

Erasure Code with Shingled Local Parity Groups for

Efficient Recovery from Multiple Disk Failures

Takeshi Miyamae Takanori Nakao Kensuke Shiozawa

{miyamae.takeshi, nakao.takanori, shiozawa.kennsu}@jp.fujitsu.com

Fujitsu Laboratories Ltd.

Abstract

The ever-growing importance and volume of digital

content generated by ICT services has led to the de-

mand for highly durable and space-efficient content

storage technology. Erasure code can be an effective

solution to such requirements, but the current research

outcomes do not efficiently handle simultaneous multi-

ple disk failures. We propose Shingled Erasure Code

(SHEC), an erasure code with local parity groups shin-

gled with each other, to provide efficient recovery for

multiple disk failures while ensuring that the conflicting

properties of space efficiency and durability are adjust-

able according to user requirements. We have con-

firmed that SHEC meets the design goals using the re-

sult of a numerical study on the relationships among the

conflicting properties, and a performance evaluation of

an actual SHEC implementation on Ceph, a type of

open source scalable object storage software.

1. INTRODUCTION

The ever-growing importance of digital content gen-

erated by ICT service vendors has led to an increasing

demand for highly durable content storage technology.

For ICT services, triple replication technique has met

this demand for years, but its low space efficiency

(three times the storage capacity of user data) has made

this solution less attractive for vendors. Erasure codes

are a durable data storage technique with less redundant

information (parities), and are rapidly gaining populari-

ty.

The space efficiency and durability of erasure codes

come with increasing computational overhead. In par-

ticular, the recovery overhead associated with disk fail-

ures severely affects the availability and performance of

ICT services unless the performance interference of the

recovery operation is controlled properly. Throttling the

CPU and I/O bandwidth of the recovery operation to

minimize interference is one of the common practices

[18], but controlled interference entails a longer recov-

ery operation, which, in turn, makes the storage less

durable. Hence recovery performance enhancement

itself has been a focus of research in erasure code field

lately [10].

Recent, remarkable achievements in recovery per-

formance enhancement are Microsoft LRC (MS-LRC)

[9] and Facebook Xorbas [10]. They use the concept of

local parity, where a few instances of parity are calcu-

lated based only on subsets of an entire dataset. Given

that the amount of data read and transferred is reduced

only in those subsets of a dataset, the recovery con-

sumes a smaller amount of each ICT resource and be-

comes faster.

However, in the event of multiple disk failures, MS-

LRC and Xorbas use global parities, which include pari-

ty information calculated over an entire dataset, and a

large amount of data is transferred in the recovery oper-

ation. Because each of the disk failures is often co-

related in the real world [16], we are motivated to de-

velop a new erasure code that is robust against multiple

disk failures.

In this paper, we propose Shingled Erasure Code

(SHEC), whose local parity groups overlap each other.

The code is designed to recover efficiently from multi-

ple disk failures, and space efficiency and durability are

user-adjustable. To confirm the design goals of SHEC,

we first study in section 2 the relationships among the

three key properties of erasure codes (space efficiency,

durability and recovery efficiency) with our various

local parity group layouts. Then, we demonstrate that

the layout is adjustable to achieve the optimal combina-

tion of the intended properties to users. In section 3, we

show the aforementioned recovery efficiency of SHEC

through evaluation with the SHEC implementation in

Ceph[14], a type of open source scalable object storage

software.

2. ANALYSES OF LOCAL PARITY

GROUPS AND A NEW CODE

2.1. Properties of Local Parity Groups

In this paper, we call each split data element in an

erasure code stripe a ‘data chunk’ and each of the local

parity groups a ‘parity chunk.’ We define the local pari-

ty’s locality as the number of data chunks to calculate

each parity chunk.

We pick three main properties in the erasure code

with local parity groups.

 Space efficiency

 Durability

 Recovery efficiency

The first property, space efficiency, is defined as the

ratio of data chunks and calculated as k/(k+m) (k: the

number of data chunks, m: the number of parity chunks),

indicating cost efficiency.

The second property, durability, is defined as the

probability of data loss, as shown in equation (1) [17].

1)/()/1( f

fn MTBFMTTRMTBFPPDL (1)

PDL: Probability of data loss

MTTR: Mean time to recovery

MTBF: Mean time between failures

n: Total number of disks

f: Number of concurrent disk failures

nPf: n!/(n-f)!

