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Abstract

Mobile apps connect with counterpart cloud services and
pursue data transfer over wireless networks. The amount
of mobile data transferred will only increase as app data
needs and usage expand. Energy expenditure during pe-
riods of data transfer constitutes a significant portion of
a mobile’s battery usage. At the same time, due to the
evolving nature of wireless technologies, there is a pro-
liferation of networks (such as public Wifi hotspots, ac-
cess points, and cellular technologies) that exhibit di-
verse energy and performance characteristics. As a user
moves around (even within the same logical network) the
hardware serving data transfer varies, often offering op-
portunities for data transfer with distinct bandwidth and
latency capabilities. Apps and data services in smart-
phones however are oblivious to this diversity and the
energy impact of using one opportunity vs. others.

In this paper, we first present a study of Wifi character-
istics in two domains, shopping malls and within an en-
terprise campus, demonstrating the fine-grained diversity
of network opportunities in two commonplace scenarios.
Next, we describe a system-level framework and set of
interfaces that enable energy efficient app syncs by lever-
aging the right opportunities. Preliminary results using
our approach show up to three times lower energy costs
for popular mobile apps using media uploads.

1 Introduction

Many popular mobile apps send and receive data by con-
necting with cloud services. With the arrival of Internet
of Things (IoT) apps [1, 11], mobile data traffic will only
increase in the future. Mobile apps use cellular and/or
Wifi networks to sync data with cloud services. Due
to the constant evolution of wireless standards, network
conditions vary: switching between 3G/4G/HSPA+ is
fairly commonplace in the cellular world, while switch-
ing between 802.11ac/b/g/n is prevalent in public Wifi
mobility domains. These networks are heterogeneous in
the bandwidth and latency they offer, hence presenting
different data transfer opportunities that differ in their en-
ergy impact on mobile devices.

Many data transfer requests issued by mobile apps are
delay-tolerant, i.e., the app behavior does not depend on
data transfer requests being carried out immediately. Ex-
amples of apps that issue delay-tolerant data transfer re-
quests include news feed apps like NYTimes; popular
social media apps such as Twitter; Facebook and Insta-
gram; and media upload apps such as Google Auto Photo
Backup. Wearables and IoT apps also exhibit delay-
tolerance in periodically syncing their data with cloud
services via smartphones [6, 1] and/or smart hubs [11].

Data movement is central to a diversity of mobile
apps, and it is responsible for a significant fraction of
the phones energy expenditure. However, there is no
system-level support in smartphones to minimize energy
costs for delay-tolerant data transfers across a variety of
WiFi and cellular technologies. In this paper, we present
a generic system-level framework which comprises (1) a
learning engine that characterizes ‘opportunities’ for data
transfer personalized to a user’s mobility pattern, (2) set
of APIs that convey knowledge of opportunities to data
transfer schedulers, and (3) data transfer schedulers that
leverage app delay tolerance to choose the best time to
carry out the transfer, thereby achieving energy savings.

In this paper, we focus primarily on opportunities ob-
served within networks with single Wifi SSiDs consist-
ing of multiple access points (APs). Common scenar-
ios include Wifi networks in college campuses, enter-
prise, and malls. The variation in opportunities observed
in these networks result from the diversity in AP WiFi
bands (ac/g/b/n) and their relative signal strengths.

Previous work has demonstrated the impact of signal
strength on mobile energy consumption [5]. Rahmati and
Zhong [9] propose decision models based on users’ per-
sonal navigation to opportunistically offload cellular data
to Wifi networks for energy efficiency, while other re-
lated work [2, 7, 3] adds prediction of Wifi opportuni-
ties and scheduling support to offload cellular data for
energy efficiency. Breadcrumbs [8] adds predictive fore-
casting capabilities for users’ Wifi mobility, while Bar-
tendr [10] tracks and predicts users’ cellular mobility so
as to schedule data transfers using better signal strengths.
Our approach builds upon prediction models of previ-
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Figure 1: System Architecture

ous work [8, 2], while presenting a generic and extensi-
ble system framework and interfaces to enable all delay-
tolerant apps (including IoT apps) to leverage network
opportunities. We also focus on a usage scenario not
explored so far in the literature: multi-AP SSiD WiFi
networks. We show that this scenario can present fine-
grained variation of data transfer opportunities and that
by properly scheduling data transfers, mobile apps can
achieve substantial energy savings.

2 Architecture

Figure 1 shows our system architecture. Next we de-
scribe the system components that, together, enable mo-
bile apps to achieve more energy efficient data transfers
with their cloud services.

