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Abstract 

The ever-growing importance and volume of digital 

content generated by ICT services has led to the de-

mand for highly durable and space-efficient content 

storage technology. Erasure code can be an effective 

solution to such requirements, but the current research 

outcomes do not efficiently handle simultaneous multi-

ple disk failures. We propose Shingled Erasure Code 

(SHEC), an erasure code with local parity groups shin-

gled with each other, to provide efficient recovery for 

multiple disk failures while ensuring that the conflicting 

properties of space efficiency and durability are adjust-

able according to user requirements. We have con-

firmed that SHEC meets the design goals using the re-

sult of a numerical study on the relationships among the 

conflicting properties, and a performance evaluation of 

an actual SHEC implementation on Ceph, a type of 

open source scalable object storage software. 

 

1. INTRODUCTION 

The ever-growing importance of digital content gen-

erated by ICT service vendors has led to an increasing 

demand for highly durable content storage technology. 

For ICT services, triple replication technique has met 

this demand for years, but its low space efficiency 

(three times the storage capacity of user data) has made 

this solution less attractive for vendors. Erasure codes 

are a durable data storage technique with less redundant 

information (parities), and are rapidly gaining populari-

ty. 

The space efficiency and durability of erasure codes 

come with increasing computational overhead. In par-

ticular, the recovery overhead associated with disk fail-

ures severely affects the availability and performance of 

ICT services unless the performance interference of the 

recovery operation is controlled properly. Throttling the 

CPU and I/O bandwidth of the recovery operation to 

minimize interference is one of the common practices 

[18], but controlled interference entails a longer recov-

ery operation, which, in turn, makes the storage less 

durable. Hence recovery performance enhancement 

itself has been a focus of research in erasure code field 

lately [10]. 

Recent, remarkable achievements in recovery per-

formance enhancement are Microsoft LRC (MS-LRC) 

[9] and Facebook Xorbas [10]. They use the concept of 

local parity, where a few instances of parity are calcu-

lated based only on subsets of an entire dataset. Given 

that the amount of data read and transferred is reduced 

only in those subsets of a dataset, the recovery con-

sumes a smaller amount of each ICT resource and be-

comes faster. 

However, in the event of multiple disk failures, MS-

LRC and Xorbas use global parities, which include pari-

ty information calculated over an entire dataset, and a 

large amount of data is transferred in the recovery oper-

ation. Because each of the disk failures is often co-

related in the real world [16], we are motivated to de-

velop a new erasure code that is robust against multiple 

disk failures. 

In this paper, we propose Shingled Erasure Code 

(SHEC), whose local parity groups overlap each other. 

The code is designed to recover efficiently from multi-

ple disk failures, and space efficiency and durability are 

user-adjustable. To confirm the design goals of SHEC, 

we first study in section 2 the relationships among the 

three key properties of erasure codes (space efficiency, 

durability and recovery efficiency) with our various 

local parity group layouts. Then, we demonstrate that 

the layout is adjustable to achieve the optimal combina-

tion of the intended properties to users. In section 3, we 

show the aforementioned recovery efficiency of SHEC 

through evaluation with the SHEC implementation in 

Ceph[14], a type of open source scalable object storage 

software. 

 

2. ANALYSES OF LOCAL PARITY 

GROUPS AND A NEW CODE 

2.1. Properties of Local Parity Groups 



 

 

In this paper, we call each split data element in an 

erasure code stripe a ‘data chunk’ and each of the local 

parity groups a ‘parity chunk.’ We define the local pari-

ty’s locality as the number of data chunks to calculate 

each parity chunk. 

We pick three main properties in the erasure code 

with local parity groups. 

 Space efficiency 

 Durability 

 Recovery efficiency 

The first property, space efficiency, is defined as the 

ratio of data chunks and calculated as k/(k+m) (k: the 

number of data chunks, m: the number of parity chunks), 

indicating cost efficiency. 

The second property, durability, is defined as the 

probability of data loss, as shown in equation (1) [17]. 

1)/()/1(  f

fn MTBFMTTRMTBFPPDL   (1) 

PDL: Probability of data loss 

MTTR: Mean time to recovery 

MTBF: Mean time between failures 

n: Total number of disks 

f: Number of concurrent disk failures 

nPf: n!/(n-f)! 

