
Providing High Availability in Cloud Storage by decreasing Virtual Machine

Reboot Time

Shehbaz Jaffer, Mangesh Chitnis, Ameya Usgaonkar

NetApp Inc.

Abstract

A Virtual Storage Architecture (VSA) is a storage controller

deployed as a virtual machine on a server with a hypervisor.

The advantage of VSA is to leverage shared data storage

services without procuring additional storage hardware,

which is a cost effective solution. In case of VSA, high

availability (HA) is achieved by restarting the failed virtual

machine on an event of a software failure. Rebooting the

VSA is a slow operation thereby reducing the overall service

availability. In this paper, we describe the challenges and

approaches taken to decrease reboot time of VSA to achieve

High Availability. We have been able to reduce the VSA

reboot time by 18% using our optimizations. We also ex-

plore the changes required in Journal based File systems for

efficient operation in the Cloud.

Keywords- Cloud Storage, Virtualization, High Availability, Data

Center, Software Failure

1. Introduction
The QOS offered by a data service provider is largely

determined by its capability to provide non-disruptive ser-
vice to its clients. Enterprise Storage solutions such as
NetApp® FAS boxes [1] and Amazon EC2 [11] report
99.999 percent availability, which translates to a downtime
of 5 minutes in a year. Achieving these figures in a cost ef-
fective manner with minimal changes in the storage software
is a big challenge today.

Virtualized Enterprise storage solutions provide high
availability (HA) in VSA by rebooting a node (Virtual Ma-
chine) on the event of a crash. The total time taken to reboot
a VSA has been reported to be of the order of few minutes
for setups having large number of volumes. With all enter-
prise solutions looking at storing most of their data in the
cloud, providing high data availability in the cloud has be-
come imperative.

In Filer (storage hardware controllers) setups, High
Availability is provided by shipping hardware boxes in an
active-active or active-passive HA pair. On the event of a
crash, the client requests are redirected to the partner filer
while the first filer reboots and restores its state. Once the
first filer restores its state, the client requests are redirected
to the first filer. This requires two filers or two storage in-
stances. VSA is a more cost effective (but less failure resili-
ent) cloud storage solution offered by enterprise storage
companies. Here, the storage solution consists of one node
and all client requests are redirected to that node. On the
event of a failure, the VSA reboots and client I/O operations
get serviced only after the VSA is up and running.

In this paper, we propose quick reboot of VSA to
achieve high availability. For this purpose, we cache file
system metadata that is read by the Operating System during
volume mount inside the host RAMDisk. This cached
metadata is then read at the time of reboot to reduce the
overall boot time. While doing this, we have found some
interesting insights for using Journaling filesystems such as
the Ext3 file system [3] in the cloud, and optimizations that
can be done in such filesystems to make it suitable for quick
reboot in cloud environments. We have used a prototypical
system developed in our research facility as a Virtual Stor-
age Architecture (VSA) for all the experiments and architec-
tural changes mentioned in this paper.

2. Related Work
Protecting memory state across an OS reboot has been ex-
plored earlier [4][6]. P Chen et.al have also explored cach-
ing and retaining file system metadata across OS reboots.
[5]. In order to eliminate the corruption of file system
metadata cached in the file cache across reboot, the write-
permission bit in the page table is enabled only while writing
to a page and disabled afterwards. This gives us the same
reliability against corruption that is provided by disks.
Linux [7] itself has undergone massive changes over the
kernel versions to reduce the boot time by reducing the con-
current processes that get activated during the first few sec-
onds of Linux boot[8]. Most of the Linux distributions now
offer Kexec [9] feature to bypass the boot process through
BIOS. Recovery-Oriented Computing (ROC) [16] proposes
novel techniques based on isolation and redundancy for fine
grained recovery of hardware and software components. In
contrast, our approach employs a light weight VM based
quick reboot solution to increase the overall availability.
Our solution is based on the assumption that the likelihood
of hardware and hypervisor failures is much less compared
to application failures (i.e. VMs).

