
Three Fingered Jack: Tackling Portability, Performance, and Productivity
with Auto-Parallelized Python

David Sheffield, Michael Anderson, Kurt Keutzer
Parallel Computing Laboratory, Department of EECS

University of California, Berkeley
{dsheffie,mjanders,keutzer}@eecs.berkeley.edu

Abstract

We present Three Fingered Jack, a highly productive ap-
proach to writing high-performance software in Python.
Our system applies traditional dependence analysis and
reordering transformations to a restricted set of Python
loop nests. It does this to uncover and exploit vector
and thread parallelism. Then it generates native code
for multiple platforms. On four benchmark kernels and
two applications, our system achieves 0.4− 13.5× and
0.97−113.3× of hand written but not highly optimized
C++ performance on Intel and ARM CPUs, respectively.

1 Introduction
Within the last decade, the trajectory of mainstream com-
puter architecture has radically departed from the homo-
geneous uniprocessor model. Issues such as wire scaling,
design complexity, and energy consumption have limited
the scalability of conventional designs and require new
solutions. A wide range of parallel computer architec-
tures and accelerators have been proposed to solve scal-
ability and energy issues; however, while these systems
solve architectural issues, they do little to help improve
programmer productivity. Parallel systems of these vari-
eties differ wildly in programming models and middle-
ware, resulting in low developer productivity and chal-
lenging program portability.

Manually implementing high performance data-
parallel platforms first requires the programmer to un-
cover parallelism that can be executed on his or her tar-
get platform. After completing this arduous task, the
programmer must massage his or her implementation
to fit the data and thread-level parallelism programming
constructs on the chosen platform. In addition, source
code portability between data-parallel processors is diffi-
cult due to differences in hardware intrinsics and often
requires complete application rewrites for a new plat-
form. Requiring the programmer to manually find and
exploit parallelism severely limits developer productiv-

ity and application portability when developing high-
performance software.

As developing parallel software on a new platform
routinely takes days to weeks when doing initial devel-
opment, alternative algorithmic approaches are rarely ex-
plored. Constructing parallel software in a low-level lan-
guage such as C++ with threading libraries and data-
parallel primitives is far too unproductive and error-
prone as case studies show sequential C++ program-
ming is 2 to 5× less productive than languages such as
Python [19, 14]. Moving between parallel platforms, for
example from an ARM CPU to x86 CPU, often requires
extensive re-engineering due to differences in the data-
parallel primitives (Neon vs SSE). Finally, parallel pro-
grams are rarely performance portable due differences
in data-parallel hardware, memory hierarchy, and core
count. In summary, parallel computing needs tools that
address the portability, performance, and programming
challenges of modern systems.

The productivity gains made by languages such as
Python has often come at an extreme performance cost.
These interpreted languages are often orders of magni-
tude slower than a compiled efficiency language such as
C or C++. As a result, there have been several projects
working to accelerate productivity languages for non-
expert programmers. Both Copperhead [7] and Para-
keet [21] use data-parallel primitives as the basis to ex-
tract parallelism for GPUs from a subset of Python. In
contrast, we use reordering algorithms to extract paral-
lelism from a loop nest to generate efficient code for mul-
ticore CPUs with vector-units. We assert loops are easier
to understand for the majority of programmers than func-
tional programming primitives such as map and reduce.
The removal of the reduce primitive from the core syntax
of Python3 supports our assertion that for loops are more
readable for most [24]. There have been several attempts
to compile subsets of Python into sequential C [1] or
LLVM [3]; however, these approaches are not sufficient
as they do not automatically extract parallelism. NumPy

1

and SciPy provide data structures and routines for com-
mon mathematical operations; such as vector and matrix
operations. NumPy provides an efficient implementation
of multidimensional arrays to provide functionally simi-
lar to MATLAB. NumPy accelerates many common lin-
ear algebra operations by using highly optimized vendor
BLAS libraries. SciPy uses NumPy’s multidimensional
arrays and optimized linear algebra operations to provide
support for computational areas, such as numerical op-
timization and sparse linear algebra. Expressiveness is
limited to the operators supported by NumPy or SciPy.
Addressing the parallel programming challenge with li-
braries is efficient; however, it only works when high-
performance libraries exist. In contrast, our approach en-
ables a developer to obtain within 2× hand-tuned parallel
software within a matter of minutes using Python.

