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Abstract 

The emerging industry trend of ever-increasing display 

density on mobile devices has dramatically increased 

workload placed on a mobile GPU’s. Because mobile 

GPU power consumption increases almost linearly with 

workload, increasing the display density directly de-

creases battery life of a device. While this tradeoff is ac-

ceptable if user experience is improved, display densities 

beyond that which the human eye can perceive would re-

sult in decreased device battery life for no perceptible 

gain. Further, the workload imposed by such high den-

sity displays may invalidate the previous requirement 

that the interface always run at high frame rates. 

In this paper, we show that the display on some modern 

devices already exceeds human perceptive capabilities, a 

feature which can be exploited at runtime in order to re-

duce GPU power consumption. Our proposed method in-

cludes both resolution and refresh rate scaling, which are 

shown to reduce mobile GPU power consumption by up 

to 33% and 38%, respectively. We conclude with a dis-

cussion of how such a system may be implemented on 

existing devices. 

1. Introduction 

The electronics industry has recently begun trending to-

wards extremely high density displays. With the release 

of the iPhone 4 in 2010, Apple began to popularize “Ret-

ina displays,” or displays on which individual pixels can-

not be optically isolated by the human eye [1]. Most 

manufacturers are now participating in similar ventures, 

with many televisions, laptops, and recently phones, be-

ing released with heavy marketing emphasis being 

placed on the devices having QHD (2560x1400 pixels), 

WQXGA+ (3200x1800 pixels), or UHD (3840x2160 

pixels) resolution. 

While high density displays allow for sharper images and 

more content to be legibly displayed, they also come 

with larger system resource requirements. Modern sys-

tems must maintain multiple frame buffers for the dis-

play; Android utilizes as many as 3, requiring approxi-

mately 100MB of memory for a UHD display using 32 

bit color - 4x the space required for FHD (1920x1080 

pixels). This increased frame buffer size also requires 

higher memory bandwidth, which is a limited resource 

on mobile devices where both CPU and GPU share main 

memory. The addition of a high definition display also 

increases system power consumption due to the extra 

power required to update and illuminate the more com-

plex display. This is in addition to the increased work-

load experienced by the GPU, which must render the 

content displayed on the now expansive screen. 

The additional resources required by a high density dis-

plays can be justified if the result is an improved user 

experience - i.e. visibly sharper content and interfaces. 

However, even though the iPhone 4 utilized pixels which 

were purportedly too small to individually observe with 

the human eye at 326 pixels per inch (ppi), display den-

sities have continued to increase [1]. As an example of 

this, the recently released LG G3 utilizes a display with 

538 ppi [2], while the Galaxy S5 LTE-A utilizes a 577 

ppi display [3]. Clearly, an examination of the tradeoff 

between screen density and power consumption is re-

quired. 

In this paper, we utilize existing knowledge of the human 

visual system in an attempt to define the maximum ob-

servable display density in multiple use cases (Section 

2). Using this, we then examine if a system able to dy-

namically adjust display resolution can be utilized to re-

duce system power consumption with the changes re-

maining imperceptible to a user (Section 3). We further 

the investigation by additionally examining how dynam-

ically adjusting rendered frame rate while a system is be-

ing utilized can be used to accomplish similar goals (Sec-

tion 4). Both proposed methods are examined exclu-

sively from the perspective of a mobile device’s GPU. 

We also briefly discuss recent, related works (Section 5), 

and how our proposed methods may be implemented on 

modern mobile devices (Section 6). 

2. Human Visual Acuity and Display Density 

Human visual acuity depends on three main factors: (i) 

the ability of the eye to correctly focus on an image, (ii) 

the functionality of the retina, and (iii) the ability of the 

brain to sample and process incoming data. As technol-

ogy does not yet exist which can test each of these factors 

individually, existing measurements of human percep-

tive ability test combined functionality of all three. This 

is generally accomplished by utilizing a Snellen or Lan-

dolt C chart, on which multiple, similar characters of set 

sizes are printed. A user is then asked to stand a set dis-

tance from the chart and identify the smallest characters 

that are legible to them. A human adult is considered to 



have normal vision when they are able to correctly iden-

tify 8.86 mm tall characters on the chart when standing 

20 feet away. 

While these tests provide a useful baseline in attempting 

to define expected perceivable detail, describing the ob-

jects in question in terms of both their real size and dis-

tance from an observer quickly becomes tedious, and is 

also of little use in this case as mobile devices are likely 

viewed from much closer than 20 feet away. Instead, a 

more useful method of describing and object’s observed 

size is to define it in angular terms. 

