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Abstract

Cloud computing is a recent trend in computer science.
However, privacy concerns and a lack of trust in cloud
providers are an obstacle for many deployments. Matur-
ing hardware support for implementing Trusted Execu-
tion Environments (TEEs) aims at mitigating these prob-
lems. Such technologies allow to run applications in a
trusted environment, thereby protecting data from unau-
thorized access. To reduce the risk of security vulnerabil-
ities, code executed inside a TEE should have a minimal
Trusted Codebase. As a consequence, there is a trend for
partitioning application’s logic in trusted and untrusted
parts. Only the trusted parts are executed inside the TEE
handling the privacy-sensitive processing steps.

In this paper, we add a transparent encryption layer
to ZooKeeper by means of a privacy proxy supposed to
run inside a TEE. We show what measures are neces-
sary to split an application into a trusted and an untrusted
part in order to protect the data stored inside, with Zoo-
Keeper as an example. With our solution, ZooKeeper
can be deployed at untrusted cloud providers, establish-
ing confidential coordination for distributed applications.
With our privacy proxy, all ZooKeeper functionality is
retained while there is little degradation of throughput.

1 Introduction

Recently, there is a significant trend towards cloud com-
puting as it offers dynamic scalability with predictable
costs. However, privacy and data security concerns as
well as legal reasons are slowing down the widespread
adoption of cloud services. These concerns include
the unauthorized access by the infrastructure providers
themselves.

As a possible approach to solve these issues, chip man-
ufacturers started integrating hardware support for im-
plementing Trusted Execution Environments (TEEs) in
their processors, like the upcoming Intel SGX technol-

ogy [1, 9] or ARM TrustZone [2]. These techniques al-
low to split applications into trusted and untrusted parts.
The former being exclusively executed inside a TEE.
Thereby, the trusted parts are responsible for processing
sensitive data and can be verified by means of remote at-
testation. Furthermore, depending on the technology and
technical realization the trusted parts can be protected
from unauthorized access, including the administrative
staff of the cloud provider [1, 9]. In order to strengthen
the security of the trusted parts and minimizing overhead
due to trusted execution, these parts should possess only
a minimal Trusted Codebase (TCB).

Having such TEEs available in cloud environments,
offers the opportunity for secure deployment and exe-
cution of privacy-sensitive distributed applications. As
a basis for these applications, we consider coordination
support such as provided by ZooKeeper [8] as an essen-
tial basis. For this reason, we investigate the deployment
of coordination services in the cloud, exploiting TEEs to
make the coordination service itself trustworthy.

So far, various approaches for data storage [12, 5, 6]
and relational databases [13, 3] at untrusted providers
have been published. In case of untrusted storage works,
as the provider is considered entirely untrusted, their pri-
mary focus is on integrity. In case of database systems,
a much more complex interface needs to be considered
when compared with a coordination service. Accord-
ingly, none of the aforementioned solutions builds an
ideal fit for partitioning the application logic of a coor-
dination service, and all of them lack support for asyn-
chronous callbacks.

Similar to plain storage systems and databases we
consider the data stored in ZooKeeper inherently sensi-
tive, because coordination services are critical parts of
all distributed systems. While configuration manage-
ment may involve confidential data stored as ZooKeeper
Node (znode) payload, naming information is also sen-
sitive, since coordination primitives in ZooKeeper often
are solely based on the names of znodes.
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Hence, in this paper we present the ZooKeeper Pri-
vacy Proxy (ZPP), a lightweight and transparent encryp-
tion layer for ZooKeeper. Our proxy system mediates
the client connections and is deployed inside a TEE.
While protecting data and naming information, we re-
tain all original ZooKeeper functionality, including asyn-
chronous callbacks.

With our solution, privacy-preserving ZooKeeper de-
ployments in untrusted cloud environments are possible.
This allows sensitive applications in the cloud to use
ZooKeeper without privacy concerns. Because we retain
all ZooKeeper functionality, we can easily adapt exist-
ing ZooKeeper applications to use our ZPPs. Our initial
evaluation shows minimal overhead and proves the fea-
sibility of our approach.

