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Abstract

Cloud applications depend on third party services for fea-
tures ranging from networked storage to maps. Web-
based application programming interfaces (web APIs)
make it easy to use these third party services but hide
details about their structure and resource needs. How-
ever, due to the lack of implementation-level knowl-
edge, cloud applications have little information when
these third party services break or even unproperly im-
plemented. This paper outlines research to extract work-
load details from data collected by probing web APIs.
The resulting workload profiles will provide early warn-
ing signs when web APIs have broken component. Such
information could be used to build feedback loops to
deal with possible high response times of web APIs. It
will also help developers choose between competing web
APIs. The challenge is to extract profiles by assuming
that the systems underlying web APIs use common cloud
computing practices, e.g., auto scaling. In early results,
we have used blind source separation to extract per-tier
delays in multi-tier storage services using response times
collected from API probes. We modeled median and
95" percentile delay within 10% error at each tier. Fi-
nally, we set up two competing storage services, one of
which used a slow key-value store. We probed their APIs
and used our profiles to choose between the two. We
showed that looking at response times alone could lead
to the wrong choice and that detailed workload profiles
provided helpful data.

1 Introduction

Cloud applications enrich their core content by using ser-
vices from outside, third party providers. Web applica-
tion programming interfaces (web APIs) enable such in-
teraction, allowing providers to define and publish pro-
tocols to access their underlying systems. It is now com-
mon for cloud applications to use 7 to 25 APIs for fea-

tures ranging from storage to maps to social network-
ing [13]. For providers, web APIs strengthen brand and
broaden user base without the cost of programming new
features. In 2013, the Programmable Web API index
grew by 32% [7], indexing more than 11,000 APIs.

Web APIs hide the underlying system’s structure and
resource usage from cloud application developers, al-
lowing API providers to manage resources as they see
fit. For example, a storage API returns the same data
whether the underlying system fetched the data from
DRAM or disk. However, when API providers man-
age their resources poorly, applications that use their API
suffer. Early versions of the Facebook API slowed one
application’s page load times by 75% [25]. When Face-
book’s API suffered downtime, hundreds of applications,
including CNN and Gawker, went down as well [33].
While using a web API, developers would like to know if
the underlying system is robust. That is, will the API pro-
vide fast response times during holiday seasons? How
will its resource needs grow over time? Depending on
the answers, developers may choose competing APIs or
use the API sparingly [13,33].

An API’s workload profile describes its canonical re-
source needs and can be used to answer what-if ques-
tions. Based on APIs’ recent profiles, cloud applications
are able to adjust their behavior accordingly to either
mask low response times of slow APIs, or take advantage
of fast APIs. Prior research on workload profiling used 1)
white box methods, e.g., changing the OS to trace request
contexts across distributed nodes [22, 26] or 2) black
box methods that inferred resource usage from logs [29].
Both approaches would require data collected within a
API provider’s system but, as third parties, providers
have strong incentives to provide only good data about
their service. Without trusted inside data, workload pro-
files must be forged by probing the API and collecting
data outside of the underlying system (e.g., client-side
observed response times).



In this paper, we propose research on creating work-
load profiles for web APIs. Taken by itself, data col-
lected by probing web APIs under constrains the wide
range of systems that could produce such data. However,
when we combined that data with constraints imposed
by common cloud computing practices, we have created
usable and accurate workload profiles. One cloud com-
puting practice that we have used is auto scaling which
constrains queuing delays, making processing time a key
factor affecting observed response times. In early work,
we have found success profiling processing times with
blind source separation methods. Specifically, we used
observed response times as input for independent com-
ponent analysis (ICA) and extracted normalized process-
ing times in multi-tier systems. These per-tier distribu-
tions are our workload profiles.