An object, depending on its actual size and distance from 

an observer, takes up a portion of the visual field which 

can be described in terms of angular size. The observed 

size of an object relative to a user can be easily and port-

ably described using the equation 

𝛿 = 2 tan−1 (
𝑑

2𝐷
)                           (1) 

where 𝑑 is the actual size of an object or feature, 𝐷 is its 

distance from the observer (both measured with the same 

unit), and 𝛿 is the angular size of the object in radians. 

When the characters on the Snellen chart are described 

in this manner, each one subtends an area of 5 arc 

minutes (5/60 of a degree) by 5 arc minutes within the 

subject’s field of view. However, the chart is designed so 

that the very similar characters can only be correctly 

identified if 25 critical, contrasting subregions within 

each one is clearly perceived. Each of these subregions 

is one square arc minute in size, and represents the small-

est individually observable detail to a human with nor-

mal vision. This provides a quantitative basis for select-

ing an appropriate display density on a mobile device – 

each display pixel should, at its smallest, be one square 

arc minute in size; shrinking pixels beyond that would 

result in no perceptible benefit. 

While it may be relatively simple to create a device with 

a display density high enough to be held, for example, 8 

inches away from a user’s face without any pixels being 

individually visible, recall that angular size of an object 

depends on both the actual size of the object as well as 

its distance from an observer. It is unlikely that a real-

world user will always hold a device that exact same dis-

tance from their face. With mobile devices especially, 

the distance a user is from the screen likely varies de-

pending on when and where it is being used. Further, dif-

ferent users likely have different preferences regarding 

interaction with a device, making the common viewing 

distance highly varied within a population. Because of 

this, a more accurate description of real-world use is to 

define a range of distances that a device is likely to be 

viewed from. These ranges are defined by industry 

guidelines and are based on device form factor and size. 

Table 1 lists these ranges, in addition to the minimum 

and maximum observable pixel density calculated from 

this range using Equation 1. 

Interestingly, Table 1 indicates that no matter the form 

factor or viewing distance of the display, pixels become 

smaller than the smallest human-observable feature long 

before the display reaches UHD resolution. This means 

that the emerging industry standard of “4K” resolution is 

much more beneficial to the marketing departments of 

electronics companies than it is to any end user. 

The table also serves to illustrate that the level of dis-

cernable detail changes dramatically as the user moves 

closer to and farther from the display during normal use. 

For example, in the best-case scenario (device is farthest 

from the face), a tablet’s GPU need only render images 

to 40% the number of pixels required in the worst-case 

scenario (minimum distance from the face) in order to 

maintain the same perceived level of sharpness. 

3. Dynamic Resolution Scaling 

Based on the calculations performed in Table 1, it is clear 

that existing mobile displays already allow for a level of 

Device 
Viewing Distance Pixel Density 

Screen Size 
Display Resolution 

Min Max Min Max Min Max 

Phone 8 inches 12 inches 286 ppi 430 ppi 4.7 inches 1173x660 1760x990 

Tablet 10 inches 16 inches 215 ppi 344 ppi 8 inches 1498x843 2397x1348 

Desktop 20 inches 40 inches 86 ppi 172 ppi 21 inches 1573x885 3146x1770 

Television 84 inches 133 inches 26 ppi 41 ppi 70 inches 1577x887 2496x1404 

Table 1: Maximum observable display densities when utilizing devices of varying form factors and holding them the 

industry recommended distance from the face [4][5]. The right side of the table also includes the display resolution 

required to achieve this density on an example screen of a given size. 

 
Figure 1: The test bench setup with Monsoon Power 

Monitor connected to Nexus 4 and Nexus 5. 



detail beyond that perceptible to human beings. Even on 

devices with comparatively lower density displays, the 

rendered resolution is likely still over-provisioned when 

the device is held far from the user’s face. This can be 

used as inspiration for a new power saving technique we 

term “Dynamic Resolution Scaling” (DRS). This tech-

nique reduces the workload placed on a device’s GPU by 

dynamically adjusting the display resolution during use 

in order to render only the level of detail that is observa-

ble given the user’s current viewing distance. 