In this paper, we address the issues of portability, per-
formance, and productivity using Three Fingered Jack
(TFJ), an auto-parallelizing and vectorizing embedded
domain-specific language (EDSL) for Python loop-nests.
In our system, the programmer selects dense loop-nests
in Python using the “decorator” syntax that redirects the
Python run-time to our compiler. Because our compiler
is restricted to loop-nests, we can apply aggressive par-
allelizing compiler algorithms to the loop-nests to auto-
matically generate high-performance parallel implemen-
tations. Our work is inspired by the Selective Embed-
ded Just-in-time Specialization (SEJITS) methodology
that uses EDSLs to help mainstream programmers tar-
get Nvidia GPUs and multiprocessor CPUs [8]. We ex-
tend the SEJITS ideas with algorithms from parallelizing
compilers to target loop-nests.

Portability is guaranteed, as all code is valid Python
and can always be executed in the interpreter. If a loop-
nest cannot be compiled for parallel execution (for ex-
ample, a branch in the inner-loop), we can still compile
a large subset of Python for scalar execution on the host
CPU. Code that cannot be compiled for efficient execu-
tion remains valid Python and will be executed in the
Python interpreter. The results in Section 3 exemplify
the cross-platform performance benefits of our system
across several kernels and two complete applications. Fi-
nally, programmer productivity is enhanced by our sys-
tem as the user is allowed to write his or her applica-
tion in Python and selectively accelerate specific compu-
tations.

TFJ currently supports full LLVM [16] JIT compila-
tion on x86 multicores and ARM processors with Neon
SIMD extensions. In the rest of the paper, we provide
a detailed description of the TFJ system and provide re-
sults for both kernels and two full applications: content-
based image resizing and speech recognition. Compared
to hand written but not highly optimized C++ implemen-
tations, our TFJ results show performance improvements

@tfj
def matmul(A,B,Y,n):

for i in range(0,n):
for j in range(0,n):
for k in range(0,n):

Y[i][j]=Y[i][j]+A[i][k]*B[k][j];

Figure 2: Matrix-Matrix Multiply written in Python for
TFJ

of 0.4−13.5× on ARM CPUs and 0.97−113.3× on In-
tel CPUs.

2 Internals and Implementation
Our compilation process begins with a dense loop nest
specified in Python using NumPy arrays, as illustrated in
Figure 1. Our front-end then generates an intermediate
XML representation of the abstract syntax tree (AST)
that is interpretable by our optimizing compiler. Our
compiler analyzes the loop nest using dependence analy-
sis to enable other transformations such as loop reorder-
ing, blocking, and unrolling. Finally, separate backends
generate LLVM IR for JIT execution on x86 as well as
C++ with vector intrinsics. TFJ’s run-time interfaces
with the Python interpreter to execute the compiled code.
TFJ is implemented in approximately 13000 lines of C++
and 9000 lines of Python.

2.1 Python Front-End
Figure 2 shows an example of matrix-multiply coded to
use the TFJ EDSL. When the Python interpreter encoun-
ters a function wrapped with the @tfj decorator, exe-
cution is redirected to our front-end. The front-end re-
quires kernels to be statically well-typed, and it enforces
this restriction using a simple type system. TFJ requires
that every expression has an associated NumPy data type.
We support loop-nests with no control-flow and affine ar-
ray indexing functions. These restrictions simplify com-
piler construction and enable fast dependence checking
heuristics. Our run-time based compilation has the ben-
efit of dynamic program information. When TFJ accel-
erated functions are executed, loop bounds are clearly
defined and the dimensions of underlying NumPy arrays
are known.

To avoid recompilation, we employ a compiled code
cache. If a loop-nest does not use dynamic scoping, fu-
ture recompilations will not be required. The TFJ front-
end always attempts to use the code cache first; however,
coding using dynamic scoping will require recompilation
every time it is called for correct execution. While we
have spent considerable effort making all stages of the
compiler as efficient as possible, running the complete
compilation pipeline requires upwards of 50 msec per

2

Python	 AST	 Front-‐End	 Reordering	
Engine	

Implemented in Python
Implemented in C++

(linked into interpreter)

Machine	
Code	

Parallel	
Code	

Generated at runtime

Applica:on	

Figure 1: TFJ compiler flow: TFJ compiler flow: We start with computation expressed as a Python loop-nest. After
syntactic and semantic checking in Python, we convert the Python AST to an XML representation that is fed to
our reordering and optimization engine. The optimization engine then generates machine executable code for high-
performance execution. Detailed descriptions of the front-end, reordering engine, code generator, and run-time are
provided in Sections 2.1, 2.2, 2.3 and 2.4.

invocation on x86 and 3 sec on ARM. The long compi-
lation times on our ARM-based PandaBoard-ES are due
to slow IO performance of the Secure Digital (SD) card-
based file-system.