2.1 Opportunity Learning Engine

As a user’s device navigates through wireless networks,
the Learning Engine identifies personalized opportunities
for the user, and interfaces with higher-level data sched-
ulers in the system to notify them of ‘good’ data transfer
opportunities for pursuing data transfer. It performs the
following functions.

1. Opportunity Feature collection. We define an op-
portunity as a set of network features that characterize
conditions in which data transfer occurs. In previous
work [5, 8, 9], signal strength (i.e., RSSI) is used as a fea-
ture to discern varying network conditions. We propose
a finer grained set of features to define an opportunity.

For cellular networks, the tuple (cellular network type,
provider, signal strength, geo-location) is used to discern
differences in bandwidth and latency seen across 3G/LTE
networks, connected base-stations and their providers,
hence presenting different opportunities. For Wifi net-
works, we use the tuple (SSid, AP MAC, Link Speed,
Freq.band, RSSI). SSids, such as of home, user’s work
Wifi, public hotspots in cafes and airports can help gener-
alize across backhaul providers (e.g., Comcast, AT&T).
Connecting with multiple access points (APs) supporting

different Wifi standards (802.11 a/b/g/n) is fairly com-
mon within a single SSiD domain (such as in college
campuses and enterprises). Depending on their wireless
standard, APs support connections in 2.4 and/or 5SGHz
range, which influences observed link speed at various
signal strengths, hence resulting in different opportuni-
ties. In ongoing work, we are exploring load-based op-
portunities [4], low load being a better opportunity. Fi-
nally, the battery state of the device also influences op-
portunities: if the device is charging, all opportunities
will be weighted equally at zero energy cost to the de-
vice. Features are collected periodically when the device
is on.

2. Model generation In addition to collection of
network features, our system also monitors throughput
and latency seen in different network conditions. For
this purpose, we use active probing as used in previ-
ous work [9, 8]. Our approach builds on the prediction
models of previous work [8] by using supervised learn-
ing techniques to classify opportunities (i.e., network
feature-sets). Good opportunities with low latency and
high throughput have a higher ‘opportunity score’ than
bad ones with high latency and low throughput. Our sys-
tem also distinguishes between upload and download op-
portunities. Monitoring overhead will further reduce in
time as the learning engine derives more knowledge from
historical state: the learning engine may learn the max-
imum achievable throughput and RSSI in a user’s home
Wifi network over time, so it can avoid recalibrating op-
portunity scores and enable data transfer when ‘best’ op-
portunities in a network are encountered. In comparison
with previous work [8, 10], our system also aims to ex-
plore and predict longer-term opportunities: in terms of
minutes and hours. Example scenarios where delaying
data-heavy transfers over longer time-scales is beneficial
may arise if users tend to connect with particularly bad
APs within office and campus networks, however they
are likely to encounter better network opportunities min-
utes or hours in the future, known via their previous net-
work connection history.

3. Crowd sourced opportunity knowledge The learn-
ing engine will run on smartphones of multiple users, and
periodically upload opportunity scores to a secure cloud
service. For instance, opportunity scores of public Wifi
networks are learned over time, and new users retrieve
this information to skip their own learning phase, hence
reducing system overhead in learning new opportunities.

4. Notification API to higher level data services Op-
portunity scores are exported to higher level managers
via a notification and query APIL. The learning engine
sends notifications in the form of a message with the pa-
rameters: (Opportunity score, Rank, Time to last, Confi-
dence percent). For instance, the learning engine com-
municates the ‘best’ opportunity (Rank: 1) seen for a



network, along with its estimated duration and predic-
tion confidence. Such notifications may be leveraged by
higher level managers to schedule backed up data trans-
fer or prefetch requests. Higher level managers may also
query the learning engine seeking (a) current opportunity
scores, (b) opportunity score ‘x’ steps in the future [8],
time to last and how it relatively ranks compared to pre-
viously observed opportunities in the network. We en-
vision richer query APIs seeking responses to (a) how
further away in time or distance is the best opportunity
for the current network? or (b) will there be a better op-
portunity in a finite ‘y’ time interval?

2.2 Data Transfer Manager

The Data Transfer Manager is responsible for maintain-
ing a schedule of data transfers to be performed that abide
by app delay tolerance parameters. It also interfaces with
the opportunity learning engine and, possibly, with data
managers on other nearby devices.

1. Learning app data requirements. The Data Trans-
fer Manager collects and maintains state regarding app
data objects and their delay tolerance. This can be done
transparently using binary analysis and instrumentation
(e.g., photo object uploads can be detected and always
be delayed), or by explicitly adopting an API that allows
applications to specify their delay tolerance.

