
Group based energy adaptation for storage systems

Muthukumar Murugan
HP Storage∗

Krishna Kant
Temple University

Ajaykrishna Raghavan, David H.C. Du
University of Minnesota

Abstract
Storage systems play a significant role in data centers
and there is an urgent need to efficiently store, retrieve
and manage the ever increasing volume of data required
by a variety of applications in the data center. Much of
the stored data often contains a lot of redundancies at
the block level that can be removed via de-duplication.
The performance and fault-tolerance requirements also
need explicit replication of data, but more copies mean
higher storage system energy consumption. In our pre-
vious work we proposed a flexible storage infrastructure
called flexStore that can dynamically control the replica-
tion of de-duplicated data based on changing energy bud-
gets for the storage subsystem. In this paper we extend
this mechanism with storage policies that allow for dif-
ferentiated treatment of various applications. In particu-
lar, we consider replication of virtual machines belong-
ing to different application groups that are managed inde-
pendently with respect to both de-duplication and repli-
cation. We have built a prototype of the storage system
and evaluate the proposed system on an Amazon EC2
cluster. Through this prototype we study the benefits of
group based replication both on storage node and on the
host side in a data center.

1 Introduction

The storage needs of data centers is increasing at a fast
pace and efficiently managing this explosive growth of
data is extremely important from multiple perspectives
including cost, performance, and power consumption. A
large data center may host a diverse set of applications
with different service level agreements (SLA’s), QoS re-
quirements, and data access characteristics. The storage
system should be able to cater to the storage needs of
these applications and deliver the desired performance
and availability. For instance, the storage system should
be able to guarantee low latency to a high priority ap-
plication that serves real time queries as compared to

∗Work done as part of Center for Research in Intelligent Storage
(CRIS)

a lower priority application running in the background,
even if the former has less favorable data access charac-
teristics than the latter (e.g., random vs. sequential data
access pattern).

While performance is an important aspect of storage
systems, the rapidly increasing data volume also requires
a close attention to the power consumption. As the CPUs
become more energy efficient and better power managed,
the fraction of data center energy consumed by the stor-
age continues to go up. Reference [7] suggests that the
storage system power consumption may be around 40%
of the total data center power consumption. Sustainabil-
ity is also a key factor in the design of modern datacen-
ters. Recently, there have been significant efforts by the
industry to use renewable energy sources to power data
centers (e.g., [4]). The use of renewable energy sources
entails variability in available energy and the different
subsystems in the datacenter have to be able to adapt to
the energy variations. The goal of the adaptation tech-
niques is to limit the power consumption of the datacen-
ter during energy constrained situations while minimiz-
ing the impact on the guaranteed performance. Rightsiz-
ing of the power and cooling infrastructure – as opposed
to the traditional overdesign – is also a crucial aspect of
sustainability and leads to similar issues.

In our previous works [1, 6, 8], we introduced a new
paradigm called Energy Adaptive Computing (EAC).
The primary objective of EAC is to provide flexibility
of operation by providing the right interfaces and mech-
anisms for the data center infrastructure to dynamically
adapt to the variations in energy availability or variations
in the ability to consume energy (due to power circuit,
thermal or cooling limitations) while ensuring that the
performance degrades minimally and gracefully accord-
ing to specified QoS requirements.

In this paper we propose and demonstrate the work-
ing prototype of an energy adaptive storage system which
dynamically adapts to the variations in available energy
via group specific adaptive replication. Replication, i.e.,

1



Figure 1: Functional architecture of proposed storage system

maintaining multiple copies of data, is widely used in
many scale–out storage systems (e.g., Network RAID 10
in [5]] both to improve performance and to increase re-
silience in the face of failures or data corruption. Most
workloads tend to have a much higher percentage of read
IO than write IO, and the read performance scales almost
linearly with the number of replicas. However, multiple
copies of the data implies that more storage nodes need
to be kept powered on, which in turn consumes more en-
ergy. The proposed storage system dynamically controls
the replication factors i.e., the number of replicas and
the association of replicas to virtual machines, in order
to adapt to the variations in available energy. The pro-
posed storage system also provides interfaces to spec-
ify performance requirements of virtual machines and
allows grouping of VMs based on their priority levels,
dataset characteristics (e.g., de-duplication ratio), work-
load patterns, etc. The proposed storage system factors
in these performance considerations in addition to the en-
ergy constraints when making the adaptation decisions.
We demonstrate the adaptation mechanisms that the stor-
age system provides and the performance of the storage
system with a prototype implementation.

