
Scalable BFT for Multi-Cores:
Actor-Based Decomposition and Consensus-Oriented Parallelization∗

Johannes Behl
TU Braunschweig

behl@ibr.cs.tu-bs.de

Tobias Distler
FAU Erlangen-Nuremberg
distler@cs.fau.de
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Abstract
To pave the way for Byzantine fault-tolerant (BFT) sys-
tems that can exploit the potential of modern multi-core
platforms, we present a new parallelization scheme en-
abling BFT systems to scale with the number of avail-
able cores and to provide the performance required by
critical central services. The main idea is to orga-
nize parallelism around complete instances of the un-
derlying multi-phase BFT agreement protocols, and not
around single tasks (e.g., authenticating messages), as re-
alized in state-of-the-art systems. We implemented this
consensus-oriented parallelization scheme on basis of
a BFT prototype that permits flexibly configured paral-
lelism by relying on an actor decomposition. In an early
evaluation conducted on machines with twelve cores, the
consensus-oriented parallelization achieved over 200%
higher throughput than a traditional approach while leav-
ing the potential to utilize even more cores and exhibiting
a significantly greater efficiency in a single-core setup.

1 Introduction
The sheer complexity of today’s hard- and software sys-
tems makes it virtually impossible to prevent the oc-
currence of errors during production operation. Indeed,
many central, heavily-used services [6, 10] are deployed
with multiple replicas instead of single instances to en-
sure their availability. So far, these replicated systems are
primarily meant to withstand merely crashes of system
components or machines; with respect to the vast range
of possible malfunctioning and the risk of malicious at-
tacks, this is insufficient for a lot of applications.

A logical consequence would be the use of Byzantine
fault-tolerant (BFT) state-machine replication [4, 18],
which can be employed to immunize systems against a
bounded number of arbitrary faults. But although sub-
stantial progress has been made in this research area over
the last 15 years [4, 11, 15, 21], a common adoption of
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this technique is still put on hold. One reason is that most
works addressed the theoretical foundations and general
feasibility of the underlying BFT agreement protocols
used to reach consensus among replicas; the actual im-
plementation of these protocols, however, was consid-
ered secondary at most. In fact, we are only aware of a
single ongoing project that directly addresses their con-
crete realization [3]. Accordingly, most BFT prototypes
settle for a plain implementation and neglect concurrency
and parallel execution within each replica, two issues that
tend to introduce considerably more complexity.

State-of-the-art implementations follow a straightfor-
ward approach where the agreement protocol is decom-
posed into several tasks like sending messages, authenti-
cating messages, and managing clients, and where some
of these tasks are executed concurrently in different
threads [2, 3, 4, 5]. This task-oriented parallelization
scheme has one important drawback: With the degree of
parallelism being bound to the number of defined proto-
col tasks, there are only limited possibilities to adapt to
to the number of available processor cores. As a result,
state-of-the-art BFT systems cannot make efficient use of
modern processors drawing their computational power
more from an increasing number of cores than from
single-core performance. Considering the high compu-
tational resources BFT agreement protocols require [4],
this deficiency restricts the performance of contemporary
BFT systems significantly, and thereby their practical use
especially for critical, heavily-utilized services.

Following this, we present a parallelization scheme
for BFT agreement protocols that organizes parallelism
around instances of these multi-phase protocols and
not around tasks carried out for each instance. This
consensus-oriented parallelization scheme allows scal-
ing the possible throughput of replicated systems with
the demand and the number of processor cores offered
by the executing platform. In conjunction with a flex-
ible implementation decomposed on basis of actors the
scheme leads to an easier development of replicated sys-
tems that can exploit the potential of modern multi-cores.
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Figure 1: Threading model of contemporary BFT imple-
mentations: The replication protocol is realized through
several functional modules. Threads are mainly orga-
nized around these modules and interact via message
queues or shared data. Single consensus instances affect
all modules, thus are processed within multiple threads.

Our first evaluations show that the consensus-oriented
parallelization can achieve over two times higher
throughput on a twelve-core machine than a state-of-the-
art task-oriented parallelization. Additionally, it has the
potential to use further processing capacities whereas the
traditional approach is limited by the slowest component.
Even in a single-core setup, the increase of efficiency is
equally significant. In combination, both proposed con-
cepts lay the foundation for systems that are able to pre-
serve their availability and integrity even in the presence
of, for instance, intrusions while providing the degree of
performance required by critical central services.

