A Model-based Approach to Self-Protection in SCADA Systems

Qian Chen
Electrical and Computer Engineering
Mississippi State University
qgc34@msstate.edu

Abstract

Supervisory Control and Data Acquisition (SCADA)
systems, which are widely used in monitoring and con-
trolling critical infrastructure sectors, are highly vulner-
able to cyber attacks. Current security solutions can pro-
tect SCADA systems from known cyber assaults, but
most solutions require human intervention. This pa-
per applies autonomic computing technology to monitor
SCADA system performance, and proactively estimate
upcoming attacks for a given system model of a physical
infrastructure. We also present the feasibility of intru-
sion detection systems for known and unknown attack
detection. A dynamic intrusion response system is de-
signed to evaluate recommended responses, and appro-
priate responses are executed to influence attack impacts.
We used a case study of a water storage tank to develop
an attack that modifies Modbus messages transmitted be-
tween slaves and masters. Experimental results show
that, with little or no human intervention, the proposed
approach enhances the security of the SCADA system,
reduces protection time delays, and maintains water stor-
age tank performance.

1 Introduction

Contemporary Supervisory Control and Data Acquisi-
tion (SCADA) systems adopt computer and Internet
technology monitor physical system states by collecting
data from remote field devices and control critical infras-
tructures resulting in a feedback loop. The quality and ef-
ficiency of industrial processes have been enhanced with
the utilization of SCADA systems. However, SCADA
systems are exposed to cyber attacks. This is because
SCADA systems inherit vulnerabilities of computers and
networks, as well as SCADA-specific vulnerabilities of
system monitoring and controlling. A successful cyber
attack can devastatingly damage properties, result in fi-
nancial losses, or threaten personal lives. In 2011, Rus-
sian attackers compromised SCADA systems of public
water utilities and destroyed a pump in Springfield, Illi-
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nois [4]. If the SCADA system was not protected in time,
attackers might have burnt out all the water pumps in that
area, which could result in a break in service to 2,200 ru-
ral customers.

Real-world cyber attacks are becoming increasingly
sophisticated and organized. For instance, the Stuxnet
worm [8] adopting four zero-day vulnerabilities attacked
Iran’s nuclear enrichment facilities, which damaged one-
tenth of the centrifuges and led to the temporal termina-
tion of the uranium enrichment. Therefore, utilization of
a onefold security control can no longer protect the se-
curity of SCADA systems. Autonomic computing tech-
nology uses multiple controls in the series (also refer-
enced as the defense in depth strategy) to anticipate the
SCADA system security state and regulate system be-
havior proactively with little or no human intervention.
The contribution of this paper is the close integration
of system monitoring, intrusion estimation, intrusion de-
tection, live forensics analysis, and intrusion response
mechanisms using autonomic computing technology to
self-protect SCADA systems from the real-world sophis-
ticated cyber attacks.

As far as protecting the cyberspace of SCADA sys-
tems, intrusion detection systems (IDSs) have appeared
in the literature. Anomaly detection and signature detec-
tion are two major techniques that have been deployed to
detect and classify SCADA-specific attacks [13]. The
anomaly detection comparing real-time system perfor-
mance with the normal system model can detect known
and zero-day attacks. Observations that are deviated
from the normal security state are attacks. Method-
ologies commonly used to establish the normal system
model include statistics and machine learning theories.
For instance, Wang and Stolfo [11] designed a statistical
model using Mahalanobis distance to compare the simi-
larity of observed traffic payloads against normal traffic
for the identification of attacks. Neural networks, which
are one of machine learning theories, have been applied
to train normal datasets of the water storage tank by Gao



et al. [9]. Through experiments, man-in-the-middle at-
tacks, replay attacks, and denial of service attacks have
been developed to testify the detection accuracy of the
detector. The neural network intrusion detection system
provided a high detection accuracy to identify attacks
that modify commands or inject malicious responses.
The signature detection relies on matching observations
to misuse patterns despite normal SCADA system behav-
ior. This approach solely identifies and classifies known
attacks. As a result, to identify zero-day attacks (attacks
that exploit previously unknown vulnerabilities) the sig-
nature database must be upgraded frequently. Snort [2]
is a widely used signature-based IDS detecting SCADA-
specific attacks with pre-defined rules. One example of
a successful application of Snort is presented by Yang et.
al [12].

