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Abstract—We study the demand response (DR) of geo-
distributed data centers (DCs) using a dynamic pricing scheme.
Our proposed pricing scheme is constructed based on a for-
mulated two-stage Stackelberg game where each utility sets a
real-time price to maximize its own profit in Stage I; and based
on these prices, the DCs’ service provider minimizes its cost via
workload shifting and dynamic server allocation in Stage II. First,
we show that there exists a unique Stackelberg equilibrium. Then,
we propose an iterative and distributed algorithm that converges
to this equilibrium, where the “right prices” are set for the
“right demand”. Finally, we verify our proposal by traced-base
simulation and results show that our pricing scheme outperforms
other baseline schemes significantly.

I. INTRODUCTION
A. Motivations, Challenges and Contributions

Data centers (DCs) are well-known as large-scale consumers
of electricity and a study shows that many DC operators paid
more than $10M [1] on their annual electricity bills, which
continues to rise with the flourishing of cloud-computing
services. Recent works have shown that DC operators can save
more than 5% — 45% [2] operation cost by leveraging time
and location diversities of electricity prices. However, most of
the existing research is based on one important assumption:
the electricity price applying on DC does not change with
demand, which is not true since DCs have enormous energy
consumption and have impacts on power prices. Many DC op-
erators are considering how to run their geo-distributed DCs on
smart grid, which is designed to coordinate the energy supply
and demand more effectively through its advanced two-way
communications. An important feature of smart grid is demand
response (DR). DR programs seek to provide incentives to
induce dynamic demand management of customers’ electricity
load in response to power supply conditions. Due to its huge
and rapidly increasing energy consumption, DCs should be
encouraged significantly to participate in the DR programs.
One of the DR programs is using real-time pricing schemes
to reduce the peak-to-average (PAR) load ratio by encouraging
customers to shift their energy demand away from peak hours.
The challenge of an effective pricing scheme is how to charge
the customers with a right price not only at the right time but
also on the right amount of customers’ demand. A real-time
pricing scheme is considered effective if it can mitigate the
large fluctuation of energy consumption between peak and oft-
peak hours to increase power grid’s reliability and robustness.

We consider the problem of using real-time pricing of
utilities to enable the geo-distributed DCs’ participation into
the DR program. We show that there is an interaction between
geo-distributed DCs and their local utilities; and it is the first
challenge of this DR problem. Specifically, when participating
in the DR program, DCs operator will distribute its energy
demand geographically based on the electric prices adjusted
intelligently by the local utilities. However, the utilities set
their prices based on the total demand including the DCs
demand, which is only known when the price is available. We
clearly see that this dependency makes it difficult for both DCs
and utilities to make their decisions. The second challenge is
an interaction among local utilities feeding power to the geo-
distributed DCs. Specifically, the DCs’ decisions depend on the
electric prices set by local utilities; therefore, if any local utility
changes its prices, it can affect other DCs’ pricing decision.
Since in practice the utilities are non-cooperative, how to
design a pricing mechanism that can enable an equilibrium
price profile is the bottleneck of this DR program.

To tackle two above discussed challenges, our contributions
can be summarized as follows: First, we transform the func-
tional space of the geo-distributed DCs’ DR program into
a mathematical space of a formulated two-stage Stackelberg
game. In this game, each utility will set a real-time price to
maximize its own profit in Stage I; and given these prices, the
DCs’ operator will minimize its cost via workload shifting
and dynamic server allocation in Stage II. Second, we use
the backward induction method to find a unique Stackelberg
equilibrium of this two-stage game. Based on this result,
we propose an iterative and distributed algorithm to achieve
the Stackelberg equilibrium. We also examine the algorithm’s
convergence where the “right prices” are set for the “right de-
mand”. Finally, we perform real-world trace-based simulation
to solidify the analysis. The results show that our proposed
pricing scheme can flatten the workload not only over time
but also over space. Due to space limitations, all proofs can
be found in the technical report available online [3].

B. Related Work

There are many existing research on DCs’ cost minimization
takes the electricity price for granted [2], [4], [S], which does
not follow any DR programs. For those work considering DR
of geo-distributed DCs, based on the interactions between DCs



and utilities, we simply divide them into two categories.