We validated our profiles with a multi-tier storage ser-
vice. We used CPU usage thresholds to scale out a Redis
cache and database on demand. Our profiles captured
50th, 75th and 95th percentile service times within 10%
of direct measurements. We showed that our profiles
can help developers choose between competing APIs
by setting up two storage services. One used Apache
Zookeeper as a cache instead of Redis, a mistake re-
ported in online forums [6,8]. Zookeeper is a poor choice
for an object cache because it fully replicates content on
all nodes. We lowered the request arrival rate for the ser-
vice with Zookeeper cache such that our API probes ob-
served lower average and 95th percentile response times
compared to the other service. These response times
could be misleading because the service that used Re-
dis was more robust to increased request rates. Fortu-
nately, our workload profiles revealed a warning sign:
Tier 1 processing times on the service using Zookeeper
had larger variance than expected. This signaled that too
many resources, i.e., not just DRAM on a single node,
were involved in processing.

The remainder of this paper is arranged as follows: We
discuss cloud computing practices that make web API
profiling tractable in Section 2. We make the case for
blind source separation methods in Section 3 and then
present promising early results with ICA in Section 4.
Related work on workload profiling is covered in Sec-
tion 5. We conclude by discussing future directions for
the proposed research.

2 The Cloud Constrains Workloads

Salaries for programmers and system managers can
make up 20% of an application’s total expenses [32].
Web APIs offer value by providing new features without
using costly programmer time. However, slow APIs can
drive away customers. Shopping carts abandoned due to
slow response times cost $3B annually [14]. Web APIs

that increase response times can hurt revenues more than
they reduce costs. Developers could use response times
measured by probing the API to assess the API’s value.
However, response times reflect current usage patterns.
If request rates or mixes change, response times may
change a lot. The challenge for our research is to extract
profiles that apply to a wide range of usage patterns.

A key insight is that common cloud computing prac-
tices constrain a web API’s underlying systems. Web
APIs hosted on the cloud are implicitly releasing data
about their system design. In this section, we describe
paradigms widely accepted as best practices in cloud
computing. Also, they constrain underlying system
structures and resource usage enough to extract usable
workload profiles.

Tiered Design: The systems that power web APIs
must support concurrent requests. They use distributed
and tiered systems where each request traverses a few
nodes across multiple tiers (a tier is a software platform,
e.g., Apache Httpd) and tiers spread across many nodes.
Client-side observed response times are mixtures of per-
tier delays. Multiple tiers confound response times since
relatively slow tiers can be masked by other tiers, hiding
the effect of the slow tier on response time [30]. In the
cloud, tiers are divided by Linux processes, containers
or virtual machines. Each tier’s resource usage can be
tracked independently.

Auto Scaling: APIs hosted the cloud can add and re-
move resources on demand. Such auto scaling reduces
variability in queuing delay, i.e., the portion of response
time spent waiting for access to resources at each tier.
Since per-tier delays and their variance can be reduced by
auto scaling [17, 18, 20], it could further reduce the vis-
ibility of a poorly implemented component to outsiders.
Meanwhile, the stability of per-tier delays caused by auto
scaling [17] gives users opportunity to collect and ana-
lyze more consistent response times with less considera-
tion about the changes of the per-tier delay distributions.
Make the Common Case Fast: To keep response times
low, API providers trim request data paths. In the com-
mon case, a request touches as few nodes and resources
as possible with each tier performing only operations
that affect the request’s output. Well implemented APIs
make the common case as fast as possible and uncom-
mon cases rare. This design philosophy skews process-
ing times. Imbalanced processing time distributions are
inherently non-Gaussian.

Alternative Research Directions: Our research treats
data sharing across administrative domains as a funda-
mental challenge. An alternative approach would en-
able data sharing by building trusted data collection
and dissemination platforms. Developers would prefer
APIs hosted on such platforms and robust APIs would
be used most often. The challenge would be enticing



API providers to use the platform. Another approach
would have API providers support service level agree-
ments with punitive consequences for poor performance.
We believe that approaches based on inferring unknown
workload profiles, enabling data sharing or enriching
SLAs all provide solid research directions.

3 Blind Source Seperation

Blind Source Separation (BSS) describes statistical
methods that 1) accept signals produced by mixing
source signals as input, 2) place few constraints on the
way source signals are mixed, and 3) output the source
signals. Real world applications of BSS include: mag-
netic resonance imaging, electrocardiography, telecom-
munications, and famously speech source separation.
The most widely used BSS methods include: inde-
pendent component analysis (ICA), principle compo-
nent analysis (PCA), and singular value decomposition
(SVD). All of which are commonly taught in graduate
courses [12,23].