We have a fall-back compiler that handles a larger sub-
set of Python if and when TFJ rejects a loop-nest due to
an unsupported construct. This EDSL does not attempt
to exact any parallelism and therefore can handle a larger
subset of the Python language, such as branches in loop-
nests. We generate optimized sequential code using the
same code generation framework described in Section
2.3. We do this because sequential Python code rejected
by TFJ can become a performance bottleneck and thus
in practice requires our fallback EDSL. We currently re-
quire the programmer to manually annotate code for the
fallback compiler using a Python decorator.

2.2 Dependence Analysis and Reordering
Transforms

Data dependence is the key to TFJ as it gives constraints
on the possible ordering of statements in a program. Both
the underlying hardware of the target platform and the
order in which statements are executed can have a pro-
found impact on performance. The benefits of depen-
dence analysis and reordering transforms are best illus-
trated by an example. Figure 3 shows three legal order-
ings of matrix-multiply.

Dependence sometimes also allows us to expose par-
allelism in inner loops by sequentially executing outer
loops. In Figure 3, all three loops carry dependences.
However, if the i loop is sequentially executed, then both
the j and k loops may be done in any order, including in
parallel. This is allowed because sequentially executing
the i loop ensures that the left side of the statement will
never point to the same memory location as the right side
of the statement does.

The inner-loop (K-loop) in Figure 3(a) carries a depen-
dence which prevents inner-loop vectorization because
the K loop must run sequentially. This is because it reads
and writes the same memory location (Y [i][j]) in every it-
eration. However, dependence analysis also tells us that

 for(j=0;j<n;j++)
 for(k=0;k<n;k++)

for(i=0;i<n;i++)

Y[i][j] += A[i][k]*B[k][j]

(a)

 for(i=0;i<n;i++)
 for(j=0;j<n;j++)

for(k=0;k<n;k++)

Y[i][j] += A[i][k]*B[k][j]

(b)

 for(k=0;k<n;k++)
 for(j=0;j<n;j++)

for(i=0;i<n;i++)

Y[i][j] += A[i][k]*B[k][j]

(c)

Figure 3: Three legal orderings of the matrix-matrix mul-
tiply loop-nest

the I and J loops carry no dependence and can be exe-
cuted in parallel.

The nest shown in Figure 3(b) is amenable to inner-
loop vectorization because the K-loop has been inter-
changed with the outer-most loop and it has unit-stride
memory accesses. As our two conventional ISAs (x86
and ARM) include support for only unit-stride vector
load and store instructions, finding an inner loop with
unit-stride memory operations is required for vector-
ization. Now, the outer-loop in Figure 3(b) carries a
parallelization-preventing dependence. The middle-loop
(I-loop) may be parallelized across multiple CPUs; how-
ever, the profitability of this scheme is not guaranteed
due to synchronization overhead. This is because the
work granularity is relatively small. Finally, Figure 3(c)
shows a loop-nest that allows for both outer-loop paral-
lelization across cores and inner-loop parallelism across
vector units.

Our reordering engine uses a simple heuristic
when searching the legal reordering space. We sort
dependence-free loops by the size of their iteration space
(how many times the loop executes) and select the loop
with the largest iteration space for the outer-loop. We
desire the outer-most loop to have a large iteration space
to avoid the overhead of frequent thread creation if the
loop nest is executed with multiple threads. We then
select a dependence-free inner loop with unit-stride or
constant memory accesses. If we cannot find a reorder-
ing that satisfies these criteria, we attempt to expose par-
allelism in inner loops by allowing outer loops to exe-
cute sequentially. This heuristic works well in practice
compared to exhaustive search, for the codes described

3

in this paper. This reordering scheme is valid because
by running the outer-most dependence-carrying loop se-
quentially, we are free to reorder all inner-loops as we
see fit.

To enhance opportunities for vectorization, we also
perform loop distribution. By distributing loops, we can
independently reorder statements in a loop-nest in order
to find loop-nest permutations with unit stride memory
access as required by our Neon and SSE vector exten-
sions. If loop distribution does not unlock opportuni-
ties for vectorization, we apply loop fusion on distributed
loops to reconstitute the original loop nest.