1) One-way interaction: In reality one of the most popular
DR programs of DCs is Coincident Peak Pricing (CPP),
which is studied in [6]. However, current DCs do not respond
actively to the warning signals due to the uncertainty of these
warnings [6], which motivates researchers to devise more
effective DR approaches. The authors in [7] use a “prediction-
based” method where the customers (DCs) respond to the
prices which are chosen based on a supply function. Hence, in
this work only customers respond to a predicted price while
there is no action from the power suppliers to set the prices
corresponding to the demand.

2) Two-way interaction: Two recent papers [8], [9] in this
category are highly related to our work. Both consider dynamic
pricing mechanisms that make utilities and DCs coupled.
However, the system model of [9] assumes that all utilities
cooperate to solve a social optimization problem, which is
not relevant to current practice since there is no information
exchange between utilities in reality. On the other hand, the
pricing scheme of [8] is based on a heuristic approach, which
cannot maximize the utilities’ profit as well as minimize their
cost.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider discrete time model ¢t € 7 = {1,...,T} of a
billing cycle (e.g., typically a month), where the length of a
time slot ¢ matches an interval at which the DCs’ decisions
and utilities’ real-time prices can be updated (such as one
hour). Let Z = {1,...,I} denote the set of sites where DCs
are located. Each DC i is assumed to be powered by a local
utility company and have S; homogeneous servers.

We observe that there exists a special mutual interaction
between DCs and utilities that can be modeled as a leader-
follower game, i.e. two-stage Stackelberg game. Specifically,
the utilities are the leaders that simultaneously set the prices to
maximize their profit in Stage I and DCs will make their de-
cisions on workload shifting and dynamic server provisioning
to minimize their cost in Stage II. We describe this two-stage
game formulation in the reverse sequence, starting with Stage-
II optimization problem.

A. DCs’ Cost Minimization in Stage Il

We first describe the workload model of a typical DCs. We
then elaborate the DCs’ cost focusing on the energy cost and
delay cost model. Finally, we formulate the Stage-II DC’s cost
minimization.

1) Workload Model: Even though DCs can support a wide
range of workloads, we generally divide them into two typical
types of workload: interactive jobs and batch jobs. While
the former is delay-sensitive and non-flexible (e.g. banking
service, online game, etc.), the later is delay-tolerant and
flexible to schedule (e.g. scientific application, map reduce
workload, etc.). We assume that each DC processes its batch
jobs locally (i.e. batch jobs cannot be re-directed to other DCs
for load balancing) similarly to [5]. For interactive jobs, we
denote the total arrival rate to the DCs’ front-end server, (i.e.

all DCs are managed by a DC service provider (DSP)) at time
t by A(t) and this front-end server is responsible for splitting
the total incoming workload A(t) into separate workloads of
geo-dispersed DCs, denoted by {\;(¢)}iez.

2) DC’s Cost and QoS Model: The DSP tries to not only
minimize its energy and migration cost but also guarantee the
QoS requirements of the interactive jobs.

Energy Cost: Since batch jobs are flexible to schedule, we
assume that the batch job processing consumes an amount of
energy €%(t) of each DC i in timeslot t. On the other hand,
the energy consumption! of delay-sensive jobs at DC 7 is [1]

ezd(t) = Sz(t) (Pidle+(Ppeak_Pidle)Ui(t)+(PUE(t)_1)Ppeak)

where s;(t) is the server count, u; is the service rate of a
server, Ppeqr and Pjq. are the server’s peak and idle power,
respectively, U;(t) = sj\(zt()tﬁ)“ is the average server utilization,
and PUE(t) is the power usage effectiveness measuring the
energy (e.g. cooling) efficiency of the DC. We can rewrite

ed(t) as follows
e (t) = aidi(t) + bi(t)si(t),

where a; = (Ppeak — Pidie)/ i and b;(t) = Pygie+(PUE(t) —
1) Ppeqr- Therefore, denoting the total energy by

ei(t) = ef(t) + e (1), @)

and given a price p;(t) at time ¢, the energy cost of DC ¢ is
es(t)pi(t).

Migration Cost: Since migrating the workload from front-
end server to geo-distributed DCs can be very costly (e.g.
migrating virtual machines or video content requests over the
Internet could be expensive due to reserving bandwidth from
ISP), we model the migration cost to DC i as

YieZ teT, (1)

wdici()\i), (3)

where d; is the transmission delay from front-end server to
DC i, w is a weight factor and ¢;();) is a function assumed
to be strictly increasing and convex. Since d; is proportional
to the distance, it can be assumed to be a constant and we see
that migrating more requests from the front-end server to a
farther DC is more costly. For analysis tractability, we choose
a quadratic function ¢;(\;(t)) = \;(t)? since it is widely used
to penalize the action in control theory.