The last property, recovery efficiency, is defined as

the inverse number of recovery overhead (recovery

overhead means the ratio of read chunks to all data

chunks during the recovery). Generally, the smaller the

locality is, the higher the recovery efficiency is. The

recovery efficiency raises the availability or perfor-

mance of ICT services.

Next, we now explain the three-way trade-off rela-

tionship among the abovementioned erasure code prop-

erties, as shown in Figure 1. First, we mention the rela-

tionship between space efficiency and durability. This

trade-off is obvious because if we add parities, durabil-

ity increases whereas space efficiency decreases (trade-

off #1). The second relationship is between durability

and recovery efficiency. If we reduce the locality to

increase recovery efficiency, the number of parity

chunks covering each data chunk decreases, indicating a

decrease in durability (trade-off #2). The last relation-

ship is between space efficiency and recovery efficiency.

To reduce the locality with equal durability, we must

add more local parities to keep the number of parity

chunks covering each data chunk, indicating a decrease

in space efficiency (trade-off #3).

Customers often opine that durability should not be

sacrificed to increase recovery efficiency. In such a case,

we usually suggest sacrificing space efficiency instead

of durability because space efficiency and recovery ef-

ficiency also share a trade-off relationship (#3).

In the remainder of this paper, we will propose and

evaluate the new erasure code with local parity groups,

based on the above analyses.

2.2. Shingled Erasure Code

We propose a new erasure code, Shingled Erasure

Code (SHEC), which is designed for efficient recovery

in the event of multiple disk failures, with space effi-

ciency and durability adjustable according to user re-

quirements. SHEC is an erasure code with local parity

groups, and the calculation ranges of local parities are

shifted and partly overlap with each other, similar to

arranging shingles on the roof of a house. All local pari-

ty groups have the same locality and are shifted at al-

most regular intervals. SHEC(k,m,l) represents a layout

with k data chunks, m parity chunks and locality l.

The average number of parity chunks that have rela-

tion to each data chunk is ml/k. Because the failure of

ml/k+1 data or parity chunks can cause data loss, we

use ml/k as an estimator of SHEC’s durability. For ex-

ample, in the case of SHEC(10,6,5), the estimator is 3

(= ml/k = 6*5/10) and the four failures of D1/P1/P5/P6

cause data loss because D1 cannot be recovered from

the remaining chunks (Figure 2).

In the case of multiple data chunk failures, SHEC re-

covers data from multiple parity chunks. Usually, there

are multiple combinations of parity chunks that recover

the failed chunks. SHEC selects the one which requires

the lowest number of disks read. For example, when

D6/D9 fail in Figure 2, SHEC selects P3/P4 because the

union of P3/P4’s calculation ranges results in six con-

tiguous data chunks, and the size of the union (that indi-

Figure 1: Three-Way Trade-Off

Figure 2: Estimation of SHEC’s Durability

cates the amount of data read) is the least among all

candidate parity chunk pairs.

To show SHEC’s improvement factor in durability,

we compare SHEC(6,4,3) with an instance of simple

local parity groups (SLPG) (Figure 3). If D1/D2/D3 fail

simultaneously, the SLPG cannot be recovered because

only P1/P3 have relation to D1/D2/D3. In contrast,

SHEC(6,4,3) can be recovered from P1/P2/P4. Among

all failure patterns, SHEC(6,4,3)’s data loss cases num-

ber half those of the SLPG. That means that

SHEC(6,4,3)’s durability is twice as high as SLPG with

the same space efficiency and recovery efficiency.

Moreover, the higher the durability estimator is, the

more the improvement factor of durability is (Figure 4).

The improvement is ascribed to the shifting of the cal-

culation range for each local parity.

Formulating the SHEC generator matrix is quite sim-

ple. First, we create a generator matrix of Reed Solo-

mon systematic code (abbreviated as RS(k,m) in this

paper). Next, each matrix element whose corresponding

data chunk is not used for calculating the corresponding

parity chunk is set to zero (Figure 5). CPU utilization is

directly proportional to the number of non-zero matrix

elements.

