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Abstract
We present a common data model for representing causal
events across a wide range of platforms and granularities.
The model was developed for attack provenance analysis un-
der the DARPA Transparent Computing program. The uni-
fied model successfully expresses data provenance across a
range of granularities (e.g., object or byte level) and platforms
(e.g., Linux and Android, BSD, and Windows). This paper
describes our experience developing the common data model,
the lessons learned, and performance results in controlled lab
experiments.

1 Introduction

Modern cyber threats, such as the Advanced Persistent Threat
(APT), are becoming increasingly hard to detect and counter.
These sophisticated programs can lay dormant for long dura-
tions and use stealthy long-term reconnaissance and subver-
sion to achieve their goals, such as information exfiltration.
DARPA’s Transparent Computing (TC) program aims at early
detection of APTs and root cause analysis by making other-
wise opaque enterprise systems transparent [7]. Transparency
is achieved through granular tagging and tracking of causal
relationships among programs and data across the enterprise’s
communication/computation planes, assembly of these depen-
dencies into end-to-end behaviors, and reasoning over the
behaviors both forensically and in real-time.

Core TC technologies were organized into a three layer
pipeline as shown in Figure 1. The first layer in the pipeline
is tagging and tracking, where a diverse set of enterprise and
mobile platforms are instrumented to produce streams of
granular causal events, tags, and metadata. The event streams
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Figure 1: Transparent computing technology pipeline. Multi-
ple instrumented devices publish CDM tags using the com-
mon data model API for consumption by multiple analysis
and enforcement engines.

are passed to the data handling layer for normalization and
storage using a common data model and API. The streaming
data is then consumed by the detection and enforcement layer
for forensic analysis and real-time APT detection, as well as
proactive enforcement of protection policies.

Tagging and tracking techniques build causal relationships
among activities, carefully balancing tracking granularity
against speed of detection. A large breadth of technologies
exist, some of which are coarse-grained such as those based
on audit logging systems (e.g., [9, 12]) while others are finer-
grained such as with information flow taint tracking systems
(e.g., [2, 5, 6]). These technologies can track the flow of data
throughout the system at arbitrary granularity all the way from
sources to sinks. Technologies also differ by platform (e.g.,
desktop, server, mobile, embedded), operating system, and
layer of the software stack.

Real-time detection and forensic analysis technologies
consume the provenance events produced by the tagging
and tracking systems, generally building some form of at-
tack provenance graphs and reasoning over them at various
timescales to detect policy violations and perform root cause
analysis [10, 11]. Accurate provenance information is key
to understanding how data flows through a device, which is
especially critical for detecting and understanding APTs.
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This paper is primarily focused on the Common Data
Model (CDM) representation (we refer the reader to [2, 5,
6, 9, 12] for details on the tagging and tracking technologies,
and to [10, 11] for details on the detection technologies, all
of which directly influenced the CDM design). We identified
three main requirements from such a unified representation.
First, the CDM should be able to capture metadata about both
the data and control planes with high fidelity and at various
granularities across platforms. Second, it should be natural
for expressing the information produced by the tagging and
tracking technologies without adding undue burden on them,
for example, by requiring them to capture data they are not
meant to capture or to perform unnatural data conversions.
Third, it should contain all the semantics needed to enable
real-time detection and forensic analysis. The CDM makes
minimal assumptions about the data so as not to limit the
evolving detection and analysis algorithms. Empowered with
the CDM event streams, the different detection and analysis
algorithms can each determine how to semantically unify or
prune the data to fit its processing needs.

We designed the CDM through consensus with the broader
TC team, starting by carefully accounting for the needs of the
detection and analysis technologies in context of the data pro-
duced by the tagging and tracking technologies. The design
evolved over a four year time period as the technology teams
gained hands-on experience with it. The CDM encodes events
among system entities (principals, subjects, and objects) and
granular information flow dependencies among them (e.g., if
process reads four files and writes a buffer to a socket, granu-
lar tags allow tracking which of the four files contributed to
the buffer). Granular information flow among entities enables
the APT detection and analysis technologies to reconstruct
the causal relationships among the attacker’s actions with
unprecendented fidelity [10].

