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Abstract

This paper presents the theoretical foundations of a data lin-
eage framework for a model of computation called a function
circuit, which is a directed graph of elementary calculation
units called “functions”. The proposed framework allow func-
tions to manipulate arbitrary data structures, and allows lin-
eage relationships to be expressed at a fine level of granularity
over these structures by introducing the abstract concept of
designator. Moreover, the lineage graphs produced by this
framework allow multiple alternate explanations of a func-
tion’s outputs from its inputs. The theoretical groundwork
presented in this paper opens the way to the implementation
of a generic lineage library for function circuits. (We limited
the paper to 5 pages as to allow a future full-length publica-
tion.)

1 Introduction

Developers of information systems in all disciplines are fac-
ing increasing pressure to come up with mechanisms to de-
scribe how a specific result is produced —a concept called
explainability. Although the term is often tied to Artificial
Intelligence [13], explainability is desirable in other fields of
computation. For example, a process mining system finding
a compliance violation inside a business process log can ex-
tract a subset of the log’s sequence of events that causes the
violation [15]. Similarly, a web application testing tool that
discovers a layout bug can be asked to pinpoint the elements
of the page actually responsible for the bug [7].

In a broad sense, explainability can be seen as a way of
linking the outputs of a process to its inputs; this notion is
closely related to the concepts of lineage or provenance. A
recent survey [12] reveals the existence of more than two
dozen provenance-aware systems, including DBNotes [2],
Karma [9], LipStick [1], MONDRIAN [4], SPADE [5], Tioga
[14], ORCHESTRA [10], RAMP [11] and Wings [6], among
many others. However, the explainability use cases mentioned
above have distinctive traits that make these existing prove-
nance frameworks only partially appropriate for the task.
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First of all, the majority of provenance systems are focused
on relational database queries, scientific workflows, or map-
reduce pipelines. The operations involved in our explainability
examples correspond to none of these computational models:
bug finding in web applications relies on the evaluation of
first-order logic expressions, while log analysis corresponds
to finding a run in a finite-state machine. In addition, the data
being manipulated in our scenarios does not correspond to
structures typically used in provenance, which are heavily
tuple-oriented: a web page is a tree of document nodes, while
a log is an ordered sequence of event names and attributes.

Another element that must be considered is that explainabil-
ity requires the expression of fine-grained dependencies over
these data structures. A bug in a web page can be explained
by pointing to specific nodes within a tree; a compliance vio-
lation in a log is caused by a subsequence of the whole list of
events, and is perhaps due to specific values within the events
of that subsequence. Finally, the notion of explainability itself
requires a special treatment, since the result of a computa-
tion can, in some cases, admit multiple alternate explanations.
That is, different parts of the input, combined in different
ways, can each be sufficient to explain a given output; more-
over, the presence of such alternate explanations may depend
on the actual inputs and outputs, and hence cannot always be
determined statically.

The previous observations motivate the development of a
generic explainability framework, the core details of which are
presented in this paper. In Section 2, we introduce a generic
model of computation called a function circuit, where each
function’s inputs and outputs can be of arbitrary data types. In
Section 3, we introduce the concept of designator, which is
based on an abstract “part-of” relationship; this will be used to
refer to arbitrary parts of generic objects. Then, in Section 4,
we describe how, given a designator and a function, a structure
called a designation graph can be constructed and link the
output of the function to parts of its input. Provided that a
derivation operator is defined for each function individually
and follows a few intuitive properties, the construction of such
graphs is then guaranteed for any function circuit.



Figure 1: Graphical representation of a function circuit.

2 Function Circuits

Since the problem of lineage applies to an operation executed
on some input data, a necessary first step is to define the com-
putational model over which lineage is then to be tracked.
This is the purpose of this section, where we briefly introduce
a simple system called a function circuit. Formally, a func-
tion circuit is a digraph C = (V, E) where vertices represent
functions and there can be an arc between the functions f
and g if and only if some output of f is used as an input of g.
Since functions can have input and output arity grater than 1,
multiple arcs between two vertices are allowed. Intuitively, a
function circuit is an acyclic graph whose vertices are “func-
tions” —stateless black boxes receiving inputs and producing
outputs. Consequently, it is not possible to deduce a function’s
internal definition by analyzing this graph, only its effect on
the other components of the system.