Most IDSs respond to attacks passively, i.e., only log
attack activities but do not mitigate malicious impacts.
They may also suffer from the problem of high false
alarm rates [10]. These two issues of the utilization of an
IDS lead to improper responses and high performance
overhead. Therefore, only adopting IDSs to enhance
SCADA system security is insufficient. In this paper, we
applied autonomic computing approach to designing a
front virtual machine (VM), on which autonomic com-
ponents are installed and closely interact with each other
to protect the SCADA system. A monitor is used to col-
lect real-time network and system data (shown in Fig-
ure 1). These data are first processed and formatted, and
then they are forwarded to intrusion estimation and intru-
sion detection modules. The intrusion estimation module
estimates future system security states. If the estimated
security state is abnormal, the intrusion response mod-
ule will select and implement an appropriate response to
eliminate the attacks or mitigate their impacts.

Sophisticated attacks, such as Stuxnet worms employ-
ing zero-day vulnerabilities, evade intrusion estimation
and prevention processes can be detected by the intru-
sion detection system in real-time. The live forensics
analysis tool located in the intrusion detection module
learns signatures of unknown attacks such as evolving
attacks or zero-day attacks. Detection algorithms and re-
sponse mechanisms are updated in real-time with these
signatures. Thus, similar attacks will be detected and
mitigated in the future. A dynamic intrusion response
system maps attacks to responses dynamically, and the
most appropriate responses are initiated to eliminate the
attacks.

Comparing our approach, which autonomously pro-
tects SCADA systems without disrupting normal infras-
tructure operations, with a comprehensive security de-
sign presented by Cardenas et al. [5], our approach is eas-
ier to employ to networked platforms. As all autonomic
components are installed on the front VM, only adding

the front VM behind the firewall and in front of pro-
tected devices can realize a self-protecting SCADA sys-
tem. The proposed self-protecting SCADA system can
also be switched between fully-autonomous and semi-
autonomous security modes. Therefore, response mech-
anisms that have low impacts on personal lives, eco-
nomics, and property damage are executed without hu-
man intervention (e.g., the deployment of one time au-
thentication). Cox [7] also employed autonomic com-
puting technology to improve SCADA cyber security.
In his design, responses that have low impacts are exe-
cuted automatically to shorten the protection time. How-
ever, compared with our approach, Cox statically maps
responses to the identified attacks. As a result, responses
are not sufficient to mitigate attack impacts if the intru-
sion detection raises a false alarm.

The rest of this paper is organized as follows: Sec-
tion 2 reviews the design of a front VM using the auto-
nomic computing approach and presents techniques that
have been applied to autonomic components. Section 3
provides a case study with the development of exploits
on the testbed of a water storage tank to validate self-
protection of the proposed approach. We conclude the
paper in Section 4.

2 Self-protecting SCADA Systems

Autonomic computing aims at self-protecting SCADA
systems from cyber attacks with minimal human inter-
vention. As shown in Figure 1 the autonomic SCADA
system estimates upcoming attacks, sends early warnings
to system administrators, and autonomously or semi-
autonomously implements responses to eliminate cyber
attacks. Sophisticated cyber attacks that evade the first
line of defense can be detected and classified by intrusion
detection systems. Afterward, intrusion response sys-
tems assess recommended responses, and optimal ones
are selected and implemented by the multi-criteria anal-
ysis controller (MAC) to defend the SCADA system
against cyber assaults. The closed-loop feedback control
design guarantees the system will be regulated to normal
behavior. The utilization of live forensics tools analyzes
unknown attack signatures. These signatures are used for
updating detection algorithms and intrusion responses so
that similar attacks will be detected and eliminated in the
future.

