
Energy Efficient Soft Real-Time Computing through Cross-Layer Predictive
Control

Guangyi Cao Arun A. Ravindran
Department of Electrical and Computer Engineering

University of North Carolina at Charlotte

Abstract

The next decade of computing workloads is expected to
be dominated by soft-real time applications such as mul-
timedia and machine vision. Such workloads are charac-
terized by transient spikes requiring over provisioning of
compute servers, adversely affecting the cost, energy us-
age, and environmental impact of data centers. In many
of these applications, although deadlines need to be met
to provide QoS guarantees, other quality parameters of
the application (for example, visual quality in video pro-
cessing) can be tuned in conjunction with hardware pa-
rameters (for example, DVFS) to give acceptable perfor-
mance under overload conditions. In this paper, we ex-
perimentally demonstrate a predictive control approach
for improving overload capacity and energy efficiency
by incorporating control variables from both the hard-
ware and the application layer. Further, we illustrate the
impact of the choice of multiprocessor real-time schedul-
ing algorithms on the performance of the controller for
heterogeneous workloads.

1 Introduction

The next decade of computing is expected to be driven
by the increasing pervasiveness of personal mobile com-
puting devices and cyber physical systems. Many of
the next generation applications in entertainment, human
computer interaction, infrastructure, security and med-
ical systems are computationally intensive, always-on,
and are characterized by periodic tasks with soft real
time (SRT) requirements. While failure to meet dead-
lines is not catastrophic in SRT systems, missing dead-
lines can result in an unacceptable degradation in the
quality of service (QoS). To ensure acceptable QoS un-
der dynamically changing operating conditions such as
changes in the workload, energy availability, and ther-
mal constraints, systems are typically designed for worst
case conditions. Unfortunately, such overdesigning of

systems increases costs and overall power consumption.
A possible solution to this problem is run-time adapta-
tion of the system to handle dynamically changing oper-
ating conditions. Previous research on cross-layer run-
time adaptation has focused on open-loop control where
the output has no effect on the system input and hence
can only counteract against disturbances for which it has
been designed [39, 10, 19]. In contrast in closed loop
control, feedback is used to determine if real-time re-
quirements are in met in the presence of unmodeled dis-
turbances. However, existing research on closed loop
control for real-time workloads have been limited to the
use of control inputs derived from a single layer of the
computing stack such as processor DVFS or scheduling
policies.

In this paper we show that a higher overload capac-
ity and better energy efficient operation of the system is
possible if the control inputs are derived from all parts
of the computing stack. We note that in many of the ap-
plications described above, although deadlines need to
be met to provide QoS guarantees, other quality param-
eters of the application (for example, visual quality in
video processing) can be tuned in conjunction with hard-
ware parameters (for example, DVFS) to give acceptable
performance under overload conditions. We formulate
the real-time task execution as a Multiple-Input, Single-
Output (MISO) optimal control problem involving track-
ing a desired system utilization set point with control in-
puts derived from across the computing stack. We as-
sume that an arbitrary number of SRT tasks may join and
leave the system at arbitrary times. The tasks are sched-
uled on multiple cores by a dynamic priority multipro-
cessor scheduling algorithm. Note that utilization above
the set-point results in tasks missing deadlines while uti-
lization under the set-point results in energy inefficient
operation.

Our cross-stack control framework is shown in Fig-
ure 1. We use a model predictive controller (MPC) to
realize optimal control. MPCs use an internal system

REAL- TIME APPLICATION

LAYER

REAL -TIME OS LAYER

HARDWARE LAYER

SOFT REAL-TIME

APPLICATION

SOFT REAL-TIME

SCHEDULER

ACPI DRIVER

FREQUENCY

MODULATOR

UTILIZATION

APPLICATION PARAMETER

MODULATOR

MPC CONTROLLER

NUMBER

OF TASKS

SENSOR

ACTUATOR

ACTUATOR

Figure 1: Schematic representation of our cross-layer
control framework

model to predict the future trajectory of the output vari-
ables. Based on a history of past control moves, a con-
strained optimization is solved on-line to determine the
future input trajectory such that the output variables track
a reference trajectory over a receding horizon. MPCs are
easy to tune, can handle multiple control variables, and
constraints on both the dependent and independent vari-
ables.