In this paper, we first summarize related work in Sec-
tion 2. Next, we present our system architecture and the
rationale of our approach. More details about our imple-
mentation are given in Section 4. Thereafter, we investi-
gate possible deployment scenarios, i.e. possible imple-
mentations of a TEE. Finally, we detail initial evaluation
results in Section 6 and conclude.

2 Related Work

Many researchers have investigated the deployment of
different kinds of storage systems in untrusted cloud en-
vironments. With TrustedDB [3] a relational database
system has been presented that allows the storage of
data encryptedly while processing them only inside
a trusted subsystem implemented using tamper-proof
hardware. The Blind Stone Tablet [13] also offers re-
lational database functionality and offloads durability
tasks to an untrusted provider. Clients locally keep
the database state completely replicated and forward
changes to it as transactions to the durability provider.
These transactions are signed and encrypted with a sym-
metric key, shared between all clients, for providing data
privacy. Both works do not provide a suitable callback
mechanism, that would allow the implementation of ad-
vanced features of ZooKeeper (see “watch callbacks” in
Section 3.1) and have to support a complex interface
which dictates a larger trusted component.

Venus [12] is an eventually consistent system, that of-
fers wait-free objects to the user. It operates without
trusted systems, but uses asymmetric cryptography to es-
tablish integrity. Its operations terminate optimistically
while consistency is established later on using notifica-
tions to clients. FAUST [5, 6] establishes integrity of
data by applying client-to-client communication. Same
as Venus, FAUST also focuses on data integrity rather
than privacy. Furthermore, both systems do not offer a
suitable solution for callbacks.

The SPORC [7] system focuses on privacy and in-
volves encryption of all data on the untrusted server,
however, each client in this system holds a local full copy
of the shared state. In our approach, all state is solely
maintained by the original and unchanged ZooKeeper
servers, simplifying the architecture of our ZPPs and
keeping the original ZooKeeper architecture unchanged.

DepSpace [4] is a more sophisticated approach for de-
pendable and confidential coodination. It is based on tu-
ple spaces and is also Byzantine fault-tolerant. In con-
trast to our lightweight approach, DepSpace applies a se-
cret sharing scheme in order to achieve confidentiality of
tuple space data.

3 Trusted ZooKeeper Proxy

After a brief introduction of ZooKeeper, we describe our
approach starting with a system architecture overview.
Next, we detail the rationale behind our proxies, and
how we transparently encrypt all sensitive data on-the-
fly while passing it through the ZPPs.

3.1 ZooKeeper in a Nutshell

ZooKeeper [8] is a fault-tolerant (by replication) coordi-
nation service for distributed systems. It allows the im-
plementation of coordination tasks like leader election,
locks and much more. For clients it offers a simple inter-
face, that is quite similar to a filesystem. The interface
allows to manage so called znodes that are simultane-
ously like a file and a folder, i.e. all znodes can have
child nodes as well as payload at the same time. Special
functions like ephemeral znodes, that are deleted once
the client that created them failed, or watch callbacks,
that notify registered clients about changes to znodes,
constitute the powerful API of ZooKeeper.

3.2 Attacker Model and Security Goals

Our main goal is to protect the privacy of all data stored
inside ZooKeeper. By this, the fault-tolerance aspects of
ZooKeeper are unchanged, because our proxy acts just
the same as a normal ZooKeeper client and the server-
side ZooKeeper implementation is unchanged.

The attacker may be the cloud provider, as well as any-
body taking control over the ZooKeeper replicas. He is
considered to be able to access and alter anything that
is running in the cloud, i.e. the whole ZooKeeper repli-
cas, but except what is running in a TEE. Our ZPP is
supposed to run inside a TEE, also located at the cloud
providers data center, which prevents attackers from ac-
cessing anything inside it. This allows the storage of en-
cryption keys and processing of cleartext data there.
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Figure 1: System Architecture

3.3 System Architecture

Figure 1 shows our system architecture, and how we
place the ZPPs in between the clients and the ZooKeeper
replicas. The main task of the ZPP here is the trans-
parent encryption of all sensitive data, before handing it
over to the ZooKeeper replicas. We have several clients
Cn connected to one of our ZPPs Pm each, and the ZPPs
then are connected to one of the ZooKeeper replicas Zo.
For our work we assume the ZPPs to be running inside
a TEE, which can be implemented in several ways (see
Chapter 5). All ZooKeeper-internal communication is
not affected by our changes, and our ZPPs will appear to
ZooKeeper replicas as regular ZooKeeper clients.