One can see a circuit as a graph where vertices are func-
tions with upstream and downstream “pins” (input and output
values), and edges connect downstream pins to upstream pins.
Figure | shows a graphical representation of a simple function
circuit. The convention we shall use is to represent functions
as square boxes; input pins are drawn as light squares on
the side of the box, and output pins as dark squares. A line
between two pins represents a (directed) connection. For func-
tions with more than one input or output, pins are ordered
from top to bottom.

For example, in Figure 1, the circuit first turns an arbitrary
text file into a list of lines (box 1). For each line (box 2), it
applies the circuit represented in box A. This circuit splits
each line on commas to create an array (a), extracts the second
element of the array (b) and converts it into a number (c).
The resulting list is sent to a sliding window function (box
3), which computes the average (box B) of three successive
elements. The result is a list of averages; on each element
of that list (box 4), the circuit of box C is applied: it checks
that each of these values is greater (b) than the constant 3 (a).
Finally, function G (box 5) computes the logical conjunction
of the resulting list of Booleans; in other words, it returns true
only if all the elements of the list are true. The end result is
a circuit that evaluates the “property” that the average of the

second element of every three successive lines in the input
file is greater than 3.

This computational model is reminiscent of the “data flows”
presented by Woodruff er al. [16]. However, whereas data
flows are tuple-oriented, our proposed computational model
intends to be more generic, and accommodate arbitrary func-
tions and data types. The data elements manipulated in this cir-
cuit include character strings, lists of strings, scalar numbers
and Boolean values. Another distinctive element of function
circuits is that some functions are parameterized by another
circuit; this is represented by a box linked to them by a dashed
line. For instance box 2 is a function that receives a list as its
input, and evaluates another circuit on each of the elements
of the list. Therefore, a single evaluation of box 2 results in
multiple distinct “sub-evaluations” of box A, one for each list
element. As we shall see in the following, we will also allow
each sub-evaluation to have a distinct input/output explana-
tion.

We assume circuits are well-formed: they do not contain
cycles, and the domain of each of a function’s input pin in-
cludes at least all of the image of the function’s output pin
to which it is connected. Function circuits differ from imper-
ative programming by the absence of explicit variables and
loops, and in this sense are a closer parent to the functional
programming paradigm. While not the purpose of this paper,
it is relatively easy to convince oneself that, with a suitably
defined set of primitive functions, circuits can represent a
wide range of computations over various types of data. For
example, the computation pipelines of the BeepBeep event
stream processing engine [8], composed of a graph of inde-
pendent units called “processors”, can be modeled as function
circuits. Similarly, such a model can accommodate a variety
of other functions, such as Boolean connectives, quantifiers,
path selectors in a tree structure, and so on. We can hence
consider it suitably generic to encompass the explainability
use cases described in the beginning.

3 Designators

Most provenance works developed so far rely implicitly on
the concept of “part of” to define provenance relationships.
Take for example the definition from Cui et al. [3]: given an
output tuple ¢ resulting from some query ¢ and input tables
Ti,...,T,, the tuple derivation for g is the smallest subset of
the 7; such that ¢t appears in the output. Here, two different
“part of” relationships are used: one to express the fact that
a set of tuples is included in a set of tables, and another to
express the fact that a tuple ¢ is an element of the set of
tuples produced as output. Such “part of”” relationships are
straightforward to define when the universe of discourse is
made of tuples and sets of tuples, as is the case for database
systems.

However, these notions are no longer appropriate or suf-
ficient in a framework, such as our proposed function cir-



cuits, where the objects that are manipulated can be numerical
scalars, lists, or character strings. Therefore, the second part
of our lineage framework consists of defining generic topo-
logical relations between various data structures. To this end,
we introduce a notation that can refer to a function’s inputs
and outputs, but also to parts of such inputs and outputs, for
various types of objects.

Let 4 =|J; O; be a union of disjoint sets of objects. The sets
O; are called types. Among the possible types we consider are
numbers (R), characters (S) and character strings (S*), lists
of elements of type T (IL.(T)), and sets of elements of type
T (27). Functions will also be considered as objects and are
represented by the set F. We suppose that £{ contains a special
object, noted [, that represents “nothing”.