Workload profiling for web APIs aligns well with
BSS. First, second- and third-order statistics can enrich
first-order response times collected from the client. Re-
sponse times alone can mislead developers. Second,
there are a wide range of BSS methods distinguished by
their constraints on source signals and mixing methods.
The research challenge is to figure out which BSS meth-
ods yield usable workload profiles (not devising new sta-
tistical methods). The systems community can best an-
swer this question. Finally, BSS methods can reach a
wide range of web developers that may have encountered
BSS during graduate studies or online courses. Given
the cost savings from avoiding web APIs that perform
poorly, developers will likely find it worthwhile to install
BSS libraries which have been written in many languages
from MATLAB to Java to C.

3.1 Web API profiling using ICA

In early work, we have used ICA to profile per-tier de-
lays. The input to ICA is a time signal, usually denoted
as x. This input signal x is a linear transformation of
all sources, i.e., x = As, where the mixing matrix A
does not change over time. The output of ICA is s, i.e.,
(normalized) source signals. The number of input sig-
nals should be greater than or equal to the number of
source signals. The key theory behind ICA is central
limit theorem, which states that the input signal created
by summing two independent source signals is closer to
the Gaussian distribution than both source signals, pro-
vided source signals are not Gaussian.

Let’s return to the constraints imposed by cloud com-
puting practices discussed in Section 2. Making the com-

mon case fast leads to imbalanced, non-Gaussian pro-
cessing times. Auto scaling ensures that processing times
are a key factor influencing response times— not queu-
ing delays [17]. Finally, tiered design suggests that a re-
quest’s response time is summed (x = As) across tiers.
Below, we describe exactly how we used ICA to profile
APIs from observed response times.

System Model: Users interact with Web APIs by send-
ing HTTP requests and receiving responses. The system
underlying the API uses tiered design and auto scaling.
Response times observed at the client side (i.e., by de-
velopers) are the sum of delays caused by repeated pro-
cessing at each tier inside of the API’s backend systems.
Formally, the delay of tier ¢ could be considered as a ran-
dom variable s;.

Recall, ICA requires more input signals than source
signals. To acquire multiple signals at each point in
time, we concurrently probe the API with multiple re-
quest types. Requests are of the same type if their access
frequencies are the same across each tier. This means for
request type j, the response time is x; = ast, where
s = (s1,...,sn)7 is a vector consisting of random vari-
ables, NV is number of tiers and a; is a constant vector
specific to request type j. Intuitively, the weight vector
a; reflects the frequency with which each tier is called
during request execution and s; reflects the tier’s average
delay [29]. Suppose there are M types of requests. Each
observation is a response time of certain type of request.
Then the problem is: If we can collect arbitrary number
of observations, whether it is possible to recover per-tier
delay (s;) of a system.

ICA requires non-Gaussian and independently dis-
tributed source signals. It also depends on simultaneous
observation from multiple mixtures. Cloud-based ser-
vices meet these requirements. In the common case, OS
and background jobs do not interfere with request exe-
cutions but, when they do, they cause fat, non-Gaussian
tails at each tier [28]. Also, per-tier delays are largely in-
dependent because different tiers usually run on separate
virtual machines and are scaled independently. Finally,
in most systems, average per-tier delays change on the
order of minutes, not milliseconds. This fact helps us
to make simultaneous observations by issuing several re-
quests with different types concurrently. These concur-
rent requests triggers roughly the same per-tier delays,
which makes the observation a linear transformation of
the per-tier delays. Using notations defined above, an
observation is a vector of response times x = As, where
A = (a1,...,am)’. By collecting a series of obser-
vations, we can apply ICA on these response times and
recover the per-tier delay distributions.

Limitations: ICA recovers the shape of the source sig-
nal but not the energy. To predict response times, we
would need to shift and scale the output. More generally,
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Figure 1: Components and datapath for a scalable email ser-
vice hosted in the cloud.
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(a) Cache tier delays. (b) Database tier delays.
Figure 2: CDFs of observed and estimated delays of each
tier. No other workloads to the system.