2 State-of-the-Art BFT Implementations
In BFT systems, the purpose of agreement protocols is
to guarantee a consistent behavior between the multi-
ple instances of the replicated service, that is, to reach a
consensus among all participating replicas about the pro-
cessing of service requests. Regarding their capabilities
to benefit from multi-core platforms, the architectures of
contemporary implementations of such protocols [2, 3,
4, 5] usually look as the one shown in Figure 1: The
system is divided into several functional modules, each
carrying out one or more tasks that are required to real-
ize the agreement protocol. For instance, interaction with
clients is handled by a client management module. An-
other module implements the logic of the agreement pro-
tocol. The main task of the protocol is to ensure that all
replicas execute the same requests in the same order. The
ordering is achieved by running separate instances of the

plain protocol, separate consensus instances (Cx), each
comprising multiple message communication phases be-
tween replicas. During this procedure, the protocol logic
module can rely on additional modules to fulfill tasks
like authenticating and logging messages and managing
replica state. Finally, requests are executed by the ser-
vice implementation according to the determined order.
In these systems, the execution is parallelized by orga-
nizing threads partly around the functional modules and
hence the tasks they are responsible for. This leads to a
task-oriented parallelization [17] with threads interact-
ing via message queues or shared data.

Although this approach can make use of multi-core
processors to some extent, it has several drawbacks:
(1) The degree of parallelism is limited because task-
oriented parallelization entangles concurrent activities
with functional modules. If there are more cores avail-
able than tasks to be carried out, it is difficult to utilize
them all. (2) On the other hand, when there are too many
threads, this could entail unnecessary high scheduling
overhead including inefficient usage of processor caches.
All in all, aligning the number of threads to the number
of cores is hardly possible. (3) Additionally, the max-
imum performance of the system is determined by the
slowest task since single consensus instances are pro-
cessed in cooperation of more or less all modules in a
pipelined fashion. This is problematic as the extensive
use of cryptographic operations in BFT systems for mes-
sage authentication can quickly become a bottleneck [4].
(4) Messages and other data belonging to consensus in-
stances must be exchanged between the multiple threads
executing the different tasks, which results in a large
number of contention points impairing the scalability of
the system further. (5) Moreover, such an approach could
facilitate situations where threads unnecessarily rely on
shared data, for example when central modules are ac-
cessed. This makes the implementation more error-prone
as well as harder to understand and to maintain due to
required synchronization, while potentially introducing
even more contention points.

3 Actor-Based Decomposition
Following these observations, we first developed a pro-
totype that implements a standard BFT replication proto-
col, namely PBFT [4], using an actor-based decomposi-
tion of replicas. Here, the functional modules, called ac-
tors [1], interact exclusively by means of asynchronous
message passing; hence, they do not share any modifi-
able state. Due to actors being executed by at most one
thread at each point in time, only the queues used for
message passing have to be synchronized. Moreover,
while processing messages, actors are not allowed to use
blocking operations. This way, they define concurrent
tasks that can share threads of execution.



Relieving the protocol implementation of synchro-
nization concerns by means of this actor-based decom-
position eases the development essentially. The resulting
code is easier to understand and to maintain due to a clear
concept and the absence of disturbing synchronization
mechanisms. Moreover, the strong decoupling of func-
tional modules in form of actors supports an even further
separation of protocol tasks by deploying them on differ-
ent machines as proposed in the literature [5, 21]. The
most important advantage with regard to multi-core pro-
cessors, however, is the strict distinction between con-
currency and (potential) parallelism, the distinction be-
tween concurrent activities of the protocol realization
and the threads eventually executing them, which accom-
panies the pure actor-based approach. This enables flexi-
ble thread and dispatching configurations that are aligned
to the processor topology of the executing platforms.

4 Consensus-Oriented Parallelization
Despite the benefits of our actor-based BFT implemen-
tation compared to contemporary approaches, some lim-
itations remain: Single instances of consensus are still
processed by multiple actors, each fulfilling its particu-
lar part, such as connection handling, message authenti-
cation, protocol execution, etc. If two dependent actors
are executed by different threads on different cores, not
only the synchronization overhead for the internal actor-
to-actor message passing becomes noticeable. Also the
usage of the processor caches gets inefficient, because in
that case, the message passing has to be carried out by
means of slower caches. If the involved cores are located
at different processors of the system, this already expen-
sive procedure becomes yet more expensive [7]. In the
worst case, an actor-based BFT implementation suffers
from similar problems as contemporary systems in this
regard. The same holds for the maximum achievable de-
gree of parallelism, since the parallelization scheme of
an actor-based decomposition as presented so far still re-
mains task-oriented.