We use Banerjee’s Inequality [6] for dependence test-
ing and reordering algorithms similar to Allen’s [2]. A
restricted form of TFJ’s dependence engine was previ-
ously used to generate parallel processing engines us-
ing hardware high-level synthesis techniques [22]. The
dependence engine used for high-level hardware synthe-
sis was far less aggressive when attempting to find unit-
stride memory access as it was not required for custom
hardware implementations.

2.3 Code Generation
After dependence analysis, we generate both C++ and
LLVM IR. Our C++ code uses an abstract inline library
of vector functions to map different vector ISAs such
as ARM Neon, Intel SSE, or IBM AltiVec. The re-
sults from our source-to-source translation backend can
be used outside our embedded Python environment or on
systems that the LLVM JIT poorly supports.

We use LLVM’s MCJIT to generate machine code at
runtime as it does an excellent job of mapping high-level
representations of vector operations in the LLVM IR to
the appropriate vector instructions in a processor ISA.
TFJ relies on LLVM implementations of scalar optimiza-
tions such as common-subexpression elimination, loop-
invariant code motion, and strength reduction. Due to
the relatively immature nature of MCJIT for ARM, TFJ
emits C++ with intrinsics and generates shared objects
with GCC at run-time. We generate unaligned vector
memory operations because addresses are not guaranteed
to be aligned. While unaligned vector loads and stores
are potentially slower than their aligned equivalents on
older x86 micro-architectures, new micro-architectures
significantly close the performance gap. For example,
on the Intel Nehalem micro-architecture unaligned vec-
tor operates are as fast as aligned operations when the
memory operation does not span two cache lines [12].
The recently introduced ARM Cortex-A15 also includes
improved unaligned memory accesses [15].

We also use the C++ generation backend to generate
kernels for stand-alone applications. On platforms that
do not support Python (or host-based compilation), such
as a research operating system or an embedded micropro-

cessor without an OS, we can use TFJ to generate high-
performance kernels which are used in a standalone C or
C++ application. We are currently using the offline capa-
bility to build a standalone computer-vision based music
synthesizer on the Tessellation operating system [11].

Independent of the backend selected, both MCJIT and
C++ generation of shared objects provide a function
pointer to the JIT compiled code. We register both the
function pointer and a hash of the Python source rep-
resentation with the TFJ runtime system to enable code
caching. If a TFJ accelerated function does not change
after compilation, we can avoid compilation and exe-
cuted cached machine code. We also store additional
meta-data along with function pointer for the run-time
environment. This meta-data encapsulates if the func-
tion is multi-threaded and information, such as the func-
tion pointer’s prototype, needed to actually call the JIT-
compiled code at run-time.

2.4 Run-time
To execute a function accelerated by TFJ, our run-time
first queries the code cache to check if a compiled ver-
sion exists. If it does not exist, or the hash changed due
to program modifications, the code must be recompiled
and the code cache updated. Once the desired code is
found, execution meta-data and a function pointer to the
compiled machine code are returned to the runtime.

To execute a TFJ accelerated function, TFJ queries
the Python interpreter to first check if arguments are
supported NumPy datatypes. If the function uses non-
NumPy types, the function is executed by the Python in-
terpreter instead of TFJ. After checking argument types,
TFJ finds pointer references for the arguments and the di-
mensions (shapes) of any multidimensional arrays used.
The arguments are stored in an auxiliary array according
to the order specified by the execution meta-data. The
process of collecting arguments also includes querying
the Python interpreter for shape information needed for
address calculation used to access elements within a mul-
tidimensional array. Arguments and shape data is used to
check for pointer aliasing among arrays used as function
arguments. If arguments alias the function must be exe-
cuted in the Python interpreter. By dynamically querying
shape information at function call-time, we avoid recom-
pilation when a TFJ accelerated function is called with
a different-sized array. For example, statically including
shape information would prevent a function compiled for
matrices of size 1024×1024 from working with a matrix
of size 1023×1023.

To execute an TFJ accelerated function, the run-time
checks if the function allows for multi-threaded execu-
tion. If the function is single-threaded, the Python inter-
preter executes the function using the function pointer
and auxiliary argument array. If the code has been

4

compiled for multi-threaded execution, the TFJ run-time
forks multiple threads for parallel execution using the
pThreads API. The Python interpreter blocks until the
parallel execution completes.