BSS methods provide less data hindering the workload
profiles. However, as we will soon show, normalized dis-
tributions suffice to identify some warning signs. Also,
ICA does not match recovered distributions to tiers. We
currently do this manually. With a library of expected
per-tier distributions, we could use information gain or
EMD to automate this process.

4 Preliminary Results

To validate our approach, we build a distributed key-
value storage service consisting of 2 tiers — cache
tier, which uses Redis [4] as an in-memory cache; and
database tier, which uses MySQL. The cache tier consists
of multiple instances, and is automatically scaled based
on the workload. Users access the system through a web
API. The API can handle get and put requests. Inside the
system, we monitor per-tier delays and use them as the
ground truth to compare with the estimations. Figure 1
shows the architecture of our system. Each replicated
component runs in its own virtual machine. Each virtual
machine runs on 112 core cluster. Each core has at least
2.0 GHz, 3MB L2 cache, 2GB of DRAM memory, and
100GB of secondary storage. When probing the API, we
manually set the cache miss rate.

4.1 Per-tier delay distributions recovery

As we mentioned in previous sections, we would like to
recover per-tier delay distributions in an API’s backend.
We first test our technique against a vanilla system with
no other users. We probe the API by sending requests
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(a) Cache tier delays. (b) Database tier delays.
Figure 3: CDFs of observed and estimated delays of each
tier. The system is serving one day workload from the
WorldCup trace.

every second. The API only serves our probing requests.
We collects response times after 100 seconds and run
ICA to estimate per-tier delay distributions only based
on these response times. We also collected actual delay
at each tier by looking at Redis and MySQL logs.

Figure 2 shows the actual and estimated cumulative
distribution functions (CDFs) of normalized per-tier de-
lays. Since there is no other users using the API, the vari-
ation of delays in each tier is small. We can see that our
approach could precisely estimate the distributions with
error less than 3%. Next, we ran with background work-
load in addition to the API probes. We used HttpPerf
to simulate 600 users performing 50% reads and writes.
The background workload increased the tail but our per-
tier delays were still within 5%.

4.2 Impact of Real Workloads

We repeat the experiment from Section 4.1 but run some
real workload using the API to examine the performance
of our approach. We simulate one day workload from
WorldCup98 [1](Day 78), and probe the API 100 times
when it is serving the workload. We can see from Fig-
ure 3 that both tiers exhibit even heavier tails because of
the variation of request rates over the day. Even though
the variation of per-tier delays becomes larger, the recov-
ered distribution can still follow the actual distribution
precisely with errors within 5%.

4.3 Choosing between competing APIs

Our ICA-based approach could help users get more in-
formation about the backend system implementation of
the target API. When users try to choose an API from
two competing ones, our approach could provide some
insight in the systems which could be used as a guide
line for users.

We replace Redis instances with a ZooKeeper [2]
cluster in the cache tier in our experiment system to
create a poorly implemented key-value storage service.



—— Observed
Estimated

—— Observed
Estimated

00 02 04 06 08 1.0
00 02 04 06 08 1.0

00 02 04 06 08 10
Normalized delay

00 02 04 06 08 10
Normalized delay
(a) Redis setup. (b) ZooKeeper setup.
Figure 4: CDFs of observed and estimated delays of the
cache tiers.

ZooKeeper is a well-known centralized system support-
ing high-availability through redundant replicas. It keeps
strong consistency using a Paxos-like protocol, which
fully replicates content on all nodes. It is perfect to store
small important configuration data but would be a bad
choice for cache.

We run two competing key-value storage services.
One uses Redis as cache and another uses Zookeeper.
We adjust the request rates for both services so that
their mean and median response times are similar. For
both services, we simulate concurrent user requests with
a fixed rate. For the Redis setup, we issue 100 con-
current requests every 500ms; while for the ZooKeeper
setup, we issue 50 concurrent requests every 500ms.
Although ZooKeeper has an unstable and slow service
times, the lower request rate and the tier-2 delays make
the ZooKeeper setup look almost the same as, or even
better than the Redis setup. The mean and median re-
sponse times of ZooKeeper setup are 3.8ms and 2.7ms;
while the mean and median response times of Redis
setup are 4.5ms and 3.1ms. ZooKeeper setup performs
even better than Redis setup by comparing these met-
rics. Fortunately, our profiles revealed the poorly imple-
mented service.