2. Scheduling data transfer. Our system maintains
data request scheduling queues for mobile apps, and in-
terfaces with the kernel network stack to schedule data
transfer. Decision algorithms consider the opportunity
scores and their lasting times provided by the opportu-
nity learning engine.

3. Distributed service interfaces. Gateways may im-
plement smart services for IoT things or smartphone apps
in the future. Examples include caching, private stor-
age, and prefetching app content. While the opportunity
learning engine is only aware of network level opportuni-
ties, we envision ‘service level opportunities’ on nearby
smart devices that can be leveraged by smartphone data
transfer managers for more energy-efficient data trans-
fer. For example, we implemented an Amazon S3 ser-
vice instance on a gateway and found photo uploads from
smartphones to consume 40% less energy and time when
uploading to the gateway S3 instance vs. Amazon’s S3
service in the cloud.

Data Transfer Managers for IoT. Wearable devices
such as Fitbit Flex and smart-watches periodically sync
with cloud apps via smartphones or smart hubs. Most of
these sync requests (e.g., step counter syncs) are delay
tolerant. In order to improve their energy efficiency on
battery-constrained IoT devices, we envision the oppor-
tunity learning engine and data transfer manager compo-
nents as extensible to IoT devices, where they will iden-
tify good opportunities to schedule syncs to intermediate

devices such as smartphones. Our system architecture
can hence be extended and generalized for other devices.

2.3 Implementation in Android

Next we describe how our system can be integrated in
an existing smartphone ecosystem. Android uses a sync
service comprising sync request queues, a sync scheduler
and sync APIs. We propose an extension of the Android
Sync API that incorporates delay tolerance. The data
transfer manager functions can be implemented in the
Android Sync scheduler with appropriate listener hooks
for broadcast notifications from the opportunity learning
engine service. Similarly, the scheduler can communi-
cate queries via message passing to the learning engine.
The Sync service can also be extended to sync IoT and
wearable device data.

3 Do opportunities vary?

For a common usage scenario of multi-AP SSiD WiFi
networks in enterprises and shopping malls, we show the
presence of fine-grained variation of data transfer oppor-
tunities (due to variation in RSSI, frequency bands and
link-speeds as described in Section 2.1). For the enter-
prise WiFi case, we installed a logger app that periodi-
cally collected these network features on our colleagues’
smartphones for a week, as they walked around in the of-
fice. We used the same logger app while walking around
a large scale shopping mall to collect its network features.

Opportunities vary considerably. Figures 2a and 2b
show CDFs for RSSI levels encountered for 2.4 and 5Ghz
APs in Enterprise Wifi setting for 7 users. Our first ob-
servation is that APs in both frequency bands (2.4 and
5Ghz) are commonly seen in multi-AP SSiD networks.
For instance, User-6’s smartphone (HTC One) connects
with 39 different APs in the 2.4Ghz band, and 37 dif-
ferent APs in the 5Ghz band. Some older smartphones
(such as User-1’s Samsung S3) may not support 5Ghz
Wifi connections, and will miss those opportunities. Sec-
ond, there is considerable variation in signal strengths
even within a frequency band. For instance, for User-
6, 10% of RSSI levels are < 7 across APs in the 2.4Ghz
band, while for User-4, 40% of the RSSI levels are < 4
signifying that 40% of opportunities are ‘bad’. Fig-
ures 2c and 2d show how RSSI and frequency bands to-
gether affect observed theoretical link-speeds. Most of
the observed link-speeds ( 90% of all) in the 2.4Ghz band
are capped at 72Mbps for the best RSSI level of 9, while
they are bumped up to 150Mbps for APs in the 5Ghz
band. For lower RSSIs (< 3), the link-speeds can be as
low as 6Mbps for User-4 in Figure 2c. Finally these find-
ings extend to larger and denser multi-AP SSiD networks
such as shopping malls. In one trajectory, a user encoun-
tered 562 APs in the 2.4Ghz band, and 236 APs in the
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Figure 2: Opportunities in enterprise and large-scale shopping mall wifi networks

