simple Is The New Smart.”

http://www.lg.com/us/mobile-phones/g3. June 2014.

[3] "Samsung Launches World’s First Broadband LTE-A

Smartphone." Samsung Electronics America.

http://www.samsung.com/us/news/23327. July 2014.

[4] "OSHA Ergonomic Solutions: Computer Workstations

ETool." https://www.osha.gov/SLTC/etools/comput-

erworkstations/components_monitors.html. July 2014.

[5] "Get the Best Seat in the House." Toshiba Direct.

http://www.toshiba.com/us/recommended-tv-viewing-

distance. July 2014.

[6] Claypool, Mark, Kajal Claypool, and Feissal Damaa.

"The effects of frame rate and resolution on users play-

ing First Person Shooter games." Electronic Imaging

2006. International Society for Optics and Photonics.

[7] McCarthy, John D., M. Angela Sasse, and Dimitrios

Miras. "Sharp or smooth?: comparing the effects of

quantization vs. frame rate for streamed video." Pro-

ceedings of the SIGCHI conference on Human factors

in computing systems. ACM, 2004.

[8] Bhowmik, Achintya K., and Robert J. Brennan. "Sys-

tem-level display power reduction technologies for

portable computing and communications devices."

Proc. IEEE Int. Conf. Portable Information Devices.

2007.

[9] Pathania, Anuj, et al. "Integrated CPU-GPU Power

Management for 3D Mobile Games." Proceedings of

the 51st Design Automation Conference. ACM, 2014.

[10] Mochocki, Bren, Kanishka Lahiri, and Srihari Ca-

dambi. "Power analysis of mobile 3D graphics." Pro-

ceedings of the conference on Design, automation and

test in Europe: Proceedings. European Design and Au-

tomation Association, 2006.

[11] Konig, Immanuel, Philipp Beau, and Klaus David. "A

new context: Screen to face distance." Medical Infor-

mation and Communication Technology (ISMICT),

2014 8th International Symposium on. IEEE, 2014.

Figure 6: Relative GPU utilization for

different refresh rates on Nexus 4.

0.00

0.20

0.40

0.60

0.80

1.00

0 1375 2750 4125 5500 6875 8250

G
P

U
 U

ti
li

za
ti

o
n

Number of Triangles

15 fps
20 fps
30 fps
60 fps

Figure 7: Relative GPU power consumption for

different refresh rates on Nexus 4.

0.9

1.4

1.9

2.4

2.9

3.4

P
o

w
er

 C
o

n
su

m
p

ti
o

n

Number of Triangles

15fps

20fps

30fps

60fps