We initially considered using and/or extending W3C
PROV [4], which is a data model designed for representing
provenance. PROV is not well suited for achieving the afore-
mentioned goals of TC for three main reasons. Events in CDM
are first class citizens that have rich and complex semantics
that cannot be accurately captured using PROV’s simple pre-
defined relations. Second, the CDM design adds granular tags
for representing information flow at unprecedented fidelity
and precision. This is critical for APT detection given the
long duration of time over which APT activities unfold. Us-
ing W3C PROV would only allow coarse grained tracking
of data dependencies, which over time, results in significant
loss of accurate provenance. Finally, events in CDM can have
arbitrary number of relations to subjects and objects while
PROV mainly supports binary relations further restricting ex-
pressiveness. We note that detection and analysis technologies
can directly convert CDM to W3C PROV by mapping each
event to a set of PROV relations. Such conversion can lose
information.

This paper presents the following contributions:

1. A common data model and a rationale for its design (§2).
The design evolved through consensus among all TC
performers over the course of four years.

2. An open source implementation of the model (§3) using
Apache Avro [13], along with several test clients for
serializing it, and a summary of their performance. The
source is publicly available [3].

Open datasets exercising the CDM’s ability to encode prove-
nance across a diverse set of platforms and attack scenarios
can be found at [1, 8]. The datasets include diverse and de-
tailed example attack scenarios and their descriptions, their
CDM encodings, and tools for processing and visualization.

2 Common Data Model

We describe the semantics and syntax of the CDM used for
capturing tagged event streams produced by a wide variety of
tagging and tracking technologies, as demonstrated in [1, 8].
There are six core entities in the model: Hosts, Principals, Sub-
jects, Events, Objects, and ProvenanceTags. Figure 2 shows
these entities and their relationships (see the latest CDM ver-
sion for the full specification and for a detailed description of
each of the entities [3]).

Hosts and Principals A Host represent a host machine or
node in a network on which principals and objects reside,
subjects execute and events occur. A Principal represents a
local user that owns objects and process subjects.

Subjects Subjects represent execution contexts and include
mainly threads and processes. They can be more granular and
can represent other execution boundaries such as functions
and blocks if needed. For example, a function within a thread
within a process can be represented as three subjects where
the function’s parentSubject attribute is the thread, and the
thread’s parentSubject attribute is the process. A process’
parentSubject attribute would be set to the parent process
that spawned it. Here the function subject is an execution
boundary that is more granular than the thread.

Events Events represent actions executed on behalf of sub-
jects. Events may be represented at various granularities.
Events include system calls such as those emitted by audit
subsystems (e.g., Windows ETW, Linux auditd, BSD dtrace),
function calls at different layers, instruction executions, or
even more abstract notions representing a “blind” execution
such as black boxes that are not instrumented (more shortly).
Events are the core entity in the model and they are the main
abstraction for representing information flow between objects
and subjects, conceptually represented as a directed edge be-
tween subject and object(s) or vice-versa. Events are assumed
to be atomic so there is no direct relationship between events.
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Event 
uuid : UUID 
sequence : long 
type : EventType 
threadId : int
hostId : UUID 
subject : UUID 
predicateObject : UUID
predicateObjectPath : string 
predicateObject2 : UUID
predicateObject2Path : string
timestampNanos : long 
name : string 
parameters : array<Value>
location : long
size : long 
programPoint : string
properties : map<string>

Subject
uuid : UUID 
type : SubjectType 
cid : int
parentSubject : UUID
hostId : UUID 
localPrincipal : UUID 
startTimestampNanos : long 
unitId : int
iteration : int
count : int
cmdLine : string
privilegeLevel : PrivilegeLevel
importedLibraries : array<string>
exportedLibraries : array<string>
properties : map<string>

ProvenanceTagNode
tagId : UUID 
flowObject : UUID 
hostId : UUID 
subject : UUID 
systemCall : string
programPoint : string
prevTagId : UUID
opcode : TagOpCode
tagIds : array<UUID>
itag : IntegrityTag
ctag : ConfidentialityTag
properties : map<string>

