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Abstract
Analytic software tools and workflows are increasing in capa-
bility, complexity, number, and scale, and the integrity of our
workflows is as important as ever. Specifically, we must be
able to inspect the process of analytic workflows to assess (1)
confidence of the conclusions, (2) risks and biases of the op-
erations involved, (3) sensitivity of the conclusions to sources
and agents, (4) impact and pertinence of various sources and
agents, and (5) diversity of the sources that support the con-
clusions. We present an approach that tracks agents’ prove-
nance with PROV-O in conjunction with agents’ appraisals
and evidence links (expressed in our novel DIVE ontology).
Together, PROV-O and DIVE enable dynamic propagation of
confidence and counter-factual refutation to improve human-
machine trust and analytic integrity. We demonstrate repre-
sentative software developed for user interaction with that
provenance, and discuss key needs for organizations adopting
such approaches. We demonstrate all of these assessments in a
multi-agent analysis scenario, using an interactive web-based
information validation UI.

1 Introduction

Data-intensive workflows— ranging from intelligence anal-
ysis to journalism to computational biology— increasingly
rely on advanced software technology to facilitate analysis.
Advanced software may expedite results and extend analytic
capability, but often with increased complexity, increased tech-
nological risk, or loss of human interpretability.

Despite the increased complexity, our core principles and
metrics for integrity, quality [13], and pertinence [12] remain
as important as ever, perhaps even moreso than ever. Aside
from the integrity of the result we must ensure that the human-
machine collaboration process is conducted with analytic
rigor [17] and enables human understanding and trust of the
constituent operations [8].

This paper presents an approach to dynamically validate
and explore information produced by automated software

agents, inspired in part by recent work on provenance-based
label propagation (e.g., [7]) and decision provenance [15].
We prevent a novel DIVE (Dynamic Information Validation
and Explanation) ontology, a minimal extension of the PROV
ontology [10] for expressing agents’ appraisals, assumptions,
and evidence over the data. We build on graph propagation
and and truth-maintenance algorithms [2, 3], and we extend
these with novel classes and semantic constraints to represent
the derivation and rationale for conclusions, the appraisals of
various agents on those conclusions, and the propagation of
confidence from sources to conclusions.

We apply our approach in a simplified intelligence analysis
domain, where outcomes are derived along multiple paths
by multiple autonomous agents. We focus primarily on the
inter-agent flow rather than the inner workings (e.g., inference
engines and machine learning models) of individual agents.
We are interested in assessing the integrity of these flows
and of the outcomes they support, modulo the confidence,
assumptions, diversity, and sensitivity of upstream sources.

We continue with a review of provenance-tracking and
truth-maintenance algorithms. Section 2 describes our knowl-
edge representation and reasoning approach using provenance
as a platform for explanation. Section 3 presents empirical
results of our system generating explanations, and we review
the results and outline future work in Section 5.

1.1 Provenance-Tracking
Our technical approach extends the PROV-O ontology [10],
which expresses provenance entities and relationships using
the OWL2 Web Ontology Language. The PROV Data Model
includes the following three primary classes of elements to
express provenance:

1. Entities are real or hypothetical things with some fixed
aspects in physical or conceptual space. These may be
assertions, documents, databases, inferences, etc.

2. Activities occur over a period of time, processing and/or
generating entities. These may be inference actions, judg-
ment actions, planned (not yet performed) actions, etc.
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Figure 1: DIVE ontology classes and relations, using
some elements of the PROV ontology.

3. Agents are responsible for performing activities or gen-
erating entities. These may be humans, web services,
machine learning modules, etc.

Systems that utilize PROV can represent long inferential
chains, formally linking conclusions (e.g., a downstream as-
sertion) through generative activities (e.g., inference opera-
tions) and antecedents, to source entities and assumptions.
This comprises a directed network of provenance that we can
traverse in either direction to answer questions of foundations,
derivations, and impact.

1.2 Truth-Maintenance Systems
Truth-Maintenance Systems (TMSs) [3, 4] explicitly store
entities alongside justifications that link antecedent entities
(analogous to PROV entities) with consequent entities. This
explicitly encodes the rationale for each entity, so — simi-
lar to the PROV ontology — we can use a TMS to explore
foundations, derivations, and impact.

TMSs track environments as sets of elements that suffi-
ciently justify an entity in its upstream lineage. If the lineage
changes (e.g., due to a new derivation of an entity), the TMS
recomputes the affected environments. Environments allow
TMSs to efficiently recognize contradictions, retrieve logical
rationale, and identify upstream assumptions [2]. TMSs op-
erate alongside inference engines to record the lineage and
logical conditions for believing various assertions; they do
not themselves generate inferences or derive entities. Our ap-
proach utilizes TMS-like environments to efficiently refute
information, propagate confidence, and visualize impact.

2 Approach

2.1 Semantic Extensions and Constraints
Our novel DIVE ontology, illustrated in Figure 1 is a minimal
extension to the PROV ontology that introduces four addi-
tional classes and relations that relate to the PROV ontology.