2 System Design and Architecture

Figure 1 shows the functional components of the pro-
posed storage system. The virtual machines run on phys-
ical hosts on a hypervisor Xen (see www.xenproject.org).
Each VM belongs to an application group. In this pa-
per we group the application VMs based on (1) priori-
ties and (2) de-duplication ratios. We evaluate the ability
of the storage system to provide differentiated storage
QoS to different application groups. The storage system
maintains data in the de-duplicated format. That is, each
VM image is divided up into blocks of equal size, called
“chunks”. Since VM images often have a lot of redun-
dancy, many chunks have identical content which can be

squeezed out by simply storing one copy of the chunk,
and having others simply point to it. As an example, a
study by Clements et al., [2] shows that in virtualized
enterprise environments de-duplication can lead to up to
80% storage savings. For the purposes of this paper, we
do de-duplication on a per-group basis. Following the
de-duplication, we create multiple replicas of the entire
chunk-set for the group. The number of replicas that an
application group uses is dependent on predefined QoS
and energy policies. In effect, the scheme eliminates un-
controlled redundancy and then reintroduces it in a con-
trolled and adaptive fashion. Doing this on a group-basis
is not as storage efficient as doing it across all VMs,
but the independent management of each group provides
flexibility in QoS management.

Since there is only one copy of any chunk in a dedupli-
cated storage system, when multiple VMs try to access
the same chunk, there is resource contention. Having
multiple replicas improves performance because of the
availability of more resources and also increases avail-
ability since when a replica fails, the data is available
on other replicas. The replicas provide an object in-
terface. The virtual machine disks are stored as files
in the file system mounted on the host. We built a
file system using FUSE (Filesystem in User Space, see
http://fuse.sourceforge.net). The FUSE layer basically
captures the POSIX calls (read, write etc.) and trans-
forms them into object calls (GET, PUT etc.) which are
then sent to the corresponding replica assigned to the
VM. Each host mounts this file system and the virtual
disks are stored at that mountpoint.

As shown in Figure 1 the design has separate “control”
and “data” planes. The control plane decides what stor-
age nodes or replicas the data is placed on or retrieved
from. The data plane includes the storage nodes (repli-
cas) where the data is actually read from and written to.
This separation provides the capability to implement pol-
icy based adaptation mechanisms in the proposed storage

2



system. Such a separation is an essential component of
the emerging concept of software defined storage (SDS)
(see [10]).

The policy engine is a distributed module that runs
on each host, collects data from monitoring daemons on
replica nodes, and initiates the control actions. The con-
trol actions include deciding how many replicas need to
be kept powered on, assigning VMs to replicas based on
the IO load on the replicas, and synchronizing across the
replicas. Each VM normally reads from and writes to
only one replica (the one it is assigned to). The only ex-
ception is the transition phase (during adaptation actions)
when the VM is reassigned to a new replica in which
case it writes to the new replica until its reassignment is
complete. Hence there is no split–brain scenario where
inconsistencies occur due to a single VM reading from
two different copies of data.

Replica
Rk

1

Replica
Rk

rk

…… Replica
Rj

1

Replica
Rj

rj

…………

VM1 ……VM2 VMmj-1
VMmj

Group j

VM1 ……VM2 VMmk-1
VMmk

Group k

Figure 2: VM-Replica Association in each group

3 Energy Adaptive Replica Management

3.1 Dynamic Replication and Adaptive
Consistency

Let the number of application groups be k. Let the total
number of VMs in the ith group, gi be mi. Each group
is assigned a certain number of replicas. Let the num-
ber of replicas assigned to group gi be ri. The rth replica
of group gi is denoted by Ri

r. Figure 2 shows the asso-
ciation of VM groups to replicas. We assume that each
VM in a group does roughly the same number of IO’s
per second (IOPS), but the IOPS may vary significantly
across groups. In this paper we measure the average IO
latency across the entire group as the QoS measure. In
real world, these assumptions could mean that all VMs
in a group perform same or similar tasks and thus have
similar behavior and handling requirements.