To determine if the expected power savings are signifi-

cant, a test bench is constructed utilizing LG Nexus 4 and 

Nexus 5 development devices running Android 4.4.2. To 

record power utilization, each device’s battery is re-

moved allowing it to instead be powered by a Monsoon 

Power Monitor (Figure 1). In both cases, all non-essen-

tial applications are removed from the system.  

An Android benchmarking application is created which 

allows for the generation of an arbitrary computational 

load for both the CPU and GPU. The former is accom-

plished though a simple busy loop, the latter by creating 

an OpenGL scene consisting of a single 3D cone com-

posed of a user-designated number of vertices/triangles. 

To isolate the power consumed by the GPU, the power 

utilized by the rest of the system while idling is first rec-

orded. GPU power consumption is then determined by 

subtracting this baseline from the total system power 

consumption while a 3D scene is being drawn at 60 

frames per second (fps). 

Multiple modifications are made at both the application 

and system level in order to reduce measurement varia-

tion. First, the benchmarking application is coded to run 

with the display of the device turned off, removing any 

variance from advanced display power scaling tech-

niques. Second, the CPU is kept in an active state via a 

wake lock, and all cores but one are disabled. Dynamic 

voltage and frequency scaling are disabled for both the 

CPU and GPU to provide a more stable power profile 

while the tests are being conducted. Finally, all tests are 

conducted with airplane mode enabled and sound output 

disabled on both devices. 

As Android 4.4.2 is OpenGL ES 2.0 compatible, both the 

vertex and fragment shaders of the GPU are programma-

ble. Vertex shaders govern calculations that are per-

formed for each vertex in a 3D scene, while fragment 

shaders define operations performed for each output 

pixel. In the benchmarking application, vertex shaders 

perform 9000 floating point operations per vertex, while 

the fragment shaders simply assign a previously calcu-

lated color value to each pixel. The artificial load was 

added to the vertex shaders as without it, it was found 

that memory bandwidth became the GPU’s bottleneck 

far before possible floating point operations per second 

(FLOPS). Conversely, fragment shader complexity was 

kept artificially low so that collected data would repre-

sent the lower bound of power reduction possible 

through DRS.  

Figures 2 and 3 display the data gathered while utilizing 

the benchmarking application. In each figure, the GPU 

utilization when rendering to different density displays 

is recorded for scenes of varying complexity (number of 

triangles). As may be expected, a higher resolution dis-

play results in higher GPU utilization, indicating that a 

dynamic resolution scaling scheme would serve well to 

reduce system power consumption. It is interesting to 

note that, based on the utilization results in Figure 2, the 

graphics hardware or drivers on the LG Nexus 4 have 

been specifically optimized for rendering at the display’s 

native resolution of 768x1280, or 317 ppi. In such a case, 

DRS would actually increase GPU power consumption, 

even if display density was reduced. However, as the 

data recorded from the Nexus 5 shows no sign of similar 

optimizations, it is concluded that this is either a special 

case, or that more recent and complex device designs 

have abandoned such low level optimizations. 

Using the power consumption data recorded at the same 

time as GPU utilization, it is possible to compare the to-

tal power cost that increasing display density incurs on 

 
Figure 2: Recorded GPU utilization for Nexus 4 

for different screen resolutions. 
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Figure 3: Recorded GPU utilization for Nexus 5 

for different screen resolutions. 
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the GPU. Figures 4 and 5 show the power consumption 

of the Nexus 4 and Nexus 5 GPU when rendering at dif-

ferent densities. In each case, the power consumed by 

each device is normalized about the power required to 

render to the lowest tested display resolution. This is 

done in order to simplify comparison between the power 

levels, and because actual power consumption would 

likely vary greatly between different devices. Again, as 

expected, power consumption increases along with dis-

play density. It is interesting, however, to combine this 

data with the values in Table 1, as it is then possible to 

determine the difference in power cost from when each 

phone is held the minimum to the maximum distance 

away from the face (286 ppi to 430 ppi). For the Nexus 

4, this incurs an increase of anywhere from 36-50% in 

the GPU’s power envelope, and anywhere from 12-31% 

for the Nexus 5. Again, it is worth mentioning that these 

results are the lower bound of what would be observed 

in real-world situations as the fragment shaders have re-

mained artificially simplified. 

4. Dynamic Refresh Rate Scaling 

A further source of GPU load is the target frame rate the 

system attempts to render at. By default, the Android op-

erating system runs natively at 60 fps. This provides for 

a very smooth and “buttery” user experience, yet incurs 

a high overhead in power costs as the GPU must actively 

render the application or user interface 60 times per sec-

ond. This problem is compounded with the with new, 

high resolution displays which require far more calcula-

tions and resources to populate. 