FileObject
uuid : UUID 
baseObject : AbstractObject
type : FileObjectType
fileDescriptor : int
localPrincipal : UUID
size : long
peInfo : string
hashes : array<CryptographicHash>

Value
size : int
type : ValueType 
valueDataType : ValueDataType 
isNull : boolean 
name : string
runtimeDataType : string
valueBytes : bytes
provenance : array<ProvenanceAssertion>
tag : array<TagRunLengthTuple>
components : array<Value>

AbstractObject
hostId : UUID 
permission : SHORT
epoch : int
properties : map<string>Host

uuid : UUID 
hostName : string 
hostIdentifiers : array<HostIdentifier>
osDetails : string 
hostType : HostType
interfaces : array<Interface> 

TagRunLengthTuple
numValueElements : int
tagId : UUID 

NetFlowObject
uuid : UUID 
baseObject : AbstractObject
localAddress : string 
localPort : int
remoteAddress : string 
remotePort : int
ipProtocol : int
fileDescriptor : int

SrcSinkObject
uuid : UUID 
baseObject : AbstractObject
type : SrcSinkType
fileDescriptor : int

subclass Abstract Entity Entity/Node Relationship (1-1)

tag
tagId

predicateObject
predicateObject2

hostId

subject

parameters

Relationship (1-*)

prevTagId

flowObject

subject

components

RegistryKeyObject
uuid : UUID 
baseObject : AbstractObject
key : string 
value : Value 
size : long 

MemoryObject
uuid : UUID 
baseObject : AbstractObject
memoryAddress : long 
pageNumber : long
pageOffset : long
size : long

IpcObject
uuid : UUID 
baseObject : AbstractObject 
fd1 : int
fd2 : int
uuid1 : UUID
uuid2 : UUID
type : IpcObjectType

PacketSocketObject
uuid : UUID 
baseObject : AbstractObject
proto : SHORT
ifIndex : int
haType : SHORT
pktType : BYTE
address : bytesPrincipal

uuid : UUID 
type : PrincipalType
userId : string
username : string 
groupIds : array<string> 
properties : map<string> 

localPrincipal
Figure 2: An entity relationship diagram showing the main entities in the CDM and their relationships. Labels over the relationship
arrows reflect the corresponding attribute in an entity, and are simply added for readability.

Instead, events are related to other events through the affected
subjects and objects. We defined many types of events, mostly
corresponding to system calls, see [3].

Events can have different granularities but they are still
atomic. For example, a function boundary may execute many
atomic events within it, hence the function entry call would
be captured as an event and so would the function exit call.
The function boundary itself may be captured as a subject
in this case if needed. If the function boundary is not instru-
mented however (black box), the function execution may still
be captured as a “blind” event that relates the input and output
subjects and objects (more on blindness shortly).

The event sequence represents the logical order of the event
relative to other events within the same execution thread.
This could be the logical time, or if timestamps are accurate
enough, sequence might be inferred from timestamps but that
is not guaranteed which is why we kept sequence.

Objects Objects, in general, represent data sources and
sinks which could include sockets, files, registry keys, mem-

ory and variables, and any data in general that can be an input
and/or output to an event. This model expands the definition
of objects to explicitly capture the flow of data inputs and
outputs to and from events. We initially decided to treat event
arguments as first class objects (instead of attributes of the
event entity) where each object may have its own provenance
again explicitly showing the flow from inputs to outputs. How-
ever we backed away from this later on as discussed shortly.

We identified some key object attributes. The object times-
tamp is the creation time. The file url is its local or remote
path/location. Files have version numbers. As files get up-
dated, a new file object is created with a new version number.

Transient data: One of the main discussion points was
whether we should model arguments as objects or whether we
should explicitly distinguish transient data (e.g., arguments)
from more persistent data (e.g., files). We agreed that it makes
more sense to distinguish the two mainly because they have
very different attributes (arguments don’t have ownership and
path attributes and have a value attribute). Initially, we decided
to model a value as a first class entity, just like objects, that
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can have tags (discussed in §2) and affect (and are affected
by) events. We later decided (in version 0.7) to make values
attributes of events instead of first class entities since values
are one time constructs that only show up with the event and
are not referenced afterwards during execution. Tagging and
tracking systems also do not track at the level of a value. In
addition, treating a value as a first class entity requires that we
assign a unique ID to each value which does not scale since
values can have byte granularity. As a result, we decided to
make values attributes of the events.