3 Evaluation

We evaluated TFJ with four kernels and two applications
from the UC Berkeley ParLab [4]. The ParLab appli-
cations were chosen to represent compelling new uses
of parallel hardware and drive our research in software
and hardware systems. The results are shown in Figure 4
and present a comparison to untuned and optimized C++
implementations of the same computation. The untuned
C++ implementations are not parallel (thread or data) but
they were performed either by experienced programmer
or taken from existing applications. We also compare
TFJ with optimized Python libraries, if they exist for
the given computation. The Python libraries we use for
comparison are all implemented in C/C++ for efficiency.
For completeness, we also present results when the loop-
nests used by TFJ are executed in the Python interpreter.
These implementations are represented in the headings
of Figure 4 by “C++ (Untuned)”, “C++ (Hand-tuned)”,
“Python Libraries”, and “Pure Python”, respectively.

We ran our benchmarks on both x86-based desk-
top and ARM-based mobile systems. We used a
PandaBoard-ES with a dual-core 1.2 GHz Texas Instru-
ments OMAP4460 SoC and 1GB of LPDDR2 RAM for
our mobile system. Likewise, we used a 3.4Ghz Intel
Core i7-2600k with 8GB of RAM for our desktop sys-
tem. Both systems run Linux. We used LLVM 3.1 and
GCC 4.7.3 for code generators on x86 and ARM, respec-
tively.

3.1 Kernels

@tfj
def bpnn_adjust_weights(delta, ndelta, ly

, nlyp1, w, oldw):
for j in range(0, ndelta):

for k in range(0, nlyp1):
w[k][j+1]+= \
((0.3*delta[j+1]*ly[k])+\
(0.3*oldw[k][j+1]));

oldw[k][j+1]= \
((0.3*delta[j+1]*ly[k])+\
(0.3*oldw[k][j+1]));

Figure 5: Back propagation weight adjustment kernel
from the Rodinia benchmarks rewritten in Python for
TFJ acceleration

3.1.1 Vector-vector add

Vector-vector add is the canonical data-parallel bench-
mark. We used NumPy to compare against a Python li-
brary, while our optimized C++ implementation is man-
ually vectorized.

3.1.2 Matrix multiply

This benchmark uses 2048× 2048 single-precision ma-
trices for matrix multiply. Our Python source is shown
in Figure 2. We used ATLAS BLAS [25] and NumPy
for our optimized C++ and Python library comparisons,
respectively.

3.1.3 Diagonal sparse-matrix vector multiply

Optical flow relates the motion of objects between two
video frames. It is a key computation in many computer
vision algorithms and many optical flow algorithms ad-
dress the problem using the conjugate gradient method to
solve a system of linear equations. When optical flow is
solved with conjugate gradient, a diagonal sparse-matrix
vector multiply (SpMV) dominates the solver runtime.
We used Sundaram’s C++ implementations [23] and the
SciPy Python library for comparison.

3.1.4 Back propagation weight adjustment

Back propagation weight adjustment (shown in Figure
5) is used as part of training neural networks. The C++
implementations are from Rodinia [9] and we used the
OpenMP accelerated version of the kernel as the opti-
mized implementation. We were unable to find a Python
library for this computation.

3.2 Applications
Kernel performance results are not enough to fully
demonstrate a programming system; therefore, we eval-
uated TFJ on two full applications representative of
emerging workloads: content-aware image resizing [5]
and speech recognition [10].

3.2.1 Content-Aware Image Resizing

(a) Original image (b) Retargeted
image

Figure 6: Original image and retargeted image after re-
moval of 750 vertical seams

5

Section
discussed

Kernel/Application Device C++
(Un-
tuned)

C++
(Hand-
tuned)

Python
Libraries

Pure
Python

TFJ

3.1.1 Vector-Vector Add
(Mflops/sec)

OMAP4460 981.4 1146.3 613.4 4.2 679.1
i7-2600 12,879.5 13,084.4 11,407.7 24.0 12,469.9

3.1.2 Matrix Multiply
(Mflops/sec)

OMAP4460 40.4 3,268.6 2,292.7 <0.2 546.7
i7-2600 317.0 112,882.3 71,570.2 1.4 35,886.9

3.1.3 Diagonal SpMV
(Mflops/sec)

OMAP4460 130.1 175.3 114.0 68.5 336.2
i7-2600 2,457.8 3,052.6 1,847.3 1.5 4,321.0

3.1.4 Back propagation
(Mflops/sec)

OMAP4460 100.7 101.4 N/A 0.07 41.2
i7-2600 668.3 2,568.3 N/A 0.41 3,147.5

3.2.1 Seam Carving
(Runtime in sec)

OMAP4460 205.4 68.5 18,873.1 >86,400.0 81.2
i7-2600 20.4 4.6 2,238.6 34,646.8 7.1

3.2.2 Speech Recognition
(Runtime in sec)

OMAP4460 78.9 53.1 N/A >86,400.0 64.5
i7-2600 5.4 2.8 N/A 19,775.9 3.8

Figure 4: Performance results for the 4 kernels and 2 applications. Bold numbers indicate best results. For the 4
kernels, larger Mflops/sec values indicate faster implementations. Application performance is reported in seconds;
therefore, shorter runtimes reflect higher peformance. We have marked categories N/A if we could not find a Python
library that implements a given benchmark. On our ARM platform, several benchmarks did not complete in under 24
hours when executed as Python loop-nests.

