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Abstract

Building dependable federated systems is often compli-
cated by privacy concerns: if the domains are not willing
to share information with each other, a global or ‘sys-
temic’ threat may not be detected until it is too late. In
this paper, we study this problem using a somewhat un-
usual example: the financial crisis of 2008. Based on re-
sults from the economics literature, we argue that a) the
impending crisis could have been predicted by perform-
ing a specific distributed computation on the financial in-
formation of each bank, but that b) existing tools, such
as secure multiparty computation, do not offer enough
privacy to make participation safe from the banks’ per-
spective. We then sketch the design of a system that can
perform this (and possibly other) computation at scale
with strong privacy guarantees. Results from an early
prototype suggest that the computation and communica-
tion costs are reasonable.

1 Introduction

In distributed systems, federation is often an obstacle to
dependability. When different parts of a system belong
to different administrative domains, there is no single en-
tity that has a view of the entire system, and domains
are often reluctant to share information with each other
because they can have conflicting interests. As a conse-
quence, when a federated system faces a “global” prob-
lem that no single domain can detect by itself, the prob-
lem may not be recognized until it is too late.

Several instances of this problem have appeared in
“technical” distributed systems. For instance, bot-
nets can spread their command-and-control infrastruc-
ture across multiple networks to avoid raising suspi-
cion [14, 17], administrative systems can drop or degrade
certain types of traffic while feeling reasonably safe
that the behavior will not be attributed to them [19, 5],
and interdomain routing protocols can fail to find good
solutions, even when they would benefit everyone in-
volved [15]. In many cases, specialized solutions have
been developed that enable the domains to coordinate on
a particular instance.

But the problem is more general than this: it also
affects distributed systems in the offline world, where
the domains are organizations or businesses, rather than
computers. A recent example is the 2008 financial cri-

sis, in which a number of financial institutions had to be
bailed out at great cost to governments around the world.
At a very high level, this crisis arose because some banks
were selling each other a form of insurance against prob-
lematic events (such as a price drop in the housing mar-
ket), but were unable to tell whether their counterparties
would actually be able to pay up if the event did occur.
This information asymmetry created a risk of cascad-
ing failures: if an actual price drop forced a single bank
into bankruptcy, that bank might not be able to meet its
obligations, creating a liquidity problem for other banks.
This might then trigger additional bankruptcies, poten-
tially leading to a system-wide failure.

The classical approach to resolving such problems is
to collect all the information at a trusted third party,
which then performs some computation to look for prob-
lems, and publishes the result. This could have prevented
the financial crisis, since the risk was knowable in prin-
ciple: someone with access to the financial information
of all the banks could have foreseen it [1]. However, in
practice, this information is extremely sensitive because
it reveals details about the banks’ strategies; hence, it is
unlikely that the banks would be willing to share it will-
ingly, and a government mandate would probably be met
with fierce resistance [10]. An alternative could be the
use of multiparty computation (MPC) [20], and this has
in fact been considered for this scenario [1]. However,
naive MPC does not scale well to large number of play-
ers (such as the global banking system) or to complex
computations — and, more importantly, even MPC would
not necessarily be acceptable to the banks: even if the
computation itself were confidential, its output (perhaps
a list of banks that are in danger of failing) might still
allow conclusions about the sensitive inputs [10, §4.2].

In this paper, we describe a new approach to this prob-
lem that we are currently working on. Our approach is
based on two key insights. First, stability criteria can
sometimes be distributed into a Pregel-style[16] compu-
tation on graphs — in other words, we can break it down
into multiple rounds and, in each round, have each partic-
ipant exchange information only with some local neigh-
borhood. This is potentially a lot more efficient than do-
ing all-to-all MPC; it may not be possible for all scenar-
ios, but, as we will show in this paper, it is possible in at
least the banking scenario. Our second key insight is that
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Figure 1: A simplified example over three time steps. Circles represent banks and are labeled with the liquid cash
reserves; arrows represent contracts and are labeled with the agreed payout. In (b)+(c), we additionally show payments
in green, and partial payouts in red. (a) shows the initial scenario, (b) the same scenario after one round of payouts,
and (c) the final state after all contracts have been paid out to completion.

signs of trouble are typically large: for instance, in the
banking scenario, we are not looking for small financial
difficulties in individual banks, but rather for a massive
systemic failure. Thus, the results do not need to be par-
ticularly precise, as long as they would reliably indicate
a large problem. This imprecision greatly helps with de-
livering robust privacy guarantees.