Large data centers [10] also provide fast restarts in their

database systems by using shared memory. The Scuba
TM

[12] in-memory database system decouples memory lifetime

from process lifetime by storing a valid memory state across

system reboot. The time to restore the memory state from

another shared memory is much less than rebuilding the

memory state by making read requests to disk.

3. Architecture

3.1 Problem Description

Users generally deploy VSA in order to leverage storage

data services while using their commodity disks in order to

save on cost. This cost advantage comes at the expense of

High Availability and performance. High Availability is

measured in terms of downtime with respect to total time.

The downtime in case of VSAs is primarily due to the virtu-

al machine shutting down because of hardware or software

failures. This involves the time required to perform a clean

shutdown of the corrupted virtual machine and rebooting it

to a point where it can start accepting client requests. This

downtime can be further broken down in to the following

stages: a. core dump before shutdown; b. POST, kernel,

module load; The kernel and module blocks have to be read

from disk (vis-à-vis flash card used in Filers) ; c. core save

on boot; d. V-NVRAM (Virtual Non Volatile RAM) load,

NVRAM is used to store the journal data - In case of VSA,

NVRAM is emulated by mapping a portion of OS memory

backed by a disk file which could be synchronous or asyn-

chronous depending on the required performance and relia-

bility. The V-NVRAM load time involves reading this file

and mapping its contents on the mapped memory region;

and e. File System (FS) mount and File System (FS) replay.

The mount and replay time involves loading volume metada-

ta blocks (superblock, inode map, etc.) and user blocks af-

fected during the shutdown. This time has significant impact

on the overall downtime and depends on the number of ac-

tive volumes associated with the VSA. The following dia-

gram shows the boot timeline.

Figure 1: Boot time line

3.2 Host RAMDisk Architecture

The high-level functional block diagram is depicted in Fig-

ure 2. VSA runs as a Virtual Machine (VM) on a Host OS

(Type 2 hypervisor) or on a bare-metal hypervisor (Type 1

hypervisor) which we call as Host Machine (HM). In either

case, VSA uses a portion of HM’s RAM (fast storage medi-

um) as persistent storage to store File System meta-data

blocks used during mount operation. The main intuition be-

hind this setup is that, as accessing RAM is much faster than

disk, the reboot mount time will be reduced significantly.

The primary assumption here is that, whenever VSA has to

undergo reboot due to a software panic, the fault causing

this panic is isolated within the VSA’s VM and HM is unaf-

fected by this fault. Hence, although VSA is rebooted, HM

is still in a running state and is able to maintain its memory

state. Major cause of a VSA reboot is a software failure. We

propose that for such software failures, a persistent media

with respect to VSA reboot could help decrease the total

VSA downtime.

The RAM portion of HM is used as RAMDisk to store me-

ta-data disk blocks and V-NVRAM blocks. This RAMDisk

is then exposed as a SCSI/IDE disk to VSA. The disk files

for V-VNRAM and meta-blocks in VSA are now located on

HM’s RAM (i.e. low latency medium). This involves mini-

mal change in VSA’s existing implementation.

The mount and replay time is minimized by synchronizing

the meta-data buffers (i.e. file system buffers involved dur-

ing volume mount operation) between VSA memory buffer

cache and HM’s memory buffer cache in RAMDisk. User

metadata buffers (i.e. Inode buffers) involved in file opera-

tions during CP are also kept in this metadata cache. V-

NVRAM log is synchronized between VSA and Host

RAMDisk. The V-NVRAM which is typically backed by a

disk file is now also backed by an in-memory V-NVRAM

file on HM as shown in Figure 2. This eliminates the delay

in reading the V-NVRAM file from disk on reboot.

Since, the metadata buffers and V-NVRAM logs are present

in memory the disk access time which amounts to the bulk

of downtime during mount and replay is reduced. The VSA

also saves on the time required to dump and save core. On

reboot, the VSA starts loading V-NVRAM and metadata

buffers from HM RAMDisk files instead of loading these

buffers from disk. It is possible to place Host RAMDisk

buffers on different machines in order to improve reliability.

It is also possible to extend the functionality of HOST

RAMDisk as an external caching device.