Following initial design using MATLAB, we experi-
mentally demonstrate the operation of our controller on
a video encoder application (x264) and a computer vision
application (bodytrack) executing on a dual socket quad-
core Xeon processor with a total of 8 processing cores.
All tasks including the application and the controller are
scheduled by real-time dynamic task schedulers imple-
mented in Linux using the Litmus-RT patch [13]. We
evaluate the performance and energy saving of the cross-
layer control for homogeneous workloads. Further, we
illustrate the impact of the choice of multiprocessor real-
time scheduling algorithms on the performance of the
controller for heterogeneous workloads.

The rest of the paper is organized as follows - Sec-
tion 2 gives a brief overview of related work. Section 3
describes our control framework and Section 4, the eval-
uation methodology. Section 5 presents the experimental
setup and results. Section 6 concludes the paper.

2 Related Work

Most of the existing research on run-time power man-
agement targets exclusively either the hardware layer
[33, 31, 37, 29, 38, 2, 6, 17], or the application layer
[3, 32, 5, 21, 4, 28, 34, 35, 22, 25, 26, 20] or the system
software layer [24, 27, 36, 11]. Among the cross-layer
open-loop approaches , the Illinois Grace project [39]
uses a hierarchical adaptation at all system layers includ-

ing application (frame rate and dithering for video de-
coding), soft real time scheduling (CPU time allocation)
and CPU (DVFS) for power optimization. The optimiza-
tion problem involves maximizing quality and minimiz-
ing power with energy, processor utilization, frequency
and quality of service as constraints. Bitirgen et al. pro-
posed a framework that manages multiple shared mul-
ticore resources in a coordinated fashion to guarantee
performance objectives[10]. They formulate global re-
source allocation as a machine learning problem. Hoff-
man, et al. [19] proposed PTRADE, a framework that
coordinates a number of different hardware resource in a
computing system. PTRADE consists of two interfaces
which communicates an application’s performance goals
and current performance, and a runtime system which
determines how to optimize system performance by tun-
ing hardware resources. However PTRADE only works
on the hardware layer. Cucinotta, et al. [14] have pro-
posed an adaptive resource allocation mechanism orga-
nized in two feedback loops. The internal loop is respon-
sible for updating the execution budget for soft real-time
multimedia task so that timing constraints of the appli-
cation are satisfied. The external loop operates on the
QoS level of the applications and on the power level of
the resources in open loop to strike a good trade-off be-
tween the global QoS and the energy consumption. We
use a single closed loop model predictive controller to
meet timing constraints while adapting power and QoS.

3 Cross-layer Control Framework

3.1 Soft Real-Time Schedulers

A multicore real-time system consists of m cores and N
periodic tasks. Under a periodic task model, each task
consists of a sequence of jobs which are released peri-
odically. We use Global and Cluster Earliest Deadline
First (G-EDF and C-EDF) scheduling algorithms to as-
sign tasks to the cores. Previous research has shown that
for SRT tasks scheduled by EDF executing on m pro-
cessors, a utilization level of m is possible with bounded
tardiness [16]. In EDF, tasks with earlier deadlines are
selected to run at the next scheduling point. G-EDF uses
a single unified task scheduler, ready queue, and release
queue to handle all tasks. At any instant, the task sched-
uler picks at most m jobs with the earliest deadlines to
execute on m processors. There is no restriction imposed
on where a task can execute. In C-EDF, all cores that
share a specific cache level (L2 or L3) are defined to be a
cluster; tasks are allowed to migrate within a cluster, but
not across clusters; tasks assigned to a cluster are sched-
uled globally within the cluster under the EDF algorithm.
Typically, better load balancing is achieved with G-EDF
while C-EDF promotes better data locality.

2

3.2 System Model
We model our system as a standard linearized, discrete-
time, state space model in the form below [8]:

x(k+1) = Ax(k)+Buu(k)+Bvv(k)+Bdd(k)

ym(k) =Cmx(k)+Dvmv(k)+Ddmd(k)
(1)

In Equation 1, x(k) is the nx-dimensional state vector of
the plant, u(k) is the nu dimensional vector of manipu-
lated variables, v(k) is the nv dimensional vector of mea-
sured disturbances, d(k) is the nd dimensional vector of
unmeasured disturbances entering the system, and ym(k)
is the ny dimensional vector of measured outputs. The
unmeasured disturbance d(k) is modeled as the output of
an LTI system

xd(k+1) = Āxd(k)+ B̄nd(k)

d(k) = C̄xd(k)+ D̄nd(k)
(2)

Where nd(k) is the random Gaussian noise with zero
mean and unit covariance matrix.