The Concept To solve these problems, we propose
a concurrency and parallelization scheme oriented on
complete instances of consensus instead of certain tasks.
The idea is, broadly speaking, to lower the data de-
pendencies between different consensus instances and to
bind all messages and tasks related to a specific instance
to a particular processor core. This way, the through-
put of the agreement protocol of a replicated service is
able to scale with the demand and the number of avail-
able cores by adapting the number of consensus instances
carried out independently on dedicated cores in parallel.

Figure 2 illustrates this concept: Actors realizing the
replication protocol are organized in pillars where each
pillar is responsible for certain instances of consensus
and executed by a dedicated thread. Overall, the scheme
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Figure 2: Consensus-oriented parallelization. Instances
of functional modules are organized in separate pillars
executing all tasks related to associated consensus in-
stances. Pillars are assigned to dedicated threads and
their number is aligned to the number of available cores.

works as follows: If a client sends a request, it is received
by the responsible connection actor and forwarded to the
client management actor located at the same pillar. Then,
the actor, or module respectively, that executes the proto-
col logic for that pillar initiates a new consensus instance.
The entire message exchange with other replicas during
the agreement phase is carried out via the pillar’s network
connections. All cryptographic operations can be exe-
cuted where they arise and do not need to be transferred
to other actors in order to enable concurrent processing.
If a consensus has been reached, the corresponding re-
quests are forwarded to the central service actor, which
executes the requests in the appropriate order.

Splitting the Protocol Logic To realize this, the first
step is to split the actor implementing the protocol logic.
Using PBFT [4] as basis, the data mainly shared between
consensus instances is the consecutive sequence number
that has to be increased for each new instance. This se-
quence number identifies the messages belonging to an
instance and finally determines the order in which the
corresponding requests have to be executed by the ser-
vice. At this point, PBFT and similar protocols make use
of a distinguished replica in the group, the leader, which
is responsible for making a proposal about which re-
quests are to be ordered in the next consensus instance.1

To enable multiple concurrently working protocol in-
stances, the space of sequence numbers can be parti-

1Is the current leader suspected by the other replicas to be faulty, a
so-called view-change protocol is carried out to eventually elect a new
leader. This and other sub-protocols of PBFT are not affected by the
proposed parallelization scheme and can be used without modifications
since the entity of a replica is not altered by the basic concept.



tioned. If NP protocol actors shall be used, each is re-
sponsible for the consensus instances c(i, j) = i + jNP
with i being the identifier of the actor and j a locally in-
creased counter. When a request is received by the client
management actor of the current leader, it forwards it to
a protocol actor, for instance with a round-robin strategy.
Subsequently, if a protocol actor i has received unordered
requests, it initiates the next consensus instance c(i, j)
and increments its local counter j. During the execution
of the agreement protocol for c(i, j), all messages be-
longing to it are directly forwarded from the actors han-
dling replica connections to the responsible protocol ac-
tor. The correct protocol actor i can be easily determined
by the sequence number n = c(i, j) contained in all pro-
tocol messages and the formula i = n mod NP. After an
instance has been finished, that is, the sequence number
and corresponding requests have been approved, the re-
quests can be processed by the actor that integrates the
service. Here, this actor has to ensure that requests are
executed in the order defined by the sequence numbers.

Splitting the Replica Connections So far, actors car-
rying out the protocol logic for assigned consensus in-
stances are able to make progress independently from
each other, but when a message is received on a replica
connection, this message has to find its way through the
processor caches before it can be handled by the asso-
ciated protocol actor. To mitigate this effect, not only
the protocol implementation but also the actors respon-
sible for the replica connections can be split. This nat-
urally leads to the usage of multiple network sockets or
connections for the communication between every pair
of replicas.2 Consequently, each protocol actor gets its
own set of replica connections and connection actors as-
signed, leading to increased cache efficiency.