5Ghz band. As observed in Figures 2e and 2f, there is
considerable variation from ‘bad’ to ‘good’ RSSI levels
across APs in both bands for all 20 user trajectories.
Waiting for good opportunities is feasible. In net-
works with good and bad opportunities, how long would
a data transfer have to be delayed to use a good oppor-
tunity instead of a currently bad one? We characterized
observed opportunities as ‘good’ and ‘bad’ opportunities
using a simple classification: Opportunities in the 2.4Ghz
band with RSSI levels < 3 are bad opportunities, while
those in the 5Ghz band with RSSI levels >=7 are good
opportunities (Note that opportunities with RSST >= 7
in the 2.4Ghz band are also good opportunities, however
the ones in 5Ghz band have better throughput capabil-
ity). Figures 2g and 2h show the CDFs of arrival times
of the first good opportunity after the current bad one
in the mall and the enterprise respectively. In a denser
network where people move around often, such as the
mall, 90% of the time good opportunities are encoun-
tered within a minute. In an enterprise campus, the delays
may be longer (50% of the time, good opportunities are
observed in under 10 minutes), as the use-case is more

sedentary and the network is less dense in APs. We re-
lax the definition of ‘good’ opportunity to also include
2.4Ghz APs with RSSI >= 7 in the enterprise setting.
This bumps up the probability of seeing a good opportu-
nity under 10 minutes to 70%. However, we envision that
for more active users or settings (e.g., in manufacturing
work spaces), these delays will be further bounded.

Systems that enable apps to leverage delay-tolerance
for energy efficiency will see more observable benefit in
networks with a mixture of good and bad opportunities.
We find our study in opportunities encouraging in that
(a) Opportunities vary and at times 30% of them may
be ‘bad’ while 30% may be ‘good’ as well; (b) for our
experimental scenarios, transition times from bad to good
opportunities are feasible enough to allow data transfer to
be delayed towards periods of good opportunity.

4 Do opportunities matter?

In the next set of experiments, we first use a simple
active-probing-based benchmark to demonstrate how our
system tracks data transfer throughput in our enterprise
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network. Next, the knowledge gained from modeling the
enterprise network’s throughput is used to classify oppor-
tunities as ‘good’ and ‘bad’ ones by defining thresholds
for signal strengths and frequency bands. This is then
used to choose the best time to upload media (photos and
videos sized 170MB in total) to an Amazon Cloud ser-
vice instance, thereby achieving energy savings.

Throughput benchmark. We develop a mobile app
that periodically downloads and uploads a chunk of data
to a server machine in our network. We deploy it on
a user’s Nexus 5 smartphone (User 5 in Figure 2a) and
track throughput observed as the user roams around in
the office, while connecting to APs in different fre-
quency bands(ac/n/g) over varying signal strengths. Fig-
ures 3 and 4 respectively show the CDFs of upload and
download throughput results. We can observe from the
figures that a greater fraction of both upload and down-
load throughput measurements are higher for good RSSI
levels (8 and 9) vs. weak RSSI levels (1/2/3). For ex-
ample, 90% of upload throughput values are lower than
8Mbps for RSSIs < 4, compared with 20Mbps for RSSIs
>= 8. The smartphone connects with both 2.4Ghz and
5Ghz APs in this experiment, but we do not present the
distinction amongst signal strengths based on bands for
lack of space. We observe higher throughputs for same
RSSI levels in 5Ghz APs vs. 2.4Ghz ones.

Media upload app. Next, by using RSSI thresholds to
classify opportunities as ‘good’ (RSSI >= 7) and ‘bad’
(RSSIs < 4), we delay media upload requests to a cloud
service from an app towards periods of good opportu-
nities in our enterprise network. We also track the AP
MAC address used for the data transfer and further use
our knowledge of mapping AP MAC addresses to their

5Ghz(ac) ———
24Ghz(n) ===
2.4Ghz(g)

Energy expenditure (mAH)

Figure 5: Energy expenditure for Media upload to Ama-
zon S3 using different opportunities

types (ac/n/g) to distinguish between opportunities (Note
that this can also be ascertained dynamically using fre-
quency band and link-speed features collected by our
logger app). We observe in Figure 5 that delaying me-
dia uploads from the worst opportunity in this experiment
(over 2.4Ghz(g) with bad RSSI) to the best opportunity
(over 5Ghz(ac) with good RSSI), leads to 300% energy
savings. These are over and above the energy savings
achieved using purely RSSI level opportunity distinction
(over 2.4Ghz(g) with good RSSI) by 150%. Choosing a
5Ghz(ac) AP over a 2.4Ghz(n) AP leads to energy bene-
fits of 30%.

5 Conclusions and Future Work

In this paper, we focus on a commonly observed usage
scenario, multi-AP SSiD networks, and demonstrate the
fine-grained data transfer opportunities in two real net-
works: in a shopping mall and in an enterprise setting.
In order to leverage such opportunities, we propose a
generic architecture and set of interfaces in smartphones
to minimize energy costs of delay-tolerant data transfers.
Preliminary measurements using our approach show 30-
300% energy savings when uploading media to a cloud
service. Ongoing work extends the notion of opportuni-
ties to both multi-SSiD WiFi and cellular networks.
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