QoS Constraint: We assume that each delay-sensitive
request imposes a maximum delay D, that the DSP has to
guarantee when shifting this request to DC i. Therefore, the
QoS constraint in terms of delay guarantee can be modeled as
follows

1
si(t) s — Ni(t)

where 1/(s;(t);—A;(t)) is the average delay time of a request
processed in DC ¢ with arrival rate \;(¢) and service rate
si(t)p; by queueing theory.

I'We alternatively use either power or energy since the time slot is the same.



3) Problem Formulation: Our model focuses on two key
controlling “knobs” of DCs’ cost minimization: the work-
load shifting to DC \;(¢) and the number of active servers
provisioned s;(¢) at site ¢, Vi. Then, the Stage-II DC cost
minimization is given by

T 1
DD atpi(t) +wdidi(t)? ()

DC: minimize
t=1 i=1
subject to  constraints (1),(2), (4),
I
D A(t) = A1), vt (6)
i=1
0 < Sz(t) < Si, V’L',t7 (7)
variables si(t), Ai(¢), Vi, t. 9)

While constraints (1), (2) and (4) are the definitions of
the objective function and QoS contraint, the remaining
constraints are straight-forward. In (6), all of the incoming
workload must be served by some DCs. Moreover, (7) limits
the number of active servers and (8) means that the total
workload assigned to a DC must be less than its capacity.

B. Non-Cooperative Pricing Game in Stage 1

In this stage, we first describe the utility’s revenue and cost
models to form the individual objective of each utility’s profit
maximization. We next formulate the non-cooperative pricing
game between utilities.

1) Utility Revenue’s Model: The optimal energy consump-
tion of DCs at time ¢ that can be obtained from solving
DC depends on prices p;(t), Vi, of all utilities. Denote the
corresponding optimal power demand by e;(p(t)), where
p(t) := {pi(t)}icz. We further assume that due to the grid
regulations at each region, the lower and upper bound of the
real-time price should be imposed and denoted by p} and p,
Vi, t, respectively. Furthermore, besides the power demand of
DCs, each utility has its own background load (e.g. residential
demand). Since there are considerable works focusing on the
residential DR programs, we assume that the background load
of utility ¢, denoted by B;(p;(t)), also responds to the price
and can be modeled by the following function

B, pi(t) < pl;
Bi(p(t)) = ¢ a— Bpi(t), pL<pi(t) <p¥;  (10)
B, pi(t) > pY,

where B! and B} are the minimum of maximum background
demands of site ¢ due to the physical constraints of consumers
(i.e. maximum and minimum power of electric devices or
vehicles). Based on the total power requested by DCs and
background’s demands, the revenue of utility ¢ at time ¢ is
given by

revi(p(t)) = (ei(p(t)) + Bi(pi(t)))pi(t). (11)

2) Utility Cost’s Model: On the other hand, every utility
incurs a cost when it serves the customers’ load. When
load increases, the utility’s cost also increases since normally
blackouts happen due to the overload, which is a disaster to
any utilities. Hence, we can model the utility’s cost based on
a widely-used electric load index (E'LI) as follows

ei(p(t) + Bi(pi(t)) )
. ) Ci(h),

where C;(t) is utility ¢ capacity at time ¢, and ~ reflects the
weight of the cost. ELI is an important economic indicator
where a high value of E LI notifies the utility to spend more
for stability investment [9].

3) Stage-I Pricing Game Formulation: In reality, the geo-
distributed utilities usually have no communication exchange
to optimize the social performance. Instead, each utility ¢ at
time slot ¢ has its own goal to maximize its profit, which is
defined as the difference between revenue and cost as follows

ui(pi(t), p—i(t)) = revi(p(t)) — cost;(p(t)),

where p_;(t) denotes the price vector of other utilities except i.
This notation comes from an observation that there is a game
between utilities because the profit of each utility not only
depends on its energy price but also on the others’. Hence, the
Stage-I utility profit maximization game is defined as follows

cost;(p(t)) =~vELI =~ (

12)

e Players: the utilities in the set Z;
o Strategy: pt <p;(t) <p¥, Vi€ I,t€T;
e Payoff function: Zthl u;(pi(t), p—i(t)), Vi € T.