Splitting the Client Management Also the client
management in conjunction with the client connections
can be distributed among all protocol actors or consen-
sus pillars, respectively. This reduces potential con-
tention points, increases the achievable parallelism, and
enhances cache efficiency further. However, it requires
additional considerations: If clients are exclusively as-
signed to single protocol actors, there could occur sit-
uations where the actor responsible for instance n + 1
received requests that can be ordered but the actor re-
sponsible for instance n is idle. Since requests have to be
executed in consecutive order of sequence numbers, it is
not allowed to execute the requests of instance n+1 un-
til n was carried out. As a result, the whole system could
stall if clients connected to the protocol actor for n do not
send any requests and thus prevent the execution of n.

2This also facilitates flow steering techniques as realized by oper-
ating systems (http://lwn.net/Articles/382428/) or even net-
work adapters and which try to optimize the cache usage from the re-
ception of a packet at the adapter up to the delivery to the application.

There are several strategies to solve this and to enable
a divided client handling: If a protocol actor has no re-
quests to order, it can signal this to the others. Then,
the instance could be exceptionally executed by another
protocol actor that does have unordered requests. More-
over, unordered requests as well as entire client con-
nections could be migrated to the idle actor installing a
form of load balancing. For the possible case that there
are no more requests to order but instances with higher
sequence numbers have already been agreed on, empty
consensus instances must be carried out effectively skip-
ping the instances and closing the gap to the instances
containing requests [13]. Another approach would be
to replace the described a priori partitioning of sequence
numbers with a dynamic assignment. Here, an arbiter ac-
tor would allocate sequence numbers or blocks of num-
bers for protocol actors on demand, additionally provid-
ing opportunities for constant load balancing.

The Results Other actors (e.g., the actor handling state
and message logging) can be split similarly to the exam-
ples described. Further, different configurations are pos-
sible: Clients could be managed by central actors shared
by all or some pillars. It is also not mandatory to employ
multiple connections between replicas. The actor-based
decomposition still allows a flexible configuration that
optimally fits the needs of specific deployments.

All in all, the advantages of a consensus-oriented par-
allelization scheme are manifold: (1) If consensus pillars
are assigned to single threads that in turn are aligned to
the number of available processor cores, ideally client
requests, protocol messages, and everything else belong-
ing to a consensus instance are accessed by the same core
up to the point where the instance has been finished and
the results are delivered to the service; hence, the pro-
cessor caches come to their full potential. (2) Since there
are only a few, if any, interactions between actors of dif-
ferent pillars, the need for synchronization and the num-
ber of contention points are reduced significantly, further
improving the system’s efficiency. (3) It gets easier to
balance load across homogeneous processor cores since
all pillars have to carry out roughly the same work, as-
sumed that differences related to requests are balanced
out. Compared to a pure actor-based decomposition, this
simplifies the thread configuration considerably. (4) De-
velopment is simplified as well. The plain replication
protocol can be implemented in a similar way as it is
specified. There is no or at least less need for transfer-
ring tasks to concurrent modules and thereby obfuscat-
ing the control flow solely for improving the run-time
performance. (5) Last but not least, the performance of
systems can scale with the demand and available com-
putational and networking capacities. The more cores a
platform comprises, the more pillars can be used and thus
the more consensus instances can be executed in parallel.

http://lwn.net/Articles/382428/


5 Evaluation

In a first evaluation of our proposed concepts, we com-
pare a BFT system that follows a state-of-the-art ap-
proach with task-oriented parallelization and no distinc-
tion between concurrency and parallelism, an implemen-
tation which separates concurrent tasks from threads, and
a configuration using a consensus-oriented paralleliza-
tion regarding their maximum throughput in a scenario
with an increasing number of available processor cores.

As starting point for all three compared approaches,
we use our actor-based BFT prototype implementation
written in Java. To measure the behavior of the state-of-
the-art approach, where threads are bound to concurrent
tasks and cannot be aligned to the available processor
cores, we configure it with a fixed number of threads for
all tested core configurations. It can be assumed that this
setup is very favorable for the traditional approach since
the basis is still an optimized actor-based implementation
with a clear concurrency architecture and defined syn-
chronization points at the message queues. Comparing
other existing BFT prototypes is left for future work. To
test the consensus-oriented parallelization, we split sin-
gle instance actors as described in the last section.