3.3 Metadata Buffer Interception and Indexing

The process of metabuffer caching and indexing is shown in

Figure 3. When the VSA starts for the first time, the

metabuffer index is empty. Subsequently, as metablocks are

read from and written to disk, the read /write calls are inter-

cepted to either fill in the metabuffer cache or read buffers

from this cache.

Metabuffer insert is called from two different places during

the first boot.

1. Early boot metabuffer load: During the boot phase all

volume mount and meta file read operations are inter-

cepted to push the meta blocks in the metacache

2. CP write: On every checkpoint, when 4K buffers are

written back to disk the write call is intercepted and

these buffers are replaced in the metacache

The modified metacache is flushed back to host RAMDisk

on every CP in order to maintain a persistent copy of all

modified metablocks. This makes sure that in an event of

crash we can recover consistent 4K blocks from metabuffer

residing on host RAMDisk.

Metabuffer cache includes two sections:

1. Metabuffer Index: This portion contains information

about the buffer such as Volume Id (Aggregate ID), File

Id, Aggregate Block Number (this is unique per Aggre-

gate), Meta Block Index (this is index of 4K block)

2. The actual 4K metablock along with metabuffer index

values for sanity check

Figure 2: Functional Blocks

The metabuffer index is unsorted. On reboot, when

metabuffer cache is loaded from host RAMDisk, the

metabuffer index is sorted based on Volume Id and Block

Number. This is required to reduce the block search opera-

tion on every read call. The block search is essentially a

binary search on metabuffer index. Whenever the index is

found, the metabuffer Index is used to retrieve the 4K block.

This is required because although metabuffer index is sort-

ed, the 4K blocks are left unsorted to reduce the overhead of

moving 4K blocks.

Thereafter, during volume mount and file read, all read op-

erations are intercepted to read the 4K block from meta-

cache. The volume Id, file Id and block number tuple is used

to search for the 4K block in the sorted metabuffer index. In

case of a hit, the 4K block is returned back to the caller; else

the read call is forwarded further to read the 4K block from

disk.

4. Experiments
Our experiments focus on comparing the re-boot time of an
unmodified VSA (Vanilla VSA) with respect to VSA with
our metabuffer cache modifications.
We first check the percentage of metadata that has been
cached into Host RAMDisk, which we call the hit rate. To
count the amount of blocks cached, we make relevant
changes (add counters) in the inode blocks to keep statistical
information regarding count, block number, per block mount
time, block misses and system events.
In order to measure the amount of time taken to complete
various phases of boot process, (mount_volume and
boot_complete time) we use customized macros which call
the FreeBSD gettimeofday() function to evaluate the amount
of time taken for a reboot. For measuring the CPU statistics,
we use customized macros system_getstats () which internal-

ly reads data from FreeBSD emulated processor structures
(freebsd_sched_processor_getstats ()).

Figure 3: metablock Interception and Indexing

4.1 Hit Rate

Hit rate is the ratio of the total number of metadata blocks
cached in the Host RAMDisk to the actual number of
metadata blocks that are there for a particular set of Vol-
umes. Figure 4 denotes the total number of metadata blocks
captured by our code and cached inside metabuffer cache.
Each block cached is of 4K size. As evident in the graph,
with the increase in the number of volumes, the number of
cached blocks also increases proportionately. The last bar
for prefetch X denotes the number of blocks retrieved from
metacache buffer when prefetch logic is disabled. Essential-
ly, most of the file systems use a prefetch logic to retrieve
read and buffer certain blocks before the mount process be-
gins. This is to reduce the random disk I/O to fetch Meta-
blocks during the actual mount process. boot_complete
block reads are the number of metablocks read by VSA
until the boot process is complete. We were able to achieve
a high hit rate of 89 % for 400 volumes with prefetch disa-
bled.