In the rest of this paper, we sketch a distributed system
that can support large-scale, cross-domain computations
with strong, provable privacy guarantees. Our system is
based on a combination of MPC, a graph-computation
runtime, and differential privacy [6]. We use the 2008
financial crisis as a case study to show how our system
could be applied: we adapt a computation from Bisias
et al. [3, §B3] that measures the systemic risk in a net-
work of contracts, and we demonstrate that it could be
evaluated on our system within minutes on commodity
hardware, using only a few MB of traffic per participant.
Although our system still has some important limitations
— such as limited resilience against large-scale collusion
— we believe that it can be a promising step towards
improving the resilience of technical and non-technical
federated systems against large-scale, systemic shocks,
which would result in better dependability.

2 Case study: Systemic risk in banking

We begin by describing a somewhat unusual example,
the market for derivatives between banks, where depend-
ability is an explicitly distributed criterion that cannot be
broken down into locally detected conditions.

2.1 Background on financial markets

To provide some context for the following discussion, we
begin by explaining a (drastically simplified) model of fi-
nancial markets. Banks, as part of their regular business
with clients, are exposed to risk. We can think of this risk
as a certain event — such as a drop in house prices — that
causes the bank to lose a certain amount of money. To
prevent a buildup of excess exposure to any single event,

banks can create derivatives and sell them to other par-
ties, perhaps another bank. We can think of derivatives
as “insurance contracts” that specify that a certain sum
will be due if and when a particular event occurs.

A bank’s exposure to a single event is often more than
an order of magnitude bigger than its cash reserves; this
multiple is known as leverage. Thus, banks depend on
the derivatives to remain solvent. However, there is a risk
that, when an event occurs and the debt becomes due,
the other party will be bankrupt and unable to pay. This
risk is known as counterparty risk. This risk exists even
for honest banks because in practice, the chances that
everything will become due at the same time are usually
small; therefore, no bank keeps enough money on hand
to cover all of its possible obligations.

Banks regularly reinsure their risk by buying deriva-
tives from other banks. We can think of the resulting
network of obligations as a graph in which the vertices
represent the banks and the edges represent the contracts.
Figure 1(a) shows a simple example of such a graph; the
edges are labeled with the sum that becomes due when
the event occurs, and the banks are labeled with their lig-
uid cash reserves. This example is loosely inspired by
the Credit Default Swap market from the 2008 financial
crisis, with bank A representing AIG [13].

2.2 What is systemic risk?

A key challenge for banks is to be resilient to the pos-
sibility of a contract not paying out because the seller is
bankrupt. While a bank might try to protect itself by di-
versifying its insurance purchases among a diverse group
of sellers, it is hard for a bank to know who its dependen-
cies depend upon. The reason is that each bank guards
its “book” of investments closely, since this is its profit-
making edge. Therefore, it is possible for almost every
bank to individually believe themselves to be sufficiently
diversified, but in reality they could all depend on a sin-
gle upstream bank, so in effect, the diversity is zero.
The bankruptcy of a single bank is often acceptable;



the danger that regulators wish to prevent is that a single
bankruptcy becomes a financial contagion that spreads to
other banks, potentially causing cascading failures, and
eventually financial collapse. We illustrate this problem
in Figures 1(b) and (c). Figure 1(b) shows the state of the
system after the event has occurred and a single round
of contract payouts have been made. Notice how some
banks did not have enough liquid cash to pay out all their
obligations immediately (this is shown in red) — we as-
sume that in this case payouts are made in proportion to
the original amount of each contract, which is a mod-
eling assumption supported by [3]. Figure 1(c) shows
the final state once no more payouts can be made; notice
how banks A, C, D, and J are unable to pay out their full
obligations and thus are insolvent (shown in red at the
termination of the algorithm).