The measurements are conducted on five machines
equipped with two 2.5 GHz six-core processors. Each
core offers two hardware threads via simultaneous mul-
tithreading. Different numbers of available cores are
achieved by confining the process of the Java Virtual Ma-
chine to certain cores. The machines are connected using
three switched gigabit Ethernet adapters. Four machines
host a replicated counter service, the remaining machine
simulates 400 clients continuously issuing synchronous
requests. To measure the scalability regarding the maxi-
mum achievable number of consensus instances per sec-
ond, each instance orders solely one request.3 All mea-
surements are carried out five times; results are averaged.

The results are presented in Figure 3. Using a sin-
gle core with two hardware threads, the actor-based ap-
proach is able to process 170% more requests than the
state-of-the-art approach since the latter suffers from
high scheduling overhead. The consensus-oriented ap-
proach achieves even 20% more throughput than the
task-oriented actor-based configuration. It utilizes both
hardware threads more uniformly. With an increasing
number of cores, both task-oriented approaches quickly
reach their limits primarily due to the authentication of
messages; at some point, the cryptographic operations
on messages cannot be further parallelized beneficially.
Providing all available twelve cores to the replicated sys-
tem, the consensus-oriented approach is able to leverage
its fully parallelized execution of consensus instances

3Thus, the option to order batches of requests with single instances
is not used. It would increase the throughput of all approaches equally.
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Figure 3: Comparison of parallelization schemes regard-
ing their scalability in terms of achievable throughput
with increasing number of cores.

and its better cache efficiency. It achieves a throughput
twice as high as the task-oriented actor-based variant and
a throughput three times as high as the state-of-the-art
approach while still having the potential for even higher
rates with an increasing number of cores.

6 Related Work
Many efforts have been made to increase the efficiency
of BFT agreement protocols by reducing the number
of exchanged messages. Proposals range from the use
of hybrid fault models [11, 19], over speculative ap-
proaches [15], to different modes of operation [8, 11].

Bessani et al. [3], by contrast, investigate the practical
realization of single replicas of standard BFT protocols.
Their software architecture borrows from staged event-
driven architectures (SEDA) [20]. This leads to a task-
oriented parallelization scheme that does not distinguish
between concurrency and parallelism. The deficiencies
of such a design were already discussed in this paper.

Consensus-oriented parallelization can be regarded as
a form of vertical process architecture as described by
Schmidt et al. [17] for transport layer protocols. Contrary
to these protocols, however, BFT agreement protocols
require several phases of message exchange in a group
communication setting and have dependent instances.

Looking at crash fault-tolerant systems, Santos and
Schiper [16] present an architecture that is explicitly de-
vised for multi-core platforms. They state that their de-
sign is based on SEDA as well as the actor model. How-
ever, they also state that they deliberately break the actor
model at several points. All in all, their proposed archi-
tecture is very similar to the architecture from Bessani
et al., hence, it shares the same problems.

Kapritsos and Junqueira [13] propose another crash
fault-tolerant replication system. They distribute multi-
ple distinct clusters of agreement replicas over several
physical machines, which all handle a particular part of
the client requests. In contrast, our approach aims at



the better utilization of available processor cores to im-
prove the efficiency and performance of agreement repli-
cas without the need for additional hardware.

The consensus-oriented parallelization scheme as pre-
sented in this paper addresses the parallelization of
agreement protocols within each replica. In its current
form, the service implementation is still executed se-
quentially. However, proposals for how to parallelize the
service execution already exist [9, 12, 14]. These sys-
tems are complementary to our concept and we will in-
vestigate combined approaches as future work.

7 Conclusion
In this paper, we advocated an actor-based decompo-
sition of BFT replica implementations and presented
a consensus-oriented parallelization scheme for BFT
agreement protocols. While both concepts have the po-
tential to simplify the notoriously complex realization of
BFT systems, their main advantage is that they enable
BFT installations to scale with the number of available
processor cores. As our evaluation showed, they signifi-
cantly increase the efficiency compared to traditional ap-
proaches when the demand is low and only few cores
shall be used. If a high throughput is required, a con-
sensus-oriented parallelization allows BFT deployments
to exploit the capabilities of modern multi-core platforms
where state-of-the-art systems quickly reach their limits
imposed by not further parallelizable tasks. Additionally,
we believe that the concepts proposed in this paper can
also be beneficially applied to crash fault-tolerant sys-
tems, even though they typically do not require expen-
sive message authentication and are generally less com-
plex than BFT systems that tolerate arbitrary faults.
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