For each client session to a ZPPs we are applying a
transport encryption to the whole packet using an indi-
vidual session key per client. Once a packet is received,
the ZPP extracts it and gathers all sensitive information.
The ZooKeeper responses are handled respectively on
the way back to the clients. From the client’s perspec-
tive, a ZPP behaves exactly like a ZooKeeper replica, so
the clients can just connect to any of them. The client-
side wrapping of messages by a transport encryption is
implemented using stunnel1, which provides us a simple
and easy to use SSL encryption.

For each client session, a ZPP will keep a separate con-
nection to a ZooKeeper replica. After a ZPP has received
a packet by the client, the ZPP encrypts the sensitive
parts of the message (storage encryption) and forwards
the packet to the ZooKeeper replica. The ZPPs are using
an encryption mechanism that allows all ZPPs to read
and decrypt the data later. Because of performance bene-
fits, we use symmetric rather than asymmetric encryption
here. The encryption is done on all ZPPs using the same
key, which is shared between the ZPPs in advance.

Since all ZPPs behave ZooKeeper-compliantly (i.e.
only using valid ZooKeeper operations), on the one hand,
none of the ZooKeeper replicas will ever notice any
changes by our privacy enhancements. On the other
hand, we retain all ZooKeeper functionality, and thus,
the clients will not experience any difference as well.

3.4 ZNode Payload Encryption
The payload of znodes can be encrypted quite straight-
forwardly. The ZPP will do an on-the-fly re-encryption
here, forwarding the data from the transport encryption
between the ZPP and the client, to the storage encryption
between all ZPPs and the ZooKeeper replicas.

Encrypting the znode payload may alter the payload’s
length causing conflicts with its metadata. Then, pro-
cessing exists() operations, would require the decryption
of the payload to measure its cleartext length. However,
we mitigate this problem by using a cipher that returns
ciphertext of the same length. Another option would be
to use helper nodes to store the additional metadata (see
Section 4.1).

3.5 ZNode Name Encryption
In order to encrypt the node names of znodes we chose
a trivial approach that encrypts the individual znode’s
names of a path one by one. The advantage is that this
approach is completely transparent to ZooKeeper and
easy to implement, because ZooKeeper does not require
knowledge of cleartext znode names to work properly. In
order to mask special characters of the chiphertext like
non-printable ones or slashes, we apply a Base64 encod-
ing to the encrypted names.

4 Implementation Details

We implemented the ZPP such that it can be deployed on
a wide range of TEE environments. In total, the imple-
mentation currently comprises only little more than 4000
SLOCs of C code.

4.1 Sequence Numbers
Sequential nodes basically only differ from regular nodes
during the create process; ZooKeeper will append a
monotonically increasing sequence number to the node
name, which is returned by the create() method. This
sequence number is maintained by ZooKeeper individu-
ally for each parent node: All create operations, not only
the ones with sequential flag, will increment the parental
node’s counter.

ZooKeeper clients can create nodes of arbitrary name;
even node names containing self-defined sequence num-
bers. In the original ZooKeeper, creating znode “node”
with sequential flag, returning “node003” and creating
the non-sequential node “node003” afterwards, will fail.
However, with our encrypted approach, we would not
get a “node exists” error, because the node names are
different to ZooKeeper and at the same time appear
equal to clients. This conflict is depicted in Figure 2.
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As can be seen from the figure, both create operations
/node + seqNo and /node001 succeed, but return the
same node name to the client.

:Client :ZPP :Server

create(”/node”, S)

create(ciph(”/node”), S)

ciph(”/node”) + 001

”/node001”

create(”/node001”, -)

create(ciph(”/node001”), -)

ciph(”/node001”)

”/node001”

Figure 2: Node name collision situation when creating
sequential nodes. Sequential flag is denoted as “S”, no flag as “-”

and the ciphertext of “x” as “ciph(x)”.