Figure 4 shows the observed and estimated cumula-
tive distribution functions of the cache tier for two ser-
vices. Even though the database tier and the difference
of request rate masked the unstable component in the
ZooKeeper setup, our technique can still accurately re-
cover per-tier delay distributions. It is clear on the graph
that the ZooKeeper setup’s cache tier has a fatter tail;
while the Redis setup’s cache tier is relatively stable with
little variation. We further increased the request rate for
the ZooKeeper setup to the same rate as the Redis se-
tups’s, the mean and median response times quickly in-
creased to 8.6ms and 7.5ms.

5 Related Work

Workload profiling approaches differ according to their
outputs, inputs, and targeted systems. Our research uses
response time data collected as an outsider by probing
web APIs. Prior work has been more invasive. Power-
Tracer [22] and Power Containers [26,27] mapped local
events to request contexts even when request executions
moved across nodes. These low-level event traces were
combined to produce diverse workload profiles ranging
from per-node system call counts to per-tier energy ef-
ficiency. Events were collected using modified kernels.
These approaches targeted services within a single ad-
ministrative domain where trusted code bases could be
changed. Magpie [10] and XTrace [15] also used mod-
ified kernels to collect events but events were not auto-
matically linked to request contexts. The system man-
ager manually linked events. As a result, these ap-
proaches could span multiple domains—if events can be
linked. Instead of changing source code, Mantis [21]
and ConfAid [9] modified application binaries to collect
events, e.g., loop, branch, and method call counts.

Many domains prohibit code changes. For these sys-
tems, recent approaches have used aggregate CPU, net-
work, and disk usage statistics collected by vanilla mon-
itoring tools. Offline approaches measure these statistics
under specific request arrival patterns [34], whereas on-
line approaches passively collect statistics as traffic ar-
rives [16,29]. Generally, profiles produced by offline
approaches extrapolate to a wide range of request pat-
terns but online approaches are supported in more do-
mains. Hybrid approaches balance coverage with prac-
ticality [20,31]. In cloud services, some statistics are
amenable to automatic resource provisioning. Specifi-
cally, resource pressure [24] and queue length [18] work
well with threshold based auto scaling.

6 Discussion and Conclusion

Web APIs are surging because the RPC paradigm aligns
well with cloud computing trends: First, large datasets
stay in one place and second, growing network band-
width leads to increased throughput. While traditional
services underlie web APIs today, BSS methods will pro-
file data parallel services in the future. Our ICA-based
approach can profile map reduce, capturing worst-case
service times for the map and reduce phases. However,
iterative data parallel platforms, like Spark [5], present
challenges. Emerging workloads that exhibit highly di-
verse behaviors within requests types because of time-
varying demands also present challenges [3,11,19].
BSS has a strong track record in practice. A key next
step for our work is to apply BSS methods to real web
APIs. The challenge is to uncover more warning signs,



preferably non-parametric signs that can be indentified
directly from profiles. Another challenge in working
with real web APIs is probing overhead. Web APIs en-
force strict rules about the frequency and types of API
access, e.g., 2 accesses per second per user [7].

Our current research closed the loop between cloud
applications and web APIs, By providing more mean-
ingful profiles of APIs, cloud applications will be able to
control their internal system in a more effective way. It is
worthwhile to explore how to build a robust cloud appli-
cations by using profiles of APIs recovered by BSS. For
example, a cloud application may dynamically dispatch
requests to different APIs based on their profiles to avoid
busy hours of an APIL.

In conclusion, we proposed research on profiling third
party web APIs using BSS techniques. Using data col-
lected outside of an API provider’s system, we are able
to “look in” at detailed workload profiles. In early re-
sults, we used ICA to recover accurate profiles. We also
showed that our workload profiles were helpful, provid-
ing insight into design of tested services.
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