Granularity and types: We discussed representing objects
at various granularities. To explicitly differentiate between
different types of objects, we also decided to subclass the
abstract object into File, NetworkFlow, Memory, PacketSocket,
RegistryKey, and IPC objects instead of modeling those using
a type attribute of the object entity. This is mainly to keep
the model clean given the difference in attribute sets among
the object types. We include a RegistryKey object to model
windows registry key store. Finally, we also discussed whether
we should model mobile phone sensors (GPS, camera, gyro,
etc.) as a separate entity from Object, called Resource. One
observation here is that the sensing subsystem in Android
for example might have enough differences to warrant this
distinction. The counter argument is that Android uses linux
underneath and one might be able to get away with an Object
abstraction for all such data devices. We decided to only
distinguish a few object types (those mentioned above) and
everything else uses the generic SrcSink object which is typed
(e.g., sensors, camera, etc.).

Provenance and Tags We explicitly model the relations
between objects and subjects using the events as relation-
ships that connect subjects and objects. These edges represent
provenance (control-flow) directly in the graph. The comple-
mentary more granular approach for capturing data-flow uses
tags, encoded with ProvenanceTagNode.

The primary motivation for tags is their ability to capture
data flows at a finer granularity and with increased precision,
which was important to enable granular tagging and tracking
(e.g., [5]) and analysis (e.g., [10]) technologies. Specifically,
tags can capture increased precision of information flow from
a (strict) subset of inputs represented in a causality graph. For
instance, a subject may read from 100 files, and then write
one file. Rather than reporting that the output depends on
these 100 inputs, a tagging and tracking system can use tags
to indicate that the output depends only on the 10th and the
97th input files. In addition, tags can capture the nature of
dependence using tag operations.

A provenance tag defines source dependence on specific
data sources (inputs). A tag identifier is typically bound to a
source and used by the tracking system to capture dependence
on this source input. The ProvenanceTagNode defines one
step of provenance for a value (i.e., one read from a source or
write to a sink), a reference to the previous provenance tag of

the value (prevTagId), and the tag operation that resulted in
the tagId of this tag (opcode). This graph of tag dependencies
provides fine-grained data flow tracking stitching together
all the contributing events. Tags are directly associated with
event parameters i.e., with values, as attributes of the Value
entity for fine grained taint tracking. Each value can have an
array of tags associated with the bytes that make up the value.

For example, consider program A that takes a picture and
writes it to file F1. Then program B reads the image data from
file F1, augments it with GPS location data, and writes the
result to file F2. At the time of a write, the provenance graph
can be emitted showing the granular dependence of the data in
F2 on both sources, the camera and the GPS. The provenance
tag of the data written to F2 references a union of the two
source tags, and the previous tag for each of those references
the read events that read the data from the sources, showing
the full (both control and data) flow.

Control Records The TimeMarker is used to delineate time
periods in a data stream to help consumers know their current
read position in the data stream. The EndMarker record marks
the end of a data stream.

3 Implementation and Performance Results

We implemented a versioned and typed schema that codifies
the CDM conceptual model. The CDM implementation and
its version history are provided in [3]. The schema is specified
using the Apache Avro Interface Description Language (IDL)
language [13]. Avro IDL is a high-level language for author-
ing Avro schemata. It provides a familiar feel for developers
in that it is similar to common programming languages like
Java, C++, and Python. The main advantage of using Avro is
it decouples the schema from the serialized data: the reader
schema which should be available to the reader at deserializa-
tion time, can be different than the writer schema. This means
the serialized data on-the-wire is smaller in size since it does
not need to have the typing information. More importantly,
schemas can evolve over time independent of the data and
without code generation.