We make two observations about this scenario. First,
we note that a small initial problem at bank A has caused
massive damage to the system; banks C and D are now
also insolvent. Second, it is very difficult to predict this
based only on the local information available at each
bank. In retrospect, bank A did oversell insurance, but
it is not illegal for banks to risk their own bankruptcy,
and perhaps the bank’s individual risk model had (incor-
rectly) considered the event extremely unlikely. More
importantly, however, banks C, D, and J did nothing ob-
viously wrong; they would have been fine if all their
contracted payments had actually materialized. This un-
certainty about the creditworthiness of other banks is
thought to have contributed materially to extending the
2008 financial crisis [1].

2.3 Can the risk be detected early?

Although no individual bank can estimate the risk of cas-
cading failures based on its local information, a hypo-
thetical entity that has access to the combined informa-
tion of all banks could certainly do so. Designing in-
dices of systemic risk is a hot topic of research since
the 2008 financial crisis [3], although many proposals
are constrained by assumptions about the non-viability
of centralization. We ignore this issue for now, but re-
turn to it in Section 2.4.

There are already some preliminary theoretical eco-
nomic models [9, 2], [3, §B.3], and they share a basic
structure we will now sketch briefly. The model resem-
bles the model we have used in Figure 1: banks are mod-
eled as nodes nj ...n; in a graph, with respective starting
capital C; ...C;, and directed edges between banks repre-
sent insurance contracts. If there are m insurable events,
we have a matrix E of initial exposures, where e; ; rep-
resents bank i’s initial exposure to event k. Banks write
contracts predicated on events: a contract d; ; x; says that
if event k happens, bank i pays bank j I dollars.

To estimate the contagion effects of a given subset of

the events, a fixpoint iteration can then be performed on
this model. In each round, banks either pay out their
obligations in full, or, if they are unable to do so, reduce
their payment to the actual money available. This com-
putation eventually converges, and in the final state, the
number of bankrupt banks (or, alternatively, the mone-
tary shortfall) can then be measured. The details vary
somewhat between the models; for instance, the precise
payment rules used in [9] can produce multiple equilibria
depending on where the computation is started, whereas
the scenario in [3, §B.3] always converges to a single
unique payment equilibrium. But overall, each of these
models can perform fine-grained stress tests by simulat-
ing various “what-if” events (or combinations of events).
Unlike the stress tests that are mandated by law today,
such stress tests can take into account the precise link-
ages between firms.

We emphasize that these models are works in
progress: they are simple, and economists are still debat-
ing the details, e.g., the exact rule sets to use. However,
it seems clear that the economic theory side of the prob-
lem is in the process of being solved — in other words, we
should soon know what a hypothetical centralized entity
would compute in order to estimate systemic risk.

2.4 Strawman solutions

One obvious way to implement such a centralized entity
would be to create an all-powerful government regula-
tor. However, this does not seem practical because banks
critically rely on secrecy to protect their business prac-
tices [1]. Currently, regulatory bodies that deal with less
influential information about single institutions already
have extremely heavy levels of legal safeguards and mul-
tiple levels of oversight [10, §3.1]. Congress is aware of
the risks posed by having an all-powerful banking regu-
lator, and thus is unlikely to create such an authority.

Another potential approach would be to use multi-
party computation (MPC) [20]: one could design a cir-
cuit that has each bank’s books as inputs, execute the
simulation we have described above, and finally output
some measure of risk, perhaps a list of banks that would
fail if a certain event occurs. This approach is potentially
more palatable for the banks, since they would not need
to reveal their secret inputs, but it creates two additional
challenges. First, MPC does not scale well with the num-
ber of participants, so even an implementation for a mod-
erate number of big banks would probably be very ex-
pensive. Second (and perhaps more importantly for the
banks), it cannot guarantee confidentiality because the
output of the computation can still reveal facts about the
confidential inputs through auxiliary information attacks
such as in [18]. It is these two challenges that our work
is intended to address.