III. TWO-STAGE STACKELBERG GAME: EQUILIBRIA AND
ALGORITHM

In this section, we first apply the backward induction
method to solve the Stackelberg game. Then, we propose an
iterative algorithm to reach an equilibrium of this game.

A. Backward Induction Method

1) Optimal Solutions at Stage II: We realize that the
stage-II DCs’ cost minimization can be decomposed into
independent problems at each time slot ¢. Henceforth, we only
consider a specific time period and drop the time dependence
notation for ease of presentation. In this stage, DCs cooperate
with each other to minimize the total cost by determining the
workload allocation \; and the number of active servers s; at
each DC 7. It is easy to see that the DCs’ cost minimization
is a convex optimization problem.

First, we observe that constraint (4) must be active because
otherwise the DSP can decrease its energy cost by reducing
s;(t). Hence, we have (4) is equivalent to

Si

sih) = [; (n+ ﬁi‘l)} B

0

13)

where []” is the projection onto the interval [z,y] and D; :=
D; — d;. In practice most DCs can have enough number of
servers to serve all requests at the same time due to the illusion
of infinite capacity of DCs [4]. Therefore, we adopt s;(\;) =



- (Ai + D,

) in the sequel. By substituting this s;();) into
the objective of DC, we have an equivalent problem DC’ as

follows
) I
DC': min. Zi:l filh\:) (14)
I
st S N=A (5

It can be seen that DC’ is a strictly convex problem, which
has a unique solution. Since DSP likes to have \; > 0,
V1, in order to utilize all DCs resources, we characterize the
unique solution of DC and a necessary condition to achieve
this solution with the optimal A} > 0, Vi, as the following
result.

Theorem 1. Given a price vector p, we have the unique
solutions of Stage-1I DC problem as follows

. VT —pid;

ANi=———>0 17

i Swd, ) (17)

* 1 * A~ 1 .

%zfQﬁDi)w, (18)
i

only if
. I
W > Wy, = (dmax{piAi} - Z,_l piAi/di) /24, (19)

S ld A =
% (ZwA + Zle pzAz/dz) .

We can consider condition (19) as a (lower bound) guideline
for DSP to choose an appropriate weight factor w to ensure
all DCs have positive requests.

2) Nash Equilibrium at Stage 1: We continue to charac-
terize the Nash equilibrium of the Stage-I game based on
the Stage-II solutions. In the non-cooperative game, one of
the most important questions is whether there exists a unique
Nash equilibrium. In this Stage-I game, given all other utilities’
strategies p_;, a natural strategy of utility ¢ is the best response
strategy as follows

ai—l—%andu* =

where d =

BR;(p_;) =arg max u;(p;,p—s), Vi.
pl<pi<p¥
() + Bilp))ps -
(aiXf +b;st) + eb.
With A} and s} obtained from Theorem 1, e (p) is equal to
A?p; 1 A; A A b;
lp - 1 +

— — — + —=
2Wdi(ddi dd;  piD;

(20)
where  w;(pi, p—:) =

. 2
O, M and ef(p) =

i Ajp;
20Jddl i dj

+ e?.

When all utilities play best response strategies, a Nash
equilibrium p° is a profile that satisfy p¢ = BR;(p®;), Vi, i.e.
every utility’s strategy is its best response to others’ strategies.
Then we have this result.

Theorem 2. (Existence and Uniqueness) There exist a Nash
equilibrium of the Stage-1 game. Furthermore, if

Ai Y50 Aj/dy — ARd(1 = 1/(did))
243dd; ’

w > wtzh ‘= max {
e2y)

then starting from any initial point, the best response strategies
converge to a unique Nash equilibrium p® of the Stage-I game.

B. Distributed Algorithm

We first describe the detailed operations of the proposed
algorithm and provide its convergence performance. Next,
we discuss about the practical implementation issue of the
algorithm.