3.3 Model Predictive Control
The values of the set-points, measured disturbances, and
constraints are specified over a finite prediction horizon
P; the controller computes future inputs for a control
horizon M (1 ≤ M ≤ P). Assuming that the estimates
x(k) and xd(k) are available at time k from state estima-
tion, the future inputs at time k are obtained by solving
the optimization problem [8]

min
∆u(k|k),...,∆u(m−1+k|k),ε

{
p−1

∑
i=0

[
ny

∑
j=1
|wy

i+1, j(y j(k+ i+1|k)

− r j(k+ i+1))|2 +
nu

∑
j=1
|w∆u

i, j ∆u j(k+ i|k)|2]+ρε ε
2}

(3)

subject to the constraints,

u jmin(i)− εV u
jmin(i)≤ u j(k+ i|k)≤ u jmax(i)+ εV u

jmax(i)

∆u jmin(i)− εV ∆u
jmin(i)≤ ∆u j(k+ i|k)≤ ∆u jmax(i)+ εV ∆u

jmax(i)

y jmin(i)− εV y
jmin(i)≤ y j(k+ i|k)≤ y jmax(i)+ εV y

jmax(i)

, i = 0, ..., p−1
∆u(k+h|k) = 0, h = M, ...,P−1 ε ≥ 0

(4)

Here, r(k) is the value of the reference variable at time
k, w∆u

i, j , wy
i, j are non-negative weights for the correspond-

ing variables. A smaller w indicates a lower importance
of the corresponding variable in the overall cost func-
tion. u j,min, u j,max, ∆u j,min, ∆u j,max, y j,min, and y j,max are

the lower/upper bounds of the corresponding variables.
The weight ρε of the variable ε penalizes the violation
of constraints. The relaxation vectors V u

min, V u
max, V ∆u

min,
V ∆u

max, V y
in, and V y

max represent the penalty for relaxing the
corresponding constraints; the larger the V, the softer the
constraint. If all bounds are infinite and the slack vari-
ables are removed, the problem can be solved analyti-
cally; else a Quadratic Programming (QP) solver is used.
Since the output constraints are always soft, the QP prob-
lem is never infeasible [8]. Note that only ∆u(k|k) is
actually used to compute u(k). The remaining samples
∆u(k+ i|k) are discarded and a new optimization prob-
lem based on ym(k+ 1) is solved the the next sampling
step k+1.

Since the states x(k) and xd(k) are not directly measur-
able, predictions are obtained from a state estimator. The
estimates are computed from the measured output ym(k)
by the linear state observer[

x̂(k|k)
x̂d(k|k)

]
=

[
x̂(k|k−1)
x̂d(k|k−1)

]
+G(ym(k)− ŷm(k)) (5)

ŷm(k) =Cmx̂(k|k−1)+Dvmv(k)+DdmC̄x̂d(k|k−1) (6)

The gain G is designed using Kalman filtering tech-
niques [8].

4 Evaluation Methodology

4.1 Benchmarks
We use two soft real-time benchmarks from the Parsec
benchmark suite [9] - x264 and bodytrack. Both bench-
marks were modified to confirm to an implicit deadline
periodic workload model. The x264 application is an
H.264/AVC (Advanced Video Coding) video encoder.
The encoder grabs video frames periodically and en-
codes based on the MP4 video format specification. The
video frame resolution level ranges from 1

4 HD (230,400
Pixels per image) to full HD (921,600 Pixels per image),
and is chosen as the application quality tuning knob de-
termining the visual quality. The bodytrack computer
vision application tracks a humans movement through
an image sequence periodically from multiple cameras
[7] [15]. An annealed particle filter is used to track the
movement of a human through the scene.The graphic
output of bodytrack generates conic cylinders to rep-
resent 10 body components including torso, head and
limbs. The number of annealing layers ranging from 1
- 5, and the number of particles ranging from 100 - 4000,
are chosen as the application quality tuning knobs. As a
measure of visual quality, the relative mean square error
in the magnitude of the position vectors of the body parts
for different values of the tuning knobs is used [20]. For

3

the values of the application quality tuning knobs, the
relative mean square error is less than 56%. The bench-
marks are modified such that the resolution can be up-
dated on a per-frame basis using a global variable, with
appropriate initializations redone each time the global
variable is updated.