All modules for establishing an autonomic SCADA
system are installed on a front VM shown in Figure 2.
Therefore, the configuration and implementation of the
autonomic SCADA system are easy to realize. Note that
the normal operation region of the SCADA system has
been established offline applying expert knowledge, ex-
perimental results, literature reviews, and security guide-
lines. Normal operation regions vary in different physi-
cal system models and complexity of the SCADA envi-



ronment (described in Subsection 2.4). Details of tech-
niques and theories used in each module are discussed as
follows:
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2.1 The Monitor

The monitor module collects real-time data of the phys-
ical system performance and SCADA system security
performance. To this end, we first select features that
represent physical system behavior. For example, our ap-
proach is applied to autonomously secure a water storage
tank from implementing malicious commands in Sec-
tion 3. The water level of the water storage tank is mon-
itored. Features that represent the security of SCADA
systems are also monitored. These features include Mod-
bus TCP/IP packet header, protocol data units, connec-
tion rates. Details of selected features can be found in
our previous work [6].

2.2 The Data Processing Module

Real-time observations of selected features are directed
to the data processing module. This module deletes
datasets that contain missing data. Outputs of this mod-
ule are formatted and pre-processed datasets, which are
forwarded to the intrusion estimation module and intru-
sion detection systems.

2.3 Intrusion Estimation

The estimation module uses the historical observations of
controlled variables of a physical model (w(k—1,r)) and
selected security features of the SCADA system (A (k —
1,7)) to determine future performance of the physical
system. The ARIMA [1] forecasting model has been suc-
cessfully adopted in our previous work to estimate the
future trend of the enterprise system performance [6]. In
this work, we use the same forecasting model to predict
the future performance of industrial control systems and
future security states of the SCADA environment. Esti-
mated values are denoted by hatted letters (X). Normal
letters (x) represent observations and underscored letters
(x) are historical observations. Given the historical ob-
servations, the forecasting model has the following form:

o (k) = ¢n(@(k—1,r))

A(k) = gp(A(k—1,r)

where @(k) and A(k) denote estimated values of con-
trolled variables of a control system (e.g. the water level
of a water storage tank) and selected security features of
the SCADA system (e.g. TCP/IP packet rates and TCP
connection rates). @(k—1,r)) and A(k— 1,r) are sets
of previously observed controlled variables and SCADA
system security features {@(k—1),...,0(k—r—1)} and
{Ak=1),...;, A(k—r—1)}.

The estimation of the future security state of the
SCADA system must involve current system security
state, estimated values of control variables, and the es-
timations of selected security features:

£k +1) = flx(k), &(k), A (k)

where x(k) is the security state of the SCADA system
at time k. The estimated value of security state of the
SCADA system £(k + 1) is compared with the normal
operation region, which has been established offline. The
future security state of the SCADA system is abnormal
if the estimated security state is deviated from the stan-
dard region. In this case, the recommended responses
will be evaluated by the multi-criteria analysis controller
(described in Subsection 2.6). Optimal responses (R) that
have the lowest fuzzy scores are initiated to protect the
system from the future attacks. As a result, with the im-
plementation of appropriate responses, the estimated se-
curity state of the SCADA system at time k41 is:

2(k-+1) = fx(k), D (k). A (k), R(K))

The intrusion estimation module can protect the
SCADA environment from most known attacks that sig-
nificantly influence controlled variables and selected se-
curity features. Sophisticated attacks that evade this first
line of defense should be detected in real-time by the sec-
ond line of defense.



2.4 Intrusion Detection

Intrusion detection is the second line of defense. Due
to the time delay, the estimations of system security fea-
tures and physical system behavior may not reflect real
system security states. The intrusion detection system
adopting anomaly and signature detection techniques can
detect real-time known and unknown attacks.

e The anomaly detection technique: A normal region
of a secure SCADA system is established using ob-
servations of normal system behavior with a Naive
Bayesian classifier. Real-time processed datasets
are first forwarded to the anomaly-based IDS. Ob-
servations that deviate from the normal region are
attacks.

e The signature detection technique: The signature-
based IDS can only classify known attacks since
relevant attack regions have been built, or specific
rules of known attacks have been pre-defined.