During energy plenty situations, we maintain at least
the minimum number of replicas that are required to
guarantee the latency requirements of each group. The
VMs belonging to each group are assigned to the repli-
cas in such a way that the load on each replica is about

the same. As mentioned before, each VM reads from
and writes to only one replica during normal operations.
The replicas do diverge from one another as write op-
erations generate new chunks in the system. Hence the
replicas need to be synchronized periodically. Many syn-
chronization protocols have been examined in the litera-
ture and they offer different levels of consistency in dis-
tributed systems. A Weak Consistency model refers to
update only to the requested replica – other replicas are
synchronized to it only when the VM is assigned to a
different replica. A Strong Consistency model refers to
immediate update of all the replicas so that they stay syn-
chronized.

In flexStore, we adaptively perform replica synchro-
nization in the background (by copying updated chunks
across replicas) so that the impact on foreground read and
write operations remains minimal. These background
operations consume additional energy as well and hence
need to be scheduled carefully. This adaptive consistency
protocol, referred to as flexStore consistency protocol, is
described in detail [9]. Briefly, the flexStore consistency
protocol tries to minimize the number of chunks that are
different between any two replicas of the same group of
VMs. It does so under the given constraints of bandwidth
and energy used for the replica synchronization.

During energy constrained situations, the replicas of
lower priority VMs are progressively powered down and
the VMs that were served by these replicas are reassigned
to other replicas associated with the respective group to
which they belong. This increases the load on the repli-
cas serving the low priority VMs but the replicas serving
higher priority VMs are not impacted until there is a large
power constraint.

3.2 Application Groups, Flexibility and
Storage Power

The replicas of each group of VMs are independent and
hence having multiple application groups increases the
flexibility of management. When the group size (i.e., the
number of VMs per group) is small, the latency require-
ments of VMs can be managed at a finer granularity and
the energy adaptation operations also can be done more
efficiently within smaller groups. However if the num-
ber of VM groups is large, the storage resources required
and hence the storage power consumption becomes high.
In order to avoid having too many replicas in the sys-
tem, we start with an original larger set of groups and
then adaptively “combine” groups into one. As usual,
the combined group is served by the same set of replicas
and thus requires less storage and energy.

When the VMs are grouped based on the de-
duplication potential (i.e., ability to reduce storage con-
sumption via de-duplication), the number of groups

3



significantly impacts the total de-duplication potential.
Since de-duplication is restricted to within a group, the
common chunks across different groups are not elimi-
nated and hence the overall storage requirements can in-
crease if we have many small groups. However, if the
grouping is done intelligently in such a way that the de-
duplication potential within a group is really high, the
overall space requirements might actually decrease. Ide-
ally, we need to have minimum number of groups of
VMs and replicas where managing the QoS at the granu-
larity of groups of VMs does not impact the QoS of indi-
vidual VMs too much and also the deduplication poten-
tial within a group is high. This is a multi–dimensional
optimization problem and we plan to address this in our
future work.

3.3 Defining Policies
The policy engine shown in Figure 1 is the component
that provides interfaces to define storage system policies.
The QoS policies and energy policies are defined in the
policy engine and are enforced in the control plane. An
example QoS policy is as follows: if the IO latency of
a VM is > t ms, allocate more bandwidth for the VM
to reduce the queuing delay. Similarly an example en-
ergy policy could be as follows: if the available power
is < P Watts, consolidate data onto a fewer nodes and
shut down the rest of the nodes. The policy engine is de-
signed as a distributed, logically centralized module and
there is minimum interference with the regular read and
write critical paths. It uses the resource usage collected
and reported by performance monitoring daemons peri-
odically. The policy engine enforces the required poli-
cies by communicating with the corresponding control
plane entities. It dynamically adjusts (a) the allocation of
VMs to the different storage systems to satisfy the perfor-
mance characteristics of the VMs, and (b) the data layout
(e.g.,) consolidation of data into a fewer devices, and (c)
the number of replicas of the dataset based on energy
availability. The policy engine also provides interfaces
to associate a VM to an application group. The monitor-
ing daemons, policy engine, and the adaptive consistency
mechanisms help to achieve graceful degradation of per-
formance during energy constrained situations.