4.2 Experimental Setup
We experimentally demonstrate the operation of our
cross-stack predictive control framework on a dual
socket quad-core Intel Clovertown server. This server
is equipped with an Intel Xeon processor X5365 with
8MB on-die L2 cache 1.333 GHz FSB and a 16 GB main
memory. The processor supports four DVFS level: 3.0,
2.67, 2.33 and 2.0GHz. The operating system is Linux
2.6.36 kernel patched with Litmus-RT-2011. Litmus-RT
implements several real-time multiprocessor scheduling
and synchronization algorithms for Linux [13]. Each soft
real-time task is mapped to a single thread and is inde-
pendent of other tasks. In our work, the x264 encoder
grabs video frames periodically at 25 fps and bodytrack
processes a new frame at 20 fps.

4.3 Sensor and Actuators
Actuators update the processor operational frequency
and the application quality tuning knob values. Prior to
applying the manipulated variables to the hardware and
the application stack, the actuators filter these through a
modulator to allow for fine-grained control. We use a
first order delta-sigma modulator for the frequency actu-
ator and a pulse width modulator for the application tun-
ing knob actuator. Compared to the pulse width modula-
tor, the first order delta-sigma modulator provides higher
accuracy but incurs larger overhead due to oversampling.
Hence first order delta-sigma modulators are more suit-
able for frequency actuators due to the small transition
latency for DVFS (10 µs). However, the latency associ-
ated with the application tuning knobs may be up to 500
µs, precluding the use of oversampled techniques.

In each control period, the actuator reads the fre-
quency and application tuning knob values from the con-
troller, filter these through the modulator, and then writes
the modulated values to the hardware and the application
stack. Frequency actuator utilizes a Linux kernel sub-
system called cpufreq to dynamically scale values of the
operational frequency. Application quality actuator up-
dates the tuning knobs, which are global variables pro-
tected by a real-time Flexible Multiprocessor Lock Pro-
tocol (FMLP) read-write lock [12]. FMLP is used to
prevent deadlock and priority inversion in multiproces-
sor systems. In every control period, the MPC controller
reads the system utilization from a sensor implemented

as a custom Linux system call to calculate average per-
core execution time over one control period.

4.4 System Identification
For both benchmarks, we obtain the system utilization
for randomly generated combination of inputs includ-
ing CPU frequency, application quality, and number of
tasks for 400 control periods. The Hubble video [1] and
the camera image sequence input from the Parsec bench-
marks are used in executing x264 and bodytrack respec-
tively. We use the first half of working data for data
modeling and the other half of data for validation. We
use n4sid algorithm from the MATLAB System Identi-
fication Toolbox [23] to generate the state space mod-
els given in Equation 1. For our model, nx = 1, nu = 2
(frequency and application quality), nv = 1 (number of
tasks), nd = 1 (job level variations in the execution time),
and ny = 1 (system utilization). The first-order model has
a fit of 84.8% for x264 and 87.4% for bodytrack.

4.5 Controller Design
The Model Predictive Controller is designed using the
MATLAB MPC Toolbox [8]. The tunable parameters of
the MPC controller include control horizon, prediction
horizon, input and output weights, blocking modes, and
disturbance model. The disturbance model is obtained by
low-pass filtering a Gaussian white noise. We manually
tune these parameters one at a time to obtain a good step
response for the controller.

Table 1: Optimized parameter settings of the MPC con-
troller

x264 bodytrack
control horizon 2 4

prediction horizon 10 12
input weight 0, 0 0, 0
output weight 1 1

blocking 5 4
disturbance model 1

s+1
1

s+10

The optimized controller parameters for both x264 and
bodytrack are shown in Table 1. The control interval is
chosen as 1 second, which is about 1/20-th of the open
loop settling time. The closed loop poles of the uncon-
strained controller lie within the unit circle. The con-
troller is implemented as a real-time task.