More information about Naive Classifier, pre-defined
rules, and the application of the classifier and rules to
IDS can be found in our previous work [6].

2.5 Live Forensics Analysis

It is difficult to select appropriate responses to elimi-
nate or mitigate unknown attacks before signatures of
unknown attacks, their causes, and their adverse impacts
are revealed. Since the SCADA system must be available
24/17, live forensics analysis learning unknown attack pat-
terns without disrupting system operations is added to
protect zero-day and evolving attacks in our approach.
The live forensics analysis module monitors and ana-
lyzes network traffic, front VM system performance, and
auditing files using forensics tools (e.g., Wireshark [3])
and statistical theories (e.g., Naive Bayesian Network).
Novel signatures are then applied to update detection al-
gorithms of the IDS. The signatures are also sent to the
intrusion response module for helping the multi-criteria
analysis controller in selecting appropriate responses.

2.6 Intrusion Response

When estimations of SCADA system security or phys-
ical system behavior is abnormal, or real-time observa-
tions are detected as attacks, the intrusion response sys-
tem must select the proper response to recover the physi-
cal system behavior back to normal. As the execution of
an improper response may have a devastating impact on
the external environment, properties, and personal lives,
only responses that have low impacts can be executed
autonomously. The multi-criteria analysis controller im-
plements the evaluation of recommended responses. The
assessment of each response must take into account four
criteria, and they are:

e Criterion 1, Enhancement of Security: Confiden-
tiality, integrity and availability are three funda-
mental facets of the security.The response that ef-
ficiently enhances the security of SCADA systems
is assigned a fuzzy number 0, otherwise, assigned
1. Normalized values of responses that affect ma-
licious activities can be assigned between the range
of [0,1].

e Criterion 2, Operational Costs: The implementa-
tion of responses may exhaust computer and hu-
man resources. For example, the response “drop-
ping the malicious commands” consumes computer
CPU and memory resources to analyze protocol
data units of communication messages. It also con-
sumes storage resources for recording all known at-
tack signatures. As a result, the implementation of a
response must reduce their operational cost. Values
for this criterion can be assigned between the range
of [0,1]. The lowest cost responses are assigned 0;
otherwise, they are assigned 1.

e Criterion 3, Maintenance of Normal Operations:
The execution of responses are not permitted to dis-
rupt normal performance of critical infrastructures.
The responses that have no impact on normal oper-
ations are assigned 0. The value of Criterion 3 is
initialized to 1 if the implementation of selected re-
sponses disrupting normal operations of the system;
otherwise, values are assigned between the range of
[0,1].

o Criterion 4, Impacts on Properties, Finance and Hu-
man Lives: SCADA systems controlling critical in-
frastructures have catastrophic impacts on personal
lives, economics, and properties. The responses that
greatly affect these features cannot be executed au-
tonomously. Recommended responses such as “the
termination of physical processes” and “the isola-
tion of the master terminal unit (MTU) or the re-
mote terminal unit (RTU)” have high impacts.

Five recommended responses (listed in Table 1) have
been installed and configured offline. The multi-criteria
analysis controller in Figure 2 evaluates these responses
and selects optimal ones to react to cyber attacks.
Since all criteria mentioned above are equally impor-
tant, weights of each criterion for a response R; is W ;
(j=1,2,3), which are assigned 0.33 (as the sum of the
weights is equal to 1). For responses R;, values of each
criterion are represented by C; ;. The Criterion 4 decides
whether the implementation of the response requires hu-
man intervention or not. If the value of Criterion 4 is
higher than 0.5, the implementation of such responses
must be approved by system administrators since the re-
sponses have high impacts. We use “Semi-Auto” to rep-
resent a requirement of human intervention and “Auto”
to represent autonomous implementation. The total value
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Figure 2: A Testbed of an Autonomic SCADA System