The edges to the dotted box in Figure 1 indicate that the edge
(e.g., appraised) can target any class contained within.

1. An Appraisal is a human or machine agent’s
judgment about an activity, entity, or other agent.
There is at most one appraisal for any appraising
(prov:wasAttributedTo) agent and appraised element.
Appraisals have attributes to describe confidence and
likelihood judgments using ICD 203 metrics [13]. Dif-
ferent agents may appraise an element differently.

2. Evidence is agent judgment about diagnosticity of one
entity on another. This includes evidence and counter-
evidence. Evidence is directed from related entities to
indicated entities. As with appraisals, different agents
may express conflicting evidence.

3. A Preference is an agent’s relative judgment about
the relative quality or confidence of one entity, activ-
ity, or agent over another. Preferences are not absolute
judgments, but relative ceteris paribus judgments. This
means a machine agent may express a preference of one
of its inferences over another, all else being equal.

4. A Nexus is an agent’s judgment over a set of entities to
qualitatively or numerically express mutual coherence
(e.g., high joint likelihood) or conflict (e.g., low joint
likelihood), using ICD 203 metrics [13].

These DIVE classes express human and machine attribu-
tions about the quality of the entities, activities, and agents in
the PROV-O record. Consequently, DIVE is expressed at the
meta-level of PROV.

Taken together, PROV is a network of information gener-
ation and information flow, and DIVE expresses agent judg-
ments about the information and flow. These judgments ex-
tend the PROV network and flow through the network to
facilitate downstream quality judgments and interpretation.

2.2 Provenance Retrieval and TMS Structure
We implemented a multi-agent information analysis platform
using JanusGraph1 as a shared knowledge graph for work-
flow and provenance-tracking. JanusGraph uses Apache Tin-
kerPop2 graph computing framework, so our system runs a
TinkerPop-based PROV-O graph traversal to retrieve the full
upstream provenance for any set of target assertions.

After retrieving the upstream provenance elements, the
system generates a TMS-like structure from the provenance:
PROV activities act as TMS justifications that join the an-
tecedent entities and agents with consequent entities. This pro-
duces an AND/OR graph detailing the (one or more) deriva-
tions of all assertions in the upstream provenance structure.

The system then computes the TMS environments for each
element to express the set of necessary and sufficient upstream
PROV entities, agents, and activities supporting said element.

1https://janusgraph.org/
2http://tinkerpop.apache.org/
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Figure 2: Screenshot from a live provenance visualization, plotting the full human-machine provenance for the assertion
that a vessel “Lady Ada” was at one point located in the USA.

2.3 Indexing for Dynamic Interpretation
Given a provenance graph to assess, our provenance system
identifies and catalogs the following elements of the prove-
nance structure:

• Agents: actors in the analysis, defined in PROV-O.
• Sources: individual devices or informational resources

from which information is derived, such as databases,
websites, news agencies, human sources, and sensors.

• Source classes: categories of information, spanning po-
tentially many assertions and information sources.

• Operation classes: categories of analytic activities, such
as NLP and Pattern-Based Inference.

Our system computes the TMS environments of all nodes
in the provenance graph, relative to the above catalogs of
elements. This means that each activity and entity in the graph
is indexed by the agents, sources, source classes, and operation
classes that were necessary or sufficient to execute the activity
or derive the assertion, respectively.

3 Propagation & Visualization Results

We demonstrate our approach in a simplified fictional intel-
ligence analysis exercise. Our objective in this work is to
validate information that flows across agents, opposed to ex-
ploring the within-agent machine learning pipelines. Conse-
quently, agent actions (e.g., NLP) are represented as atomic
activities rather than as massive sub-networks.

We implemented our provenance browser as a graphical dis-
play within a larger web-based platform for human-machine

collaborative intelligence analysis. At any time in their analy-
sis, the user may select one or more entities from a diagram
or listing and opt to view their provenance.

A webservice traverses the knowledge graph to retrieve the
full provenance for the desired entities, and all relevant Ap-
praisals therein, and sends it to the client. The client’s prove-
nance visualizer uses JavaScript to implement the retrieval,
refutation, and propagation algorithms described above, oper-
ating over the PROV and DIVE representations.

Figure 2 shows a screenshot of the provenance for the
assertion that a cargo ship “Lady Ada” was located in the USA
(Figure 2, rightmost node), along three different derivation
paths, immediately to its left: (1) a GEOINT path using the
vessel’s AIS transponder (top); (2) a NLP and pattern-based
inference path from a fictitious “Shipping News International”
source; and (3) a similar NLP path from a fictitious Twitter
post. On the right of Figure 2 is a sidebar cataloging the
analytic factors detailed in Section 2.3.

Using this example, we describe three general provenance-
based exploration strategies to help human operators dynami-
cally isolate, refute, and critically analyze the sensitivity and
confidence of complex human-machine analyses.