2.3. Comparison among SHEC Parameter Sets

In this section, we show that SHEC provides layouts

with less recovery overhead, ensuring that conflicting

properties of space efficiency and durability are adjust-

able according to user requirements.

Restricted to the meaningful ones, SHEC can gener-

ate over 100 different parameter sets in the three-

dimensional property space. We pick some sets from

them and compare their erasure-code properties. Let us

start with SHEC(4,2,4), RAID6’s equivalent SHEC

parameter set, and search for alternative candidates that

are more recovery-efficient with almost equal durability

(Table 1). In this case, we sacrifice the space efficiency,

and we can get the candidates SHEC(4,3,3) and

SHEC(6,4,3).

k m l ml/k
Space

Effic.

Durability

(Annual)

Rcvr-Ovhd

(1x/2x fail)

4 2 4 2 67% 1.44E-17 1.00/1.00

4 3 3 2.25 57% 1.60E-18 0.75/1.00

6 4 3 2 60% 3.46E-18 0.50/0.74

Table 1: Candidates with Equal Durability

Let us search for other candidates that are more re-

covery-efficient with almost equal space efficiency

(Table 2). In this case, we sacrifice the durability, and

we can get the candidates SHEC(5,3,3) and

SHEC(7,4,3).

k m l ml/k
Space

Effic.

Durability

(Annual)

Rcvr-Ovhd

(1x/2x fail)

4 2 4 2 67% 1.44E-17 1.00/1.00

5 3 3 1.8 63% 1.22E-10 0.60/0.90

7 4 3 1.71 64% 1.65E-10 0.43/0.69

Table 2: Candidates with Equal Space Efficiency
2.4. Comparison with Other Erasure Codes

We compare the theoretical recovery overhead be-

tween the Reed Solomon code, MS-LRC, Xorbas and

SHEC, under the condition of almost equal durability

(Figure 6). SHEC’s recovery overhead is less than the

others in cases of double or more disk failures. The oth-

ers are worse because they must use global parities in

those cases.

Figure 4: SHEC’s Improvement Factor of Durability

Figure 5: SHEC Generator Matrix

Figure 3: SLPG vs. SHEC

Figure 6: Recovery Overhead between Codes

3. IMPLEMENTATION AND EVALUA-

TION

3.1. Ceph Architecture

We evaluated SHEC on Ceph. A Ceph cluster in-

cludes a large number of object storage daemons

(OSDs). Each OSD corresponds to a storage device. In

this paper, an OSD indicates a whole disk device. A

placement group (PG) is a set of OSDs over which the

data and parity chunks are distributed randomly.

When a data is written on a Ceph cluster, (a) the data

is divided into 4MB Ceph objects. Next, (b) the PG is

determined by a hash value for the name of the object.

Finally, (c) each item of data or parity chunk is stored in

one of the OSDs assigned to the PG. When (d) an OSD

fails, (e) another OSD is newly assigned to the degraded

PG, and the lost chunk is recovered to the OSD from

the remaining chunks in the acting-set.

3.2. SHEC Implementation

The Ceph object storage has an interface plugin for

erasure code from v0.80.1 (Firefly) release. It supported

the Reed Solomon code as a default plugin, and we im-

plemented SHEC as an alternative. The interface is suf-

ficient to implement SHEC because it includes a useful

function minimum_to_decode(), which yields the set of

chunk numbers required to decode the lost chunks.

SHEC yields the subset of the chunk numbers that the

Reed Solomon code yields.

3.3. Test Conditions

We evaluated the SHEC(6,4,3)’s recovery perfor-

mance and selected RS(6,4) as a reference (Figure 8).

The comparison with Xorbas or MS-LRC is beyond the

scope of this paper.

Hardware setup and software version for testing is

described in Figure 9.

3.4. SHEC Recovery Performance

We prepared 100GB (25,000 * 4MB objects) of data

and measured the recovery time from double OSD fail-

ures in each of the cases of RS(6,4) and SHEC(6,4,3).

We set the number of Ceph recovery threads as five. At

first, we found that the SHEC(6,4,3)’s total CPU over-

head was about 20% less than that of RS(6,4) as shown

in Figure 10. We consider that this was mainly due to

the effect of our simplified generator matrix (Figure 5)

because CPU utilization is directly proportional to the

number of non-zero matrix elements.