(Si,i = 1,2,3,4,5) for each response can be calculated
using fuzzy-logic theory:

5
Si=) Wij*Ci
j=1
The optimal response R, is the one which has the lowest
fuzzy score. As an example, R, for mitigating unauthen-
ticated command attacks is “Replacement of Compro-
mised Devices”, which is decried in details in Subsec-
tion 3.4. If the selected optimal response is not sufficient
to mitigate attacks due to incorrect attack estimations or
detection, the second best responses will be executed un-
til the system security is normal.

3 A Case Study of the Water Storage Tank

To demonstrate the proposed approach, we present a case
study of a self-protecting SCADA system that monitors
and controls a water storage tank even if the SCADA sys-
tem is compromised by cyber attacks. A front VM was
added to the control network to enhance the security of
the MTU and the HMI, while the same front VM was
added to secure field devices such as RTUs and PLCs.
The self-protecting approach reduces the time delay in
SCADA system protection, closes the window of vulner-
ability, and relieves system administrator burden.

3.1 The Virtual Testbed

The water storage tank is modeled by a laboratory-scale
control system in Mississippi State University SCADA
Security Laboratory. In this control system, the MTU is
connected to a Human-Machine-Interface (HMI) server
via a RS-232 serial port, and the MTU connects to the
RTU wirelessly [9].

We established a testbed with four virtual machines
to simulate a similar SCADA system that monitors and

controls a water storage tank. Two VMs perform as a
RTU and a MTU, and each of them connects to a virtual
machine, which performs as protocol converters (shown
in Figure 2). Modbus TCP/IP messages were sent from
one protocol converter located in front of the field de-
vices. This converter first changed Modbus RTU re-
sponses, sent by field devices, to Modbus TCP/IP mes-
sages, and delivered the TCP/IP responses to the con-
trol network, in which the second protocol converter was
placed. The second protocol converter converted Mod-
bus TCP/IP messages to Modbus RTU messages and for-
warded the messages to the HMI through the MTU lo-
cated in the control network. Compared with Modbus
serial protocols, Modbus TCP/IP is an open and stan-
dardized protocol, which supports long distance trans-
missions and enables communications between comput-
ers and field devices.

3.2 The Development of a SCADA Control
System Exploit

To validate our approach, we carried out a malicious
command that modified the alarm condition and altered
the ladder-logic program of the water storage tank when
the water storage tank was set to the “Auto” control
mode. Once the water level had reached the low alarm
condition (represented by L), the pump was turned on.
On the other hand, when the water level increased to
the high alarm condition (denoted by H), the pump was
turned off automatically. The attack first evaded the au-
thentication process, and then sent an illicit command to
change L setpoint from 50.00% to 40.00%, and altered
H setpoint from 60.00% to 70.00%. HH (the high high
alarm) setpoint was modified to 80.00% from 70.00%
and LL (the low low alarm) was changed to 10.00% from
20.00%.

In the normal case, the water level of the water stor-
age tank was controlled between 50.00% and 60.00% as
shown from sample 1 to sample 67 in Figure 3(a). After
sample 67, the water level was increased to 82.82% by
the malicious command. The highest value of the water
level shown in the figure was higher than the HH set-
point. Afterwards, the pump was turned off, and the wa-
ter level dropped to 40.11%. The control mode of the wa-
ter storage tank was still “Auto.” Thus, at sample 130, the
pump was turned on again, and the water level increased
to 69.07%. After the water increased to the modified H
value, the pump was turned off, and the water level was
dropped to 40.0%.