5 Experimental Results

Four our m= 8 core system, we set the task utilization set
point arbitrarily to 4. Note that in a production system,

4

2 4 6 8 10 12 14
15

20

25

30

number of tasks

fr
a

m
e

 r
a

te
 (

F
P

S
)

 no control

 DVFS only

app quality only

cross stack

(a) x264

2 4 6 8 10
10

15

20

25

number of tasks

fr
a
m

e
 r

a
te

 (
F

P
S

)

 no control

 DVFS only

app quality only

cross stack

(b) bodytrack

Figure 2: Average FPS versus number of tasks - under
no control, MPC control with DVFS-only, MPC control
with application quality-only, and cross-layer MPC con-
trol

the choice of the set-point is dictated by the processor
capacity required to run non-real time background tasks.

5.1 Homogeneous tasks
We demonstrate the need for the controller by measuring
the average frame rate both with and without feedback
control, as the workload is varied from light to heavy. A
G-EDF scheduler is used to schedule all the tasks. As
seen from Figure 2, in the absence of the controller, the
frame rate drops beyond 11 tasks for x264 and 8 tasks for
bodytrack. For our 8 core system, the lowered frame rate
indicates that the system is in overload. However, unlike
the non-control case, the feedback controller is able to
maintain a constant frame rate by automatically adjust-
ing the processor frequency and the application quality.
Figure 2 also shows the advantage of a cross-layer ap-
proach to feedback control as compared to deriving the
control variables from a single layer of the computing
stack. For both x264 and bodytrack using DVFS-only or
application quality-only as the control variable, results in
a sharper drop in the frame rate with a heavier task load
as compared to the cross-layer control.

For the bodytrack application, Figure 3 shows the
controller′s step response to a change in the number of
tasks from 5 to 9. As expected, the controller responds to
a higher load by increasing the frequency while decreas-
ing the visual quality to maintain the set-point within 5%
with a peak overshoot of 29.7% and a settling time of 3.8
seconds. Since typical task change period is of the order
of tens of seconds, this settling time suffices.

To evaluate the power savings obtained by our cross-
layer control approach, we compare the average power
consumption of the controller to the non-control case
where the cores run at maximum frequency and the tasks
operate at maximum application quality. The power sav-
ings are evaluated based on the power model described
in [18], with the power proportional to the cube of the
operating frequency. For a pseudo-random number of
homogeneous input tasks, our model predictive control
approach shows an average power saving of 31% com-
pared to the non-control implementation for x264 and an
average power saving of 26% for bodytrack. The power
saving is obtained at an average application quality of
70% for x264 and 65% for bodytrack.

Table 2: Average FPS under C-EDF and G-EDF sched-
uler for a heterogeneous workload.

number of tasks FPS of x264 FPS of bodytrack
x264 body-

track
C-
EDF

G-
EDF

C-
EDF

G-
EDF

2 2 25 25 20 20
2 8 25 25 15.8 20
10 2 20.1 25 20 20
8 6 25 23.1 20 18.3

5.2 Heterogeneous tasks
We also investigate the choice of the real-time schedul-
ing algorithms on the performance of the the cross-layer
feedback controller when the system hosts heteroge-
neous tasks from multiple applications (x264 and body-
track). In global-EDF scheduling, tasks from both the
applications are scheduled globally across all 8 cores. In
clustered-EDF scheduling, the applications run on sepa-
rate clusters with tasks from a single application assigned
to a cluster of 4 cores sharing the L2 cache. In both
cases, separate controllers are designed for the two appli-
cations. Unfortunately, our hardware platform does not
allow independent control of the core frequencies, limit-
ing us to application quality as the only control variable
for this experiment. Table 2 compares the average frame
rate for G-EDF and C-EDF for different combination of
number of tasks. For a balanced but light workload, both
C-EDF and G-EDF achieve the targeted average FPS of
25 and 20 for x264 and bodytrack respectively. For an

5

20 40 60 80 100

2

4

6

8

time(s)

u
ti
liz

a
ti
o

n

MPC

set point

(a) Utilization versus time

20 40 60 80 100
2

2.5

3

time(s)

fr
e

q
u

e
n

c
y
(G

h
z
)

(b) Processor operating frequency versus
time

20 40 60 80 100
 0%

 20%

 40%

 60%

 80%

100%

time(s)

v
is

u
a
l
q
u
a
lit

y

(c) Visual quality versus time

Figure 3: Experimental evaluation of model predictive control system step response for bodytrack. At t = 50s, the
number of tasks changes from 5 to 9.

unbalanced workload, where the applications have dis-
similar number of tasks, we note that G-EDF with its
superior load balancing capability performs better. How-
ever, for a balanced but heavy workload with large num-
ber of tasks for both applications, load balancing is less
of any issue. For this case, C-EDF with its better data
locality performs better.