Algorithm 1 Demand Response of Data Center with Real-time
Pricing

1: initialize: Set k = 0, pl(-o)

2: repeat

3: Utility ¢ broadcasts its pgk) to all customers, Vi;

4 The front-end server collects p(k) from all DCs, up-
dates e} (p)*) and send it back to DC 4, Vi;

5: Each DC i reports its ef(p)*) to the local utility;
Utility ¢ receives the demand responses from the local

DC e*(p)®) and background users B;(p)*), then solves

P = BR(p_ (k). Vis

7. until [pHD) — pB)| < e,

= p¥, Vi, and w satisfies (21);

=

1) Proposed Algorithm’s Operations and Convergence:
We continue proposing a distributed algorithm, shown in
Algorithm 1 (Alg. 1), that can achieve the Nash equilibrium.
We assume that Alg. 1 operates at the beginning of each
pricing update period (i.e. one hour) and the algorithm runs for
many iterations (communication rounds with a parameter k)
until it converges to a price setting equilibrium. Here, based
on the total incoming workload, the front-end server of the
DSP first collects all prices from its local DCs and calculate
the optimal energy consumption (line 4). After that the front-
end server will feedback these energy consumption data to
its local DCs, which then forwards its own information to
the local utility (line 5). Each utility solves its own profit
maximization problem to find an optimal price, then broadcasts
this price to its local DCs and background customers (line 6).
The process repeats until the game reach the Nash equilibrium
as the prices converge (line 7). At this state the price setting
is finalized and applied to the whole time slot t. We can see
that Alg. 1 converge to a unique Nash equilibrium of Stage-I
game according to the best response strategies by Theorem 2.

2) Practical Issues and Implementation Discussion: First,
we assume the DSP deploys a front-end server to distribute the
incoming workload to DCs. This can be done by using various
practical solutions such as incorporating the authoritative DNS
servers (which is used by Akamai) or HTTP ingress proxies
(which is used by Google and Yahoo) into the front-end
servers. Furthermore, in reality there is only a sub-set of
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Fig. 1. The request rate from FIU (top) and batch job power from Google
(bottom).

TABLE I
AVERAGE OPTIMAL PRICES COMPARISONS WITH 7y EFFECT

. FIU
Sites

Baseline | Alg. 1 Alg. 1 Alg. 1
1 y=1 y=4 Y=38
1 42.08 19.22 19.71 20.33
2 87.82 35.76 36.77 38.03
3 60.69 27.56 28.32 29.28
4 33.17 15.29 15.62 16.04
5 29.75 14.10 14.37 14.72
6 35.43 16.32 16.70 17.18

DCs to which a workload type can be routed to due to the
availability resource constraint of each DC. This issue can
be easily addressed by incorporating more constraint into our
model such as [10], and in practice we can implement it
by classifying the workload types at front-end server before
routing. Second, we assume that DCs communicate with its
front-end server by choosing one of the egress links of its
Internet Service Provider (ISP). Specifically, the total time of
one iteration consists of the transmission time and compu-
tational time. While the transmission time from utilities to
DCs (and vice versa) is from 1 to 10 ms over a broadband
speed of 100 Mbps, it is from 50 to to 100 ms for a one-way
communication between DCs and the front-end servers over
a current ISP’s path. The computational time depends on the
processing power of the front-end server and smart meters on
calculating (20), which is low-complexity problem and can be
in the time-scale of microsecond [11]. Based on our simulation
results, the equilibrium can be reached in less than 5 iterations,
which means that the total time of Alg. 1 can be approximately
one second for each one-hour time slot.

IV. TRACE-BASED SIMULATIONS

In this section, we conduct trace-based simulations to val-
idate our analysis and evaluate the performance of Alg. 1.
First, we present the simulation setups. Next, we describe the
baseline pricing methods for comparison. Finally, we show the
results and analyze the performance comparison.

A. Setups
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Fig. 2. Optimal prices at six locations.
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Fig. 3. Effect of v to average DCs’ cost and utilities’ profit.

1) DCs: We consider six geo-distributed DCs where their
PUE:s are set to 1.5. The homogeneous servers of six DCs have
peak power of 200 W and idle power of 100 W, and the service
rate of each server is chosen uniformly between 1.1 and 1.2.
We set w to 1 to satisfy (19) with d; is proportional to the
distance from front-end server and D; is chosen uniformly
between 100 and 300 ms, Vi. There are two realistic traces
that we use for the simulation. The first trace is the incoming
workload at the front-end server, which is scaled respectively
to service rates and shown in Fig. 1. This data is profiled
from January 1 to June 30, 2012, at the Florida International
University (FIU) [5]. The second trace is the power demand
of delay-tolerant batch jobs e;(t) of Google by recent study
[12]. The workload series and batch job power demand spans
over 30 days and each point of series is a one-hour period.