The problem is to distinguish the node name from the
sequence number appended by ZooKeeper. However, we
can not use a ZPP-controlled delimiter here, that splits
the node name from the sequence number, because then
we would change the original ZooKeeper’s behaviour.
Since we do not want to keep state in our ZPPs, we de-
scribe our “dictionary”-approach in the following.

The rationale behind our dictionary nodes is to store
necessary additional information as (encrypted) payload
of a helper node in ZooKeeper in a separate znode
namespace. We are using Base64-URL after encrypting
node names, so we can easily split the namespace for dic-
tionaries and hide them from clients using non-Base64-
URL characters on ZooKeeper’s side. Basically, for each
node that has some children we keep the next available
sequence number in the dictionary node’s payload. How-
ever, we do not store sequence numbers for nodes that are
ephemeral, since they can not have children, and nodes
that have no children yet (leaf nodes).

All ZPPs will download the dictionary node at startup
and keep the data structure (hash table) containing all se-
quence numbers in memory. This allows to save an addi-
tional Roundtrip Time (RTT). Consistency for dictionary
nodes can be established using watch callbacks, so ZPPs
get notified once the dictionary changes, and the multi()-
operation of ZooKeeper, that allows to atomically exe-
cute the actual create() and the dictionary node’s change.
If a single dictionary node does not provide enough ca-
pacity, another one could be added in the dictionary
namespace.

In Figure 3 we illustrate our solution for implement-
ing sequence numbers in a ZooKeeper-compliant man-
ner. The ZPPs will download the dictionary once they
are started and register a watch on it. When a create is
executed by a client, we will increment the respective
sequence number, create the node and update the dictio-
nary atomically with a conditional setData() operation,
that will fail if the dictionary has been updated in the
meantime. The dictionary will be altered for each node
creation (and delete() calls to the last child of a parent
node), even ones without the sequential flag set, in order
to behave like the original ZooKeeper implementation.

:Client :ZPP :Server

get(”/dict”, W)

PL

create(”/node”, S)

set(”/dict”, PL (SqN+1))

create(crypt(”/node” + SqN))

crypt(”/node” + SqN))

multimulti

”/node” + SqN)

Figure 3: Node creation procedure involving sequence
numbers from dictionary nodes. We denote a watch callback

registration as “W”, the dictionary’s payload that will include the se-

quence numbers as “PL”, and the sequence number of the parent node

of “/node” as “SqN”.

4.2 Ephemeral Nodes

Ephemeral nodes are automatically deleted once the
client connection of the client that created the node to
ZooKeeper closes. We maintain individual connections
from a ZPP to a ZooKeeper replica for each client, so
we can relay the connection loss through the ZPP to the
ZooKeeper replica. A failure of a ZPP, then, will lead to
the client choosing another active ZPP just like it would
choose another replica once it fails in the original im-
plementation. ZooKeeper replica failures will be relayed
through the ZPPs to the clients, so they can choose an-
other ZPP connected to another Zookeeper replica.
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5 Deployment Scenarios

In order to deploy the trusted ZPP in the cloud, a TEE
has to be available from the cloud provider. This could
be implemented applying upcoming hardware isolation
technology like Intel SGX [9, 1] or ARM TrustZone [2]
for example. Both, TrustZone and SGX, provide an iso-
lated environment which can be remotely attestated, and
thus, used for trusted execution. A suitable runtime for
Trustlets, based on ARM TrustZone has been already
presented by Santos et al. [10, 11], however, this ap-
proach has been done in a mobile environment. Obvi-
ously, it would require several modifications for multi-
tenancy in order to be used in a cloud environment.

Another approach for implementing TEEs based on
tamper-proof hardware systems has been presented by
Bajaj et al. [3]. Here, the trusted system is a PowerPC
platform which could be also used to run our ZPPs.

Finally, it would also be possible to deploy the ZPPs
on the client side – a trusted environment by definition.
However, in this case we would have many ZPPs which
could be problematic when it comes to watch callbacks
of helper nodes simultaneously on all ZPPs.