5.3 Non-linear tasks

Run-time characteristics of the two workloads depends
on the video inputs. Since the x264 controller was de-
signed using a single video input, we investigate the per-
formance of the controller for other types of video in-
puts. To characterize the similarity of two videos, we
compare the probability distributions of the average exe-
cution times over a control period using the Kolmogorov-
Smirnov (KS) [30] test. For 10 highly viewed test videos
drawn from YouTube with content ranging from music,
sports, movie clips, news reports, and documentaries, we
observe that the controller performs well if the test video
has a similar KS statistic to the input video. We note
that for 8 videos out of 10 the controller shows accept-
able performance. As a part of future work, we could
implement a gain-scheduling approach, where separate
controllers are designed for videos with significant dif-
ference in the KS statistic. A video classifier would peri-
odically evaluate the video content and load the appropri-
ate controller. The periodic classification approach could
also be used to handle videos where the execution char-
acteristic changes with time. A similar gain scheduling
approach can also be applied to bodytrack.

5.4 Controller Overheads

The controller overheads include 1) computation cost
of the MPC controller, 2) overheads due to DVFS and
3) real-time synchronization cost in modifying shared
global variables in the application. The MPC controller
uses a quadratic programming (QP) solver whose com-
putation complexity is polynomial time in the product

of number of control outputs and and prediction hori-
zon. In one control period (1 second in our experiments),
the core frequency is changed 20 times by the sigma-
delta modulator. The overall DVFS overhead is mea-
sured using high resolution Linux timers and accumu-
lated through all the subintervals within a control pe-
riod. The synchronization occurs when the application
parameters are updated. Our measurements indicate that
for both x264 and bodytrack, the overheads associated
with DVFS dominates, and the total overhead is less than
0.4% of one control period.

6 Conclusions

In this paper we have demonstrated that a cross-layer
approach to control enables the system to track large
variations in the number of tasks allowing operation un-
der heavily overloaded conditions while meeting tim-
ing requirements for soft real-time workloads. More-
over, the use of DVFS and application quality as con-
trol variables allows operation at a lower average power
(and thereby lower energy for fixed run-time workloads)
while meeting real-time constraints as compared to non
cross-layer control approaches. Additionally, we show
that the depending on the workload, the choice of the
real-time scheduling algorithm impacts the performance
of the controller. Also, the model predictive approach to
control readily incorporates practical constraints on the
output and control variables. Since the controllers are in-
dependent and have low overhead, the proposed frame-
work scales well with the number of tasks and with mul-
tiple applications. Future extensions of our work would
include gain scheduling for handling input dependent
workload behavior and additional hardware and applica-
tion parameters for a richer control of the system power-
performance trajectories.

7 Acknowledgments

The authors would like to thank Dr. Tyrone Vincent for
helpful suggestions.

6

References
[1] Hubble 20 years of discovery pt1-2 2010 nasa 1080

hd. http://www.nasa.gov/mission_pages/hubble/

science/hubble20th-img.html, 2010.

[2] ABDELWAHED, S., BAI, J., SU, R., AND KANDASAMY, N. On
the application of predictive control techniques for adaptive per-
formance management of computing systems. Network and Ser-
vice Management, IEEE Transactions on 6, 4 (2009), 212–225.

[3] ABDELZAHER, T. F., STANKOVIC, J. A., LU, C., ZHANG, R.,
AND LU, Y. Feedback performance control in software servicess.
Control Systems 23, 3 (2003), 74–90.

[4] ABENI, L., AND BUTTAZZO, G. Hierarchical qos management
for time sensitive applications. In Real-Time Technology and Ap-
plications Symposium, 2001. Proceedings. Seventh IEEE (2001),
IEEE, pp. 63–72.

[5] ABENI, L., CUCINOTTA, T., LIPARI, G., MARZARIO, L., AND
PALOPOLI, L. Qos management through adaptive reservations.
Real-Time Systems 29, 2-3 (2005), 131–155.

[6] AYDIN, H., DEVADAS, V., AND ZHU, D. System-level energy
management for periodic real-time tasks. In Real-Time Systems
Symposium, 2006. RTSS’06. 27th IEEE International (2006),
IEEE, pp. 313–322.