# incremental computation at node i:
C’[i] = C[i] + in[0][i] + ... + in[N][i]
totalDebt[i] = debt[i][0] + ... + debt[i][N]
if(C’[i] >= totalDebt[i]) then
F[i] = false
for all j: out[i][j] = debt[i] [j]
for all j: debt[i]l[j] = 0O
C’[i] = C’[i] - totalDebt[il
else
F[i] = true
prorate[i] = C’[i] / totalDebt[il
for all j: out[i][j] = debt[i] [j] * proratel[i]
for all j: debt[i][j] = debt[i][j] - out[i][j]
c’[il =0
# final computation across all nodes:
shortfall = 0
for all i with F[i]l=true:

shortfall += debt[i][0] + ... + debt[i] [N]

Figure 2: Pseudocode algorithm
3 Our approach

Our approach is based on two key insights. First, al-
though MPC generally does not scale well with the num-
ber of participants, the algorithm from Section 2.3 is a
graph algorithm: each round can be broken down into
computations at each vertex (the banks’ receipts and up-
dates to debts and capital) and communication over the
edges (the payments). Figure 2 shows the algorithm in
this model; we have added a final “aggregation stage”
that computes the total shortfall as a metric of systemic
risk. Since we expect the vertices in the banking graph to
have a relatively low degree, we can hope to run the com-
putation by performing many smaller “blocks” of MPC
in parallel, which would improve scalability.

Our second key insight is that we can potentially use
differential privacy [6] to address the privacy concerns
about the output. Differential privacy provides strong,
provable privacy guarantees, which should be reassuring
to the banks. Its main cost is the addition of a small
amount of imprecision to the output, but, since we are
looking for early warnings of large problems, a bit of
imprecision (say, a shortfall of $1 billion is reported as
$0.95 billion) should not affect the utility of the results.
If a potential problem is detected, a more detailed inves-
tigation could be conducted outside of our system.

In summary, the capability we aim to provide is a
privacy-enabled graph computation engine for federated
systems. We note that this computation model is quite
general, so our solution potentially has applications be-
yond risk estimation in financial networks, including the
examples in the introduction.

4 Solution sketch

Overview: At a high level, our solution works as fol-
lows: Each vertex v; in the graph is associated with a
specific node i that knows its initial state; in the banking
example, this might be a machine node that is controlled
by the corresponding bank. However, instead of letting
the nodes maintain their own state and communicate di-
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Figure 3: Example execution strategy. The top graph
shows the logical computation, while the bottom graph
shows the node-level computation used to execute it.

rectly with each other , we replace each node i with a
computation block B; that consists of m different nodes,
including i, and we use secret sharing [12] to split i’s state
among the members of B;. This is necessary to ensure
privacy: if i were allowed to see the intermediate state or
the messages of “its” vertex v; during the computation, it
could learn information about other vertices.

In each round, the members of B; use MPC to compute
the state updates of v;; if v; needs to send a message to
another node v;, the members of B; break the message
into shares and send the shares to B;. Thus, no single
node can learn anything about the state of the computa-
tion while it is still in progress; thanks to secret sharing,
even (m — 1) colluding nodes cannot decrypt any state
or any messages. Once the distributed phase of the al-
gorithm (top part of Figure 2) has completed, each com-
putation block sends the shares of its state to a desig-
nated computation block, which can then aggregate these
states, compute the final result (bottom part of Figure 2),
and finally add some imprecision as required by differ-
ential privacy, e.g., using the Laplace mechanism [8].

Figure 3 illustrates this strategy. Logically, the com-
putation is very much like a Pregel program: vertices
receive messages, update their local state, and then op-
tionally send messages to adjacent vertices. The actual
communication pattern is more complex because compu-
tations are performed by computation blocks using MPC,
and messages are sent as shares.

Threat model: We assume that the players are hon-
est but curious (HbC), although they might collude with
each other. This seems appropriate for our motivating
scenario. However, we speculate that malicious banks
could be handled as well: MPC protocols for the fully
malicious setting do exist, and if a bank reports a false
initial state, this could be detected by current regulators,
who already have siloed views into each institution.

Block assignment: At first glance, our solution would



seem to require n - m nodes, where n is the number of
banks and m the number of shares — but we can simply
assign each node to m different computation blocks, so
n nodes are sufficient. To preserve privacy, we can pick
the members of each B; from different administrative do-
mains, so that they are unlikely to collude.