4 Experimental Evaluation

We evaluated our storage system prototype on an Ama-
zon EC2 cluster (http://aws.amazon.com/ec2/). Amazon
instances are virtual machines that run on the Amazon
servers. The different types of instances differ in the
available CPU, memory, storage and networking capac-
ities. Our experimental testbed comprises general pur-
pose M1 type instances. We used EC2 M1.xlarge in-

stances that have 4 vCPUs (virtual CPUs) with maximum
of 15 GB of RAM as the storage nodes (i.e replicas). In
all the experiments we set the amount of memory avail-
able on the storage nodes to 2 GB (by setting a boot time
option in GRUB), to ensure that not all IOs are served
from buffers and there is disk activity. We also used
Amazon EC2 M1.large instances that have 2 vCPUs with
maximum of 7.5 GB of RAM as hosts. All EC2 instances
ran Ubuntu Server 14.04 as the operating system. We ran
a maximum of 4 VMs on each of the M1.large instances
(hosts). In order to evaluate our prototype storage sys-
tem, we used fio [3] which is a standard benchmark to
evaluate file system workloads. We used uniform access
distribution in fio. Each of the virtual disks was assumed
to belong to one Virtual Machine in a datacenter.

Figure 3: Latency values with different number of groups
Case(1): Three groups with 25% de-duplication Case
(2): Two groups each with 25% and 50% de-duplication
respectively and Case (3) Two groups each with 25% and
75% de-duplication respectively

We studied a case with 32 VMs in three groups: g1
with 22 VMs, g2 with 6 VMs, and g3 with 4 VMs re-
spectively. The groups had the following latency require-
ments: g1 required 60 ms latency bound, g2 required
30 ms bound, and g3 25 ms. We started by fixing the de-
duplication ratio of each group to 25% (Case (1) in Fig-
ure 3). Here de-duplication ratio is defined simply as the
fraction of bytes eliminated (i.e., not stored explicitly)
as a result of deduplication. We controlled the dedupli-
cation ratio by changing the files that get stored in the
data disks of each VM. We ran read, write, and mixed
read/write workloads following uniform distribution of
block numbers (average request size = 4 KB) accessed
and measured the average request latency for different
replica assignments to the groups, until we arrived at an
assignment that satisfied the latency requirements.

We observed that when g1 was assigned 3 replicas R1
1,

R2
1, and R3

1, g2 to two replicas, R1
2 and R2

2 , and g3 was
assigned to one replica R1

3, the storage system was able
to provide the guaranteed latency to the VMs.

Next we combined g2 and g3 into a single group, and
the de-duplication ratio of this combined group was set to
50% (Case (2) in Figure 3). Since VMs in g3 require la-

4



tency bound of 25 ms, we set that as the required latency
bound for this new combined group. The de-duplication
ratio of VMs in g1 was still 25%. The groups were as-
signed replicas as follows to meet the latency bounds: g1
was assigned R1

1, R2
1, and R3

1 and the combination of g2
and g3 was assigned R1

(2,3) and R2
(2,3). We found that this

configuration was able to meet the latency requirements
under different workloads at reduced storage resources
as shown in Case (2) of Figure 3.

In Case (3) we repeated the above experiment but now
the de-duplication ratio of the combined group g2 and g3
was set to 75%. In this case, g1 still required 3 replicas
while the combination of g2 and g3 required only one
replica. It can be seen that with higher de-duplication
ratio, the available memory in the storage nodes was
sufficient to cache most pages during reads and hence
fewer number of replicas were adequate to satisfy the la-
tency requirements of the VMs. The impact on latency
and hence the number of replicas required to satisfy la-
tency requirements will depend on the combination of
VM groups which are assigned to use the same repli-
cas. Generalized and effective algorithms for dynami-
cally merging and separating groups can be quite chal-
lenging and will be addressed in future works.