Content-aware seam carving, shown in Figure 6, re-
sizes images by removing “boring regions”. The seam
carving algorithm computes an energy function to deter-
mine interesting regions, then computes a connected path
of least-interest through the image.

Our implementation of seam carving is shown in fig-
ure 7. We first blur the image using the function conv2d
to remove noise and then use the function grad2d to
compute the gradient. The gradient extracts edges from
an image. Regions with a small gradient have few
edges and are unlikely to be interesting. We use a two-
dimensional convolution kernel to compute the gradi-
ent. After computing the image gradient, we compute
the minimum cost path through the image using func-
tion compute cost. The minimum cost seam is com-
puted by backtracking through the memorization table
generated by compute cost. The backtrack function is
strictly sequential and we accelerate it using our serial
DSL. To compare against Python libraries, we use SciPy
and NumPy implementations of convolution and gradi-
ent calculation. The conv2d, grad2d, and compute cost
kernels have been manually vectorized and parallelized
in our optimized C++ implementation.

3.2.2 Speech Recognition

Our speech recognizer is built around a hidden Markov
model (HMM) inference engine with a beam search ap-
proximation [20]. As shown in Figure 8, the inference
engine has two key phases: observation probability cal-
culation using a Gaussian Mixture Model (GMM) and
next-word search. The observation probability compu-
tation, shown in Figure 9, computes the probability of

phonemes (elementary units of speech) in a 10 ms acous-
tic sample. The observation probability computation
consumes 60% of the run-time in our C++ implementa-
tion. Two other kernels are used to infer words and sen-
tences. These kernels are a search (graph traversal) com-
putation that we accelerate with our serial DSL . In our
C++ implementation, the search phase consumes 25% of
the run-time. Our recognizer is built on top of a heavily
modified version of the ICSI Parallex decoder.

The inference engine has been reimplemented in
Python while the rest of the recognition application re-
mains in C++. This approach allows us to demonstrate
the power of TFJ without entirely reimplementing the
speech recognizer in Python. We evaluate our recog-
nizer using 60 seconds of audio from the 5000-word Wall
Street Journal corpus [18] and compare our TFJ results
with two C++ implementations of the speech recognizer:
no parallelization and extensive manual parallelization.
Our speech recognizer has a state-of-the-art 11.4% word
error rate on both platforms.

3.3 Results and Summary
A complete tabulation of our results is presented in Fig-
ure 4 while Figure 10 presents our speed-ups. Our speed-
up results show TFJ obtains similar performance to op-
timized C++ code on both platforms. While our TFJ re-
sults are within 60% to 80% of the performance of hand-
tuned C++; however, the productivity benefits of our sys-
tem are enormous. Hand-tuning our simple C++ kernels
for correctness and performance took several hours while
tuning the whole applications of Section 3.2 took several
weeks. In contrast, TFJ results achieved correct, high-

6

@tfj
def conv2d(I,O,K,ydim,xdim):

for y in range(3,ydim):
for x in range(3,xdim):
for yy in range(-2,3):

for xx in range(-2,3):
O[y][x]+=\

K[2+yy][2+xx]*\
I[y+yy][x+xx];

@tfj
def grad2d(I,O,K,ydim,xdim):

for y in range(3,ydim):
for x in range(3,xdim):

O[y][x]=\
(I[y][x-1]-I[y][x])*\
(I[y][x-1]-I[y][x])+\
(I[y-1][x]-I[y][x])*\
(I[y-1][x]-I[y][x]);

@tfj
def compute_cost(Y,G,ydim,xdim):

for i in range(5,ydim):
for j in range(5,xdim):
Y[i][j]=G[i][j]+\
min(min(Y[i-1][j-1],Y[i-1][j]),\
Y[i-1][j+1]);

Figure 7: A portion of the TFJ accelerated kernels used
in seam carving.