[7] BALAN, A. O., SIGAL, L., AND BLACK, M. J. A quantitative
evaluation of video-based 3d person tracking. In Visual Surveil-
lance and Performance Evaluation of Tracking and Surveillance,
2005. 2nd Joint IEEE International Workshop on (2005), IEEE,
pp. 349–356.

[8] BEMPORAD, A., MORARI, M., AND RICKER, N. L. Model
Predictive Control Toolbox. The MathWorks, 2005.

[9] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. The parsec
benchmark suite: characterization and architectural implications.
In Proceedings of the 17th international conference on Parallel
architectures and compilation techniques (2008), ACM, pp. 72–
81.

[10] BITIRGEN, R., IPEK, E., AND MARTINEZ, J. F. Coordinated
management of multiple interacting resources in chip multipro-
cessors: A machine learning approach. In Proceedings of the
41st annual IEEE/ACM International Symposium on Microarchi-
tecture (2008), IEEE Computer Society, pp. 318–329.

[11] BLOCK, A., BRANDENBURG, B., ANDERSON, J. H., AND
QUINT, S. An adaptive framework for multiprocessor real-time
system. In Real-Time Systems, 2008. ECRTS’08. Euromicro Con-
ference on (2008), IEEE, pp. 23–33.

[12] BLOCK, A., LEONTYEV, H., BRANDENBURG, B. B., AND AN-
DERSON, J. H. A flexible real-time locking protocol for multi-
processors. In Embedded and Real-Time Computing Systems and
Applications, 2007. RTCSA 2007. 13th IEEE International Con-
ference on (2007), IEEE, pp. 47–56.

[13] CALANDRINO, J. M., LEONTYEV, H., BLOCK, A., DEVI,
U. C., AND ANDERSON, J. H. Litmusˆ rt: A testbed for empir-
ically comparing real-time multiprocessor schedulers. In Real-
Time Systems Symposium, 2006. RTSS’06. 27th IEEE Interna-
tional (2006), IEEE, pp. 111–126.

[14] CUCINOTTA, T., PALOPOLI, L., ABENI, L., FAGGIOLI, D.,
AND LIPARI, G. On the integration of application level and
resource level qos control for real-time applications. Industrial
Informatics, IEEE Transactions on 6, 4 (2010), 479–491.

[15] DEUTSCHER, J., AND REID, I. Articulated body motion capture
by stochastic search. International Journal of Computer Vision
61, 2 (2005), 185–205.

[16] DEVI, U. C., AND ANDERSON, J. H. Tardiness bounds under
global edf scheduling on a multiprocessor. Real-Time Systems 38,
2 (2008), 133–189.

[17] FU, X., KABIR, K., AND WANG, X. Cache-aware utilization
control for energy efficiency in multi-core real-time systems. In
Real-Time Systems (ECRTS), 2011 23rd Euromicro Conference
on (2011), IEEE, pp. 102–111.

[18] FU, X., AND WANG, X. Utilization-controlled task consolida-
tion for power optimization in multi-core real-time systems. In
Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2011 IEEE 17th International Conference on (2011),
vol. 1, IEEE, pp. 73–82.

[19] HOFFMANN, H., MAGGIO, M., SANTAMBROGIO, M. D.,
LEVA, A., AND AGARWAL, A. A generalized software sys-
tem for accurate and efficient management of application perfor-
mance goals. In International Conference on Embedded Software
(EMSOFT 2013) (2013).

[20] HOFFMANN, H., SIDIROGLOU, S., CARBIN, M., MISAILOVIC,
S., AGARWAL, A., AND RINARD, M. Dynamic knobs for re-
sponsive power-aware computing. In ACM SIGPLAN Notices
(2011), vol. 46, ACM, pp. 199–212.

[21] KATO, S., RAJKUMAR, R., AND ISHIKAWA, Y. Airs: Support-
ing interactive real-time applications on multicore platforms. In
Real-Time Systems (ECRTS), 2010 22nd Euromicro Conference
on (2010), IEEE, pp. 47–56.

[22] LI, B., AND NAHRSTEDT, K. A control-based middleware
framework for quality-of-service adaptations. Selected Areas in
Communications, IEEE Journal on 17, 9 (1999), 1632–1650.