Figure 4: IO latencies with different consistency levels
across replicas

In the next two experiments (Figures 4 and 5), we
changed the number of VMs per group to show the im-
pact of consistency model on the IO latencies. Here g1
has 18 VMs, g2 has 12 VMs, and g3 has 6 VMs. The
de-duplication ratio of each group was set to 25%. The
groups had the following latency requirements: g1 re-
quired 60 ms latency bound, g2 required 35 ms bound,
and g3 30 ms. We observed that when g1 was assigned
3 replicas R1

1, R2
1, and R3

1, the storage system was able to
provide the guaranteed latency to the VMs in g1 for flex-
Store consistency as shown in Figure 4. Similarly when
g2 was assigned three replicas, R1

2, R2
2 and R3

2, and g3 was
assigned two replicas, R1

3, R2
3 to meet the latency require-

ments for flexStore consistency.
We changed the consistency level to strong consis-

tency and found that these latency bounds could not be
honored for any group for the above mentioned replica

assignment. The average latencies increased by at least
30% in case of strong consistency. Since both read
and write operations contend for common resources, i.e
memory, disk/network bandwidth, etc., read latencies are
also impacted in case of strong consistency. In case of
weak consistency and flexStore consistency, writes re-
turn immediately after being written to one replica in the
group and hence write latencies are practically the same
for these two cases.

In our energy adaptive storage system, the VMs in a
group are assigned to replicas based on a greedy policy
that balances the number of IOPS of all the replicas for
that group that are powered on. VMs are re-assigned to
another replica when: (1) number of IOPS is not bal-
anced, (2) latency values prescribed by the policy is not
met, and (3) when a replica needs to be turned off during
energy deficient periods. In the case of strong consis-
tency the re-assignment can happen immediately since
all replicas in a group have the required data. In the case
of weak consistency, the replicas have to be synchronized
when a VM is re-assigned from one replica to another,
which can potentially take a long time and hence require
more brown energy during energy deficient periods. In
the case of flexStore, the replica synchronization hap-
pens periodically once a threshold amount of new data
has been written to the replica. This ensures that the
amount of data (hence the time and the amount of brown
energy) that needs to be synchronized during reassign-
ment is bounded. Our storage system performs this peri-
odic synchronization in a manner that the foreground (i.e
client) IOs aren’t significantly impacted. The adaptive
consistency model helps balance the tradeoff between the
penalty on the foreground IO latency due to replication
and the time required to perform re-assignment.

Figure 5: Consistency level vs. number of groups

Figure 5 shows the impact of de-duplication on laten-
cies for strong consistency. We started with the same
group and replica setup as the previous experiment. Next
we combined g2 and g3 into one single group with a de-
duplication ratio of 50%. Since VMs in g3 require la-
tency bound of 30 ms, we set that as the required latency
bound for this new combined group. The de-duplication
ratio of VMs in g1 was still 25%. The groups were as-
signed replicas as follows to meet the latency bounds for

5



flexStore consistency: g1 was assigned R1
1, R2

1, and R3
1,

and the combination of g2 and g3 was assigned R1
(2,3) and

R2
(2,3). We found that this configuration was able to meet

the latency requirements under flexStore consistency. We
changed the consistency level to strong consistency and
measured the average IO latencies. We observed that the
IO latency for the combined group g2 and g3 for strong
consistency was less than the IO latency of g2 (by 12%).
This is because only 2 replicas were required to serve
the combined group due to higher de-duplication ratio
and hence the synchronization overhead was low, as op-
posed to 3 required to serve g2 previously. The latency
values for the combined group are higher than that of g3
by 16% with strong consistency, when it was handled
as a separate group, since now there are more VMs in
the combined group, resulting in higher contention for
shared resources. The IO latency of the combined group
was nearly the same as the average of the IO latency for
g2 and g3. Here we see that by combining the groups to
achieve higher de-duplication ratio, we are able to pro-
vide similar performance levels even in case of strong
consistency with fewer replicas. However, the QoS is
managed at a coarser granularity and hence some groups
may be impacted more than the others.