Observation
probability
evaluation
 (GMM)

HMM search Phoneme
scores

Active phoneme list

Recognized
utterances

Figure 8: Architecture of our speech recognizer: 39-
dimensional Mel-Frequency Cepstral Coefficients feature vec-
tors are generated for each 10 ms acoustic sample. These fea-
ture vectors are fed to the inference engine to recognize words
and sentences. The inference engine has two key phases: obser-
vation probability calculation using a Gaussian Mixture Model
and a graph-based hidden Markov model search.

performance results within 15 minutes of developer ef-
fort for kernels and within hours for applications. For
individuals requiring higher performance, our results are
a good starting point for further code optimization as TFJ
emits readable C++ than can be manually tuned.

We are particularly encouraged by our matrix-multiply
results on the i7-2600 as our performance is within 33%
of an optimized, auto-tuned library. In addition, the di-
agonal SpMV kernel produced by TFJ is over 3× faster
than a call to SciPy’s built-in diagonal SpMV routine
on both platforms tested. Our speech recognition sys-
tem using TFJ nearly achieves real-time performance on

@tfj
def GMM(In, Mean, Var, Out, Idx, n):

for i in range(0,n):
ii = Idx[i];
for f in range(0,39):
for m in range(0,16):

Out[ii][m] += \
(In[f]-Mean[ii][f][m])*\
(In[f]-Mean[ii][f][m])*\
(Var[ii][f][m]);

Figure 9: Observation probability evaluation kernel used
in speech recognition written in Python for TFJ acceler-
ation. Note that we use a linear map to access the Mean
and Var arrays.

Untuned
C++

Hand-tuned
C++

Python
libraries

i7-2600 3.14× 0.8× 1.1×
OMAP4460 1.8× 0.6× 0.9×

Figure 10: TFJ speed-ups on Intel and ARM platforms
compared to untuned C++, hand-tuned C++, and Python
libraries.

the OMAP4460. We observe that the ARM Cortex A9
CPUs on our OMAP4460 SoC are more sensitive to man-
ual code tuning, likely because the out-of-order engine is
less aggressive than the design found in the Intel i7-2600.
We are excited to experiment with the ARM Cortex-A15
when it becomes available for experimentation, as the
both the out-of-order engine and vector unit has been sig-
nificantly improved [15].

The two full applications demonstrate the power of
the TFJ system as both applications are within 35% of
the performance attained by manually tuned C++ across
desktop and embedded CPU architectures. To further our
portability goals, we are currently working on code gen-
eration for the vector-thread processors from UC Berke-
ley [17] and are currently tuning our system to generate
efficient code for that platform. We are also working on
a higher-level framework in Python for communication-
avoiding matrix operations [13] that uses TFJ as one of
its code-generation backends.

3.4 Acknowledgments
We thank Randy Allen for encouraging us to explore
auto-parallelization within a SEJITS-based program-
ming environment.

Research supported by Microsoft (Award #024263)
and Intel (Award #024894) funding and by matching
funding by U.C. Discovery (Award #DIG07-10227). Ad-
ditional support comes from Par Lab affiliates Nokia,
NVIDIA, Oracle, and Samsung.

7

References
[1] Cython: C-extensions for python. 2010.

[2] R. Allen and K. Kennedy. Optimizing Compilers for Mod-
ern Architectures. Morgan Kaufmann, 2002.

[3] Continuum Analytics. Numpy aware dynamic python
compiler using llvm. https://github.com/
numba/numba.

[4] Krste Asanovic, Rastislav Bodik, James Demmel, Tony
Keaveny, Kurt Keutzer, John Kubiatowicz, Nelson Mor-
gan, David Patterson, Koushik Sen, John Wawrzynek,
David Wessel, and Katherine Yelick. A view of the paral-
lel computing landscape. Commun. ACM, 52(10):56–67,
October 2009.

[5] Shai Avidan and Ariel Shamir. Seam carving for content-
aware image resizing. In ACM SIGGRAPH 2007 papers,
SIGGRAPH ’07, New York, NY, USA, 2007. ACM.

[6] U. Banerjee. Data dependence in ordinary pro-
grams. Master’s thesis, University of Illinois at Urbana-
Champaign, November 1976.

[7] Bryan Catanzaro, Michael Garland, and Kurt Keutzer.
Copperhead: compiling an embedded data parallel lan-
guage. In Proceedings of the 16th ACM symposium on
Principles and practice of parallel programming, PPoPP
’11, pages 47–56, New York, NY, USA, 2011. ACM.