Figure 4: MetaBuffer Hit Ratio vs Volumes

4.2 Effect of Caching on Boot Time

Figure 5: Boot Time vs Volumes

Figure 5 shows the effect of caching on the boot time. “Va-

nilla Boot complete” is the time required to boot VSA with

different number of volumes without metabuffer cache sup-

port, i.e. all metablocks are retrieved from disk. Similarly,

“boot complete reboot” shows the time required to reboot

VSA when metabuffer blocks are retrieved from metabuffer

cache. This depends on the hit rate (refer Figure 4). As evi-

dent from the graph, even with caching metablocks, we do

not see any significant improvement in boot time. On the

contrary, up to 300 blocks with prefetch enabled, the reboot

time with metabuffer cache is higher than without metacache

buffer. Only after 300 volumes with prefetch disabled when

the amount of metabuffer blocks grows significantly, we

start noticing the effect of metabuffer cache with slight im-

provement in reboot time.

In the following subsection, we will see the reasons for the

lack of improvement in reboot time with metabuffer caching

and some remedies to tackle these anomalies.

4.3 Effect of Host Page Cache

Apart from our own caching mechanisms, the Host Machine

also caches few blocks that were fetched by the Guest Oper-

ating System during its execution. This can be seen in Figure

1 where Linux Host uses page cache to buffer Guest OS

vmdk disk buffers. To explore the effect of page cache, we

calculated the amount of time taken for a reboot after clear-

ing the host page cache against the normal reboot. The re-

sults (Table 1) showed that VSA clean_host_buffer took

more time than a normal VSA run without clearing the host

buffer. The effect of host buffer, although not very signifi-

cant, indicated why in production environment, we were

getting variable reboot times.

 mount complete

300 Volumes

boot complete

300 Volumes

Host cache 22.097 secs 39.192 secs

Host clean-cache 28.714 secs 45.498 secs

Table 1: Host Page Cache

In production environment, the host page cache was variably

caching the blocks read by the Guest VM. Also, with other

guests concurrently running on the same host, the effect of

page cache was not very predictable.

4.4 Message passing overhead with low latency device

In order to deal with high latency devices like disk most of

the software architectures make use of threads and message

passing architecture. This kind of architecture allows threads

with high CPU activity to run without blocking for disk I/O.

Also, the message queues help to increase the overall

throughput by handling more requests per unit time. Howev-

er, this architecture suffers from high latency when a low

latency medium like RAMDisk is used instead. The over-

head of message and thread scheduling creates a software

bottleneck thereby increasing per block latency and overall

boot time. Figure 6 shows time consumed by SCSI read i.e.

actual disk block read and raid_send_async i.e. time spent

between an actual request of buffer until the buffer is ser-

viced.

Modified sequence diagram in Figure: 7 shows synchronous

call mechanism which eliminates message passing overhead

for low latency devices like RAMDisk. Most of the asyn-

chronous calls for RAID IO, SCSI and drivers are eliminat-

ed whenever a cached buffer is found in the metabuffer. Al-

so, instead of returning the cached buffer as a message back

to the calling thread, the modified mechanism calls the

read_handler directly thereby avoiding the message and

thread scheduling overhead. This reduction in message and

thread scheduling overhead is shown in Figure 8.

4.5 Per Block Fetch Breakdown Analysis

We mapped the time taken per block while fetching each of

the metadata blocks from the host RAMDisk to memory.

Interestingly, we found that there were two sections as

shown in Figure 9 where the time to fetch the blocks were

much higher than the rest of the blocks. The first peak (we

call it the boot_time_peak) occurred during early boot when

all the buffers were retrieved from metabuffer cache with no

cache miss. Similarly, for the second peak (CP_peak) most

of the buffers were read from metabuffer cache; however

there was a significantly high CPU activity.

Figure 6: Disk Message Passing

Figure 7: Direct cached buffer passing

Figure 8: Message passing overhead

4.6 Effect of Read Ahead Parameter

To solve the issue of boot time peak, we investigated which

blocks are being read during the early stage of boot time.

Many buffers that were being read during the boot cache

were dummy reads. The file system was reading them in

advance to use them later in the future. These dummy blocks

were being fetched from the disk even though their- use was

limited during boot time. This disk I/O activity was delaying

the mount time of all the metablocks present in metabuffer

cache. Disabling read ahead lead to decrease in time for

block fetches during boot time peak as shown in Figure 10.