2) Utilities: Since lacking the public information of local
utilities, we assume that at each time slot all utilities have the
capacities C;(t) uniformly distributed in the range of 25 and
30 MW, which is a standard measure for a medium-size utility.
The lower and upper bounds of the real-time price, pt and p¥,
are set to 1 and 300 ($/MWh), respectively. The utility cost
parameter y is set to 1 unless otherwise stated.

Regarding to the residential power demand B(p), « and
parameters are chosen uniformly in the range of [25,30] and
[0.25,0.30], respectively.
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B. Baseline Pricing Schemes for Comparison

We consider two baseline pricing schemes for the simulation
comparison as follows.

1) Baseline 1: The first baseline is based on the proposed
dynamic pricing scheme of [8]. At each utility i, this pricing
scheme can be briefly described as follows

pi(t + 1) = (5(PDZ(t) — PSZ(t)) +p¢(t),

where PD; and PS; are the power demand and supply of
utility ¢ at time ¢t. We set J to 0.5 in all simulation scenarios.

2) Baseline 2: The second baseline is based on the
Google’s contract with their local utilities. According to
the empirical study in [13], there are six Google’s DCs
powered by their local utilites at the following locations:
The Dalles, OR; Council Bluffs, IA; Mayes County, OK;
Lenoir, NC; Berkeley County, SC and Douglas County, GA.
In these locations, Google’s DCs are infered to have long-
term contracts with their local utilities as the following
fixed rates [32.57,42.73,36.41,40.68,44.44,39.97] $/MWh,
respectively. We use this baseline mainly for PAR comparisons
since it is not fair to compare static prices versus dymamic
prices in terms of cost or profit.

(22)

C. Results

We first show the optimal prices by Alg. 1 to compare with
other baseline schemes. Then we compare the total DCs’ cost
and utilities’ profit. Finally, we compare the PAR performance
of three schemes.

1) Optimal solutions: We first provide a sample-path op-
timal prices of three schemes at six locations in Fig. 2
corresponding to two workload traces. Since Baseline 1 and
Alg. 1 employ dynamic pricing mechanisms, we can observe
that the utilities’ prices of these two schemes vary according to
the workload pattern. We also observe the effect of migration
cost to the optimal prices in this figure. Since the nearest
DCs to the front-end server are sites 2 and 3, Fig. 2 shows
that all dynamic pricing schemes set high prices at these sites
compared with the other sites. Furthermore, we also investigate
the effect v in Stage I since our simulation shows that the
average prices of Alg. 1 are not affected by w. Table I shows
that if we increase <, then the Alg 1’s optimal prices also
increase since the higher the weight utilities” E'LI cost factor

is, the more conservative utilities are in terms of reliability
by raising the prices. We also see that Baseline 1 always
overprices Alg. 1.

2) Total DCs’ cost and utilities’ profit: We also evaluate the
effect of parameter 7y to average DCs’ cost and utilities’ profit
in Fig. 3. First, we can see that Baseline 1 with higher prices
has higher DCs’ cost and utilities’ profit than those of Alg. 1.
Therefore, Alg. 1 can give more incentives to encourage the
DCs to join the DR program. Second, we can see that when
~ increases, the utilities’ profit of both schemes decrease due
the cost in (12). With Alg. 1, we see that small + is favorable
because it can provide low DCs’ cost and high utilities profit.

3) PAR: The final factor that we examine is PAR, which is
one of the most important metrics to measure the effectiveness
of designs for smart grid since the fluctuation of energy
consumption between peak and off-peak hours indicate power
grid’s reliability and robustness. Reducing PAR is the ultimate
goal of any DR program designs, so is our proposed Alg. 1.
Fig 4 compares the PAR of three schemes with different ~.
The most important observation is that the PAR’s performance
of Alg. 1 outperforms those of other schemes over time and
space significantly.

V. CONCLUSION AND FUTURE WORK

We study the DR of geo-distributed DCs using smart
grid. We first formulate this DR program into a two-stage
Stackelberg game to model the interactions between utilities
and DCs. Specifically, in this game the role of each utility is
setting a price to maximize its profit, while the DCs minimize
its cost. We then characterize the existence of a Stackelberg
equilibrium of this game where all utilities agree on a stable
price setting without deviation intention. We next develop an
iterative and distributed algorithm to reach one equilibrium
point. We validate and our proposal’s effectiveness with the
simulation results based on realistic traces.
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