Next, RS(6,4)’s recovery overhead is 1.00 (the num-

ber of read chunks is equal to k), whereas that of

SHEC(6,4,3) is 0.74 (Table 1). Therefore, we estimated

SHEC(6,4,3)’s recovery time at 74% of RS(6,4) in the

beginning. However, this experiment showed that,

though the amount of data read from the disks was 74%,

the actual recovery time was 81.4% of RS(6,4) (Figure

10).

The reason was a partial bottleneck. We assumed that

one of the system resources must be bottlenecked, and

in fact, the disk seemed bottlenecked (Figure 11), while

the CPU and network (Figure 10, Figure 12) did not at

all. However, the disk bottleneck did not continue con-

stantly. Seeing Figure 11, the disk bandwidth was not

fully utilized during 35% of entire recovery time (in the

rectangle), and we could re-estimate SHEC(6,4,3)’s

recovery time as follows.

0.74 * (1-0.35) + 1.0 * 0.35 = 0.831 (2)

The result was 83% of RS(6,4), almost the same as

the actual ratio, 81.4%.

Finally, we concluded that SHEC’s recovery over-

head was decreased in comparison with the Reed Solo-

mon code. However, in our test conditions, 70% of

SHEC’s recovery efficiency emerges as decreasing la-

tency of recovery completion, and 30% emerges as de-

creasing disk bandwidth used for recovery processing.

Figure 7: Ceph Architecture

Figure 9: Hardware Setup and Software Version

Figure 8: Parity Layouts for Comparison

Moreover, we obtained a similar result when we tried

the comparison between RS(5,3) and SHEC(5,3,3) in

the event of single OSD failure.

4. RELATED WORK

Various storage systems have used erasure codes [1]

to realize a higher durability of storage data for a long

time. Especially, the well-known RAID [1], based on

the Reed Solomon code, was deployed in almost all of

the highly reliable storage systems.

After Google disclosed Google File System [3],

which used triple replication with the diffusion of com-

modity disks, other major cloud storages such as

Apache HDFS [4] and Microsoft Azure storage [5] fol-

lowed the trend. However, because the volume of data

generated by ICT services started to grow explosively,

the erasure code’s space efficiency was revalued again

[6].

In recent years, recovery overhead has become re-

garded as a serious problem of erasure code, especially

in distributed or scalable storages [9], [10]. Many re-

searchers have proposed methods including local parity

techniques to decrease the recovery overhead. WEAV-

ER Codes [7] suggested a generic method which in-

cludes most of the possible local parity layouts. Mi-

crosoft Pyramid Codes [8], followed by Azure’s Local

Reconstruction Codes (MS-LRC) [9] and Facebook

Xorbas [10], discussed the durability of local parities.

MS-LRC insisted that the probability of data loss (in-

formation-theoretically non-decodable case) is limited
to the trivial level. On the other hand, Xorbas discussed

the relationship between locality and code distance

highly theoretically. Regenerating Codes [11], [12] sug-

gested an interesting approach which discussed the

properties of the optimal trade-off between space effi-

ciency and recovery bandwidth via ‘cut-based’ analysis.

Rotated Reed-Solomon Codes [13] suggested local pari-

ties and has similar layouts to SHEC. However, it is

characterized by the number of data disks being limited

to the product of a pair of integers. Fountain code [19]

also seems to use a sliding window, but takes a highly

probabilistic approach.

5. CONCLUSION AND FUTURE WORK

First, we proposed SHEC, a new erasure code de-

signed for high recovery efficiency, especially from

multiple disk failures. Second, we showed that SHEC

provides the layouts with more recovery efficiency than

the Reed Solomon codes, ensuring that the conflicting

properties of space efficiency and durability are adjust-

able according to user requirements. Finally, we showed

through experiments that the SHEC’s recovery is actual-

ly faster than the Reed Solomon codes.

However, it may not be easy to show the normal

SHEC’s superiority to state-of-the-art codes (Xorbas

and MS-LRC) without any sacrifices of space efficiency

or durability. Therefore, we will expand the normal

SHEC concept into an asymmetric one or one bundled

with global parities in the future.

Figure 10: Recovery Progress and CPU Utilization

Figure 11: Disk Utilization

Figure 12: Network Traffic

6. REFERENCES

[1] L. Rizzo. Effective erasure codes for reliable computer

communication protocols. Computer Communication

Review, April 1997.