[8] Bryan Catanzaro, Shoaib Kamil, Yunsup Lee, Krste
Asanovic, James Demmel, Kurt Keutzer, John Shalf,
Kathy Yelick, and Armando Fox. Sejits: Getting produc-
tivity and performance with selective embedded jit spe-
cialization. In First Workshop on Programmable Models
for Emerging Architecture at the 18th International Con-
ference on Parallel Architectures and Compilation Tech-
niques, 2009.

[9] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W.
Sheaffer, Sang-Ha Lee, and K. Skadron. Rodinia: A
benchmark suite for heterogeneous computing. In Work-
load Characterization, 2009. IISWC 2009. IEEE Interna-
tional Symposium on, pages 44 –54, oct. 2009.

[10] Jike Chong, Ekaterina Gonina, Kisun You, and Kurt
Keutzer. Exploring recognition network representations
for efficient speech inference on highly parallel platforms.
In 11th Annual Conference of the International Speech
Communication Association (InterSpeech), pages 1489–
1492, 2010.

[11] Juan A. Colmenares, Sarah Bird, Henry Cook, Paul
Pearce, David Zhu, John Shalf, Steven Hofmeyr, Krste
Asanović, and John Kubiatowicz. Resource manage-
ment in the Tessellation manycore OS. In Proceedings of
the 2nd USENIX Workshop on Hot Topics in Parallelism
(HotPar’10), Berkeley, CA, USA, June 2010.

[12] Martyn Corden. Compiling for nehalem. http:
//ispass.org/ispass2010/tutorials/
Compiling_for_Nehalem_Win_JR_DL.pdf,
2008.

[13] Mark Frederick Hoemmen. Communication-avoiding
Krylov subspace methods. PhD thesis, EECS Depart-
ment, University of California, Berkeley, Apr 2010.

[14] Paul Hudak and Mark P Jones. Haskell vs. ada vs. c++
vs awk vs..an experiment in software prototyping produc-
tivity. Yale University Department of Computer Science
Technical Report RR-1049, 1994.

[15] Travis Lanier. Exploring the design of the cortex-
a15 processor. http://www.arm.com/files/
pdf/at-exploring_the_design_of_the_
cortex-a15.pdf, 2011.

[16] C. Lattner and V. Adve. Llvm: a compilation framework
for lifelong program analysis transformation. In Code
Generation and Optimization, 2004. CGO 2004. Interna-
tional Symposium on, pages 75 – 86, march 2004.

[17] Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia,
Derek Lockhart, Christopher Batten, and Krste Asanović.
Exploring the tradeoffs between programmability and ef-
ficiency in data-parallel accelerators. In ISCA, 2011.

[18] D.S. Pallett. A look at nist’s benchmark asr tests: past,
present, and future. In Automatic Speech Recognition and
Understanding, 2003. ASRU ’03. 2003 IEEE Workshop
on, pages 483 – 488, nov.-3 dec. 2003.

[19] Lutz Prechelt. Are scripting languages any good? a val-
idation of perl, python, rexx, and tcl against c, c++, and
java. Advances in Computers, 57:205–270, 2003.

[20] M. Ravishankar. Parallel implementation of fast beam
search for speaker-independent continuous speech recog-
nition, 1993.

[21] Alex Rubinsteyn, Eric Hielscher, Nathaniel Weinman,
and Dennis Shasha. Parakeet: a just-in-time paral-
lel accelerator for python. In Proceedings of the 4th
USENIX conference on Hot Topics in Parallelism, Hot-
Par’12, pages 14–14, Berkeley, CA, USA, 2012. USENIX
Association.

[22] D. Sheffield, M. Anderson, and K. Keutzer. Automatic
generation of application-specific accelerators for fpgas
from python loop nests. In Field Programmable Logic
and Applications (FPL), 2012 22nd International Con-
ference on, pages 567 –570, aug. 2012.

[23] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer.
Dense point trajectories by gpu-accelerated large dis-
placement optical flow. In Proceedings of the 11th Euro-
pean conference on Computer vision: Part I, ECCV’10,
pages 438–451, Berlin, Heidelberg, 2010. Springer-
Verlag.

[24] G. van Rossum. Whats new in python 3.0. http://
docs.python.org/3.0/whatsnew/3.0.html.

[25] R. Clint Whaley and Jack J. Dongarra. Automatically
tuned linear algebra software. In Proceedings of the 1998
ACM/IEEE conference on Supercomputing (CDROM),
Supercomputing ’98, pages 1–27, Washington, DC, USA,
1998. IEEE Computer Society.

8