6 Evaluation

We evaluated our approach to measure the possible
throughput when our ZPPs are mediating the connec-
tion between ZooKeeper clients and replicas. Our setup
comprises a client Virtual Machine (VM) executing
ZooKeeper operations directed to one of the ZPPs in
front of normal ZooKeeper replicas. In our setup we
place all ZPPs and ZooKeeper replicas inside individ-
ual VMs all connected to the same network. All VMs
are based on Ubuntu 13.10 and running in OpenStack,
the ZooKeeper replicas are equipped with 2 GB memory
and 2 VCPUs each, while ZPPs are using a smaller flavor
with 512 MB memory with a single VCPU.

First, we execute requests directly to ZooKeeper, and
then via our ZPP to ZooKeeper to measure the through-
put difference. In order to minimize the impact of back-
ground load of our virtualization infrastructure, we pro-
cess multiple requests in batches and show the aver-
age results of 15 repetitions. Operations are executed
synchronously and with different payload sizes from
0K to 2.5K. Our evaluated operations comprise several
write methods (create,setData,delete) and read meth-
ods (getData) in each iteration.

Figure 4 shows our evaluation of create() and delete()
requests. The use of our ZPP slightly decreases
the throughput by a constant factor, compared to the
throughput directly sending requests to a ZooKeeper
replica and without encryption. By using our ZPPs, ob-
viously an additional RTT is added to normal commu-
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Figure 4: create() and delete() sync. throughput.
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Figure 5: getData() and setData() sync. throughput.

nication, apart from the additional computation time in-
side the ZPP. However, in our evaluation setup this did
not significantly lower the throughput, because we have
relatively short RTTs. Since our intention was to bring
ZooKeeper to the cloud, and thus, close to its clients
(supposed to run in the cloud also), we can realisti-
cally assume low local area network RTTs (< 1ms in our
setup) between the individual parties. The throughput of
create() operations, in contrast to delete(), is depending
on the payload size of the nodes, because the payload is
sent piggy-backed with the create(). Hence, a decreasing
throughput can be seen when the payload size increases,
both with and without our ZPP.

In Figure 5 the throughput of setData() and getData()
requests is illustrated. Clearly, the throughput of read-
only operations is significantly higher, because no ZAB
agreement is involved here. The throughput of setData()
is again a write operation, that requires ZAB agreement
inside ZooKeeper, and thus, is much lower. Again, the
use of our ZPP only slightly decreases throughput for
both kinds of operations. Both operations are affected by
the payload size of the respective nodes, thus, we can see
decreasing throughput same as in Figure 4 here as well.

We also evaluated the execution of asynchronous re-
quests in the same way. Throughput of create() and
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Figure 6: create() and delete() async. throughput.
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delete() (Figure 6) is similar to the synchronous case, be-
cause these operations require a dictionary access, which
causes the operations to be relayed synchronously to the
ZooKeeper replicas. Finally, Figure 7 shows the through-
put of setData() and getData() operations in the asyn-
chronous case, were increased impact of the additional
network RTT for getData() can be seen.

7 Conclusion and Ongoing Work

In this work we describe our ZooKeeper Privacy Proxy
(ZPP) that allows to establish secure coordination ser-
vices in untrusted cloud environments. Our system adds
a transparent encryption layer to the ZooKeeper clus-
ter, that encrypts all sensitive data inside ZooKeeper on-
the-fly. On the one hand, the ZPP acts as a surrogate
ZooKeeper replica for the clients. On the other hand,
it will forward client requests to the original ZooKeeper
replicas once all sensitive data has been encrypted. We
encrypt the payload of ZooKeeper nodes, as well as the
node names and we retain all the functionality and be-
haviour of a regular ZooKeeper cluster.

However, our current solution still allows the inference
of usage details based on client access patterns and the
znode hierarchy. A possible approach to mitigate this

problem is to apply the concept of helper nodes to store
the znode’s hierarchy, and store the znodes themselves in
a flat hierarchy in ZooKeeper.

The evaluation based on our prototype implementation
essentially proves the feasibility of our idea and shows
that it only causes little throughput degradation.
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