[2] David A. Patterson, Garth A. Gibson, and Randy H.

Katz. A case for redundant arrays of inexpensive disks

(RAID). In Proceedings of the 1988 ACM SIGMOD In-

ternational Conference on Management of Data, pages

109-116, Chicago, Illinois, September 1988.

[3] Ghemawat, S., Gobioff, H., and Leung, S.-T. The

Google File System. In 19th Symposium on Operating

Systems Principles. Lake George, NY. 29-43, December

2003.

[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The

hadoop distributed file system. In Proceedings of the

2010 IEEE 26th Symposium on Mass Storage Systems

and Technologies (MSST), pages 1-10, Washington, DC,

USA, 2010. IEEE Computer Society

[5] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A.

Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H.

Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Edwards,

V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M.

Fahim ul Haq, M. Ikram ul Haq, D. Bhardwaj, S. Daya-

nand, A. Adusumilli, M. McNett, S. Sankaran, K.

Manivannan, and L. Rigas. Windows Azure storage: A

highly available cloud storage service with strong con-

sistency. In Symposium on Operating Systems Princi-

ples, 2011.

[6] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding

vs. replication: A quantitiative comparison. In Procs. of

IPTPS, 2002.

[7] J. L. Hafner. WEAVER Codes: Highly fault tolerant

erasure codes for storage systems. FAST 2005, San

Francisco, CA, Dec. 2005.

[8] C. Huang, M. Chen, and J. Li. Pyramid codes: Flexible

schemes to trade space for access efficiency in reliable

data storage systems. Presented at the IEEE Int. Symp.

Network Computing and Applications, Jul. 2007.

[9] C. Huang, H. Simitci, Y. Xu, A.Ogus, B. Calder, P. Go-

palan, J. Li, and S. Yekhanin. Erasure coding in Win-

dows Azure Storage. Presented at the USENIX Annu.

Tech. Conf., Boston, MA, 2012.

[10] M. Sathiamoorthy, M. Asteris, D. S. Papailiopoulos, A.

G. Dimakis, R. Vadali, S. Chen, D. Borthakur. XORing

elephants: novel erasure codes for big data. In Proc. of

the Very Large Data Bases conference (VLDB), 2013,

pp. 325-336.

[11] Y. Wu, A. G. Dimakis, and K. Ramchandran. Determin-

istic regenerating codes for distributed storage. Present-

ed at the Allerton Con. Control, Computing, and Com-

munication, Urbana-Champaign, IL, Sep. 2007.

[12] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ram-

chandran. Explicit and optimal exact-regenerating codes

for the minimum-bandwidth point in distributed storage.

In Proc. IEEE Int. Symp. Information Theory (ISIT),

Austin, Jun. 2010, pp. 1938-1942.

[13] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang.

Rethinking erasure codes for cloud file systems: Mini-

mizing I/O for recovery and degraded reads. In FAST

2012.

[14] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn.

Ceph: A scalable, high-performance distributed file sys-

tem. In Proc. of the 7th Symposium on Operating Sys-

tems Design and Implementation, Seattle, WA, Novem-

ber 2006.

[15] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn.

CRUSH: Controlled, scalable, decentralized placement

of replicated data. In Proc. Supercomputing (SC), 2006.

[16] D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Tru-

ong, L. Barroso, C. Grimes, and S. Quinlan. Availability

in globally distributed storage systems. In OSDI, 2010.

[17] Richard Elling. A story of two MTTDL models. Ram-

blings from Richard’s Ranch, 2007. Retrieved from

https://blogs.oracle.com/relling/entry/a_story_of_two_m

ttdl

[18] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi and M.

Dahlin. Lazy means smart: Reducing repair bandwidth

costs in erasure-coded distributed storage. In Proc.

SYSTOR, Jun. 2014.

[19] M. Asteris and A. G. Dimakis. Repairable fountain

codes. In Proc. Int. Symp. Inform. Theory, Cambridge,

MA, July 2012, pp. 1752–1756.

https://blogs.oracle.com/relling/entry/a_story_of_two_mttdl
https://blogs.oracle.com/relling/entry/a_story_of_two_mttdl