For any object o € 4, a part of o is a tuple (p,0) for some
object p € 4. We assume this induces a partial order relation
C on 4. This relation can be arbitrary; however, we expect it
to follow a few intuitive properties: 1. 1 is the unique object
that is a part of every object; 2. the only parts of a number
or character o € RUS are @ and o itself; 3. a part of a set
o € 27 is either a part of one of its elements, or a subset
composed of parts of its elements; 4. a part of a list 0 € L(T')
is either a part of one of its elements, or a list made from parts
of a contiguous sub-sequence of its elements; 5. a part of a
function f € [F is a part of one of its input or output pins, or a
set of such parts. As one can see, this definition generalizes
the notion of set inclusion and element membership used in
existing provenance definitions based on sets and tuples.

Once the notion of “object part” is formally defined, we
introduce functions whose purpose is to extract parts from
objects. An atomic designator is a function d : O — O', where
O and O’ are two types, such that d (0) Coforevery o € O. For
example, the function [m : n] that returns a range of characters
in a string is an atomic designator; so is the function [n]
that returns the n-th element in a list. We also introduce two
special designators noted 1; and |'. The first represents the
i-th input pin of a function, while the second represents its
i-th output pin. The set ® represents all atomic designators.

Designators can be composed in the traditional sense of the
term, i.e. for two designators d and d’, (dod")(x) £ d(d'(x)).
A designator that is the composition of atomic designators
is called a compound designator. Any designator (atomic or
compound) can be represented as a finite vector of atomic
designators; intuitively, the list d = (dy, ..., dy) represents the
compound designator dj o - - - o d. For this reason, we shall
denote as ©* (the set of all finite sequences of elements of D)
the set of all designators. The fail of a compound designator
corresponds to the last atomic designator of the vector.

Remark that the definition of designator is intentionally
broad. It is indeed expected that the user defines his own
suitable designators.

Figure 2: A simple designation graph.

4 Designation Graphs and Derivation

Designators can be arranged in a special type of graph struc-
ture, called a designation graph. Formally, a designation
graph is a triplet T = (V,A,8) where V is a set of vertices,
8 C V2 is a connectivity relation that forms a directed acyclic
graph (DAG), and A : V — L is a labeling function, which
assigns to each vertex in V some label. A vertex label can
either be the special symbols A (“and”), V (“or”), or a tuple
(d,0) € D* x 4. We shall denote by T the set of all designa-
tion graphs.

Figure 2 shows an example of a simple designation graph.
By convention, such graphs will be read top-down, which
eliminates the need for arrows on directed edges. In this ex-
ample, one can see that the designation (]!, f) (“the first
output pin of function f”) is linked through an “and” node
to two other designations: one refers to the first input pin of
/> while the other is itself an “or”’ node. The left-hand child
refers to the first element of the second input pin of f, while
the second refers to the first element of the third input pin
of f.

This graph structure addresses one of the issues mentioned
in Section I, namely the fact that explainability must account
for the presence of multiple alternate explanations. In the
example, the derivation graph could be interpreted as asserting
that the (first) output value of f can be explained by the
value of its first input argument, combined with either the first
element of its second input argument, or the first element of
its third input argument. For example, suppose f is defined as
fx,y,2) = (x—y[1]) - (x—2[1]). Letx = 3, and y and z be two
lists whose first element is 3. In such a case, f produces the
value 0; however, since both operands of the multiplication are
null, the value of x combined with either y[1] or z[1] suffices
to produce the null value. Note how this designation graph
depends on the actual values of x, y and z; this explanation is
not valid for all possible inputs.

Given a function f € F of input arity m and output arity 7,
a derivation operator is a function Ay : D" X U™ x U — T It
takes as input a triplet (d,%, %) where d is a designator whose
head is |/ for i € [1,n], & is an m-vector containing the input
values of f, and @’ is an n-vector containing the output values
of f. We require that A¢(d,,u’) produces a designation graph
(V,A,8) € T such that all leaves v/ € V have a labeling of the

form (El,f), where the tail of 4 is 1; for some i € [1,m]. In



other words, a part of the function’s output is linked to parts
of its inputs.

The advantage of modeling lineage in such a way is
threefold. First, if Ay is defined for any triplet (d,u,u’) €
D" x U™ x 4", a designation graph can easily be obtained
for any function circuit. By construction, all the leaves of
a designation graph have designators pointing to one of the
function’s input i. Since that function f is part of a circuit, this
input is connected to another function g’s output j; therefore,
it suffices to replace f with g and |/ with 1 j» and evaluate
the derivation operator again from this new node. The pro-
cess eventually stops and produces a finite, global designation
graph whose endpoints are the circuit’s output at one end, and
parts of the circuit’s inputs at the other.