Each serialized TCCDMDatum record can be any of the fol-
lowing: Host, Principal, ProvenanceTagNode, UnknownProve-
nanceNode, Subject, FileObject, IpcObject, RegistryKeyOb-
ject, PacketSocketObject, NetFlowObject, MemoryObject, Src-
SinkObject, Event, UnitDependency, TimeMarker, EndMarker.
Each record contains its type, a unique identifier of the host
publishing this record, a sequence number that monotonically
increases each time the system is started, and the instrumen-
tation source that generated the record (e.g., Android Java or
native, FreeBSD OpenBSM or dtrace, Linux auditd or netfilter,
Windows ETW, etc.).

To avoid deserialization ambiguities, which specifically
cause problems with the Python bindings, we make sure that
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Figure 3: Throughput of the Java producer (top) and con-
sumer (bottom) processes, producing and consuming CDM
records. Plaintext means no TLS encryption/decryption of
the Kafka messages, while wAvro means with Avro serializa-
tion/deserialization of the records at the producer/consumer.

either each record has a unique set of field names, or produc-
ers using the CDM use at least some of the unique optional
fields when creating instances of records. This way serialized
records of different types don’t look the same on the wire.

Performance Results We evaluate the performance of the
CDM mainly in terms of throughput of producing records
by the tagging and tracking systems, and throughput of con-
suming them by the analysis technologies (Figure 1), and
the end-to-end latency. Our goal from this evaluation was to
ensure the throughputs supported by the infrastructure far ex-
ceed the rates at which the tagging and tracking technologies
(analysis technologies) can produce (consume) data, and to
ensure that CDM serialization/deserialization is not the bot-
tleneck. Throughout the analysis, we use Apache Kafka [14]
as the data handling substrate.

Figure 3 shows both the Java producer and consumer
throughputs using CDM v20, Apache Avro 1.8.2, and a Kafka
1.1.0 cluster comprised of 3 brokers running with a single
Kafka topic (with one partition replicated across two node).
We plot the producer (consumer) throughput of serializing
(deserializing) plaintext with and without Avro, and with and
without TLS encryption. The producer throughput does not in-
clude the record creation time, which has negligible effect. In
summary, we can sustain more than 10 MB/sec of throughput

Platform Data Rate Rec. Size Rec. Rate
CADETS [12] 149 KB/s 255 B 600 rec/s
ClearScope [5] 33 KB/s 546 B 62 rec/s
FiveDirections 403 KB/s 216 B 1912 rec/s
THEIA [6] 185 KB/s 203 B 933 rec/s
TRACE [9] 291 KB/s 139 B 1406 rec/s

Table 1: Observed mean data rates, and mean record sizes,
and calculated mean record rates by platform for the different
tagging systems. Record rates calculated by dividing mean
data rate by mean record size. Data rates are captured over a
two hour window during the course of an evaluation event.

for the desired record sizes of the tagging and tracking tech-
nologies which range from 33 KB/sec to 400 KB/sec as shown
in Table 1. This is orders of magnitude more than the antic-
ipated record rates. For the producer, TLS encryption has a
significant effect on throughput while for the consumer, Avro
deserialization has a significant effect. Finally, end-to-end la-
tency was on the order of 2 milliseconds, which is negligible
relative to the timescales of the detection algorithms.

4 Conclusions

This paper presented a common data model, a rationale for
its design, and an open source implementation. The unified
data model enabled several real-time detection and forensic
analysis technologies to consume the provenance events pro-
duced by a large breadth of tagging and tracking technologies
operating at different granularities and on different platforms.
Unlike existing provenance standard representations, such
as W3C PROV, the common data model treats events and
their complex semantics as first class citizens of the model,
and incorporates granular provenance tags for tracking data
flow with increased precision. We showed how a single pro-
ducer process can stream serialized CDM records at more
than 10 MB/sec over a Kafka queue, which exceeded the real
time data rates at which tagging and tracking technologies
streamed data. By its very nature of being a common model
that needed to accommodate several tagging and tracking
technologies, the model is over-specified. There are several
opportunities to tune and reduce this model for a specific tag-
ging and tracking technology to achieve the best efficiency,
and to reduce semantic mismatch.
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