[23] LJUNG, L. System Identification Toolbox. The MathWorks, 1995.

[24] MAGGIO, M., HOFFMANN, H., SANTAMBROGIO, M. D.,
AGARWAL, A., AND LEVA, A. Controlling software applica-
tions via resource allocation within the heartbeats framework. In
Decision and Control (CDC), 2010 49th IEEE Conference on
(2010), IEEE, pp. 3736–3741.

[25] MESARINA, M., AND TURNER, Y. Reduced energy decoding of
mpeg streams. Multimedia Systems 9, 2 (2003), 202–213.

[26] NOBLE, B. D., SATYANARAYANAN, M., NARAYANAN, D.,
TILTON, J. E., FLINN, J., AND WALKER, K. R. Agile
application-aware adaptation for mobility. In ACM SIGOPS Op-
erating Systems Review (1997), vol. 31, ACM, pp. 276–287.

[27] PADALA, P., SHIN, K. G., ZHU, X., UYSAL, M., WANG, Z.,
SINGHAL, S., MERCHANT, A., AND SALEM, K. Adaptive con-
trol of virtualized resources in utility computing environments. In
ACM SIGOPS Operating Systems Review (2007), vol. 41, ACM,
pp. 289–302.

[28] PARK, S. I., RAGHUNATHAN, V., AND SRIVASTAVA, M. B.
Energy efficiency and fairness tradeoffs in multi-resource, multi-
tasking embedded systems. In Proceedings of the 2003 interna-
tional symposium on Low power electronics and design (2003),
ACM, pp. 469–474.

[29] PILLAI, P., AND SHIN, K. G. Real-time dynamic voltage scaling
for low-power embedded operating systems. In ACM SIGOPS
Operating Systems Review (2001), vol. 35, ACM, pp. 89–102.

[30] PRESS, W. H. Numerical recipes 2rd edition: The art of scientific
computing. Cambridge university press, 2002.

[31] QU, G., AND POTKONJAK, M. Energy minimization with guar-
anteed quality of service. In Proceedings of the 2000 interna-
tional symposium on Low power electronics and design (2000),
ACM, pp. 43–49.

[32] RAJKUMAR, R., JUVVA, K., MOLANO, A., AND OIKAWA, S.
Resource kernels: A resource-centric approach to real-time and
multimedia systems. In Photonics West’98 Electronic Imaging
(1997), International Society for Optics and Photonics, pp. 150–
164.

7

[33] ROY, A., RUMBLE, S. M., STUTSMAN, R., LEVIS, P.,
MAZIÈRES, D., AND ZELDOVICH, N. Energy management in
mobile devices with the cinder operating system. In Proceed-
ings of the sixth conference on Computer systems (2011), ACM,
pp. 139–152.

[34] RUSU, C., MELHEM, R., AND MOSSÉ, D. Maximizing the sys-
tem value while satisfying time and energy constraints. IBM Jour-
nal of Research and Development 47, 5.6 (2003), 689–702.

[35] SEGOVIA, V. R., ÅRZÉN, K.-E., SCHORR, S., GUERRA, R.,
FOHLER, G., EKER, J., AND GUSTAFSSON, H. Adaptive re-
source management framework for mobile terminals-the actors
approach. In Proceedings of the First International Workshop
on Adaptive Resource Management (WARM), Stockholm, Sweden
(2010).

[36] SEO, E., JEONG, J., PARK, S., AND LEE, J. Energy efficient
scheduling of real-time tasks on multicore processors. Parallel
and Distributed Systems, IEEE Transactions on 19, 11 (2008),
1540–1552.

[37] SNOWDON, D. C., LE SUEUR, E., PETTERS, S. M., AND
HEISER, G. Koala: A platform for os-level power management.
In Proceedings of the 4th ACM European conference on Com-
puter systems (2009), ACM, pp. 289–302.

[38] SRIKANTAIAH, S., KANDEMIR, M., AND WANG, Q. Sharp
control: controlled shared cache management in chip multipro-
cessors. In Proceedings of the 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (2009), ACM, pp. 517–
528.

[39] YUAN, W., NAHRSTEDT, K., ADVE, S. V., JONES, D. L., AND
KRAVETS, R. H. Grace-1: Cross-layer adaptation for multime-
dia quality and battery energy. Mobile Computing, IEEE Trans-
actions on 5, 7 (2006), 799–815.

8