Given these concerns, it may not be entirely required or 

even necessary to always update the display at 60 fps. 

While 60 fps may remain in place while a device has an 

excess of both system resources and battery power, the 

frame rate could be reduced in restrictive cases. A “Dy-

namic Frame Rate Scaling” (DFRS) system is proposed 

that will use information gathered regarding individual 

usage patterns to intelligently reduce system frame rate 

in order to maximize battery life. Such a case could occur 

when, for example, a mobile device falls below 10% bat-

tery power remaining. On this trigger, the system could 

reduce the target frame rate from 60 fps to 30 fps, im-

pacting user experience but increasing the usable 

lifespan of the device. 

While a reduction in frame rate from the proposed sys-

tem may be noticed by a particularly perceptive user, the 

industry has shown that users will be willing to accept it 

if they gain something in return. For example, while 

most modern games run at 30 fps on console and films 

are shown at only 24 fps, users accept it as in return they 

gain increased image quality and graphical fidelity. 

To verify that a significant amount of power would in-

deed be saved by such a method, the benchmarking ap-

plication utilized to record the data in Section 3 was 

modified so that it could be set to render the 3D scene at 

either 15, 20, 30, or 60 fps. GPU utilization and power 

consumption were then recorded at each frame rate when 

rendering a scene at the device’s native resolution, and 

are shown in Figure 6. As may be expected, rendering at 

60 fps required 2x the processing time as rendering at 30 

fps, 3x rendering at 20 fps, and 4x rendering at 15 fps. 

Although rendering at 60 fps fairly predictably required 

4x the processing time as rendering at 15 fps, it only re-

quired between 1.6x and 3.0x as much power, as can be 

seen in Figure 7. Even with this being the case, a reduc-

tion from 60 fps to 30 fps still causes, on average, a 38% 

decrease in GPU power consumption. 

5. Related Work 

In [6] and [7], the authors provide a detailed analysis of 

the effects of display resolution and refresh rate on users 

playing a PC game or watching television. In [8] it is 

proposed that lower frame rates may lead to system 

power reduction, while in [9] and [10] it is explicitly 

demonstrated that this is the case. 

The methods in our paper more thoroughly investigate a 

mathematical relationship between perceived detail and 

display density. DRS and DFRS also more directly focus 

 
Figure 4: Relative GPU power consumption for 

different display resolutions on Nexus 4. 
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Figure 5: Relative GPU power consumption for 

different display resolutions on Nexus 5. 
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on reducing power consumption of the GPU by reducing 

workload, with emphasis on avoiding any negative im-

pacts to user experience. 

6. Implementation and Future Work 

After it is verified that both DRS and DFRS can conserve 

meaningful amounts of power, it is investigated if it is 

possible to implement such mechanisms on existing mo-

bile devices. As Nexus devices are used for testing up 

until this point, the target operating system is selected as 

Android 4.4.2. To implement DRS, relatively few 

changes are required to the operating system as Android 

already allows for a user to set both the display resolution 

and density. DFRS, however, requires the modification 

of Android’s SurfaceFlinger binary and Settings applica-

tion. In stock Android, SurfaceFlinger handles updating 

the display by synchronizing with a hardware v-sync sig-

nal and coordinating system draw events based on that. 

To implement DFRS, SurfaceFlinger is modified so that 

it instead updates the display based on a software inter-

rupt which is user-definable through the Settings appli-

cation. 

Implemented in this manner, DFRS is entirely feasible to 

integrate into existing systems as there is no perceptible 

lag or stutter when a new target frame rate is set. DRS, 

however, would require a large system overhaul to work 

seamlessly on modern mobile devices, as the existing 

implementation requires restarting the SurfaceFlinger 

service, momentarily disabling the GUI altogether. 

In future studies, we intend to implement a method of 

automatically determining a user’s distance from their 

device similar to the one discussed in [11]. Use case 

studies utilizing the developed technique would provide 

insight as to how often users change their distance from 

a device, how much computational overhead is incurred 

by polling for such a change, and the seamlessness of 

density and frame rate changes in such a case. 
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Figure 6: Relative GPU utilization for 

different refresh rates on Nexus 4. 
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Figure 7: Relative GPU power consumption for 

different refresh rates on Nexus 4. 
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