The last property, recovery efficiency, is defined as 

the inverse number of recovery overhead (recovery 

overhead means the ratio of read chunks to all data 

chunks during the recovery). Generally, the smaller the 

locality is, the higher the recovery efficiency is. The 

recovery efficiency raises the availability or perfor-

mance of ICT services. 

Next, we now explain the three-way trade-off rela-

tionship among the abovementioned erasure code prop-

erties, as shown in Figure 1. First, we mention the rela-

tionship between space efficiency and durability. This 

trade-off is obvious because if we add parities, durabil-

ity increases whereas space efficiency decreases (trade-

off #1). The second relationship is between durability 

and recovery efficiency. If we reduce the locality to 

increase recovery efficiency, the number of parity 

chunks covering each data chunk decreases, indicating a 

decrease in durability (trade-off #2). The last relation-

ship is between space efficiency and recovery efficiency. 

To reduce the locality with equal durability, we must 

add more local parities to keep the number of parity 

chunks covering each data chunk, indicating a decrease 

in space efficiency (trade-off #3).  

Customers often opine that durability should not be 

sacrificed to increase recovery efficiency. In such a case, 

we usually suggest sacrificing space efficiency instead 

of durability because space efficiency and recovery ef-

ficiency also share a trade-off relationship (#3).  

 
 

In the remainder of this paper, we will propose and 

evaluate the new erasure code with local parity groups, 

based on the above analyses. 

2.2. Shingled Erasure Code 

We propose a new erasure code, Shingled Erasure 

Code (SHEC), which is designed for efficient recovery 

in the event of multiple disk failures, with space effi-

ciency and durability adjustable according to user re-

quirements. SHEC is an erasure code with local parity 

groups, and the calculation ranges of local parities are 

shifted and partly overlap with each other, similar to 

arranging shingles on the roof of a house. All local pari-

ty groups have the same locality and are shifted at al-

most regular intervals. SHEC(k,m,l) represents a layout 

with k data chunks, m parity chunks and locality l. 

The average number of parity chunks that have rela-

tion to each data chunk is ml/k. Because the failure of 

ml/k+1 data or parity chunks can cause data loss, we 

use ml/k as an estimator of SHEC’s durability. For ex-

ample, in the case of SHEC(10,6,5), the estimator is 3 

(= ml/k = 6*5/10) and the four failures of D1/P1/P5/P6 

cause data loss because D1 cannot be recovered from 

the remaining chunks (Figure 2). 

 
 

In the case of multiple data chunk failures, SHEC re-

covers data from multiple parity chunks. Usually, there 

are multiple combinations of parity chunks that recover 

the failed chunks. SHEC selects the one which requires 

the lowest number of disks read. For example, when 

D6/D9 fail in Figure 2, SHEC selects P3/P4 because the 

union of P3/P4’s calculation ranges results in six con-

tiguous data chunks, and the size of the union (that indi-

Figure 1: Three-Way Trade-Off 

Figure 2: Estimation of SHEC’s Durability 



 

 

cates the amount of data read) is the least among all 

candidate parity chunk pairs. 

To show SHEC’s improvement factor in durability, 

we compare SHEC(6,4,3) with an instance of simple 

local parity groups (SLPG) (Figure 3). If D1/D2/D3 fail 

simultaneously, the SLPG cannot be recovered because 

only P1/P3 have relation to D1/D2/D3. In contrast, 

SHEC(6,4,3) can be recovered from P1/P2/P4. Among 

all failure patterns, SHEC(6,4,3)’s data loss cases num-

ber half those of the SLPG. That means that 

SHEC(6,4,3)’s durability is twice as high as SLPG with 

the same space efficiency and recovery efficiency. 

Moreover, the higher the durability estimator is, the 

more the improvement factor of durability is (Figure 4). 

The improvement is ascribed to the shifting of the cal-

culation range for each local parity. 

 
 

 
 

Formulating the SHEC generator matrix is quite sim-

ple. First, we create a generator matrix of Reed Solo-

mon systematic code (abbreviated as RS(k,m) in this 

paper). Next, each matrix element whose corresponding 

data chunk is not used for calculating the corresponding 

parity chunk is set to zero (Figure 5). CPU utilization is 

directly proportional to the number of non-zero matrix 

elements. 

 
 

 

2.3. Comparison among SHEC Parameter Sets 

In this section, we show that SHEC provides layouts 

with less recovery overhead, ensuring that conflicting 

properties of space efficiency and durability are adjust-

able according to user requirements. 