Figure 9: Per block boot time analysis

Figure 10: Disabling read ahead optimization

4.7 Consistency Points – Checkpointing

A Journal Based File System [22] replays the journal log

periodically or when the journal is full (whichever is earli-

er). Each such instance of replaying the journal log is called

a consistency point (CP). We observed that during replay of

the journal log, the time taken to fetch the metadata from

buffer cache was hit significantly. During CP which is a

CPU intensive activity, the CP thread keeps the vCPU occu-

pied. This job prevents other I/O threads from retrieving the

metabuffers from the RAMDisk. Thus during the whole CP

cycle, there is a visible increase in the amount of time taken

to fetch the metacache blocks from memory. The two peaks

shown in Figure 9 during CP are two instances of CP (dirty

block flush events) corresponding to two CP sections within

the Journal log. This CP is required during boot to bring the

file system in to a consistent state prior to accepting and

servicing new user I/O requests. We plan to address this

problem in our future work by reducing the amount of data

required to be flushed during CP.

5. Conclusion

In this paper, we proposed a technique for quick reboot of

virtual storage appliance using host hypervisor RAMDisk.

Early results were contrary to our intuition that having a

faster storage medium would seamlessly help reduce read

latency and reboot time. The complete reboot cycle profiling

and analysis helped identify reasons for these bottlenecks.

We showed the impact that asynchronous message passing

and thread scheduling could have on read latency with low

latency device. Further, we also identified that read ahead

optimization could increase boot time latency, when all the

buffers required during boot are already cached. Finally, any

journal replay activity further delays read path thereby slow-

ing the boot process. After making appropriate changes to

mitigate the effect of the above mentioned bottlenecks we

were able to reduce the boot time by approx. 18 %.

Table 2: Percentage Improvement in Reboot time after every

optimization

VSA Configuration Mount (%) boot_complete (%)
Caching Metadata 4.1 5.5

+Disabling Async Call(s) 14.5 15.2

+Disabling Read Ahead 22.1 18.1

6. References

 [1] NetApp High Availability -
http://www.netapp.com/in/solutions/data-protection/high-
availability.aspx

[2] D. Hitz, J. Lau, M. Malcom, “WAFL – Write Anywhere File
Layout” Proc. USENIX Winter 1994 Technical Conference.

[3] S. Tweedie, “The Extended 3 Filesystem” Proc. Linux
Symposium 2000, Ottawa.

[4] M. Sullivan and M.Stonebraker, “Using write protected data
structures to improve software fault tolerance in highly
available database management systems”. Proc. 1991
International Conference on Very Large Data Bases (VLDB),
pages 171-180. September 1991.

[5] P. Chen, W. Ng, S. Chandra, C. Aycock, G. Rajamani, D.
Lowell, “The Rio File Cache: Surviving Operating System
Crashes” 1996 International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS).

[6] R. Wahbe, S. Lucco, T. Anderson, S. Graham, “Efficient
Software based Fault Isolation” – Proc. 14th ACM Symposium
on Operating Systems Principles, pages 203-216, December
1993.

[7] The Linux Kernel – https://www.kernel.org

[8] The Linux Boot Chart http://www.bootchart.org/

[9] Kexec - https://wiki.archlinux.org/index.php/kexec

[10] A. Goel, B. Chopra, C. Gerea, D. Matani, J. Metzler, F. Haq, J.
Wiener, “Fast Database Restarts at Facebook” – ACM
SIGMOD 2014

[11] Amzon EC2- http://aws.amazon.com/ec2/

[12] O. Barkyn, B. Chopra, C. Gerea, J. Metzler, S. Subhramanian,
J. Weiner, D. Reiss, D. Merl “Scuba – Diving into Data at
Facebook” Proc. VLDB 2013 .

[13] VMware Server - https://my.vmware.com/web/vmware/free

[14] VMware ESX - https://my.vmware.com/web/vmware/free

[15] Cockcroft, Adrian. AWS RE:INVENT - HIGH AVAILABILITY
ARCHITECTURE AT NETFLIX, 2012

[16] Recover- Oriented Computing: http://roc.cs.berkeley.edu/

http://www.netapp.com/in/solutions/data-protection/high-availability.aspx
http://www.netapp.com/in/solutions/data-protection/high-availability.aspx
https://my.vmware.com/web/vmware/free