The second advantage is that, through the use of designa-
tors, one can ask for provenance relationships about specific
parts of a function’s output. For example, if f is a function
that returns a list of elements, a user is not restricted to asking
provenance for the whole list (|!), but may, using a compound
designator such as [n]o | !, ask for the provenance relationship
of the n-th element inside that list. Similarly, this relationship
may point not only to the whole of a function’s input, but to a
part of that input.

The third advantage is that this framework can accommo-
date different definitions of A, and therefore different prove-
nance relationships. The generic technique to produce des-
ignation graphs remains unchanged; the process differs only
in the specific instance of derivation operator A that is being
used to generate a graph.

5 Revisiting the Example

To illustrate this last point, let us revisit the function circuit
given as example in Figure 1, and the input file shown in
the left part of Figure 3. For the sake of the example, let us
assume that the derivation operator A is defined such that in
the default case, the output pin |’ for a function f is associated
to each of its input pins 1; through an “and” node. Moreover,
we informally define a particular behavior for A for a few
functions:

e The “/,” function links each element of the output array
to the subsequence of the input string corresponding to
that element.

e The [n] function links its output to the n-th element of
its input list.

e The G function computes the logical conjunction of all
the Boolean values in its input list; if this conjunction is
false, ! is linked through an “or” node to [i]o 1;, for all
positions i in the input list that contain the value L.

e The o function applies another function f to each of
the elements of an input list; hence the i-th element of
the output list is linked to the designation graph that f
produces on the i-th element of the input list.

e The application of the window function W”"(f) results
in a list where the i-th output element is linked to the
designation graph of f, when given the corresponding
window of events from the input list.

Notice how, in the case of “/,” and G, the derivation graph
produced depends on the actual contents of the input list or
string. Also note that, in the case of & and W, the derivation
graph for a given element of the output list they produce relies
on the derivation graph of the specific sub-evaluation of the
underlying function f that produced this element.

Equipped with such a derivation operator, a designation
graph can be constructed mechanically, yielding the structure
shown in the right part of Figure 3. As one can easily see
by examining the input file, the average of three successive
values for the second element of each line is not always greater
than 3, hence the global circuit returns the value false.

Examining such a graph can reveal interesting insights. The
“or” node indicates the presence of three alternative explana-
tions for this result, each involving three lines of the input
file —or more precisely, three specific substrings of each input
line. One can see that the file locations correspond to the
numerical part of each line, and that only those lines involved
in a faulty window (whose average is less than 3) are present.
Some lines even seem to be “more important” than others by
being involved in all possible explanations, as is the case for
the leaf node designating line 5 (center); it turns out this line
has a large negative value (—80) causing all the windows that
contain it to fail the condition. This last observation would not
be possible in a structure that does not keep multiple alternate
explanations.

6 Conclusion

This paper provided the formal foundations for a lineage track-
ing framework, based on the concepts of function circuit, des-
ignator and derivation operator. Although many details and
proofs were glossed over, we intend to significantly extend the
present work with the necessary formal approach in a future
publication. In addition to explainability, we intend to define
existing definitions of provenance, such as why-provenance
and where-provenance, using the concepts of designators pro-
vided by our framework. An implementation of these concepts
in the form of an open source Java library is also under de-
velopment; our prototype is already operational for a core set
of functions and designators (including all those presented in
this paper). '

Our model obviously presents some limitations. First, it
is more suitable to function-oriented computations. Second,
the task of defining designators falls completely to the user.
Finally, the designation graph depends on the actual opera-
tor Ay used for each of the functions involved in the circuit.
However, one can see that, given a suitable definition of Ay,
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Figure 3: Left: a simple text file, used as the input function for the circuit of Figure 1. Right: a designation graph obtained for this
input, using the derivation operator A used as an example in the paper. The graph has been compressed so as to only show the
and/or relationships between the root and the leaves.

this framework can produce designation graphs matching our
intuitive conception of “explanation”. It is hoped that the fur-
ther study of designation graphs will help shed a new light on
computability theory.
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