Restricted to the meaningful ones, SHEC can gener-

ate over 100 different parameter sets in the three-

dimensional property space. We pick some sets from 

them and compare their erasure-code properties. Let us 

start with SHEC(4,2,4), RAID6’s equivalent SHEC 

parameter set, and search for alternative candidates that 

are more recovery-efficient with almost equal durability 

(Table 1). In this case, we sacrifice the space efficiency, 

and we can get the candidates SHEC(4,3,3) and 

SHEC(6,4,3). 

k m l ml/k 
Space 

Effic. 

Durability 

(Annual) 

Rcvr-Ovhd 

(1x/2x fail) 

4 2 4 2 67% 1.44E-17 1.00/1.00 

4 3 3 2.25 57% 1.60E-18 0.75/1.00 

6 4 3 2 60% 3.46E-18 0.50/0.74 

Table 1: Candidates with Equal Durability 

Let us search for other candidates that are more re-

covery-efficient with almost equal space efficiency 

(Table 2). In this case, we sacrifice the durability, and 

we can get the candidates SHEC(5,3,3) and 

SHEC(7,4,3).  

k m l ml/k 
Space 

Effic. 

Durability 

(Annual) 

Rcvr-Ovhd 

(1x/2x fail) 

4 2 4 2 67% 1.44E-17 1.00/1.00 

5 3 3 1.8 63% 1.22E-10 0.60/0.90 

7 4 3 1.71 64% 1.65E-10 0.43/0.69 

Table 2: Candidates with Equal Space Efficiency 
2.4. Comparison with Other Erasure Codes 

We compare the theoretical recovery overhead be-

tween the Reed Solomon code, MS-LRC, Xorbas and 

SHEC, under the condition of almost equal durability 

(Figure 6). SHEC’s recovery overhead is less than the 

others in cases of double or more disk failures. The oth-

ers are worse because they must use global parities in 

those cases. 

 
 

 

Figure 4: SHEC’s Improvement Factor of Durability 

Figure 5: SHEC Generator Matrix 

Figure 3: SLPG vs. SHEC 

Figure 6: Recovery Overhead between Codes 



 

 

3. IMPLEMENTATION AND EVALUA-

TION 

3.1. Ceph Architecture 

We evaluated SHEC on Ceph. A Ceph cluster in-

cludes a large number of object storage daemons 

(OSDs). Each OSD corresponds to a storage device. In 

this paper, an OSD indicates a whole disk device. A 

placement group (PG) is a set of OSDs over which the 

data and parity chunks are distributed randomly. 

When a data is written on a Ceph cluster, (a) the data 

is divided into 4MB Ceph objects. Next, (b) the PG is 

determined by a hash value for the name of the object. 

Finally, (c) each item of data or parity chunk is stored in 

one of the OSDs assigned to the PG. When (d) an OSD 

fails, (e) another OSD is newly assigned to the degraded 

PG, and the lost chunk is recovered to the OSD from 

the remaining chunks in the acting-set. 

 
 

3.2. SHEC Implementation 

The Ceph object storage has an interface plugin for 

erasure code from v0.80.1 (Firefly) release. It supported 

the Reed Solomon code as a default plugin, and we im-

plemented SHEC as an alternative. The interface is suf-

ficient to implement SHEC because it includes a useful 

function minimum_to_decode(), which yields the set of 

chunk numbers required to decode the lost chunks. 

SHEC yields the subset of the chunk numbers that the 

Reed Solomon code yields. 

3.3. Test Conditions 

We evaluated the SHEC(6,4,3)’s recovery perfor-

mance and selected RS(6,4) as a reference (Figure 8). 

The comparison with Xorbas or MS-LRC is beyond the 

scope of this paper. 

 

Hardware setup and software version for testing is 

described in Figure 9.  

 
 

3.4. SHEC Recovery Performance 

We prepared 100GB (25,000 * 4MB objects) of data 

and measured the recovery time from double OSD fail-

ures in each of the cases of RS(6,4) and SHEC(6,4,3). 

We set the number of Ceph recovery threads as five. At 

first, we found that the SHEC(6,4,3)’s total CPU over-

head was about 20% less than that of RS(6,4) as shown 

in Figure 10. We consider that this was mainly due to 

the effect of our simplified generator matrix (Figure 5) 

because CPU utilization is directly proportional to the 

number of non-zero matrix elements. 