3.3 The Physical Model of the Water Stor-
age Tank
A linear physical model of the water storage tank was

established relying on the observations of the physical
system when it was automatically controlled. The linear



physical model has the following form:
=Axt+BR,

where o is the value of the controlled water level, ¢ is
the sample time, and R, is the optimal control mech-
anism to defend the SCADA system against cyber at-
tacks. The water level increases and decreases period-
ically when it is controlled automatically. From obser-
vations of the laboratory-scale water storage tank, we
found out that the period of the water level was 80 sam-
ples. When 1 <r <35, A =0.256 and B = 51.181.
When 36 <t <39, A= —1.976 and B = 62.090. When
40 <t <45, A =0.03249 and B = 56.71783. When
46 <t <80,A = —0.202 and B = 56.686.

We adopted a time series ARIMA model to predict fu-
ture values of the water level based on the linear physical
system model and historical data of the water level. Es-
timations of the water level are represented by the blue
line in Figure 3(a). The green line shows real-time ob-
servations of the water level. The ARIMA model can
correctly estimate and detect abnormal system behavior
as estimations are almost equal to observations, which
are deviated from the normal operation region.

3.4 Evaluation of Recommended Re-
sponses by the MAC

Table 1 is the rankings of five recommended responses
for the protection of the SCADA system from the spoof-
ing attack. The initial fuzzy-values of four criteria for
recommended responses were provided based on exper-
imental results and expertise knowledge. The optimal
response that evaluated by the MAC was “Replacement
of Compromised Devices.” As this response may have a
high impact on disruption of normal operations, the im-
plementation of the response must be authorized man-
ually. Figure 3(b) shows that, at sample 94, the attack
modified alarm conditions, and the water level was ab-
normally increased to 65.99%. Atsample 104 when “Re-
placement of Compromised Devices” was implemented,
a replica PLC containing original ladder-logic programs
replied to the MTU and sent commands to control water
level of the critical infrastructure. As a result, the water
level was regulated back to normal rapidly and efficiently
with the application of autonomic computing technology.

Since adversaries masqueraded as a legitimate user,
the signature-based IDS did not identify the attack. The
live forensics tool analyzed log files to learn causes of the
attack. As a result, the rule containing the modified L,H,
LL and HH setpoint values were added to the signature
database. Therefore, the similar attack will be eliminated
in the future.

4 Conclusions and Future Work

In this paper, autonomic computing technology has been
used to self-protect the SCADA system from cyber at-

Table 1: Assessment of Recommended Responses Ex-
ample for Unauthenticated Command Attacks

. Total Value
Ranking Response Cl|C2|C3|C4 (Auto or Semi-Auto)
2 Dropping 0503101102 0.3 (Auto)

Malicious Commands

Termination of
4 Physical Processes 0 (08 1 1

0.6 (Semi-Auto)

Replacement of

Compromised Devices 0105) 0 03

0.17 (Auto or Semi-Auto)

One time
3 authentication 081030202 0.43 (Auto)
5 Isolation of 05| os | os | 06 0.7 (Semi-Auto)

Compromised Devices

sof Observation
75f — Estimation

20 40 60
Sample

(a) Observations and Estimations of the Water Level Without Self-

Protection

of the Implementati
of Compromised

Percentage

150 200 250

45 30

100
Sample

(b) Autonomic SCADA System Self-protects from Unauthorized Attacks

tacks. This new technology integrates current security
solutions so that the system can proactively monitor, es-
timate, detect, and react to known and unknown attacks
with little or no human intervention. It also ensures the
SCADA system is accessible 24/7. We applied the pro-
posed approach to enhance the security of a SCADA sys-
tem, which controls and monitors a water storage tank.
Through the experimental result, we validated that the
autonomic SCADA system maintained normal infras-
tructure operations and regulated the water level back to
the normal operation region when alarm conditions were
changed by attackers. The overhead time for identify-
ing and protecting the SCADA system was short. It cost
22 sample time to regulate the water level back to nor-
mal. In the future, we will simulate more sophisticated
cyber attacks to validate the efficiency of the approach.
In addition, we will also employ autonomic computing
to self-protect the next generation SCADA systems from
cyber assaults.

80 100 120 140 160 180 200 22
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