Message passing: A naive approach for passing mes-
sages between two computation blocks B; and B; would
be to have each member of B; send its share to a mem-
ber of B, who inputs it into the MPC for the next round.
But this would decrease collusion resistance: m members
from B;|JB; would be sufficient to decrypt the message.
Instead, each node in B; re-shares its own share to get m
new shares and then sends each of them to one member
of Bj. Having m? shares for each message may sound
expensive, but in fact, with an XOR-based secret shar-
ing scheme, the operations are quite cheap — although of
course the message complexity remains at m?.

Noising: To prevent individual nodes from controlling
(or knowing) the noise that is added at the end to achieve
differential privacy, we can ask each node to generate
some random bits, and XOR them together in the final
step to generate the random draw from the Laplace dis-
tribution. The draw itself can be performed in MPC with-
out having to resort to expensive floating-point computa-
tions, using algorithms such as those in [7].

4.1 [Initial results

To see whether our approach is practical, we built a sim-
ple prototype. Our prototype runs all the nodes on a sin-
gle physical machine (an Ubuntu 12.04 Linux worksta-
tion with an Intel Core 2 Duo CPU) and performs all the
computation steps sequentially — but this is sufficient for
us to measure the computation and bandwidth costs. We
have written custom programs to construct the boolean
circuits corresponding to the systemic risk algorithms
suggested by [3, §B.3] (shown in Figure 2), and the nois-
ing algorithms from [7]; for secure multi-party computa-
tion, our system uses the toolkit from Choi et al [4].
End-to-end experiment: For a small scale end-to-end
run of the proposed protocols, we set up a small banking
network with 10 financial institutions, using three-note
computation blocks and synthetic initial data for each
bank’s capital and contracts. We ran 10 computation
rounds, followed by the final aggregation/noising round,
and we measured the amount of computation and traffic
per bank. We found that each bank performed between
37.9 and 40.6 seconds worth of computation, and sent
between 9.1 and 9.5 MB of traffic.

Scalability: To better gauge the computation and band-
width costs that would be incurred in a real-size banking
network, we performed a series of microbenchmarks. We
constructed the circuit of the main computation step for
networks of 10 — 100 banks, and we varied the size of the

computation blocks from 3 to 16 nodes. As expected for
MPC, the bandwidth cost increased quadratically with
the size of the computation blocks. In the most expen-
sive case, a single main computation step for 100 banks
with a block size of 16 nodes took 15 seconds to com-
plete, and required the transfer of 18.31 MB per node.
Summary: Although the costs are nontrivial, we ob-
serve that the costs per bank depend only on the size of
the computation block (which depends on the assump-
tions about collusion) and the complexity of the algo-
rithm itself, but not at all on the overall size of the net-
work — a substantial improvement over naive MPC that
is made possible by our formulation of the algorithm as
a graph algorithm. This is in addition to the qualitative
improvement with respect to privacy — recall that, unlike
naive MPC, our approach also protects against informa-
tion leakage through the output of the algorithm.

S Status and ongoing work

We are currently extending our prototype to a complete
system that would also support other graph algorithms.
Below, we sketch some of the remaining challenges.
Sensitivity: Differential Privacy requires a bound on the
sensitivity of a computation to determine the amount of
noise to add. Our algorithm’s sensitivity depends on mul-
tiple factors, such as the maximum node degree and the
maximum dollar value of each contract. [10] suggests
dollar-privacy: a privacy guarantee that is weaker for
larger banks and that makes sensitivity bounds easier to
compute. It would also be useful to automatically infer
the sensitivity from the algorithm, as shown, e.g., in [11].
Privacy budget: Differential privacy systems use a “pri-
vacy budget” that controls how much information is
leaked, and that is depleted as queries are answered over
time. We believe that this restriction can be relaxed in
the financial setting, as there is already an expectation of
“eventual disclosure” in financial regulation; thus, it may
be safe to slowly replenish the privacy budget over time.
Structural privacy: Our algorithm as designed leaks
some information about the graph that is not covered by
the differential privacy guarantee. First, it leaks the de-
gree of each node to neighboring nodes in the computa-
tion block as they send out shares to as many blocks as
the owner node has outgoing links. Second, our block-
group selection contains the owning node, which allows
members of the block to narrow down the list of plau-
sible members. We hope to mitigate or entirely prevent
this in the final system.
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