Next, RS(6,4)’s recovery overhead is 1.00 (the num-

ber of read chunks is equal to k), whereas that of 

SHEC(6,4,3) is 0.74 (Table 1). Therefore, we estimated 

SHEC(6,4,3)’s recovery time at 74% of RS(6,4) in the 

beginning. However, this experiment showed that, 

though the amount of data read from the disks was 74%, 

the actual recovery time was 81.4% of RS(6,4) (Figure 

10).  

The reason was a partial bottleneck. We assumed that 

one of the system resources must be bottlenecked, and 

in fact, the disk seemed bottlenecked (Figure 11), while 

the CPU and network (Figure 10, Figure 12) did not at 

all. However, the disk bottleneck did not continue con-

stantly. Seeing Figure 11, the disk bandwidth was not 

fully utilized during 35% of entire recovery time (in the 

rectangle), and we could re-estimate SHEC(6,4,3)’s 

recovery time as follows. 

0.74 * (1-0.35) + 1.0 * 0.35 = 0.831              (2) 

The result was 83% of RS(6,4), almost the same as 

the actual ratio, 81.4%. 

Finally, we concluded that SHEC’s recovery over-

head was decreased in comparison with the Reed Solo-

mon code. However, in our test conditions, 70% of 

SHEC’s recovery efficiency emerges as decreasing la-

tency of recovery completion, and 30% emerges as de-

creasing disk bandwidth used for recovery processing. 

Figure 7: Ceph Architecture 

Figure 9: Hardware Setup and Software Version 

Figure 8: Parity Layouts for Comparison 



 

 

Moreover, we obtained a similar result when we tried 

the comparison between RS(5,3) and SHEC(5,3,3) in 

the event of single OSD failure. 

 
 

 
 

 

 

 

4. RELATED WORK 

Various storage systems have used erasure codes [1] 

to realize a higher durability of storage data for a long 

time. Especially, the well-known RAID [1], based on 

the Reed Solomon code, was deployed in almost all of 

the highly reliable storage systems. 

After Google disclosed Google File System [3], 

which used triple replication with the diffusion of com-

modity disks, other major cloud storages such as 

Apache HDFS [4] and Microsoft Azure storage [5] fol-

lowed the trend. However, because the volume of data 

generated by ICT services started to grow explosively, 

the erasure code’s space efficiency was revalued again 

[6]. 

In recent years, recovery overhead has become re-

garded as a serious problem of erasure code, especially 

in distributed or scalable storages [9], [10]. Many re-

searchers have proposed methods including local parity 

techniques to decrease the recovery overhead. WEAV-

ER Codes [7] suggested a generic method which in-

cludes most of the possible local parity layouts. Mi-

crosoft Pyramid Codes [8], followed by Azure’s Local 

Reconstruction Codes (MS-LRC) [9] and Facebook 

Xorbas [10], discussed the durability of local parities. 

MS-LRC insisted that the probability of data loss (in-

formation-theoretically non-decodable case) is limited 
to the trivial level. On the other hand, Xorbas discussed 

the relationship between locality and code distance 

highly theoretically. Regenerating Codes [11], [12] sug-

gested an interesting approach which discussed the 

properties of the optimal trade-off between space effi-

ciency and recovery bandwidth via ‘cut-based’ analysis. 

Rotated Reed-Solomon Codes [13] suggested local pari-

ties and has similar layouts to SHEC. However, it is 

characterized by the number of data disks being limited 

to the product of a pair of integers. Fountain code [19] 

also seems to use a sliding window, but takes a highly 

probabilistic approach. 

 

5. CONCLUSION AND FUTURE WORK 

First, we proposed SHEC, a new erasure code de-

signed for high recovery efficiency, especially from 

multiple disk failures. Second, we showed that SHEC 

provides the layouts with more recovery efficiency than 

the Reed Solomon codes, ensuring that the conflicting 

properties of space efficiency and durability are adjust-

able according to user requirements. Finally, we showed 

through experiments that the SHEC’s recovery is actual-

ly faster than the Reed Solomon codes. 

However, it may not be easy to show the normal 

SHEC’s superiority to state-of-the-art codes (Xorbas 

and MS-LRC) without any sacrifices of space efficiency 

or durability. Therefore, we will expand the normal 

SHEC concept into an asymmetric one or one bundled 

with global parities in the future. 

 

Figure 10: Recovery Progress and CPU Utilization 

Figure 11: Disk Utilization 

Figure 12: Network Traffic 
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