Figure 6: Impact of grouping VMs on the host side

The experiments thus far have explored grouping of
VMs on the storage node side. We motivate the need
for grouping of VMs on the host side with this next ex-
periment. We started with same group and replica setup
as the previous experiment. The VMs belonging to the
group g1 and the combined group g2 and g3 (with 50%
de-duplication ratio) were distributed among the differ-
ent hosts. We ran a sequential read workload on VMs
belonging to the combined group g2 and g3 and measured
the IO latencies. Next we co-located the VMs belonging
to the combined group g2 and g3 on the hosts and ran
the sequential read workload on the VMs and measured
the IO latencies. We found that there was a reduction in
latencies (by around 67%) in the second case. This is be-
cause in the second case the read ahead performed by the
OS helps populate the read cache on the hosts. Since the
co-located VMs belonging to the combined group g2 and
g3 contain common data, the read requests from differ-

ent VMs can be served from the host’s read cache. Even
though the host OS performs read ahead with or without
co-location, non co-located VMs do not get the benefit
of a warmed up cache. This suggests that fewer replicas
could be used to meet a latency bound if VM grouping
on the hosts could also be controlled. In future work we
plan to explore techniques to group VMs dynamically on
the host side depending on the workload to minimize en-
ergy required to meet latency requirements of VMs.

5 Conclusion and Future Work

In this paper we presented the extension to our flexible
storage infrastructure in [9] that allows specification of
storage policies for differentiated treatment of various
applications. Through our evaluations we illustrated the
benefits of group based de-duplication and replica man-
agement. We also motivated the advantages of grouping
VMs on the hosts themselves. In the future we plan to ex-
plore dynamically changing this combination of groups
which use the same replicas both on the host and storage
node side.

A possible area to be investigated is the impact of the
storage system adaptations on the resource allocations on
the host side. For instance if the number of replicas is
smaller, the VMs spend more time waiting and hence the
CPUs of the hosts remain idle for longer periods. This
might provide additional opportunities to do power man-
agement in the hosts as well. Defining policies and allo-
cating storage resources in the presence of heterogeneous
storage media like hard disks and SSDs is a future exten-
sion of this work.

References
[1] K. KANT, M. MURUGAN AND D. H. C. DU . Enhancing data

center sustainability through energy adaptive computing. ACM
JETC (Special Issue) (April 2012).

[2] CLEMENTS, A. T., AHMAD, I., VILAYANNUR, M., AND LI,
J. Decentralized deduplication in san cluster file systems. In
USENIX Annual technical conference (ATC) (2009).

[3] FLEXIBLE IO TESTER. http://git.kernel.dk/?p=fio.git;a=summary.
[4] GOOGLE GREEN ENERGY INITIATIVE. http://www.google.

com/about/datacenters/energy.html.
[5] HP STOREVIRTUAL. http://www8.hp.com/us/en/products/data-

storage/data-storage-products.html?compURI=1225885.
[6] KANT, K., MURUGAN, M., AND H.C.DU, D. Willow: A Con-

trol System for Energy and Thermal Adaptive Computing. In
IPDPS ’11 (2011).

[7] LI, Z., GREENAN, K. M., LEUNG, A. W., AND ZADOK, E.
Power consumption in enterprise-scale backup storage systems.
In FAST’12 (2012).

[8] M.MURUGAN, K.KANT, AND DU, D. Energy Adaptation for
Multi-tiered Datacenter Applications. Intel Technology Journal
16 (2012).

[9] MURUGAN, M., KANT, K., RAGHAVAN, A., AND DU, D. flex-
store: A software defined, energy adaptive distributed storage
framework. In IEEE MASCOTS 2014 ([To Appear]).

[10] THE SOFTWARE-DEFINED DATA CENTER (VMWARE).
http://www.vmware.com/software-defined-datacenter/storage.

6