3.1 Isolating Flows with Environments
Raw derivation trees often contain too much data to assess
in their entirety, and the volume of Activities increases the
breadth and depth of the graph. To manage complexity, we
can isolate flows to inspect the contribution of an activity,
agent, source, source class, or operation class.

Hovering over any cataloged element in the right-hand
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Figure 3: Isolating the analytic contribution of Named Entity Recognition (left) and a single GEOINT inference (right).

Figure 4: Refuting SELF-REPORT (left) and both NER and Self-Reported data, which ultimately refutes the assertion (right).

index isolates the graph to the contribution of that element
alone. Figure 3 (left) shows the effect of hovering over Named
Entity Recognition (NER): four named entities (the “Lady
Ada” and “USA” from two different sources) are highlighted
in the graph, and all elements are de-emphasized except (1)
upstream elements in the NER entities’ environments and (2)
downstream elements that have NER within their environ-
ments. This facilitates source pertinence judgments [12] and
also impact analysis to see the contribution and input flows
of any operation, or class thereof.

Similarly, hovering over any element in the graph displays
the upstream and downstream elements, using the TMS envi-
ronments in a similar fashion. Figure 3 (right) shows the effect
of hovering over the “Geo Infer” activity in the graph: the
relevant upstream and downstream flows are selected via their
environments, and the right-hand catalogs highlight only the
sources and classes involved upstream. This facilitates drill-
down analysis to isolate individual elements and understand
complex derivations in relevant subsets.

3.2 Refutation with Environments

We use TMS environments to refute elements or cataloged
classes. Figure 4 (left) illustrates the effect of disabling
“SELF-REPORT” data, since the vessel reports its own AIS
signals. This disables the Geo-Infer derivation and other el-
ements that necessarily depend on disabled elements (i.e.,
where all TMS environments are [partially] refuted). One
of the derivations are partially disabled, but the other two
(Pattern Inferences) remain. If we also disable “Named En-

tity Recognition,” this temporarily disables the NER-tagged
elements as well as the target assertion in Figure 4 (right).

This refutation capability facilitates sensitivity analysis
[13, 17] to any source, activity, operation class, or source
class, since it allows us to counter-factually see the analysis
without that contribution. This also helps us perform a risk
assessment, e.g., to see how much our analysis depends on
potentially-risky machine operations.

3.3 Propagating Appraisals

If a human or machine agent creates a DIVE Appraisal, Prefer-
ence, or Nexus, we can propagate the numerical data through
the network. Figure 5 (left) shows a very low-confidence
Appraisal from a human agent about a document (0.1 on the
ICD-203 scale [13]), and a forward-propagation of confidence
scores throughout the graph, where red indicates low confi-
dence and green indicates high confidence. Notice that the
“Shipping News International” organization confidence starts
relatively high, but the low-confidence document authored by
that organization immediately dominates it downstream in the
remainder of the analysis. We see that the target assertion (at
right) is a junction of a high-, low-, and moderate-confidence
derivations. If we refute the low-confidence document (Fig-
ure 5, right), we excise the low-confidence elements from our
analysis and our assertion still holds.

This helps inform multiple dimensions analytic rigor [17]
such as information validation (i.e., verifying the information
contribution from relevant sources), information synthesis
(i.e., incorporating data and considering the diversity of in-
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Figure 5: Propagating all attributions through the provenance (left) and individually refuting a low-confidence document—
and all of its individual low-confidence contribution— from the analysis (right).

ferences) and elements of specialist collaboration (i.e., using
experts’ consultation on relevant topics or sources).

We allow the user to select among multiple policies for
propagating confidence, such as minimum, maximum, and av-
erage to handle and/or junctions of confidence, but more so-
phisticated Bayesian approaches (e.g., [9]) can be integrated
to express more complicated confidence propagation strate-
gies, e.g., where the confidence of a multiply-derived assertion
is higher-confidence than any of its constituent sources due
to the added confidence of diverse corroboration.

4 Related Work

Previous work summarizes information flows to detect persis-
tent security threats in real time [7, 11] by propagating labels
through newtork flows. Other work uses cloud-based multi-
agent provenance across source domains [5] and as a service
(e.g., [14]), which we believe is compatible with our approach
to helping users understand how information was derived, or
how decisions are made in a complex pipeline [15]. Other
systems track lineage in large databases [1] and in multi-agent
analysis [16] but do not have the per-agent expressivity and
activity-level refutation of our DIVE ontology. Label prop-
agation approaches to have been used for intent recognition
with support for refutation [6], but this does not use formal
provenance notation, evidence annotations, or multi-agent
appraisal.

5 Conclusions and Future Work

This paper presented an integrated approach for using prove-
nance to dynamically explore complex multi-agent analyses.
Our integrated approach includes the following technical con-
tributions: (1) the DIVE ontology to allow PROV agents to
express evidence, appraisals, preferences, and nexuses; (2)
adaptations of TMS environments into the provenance frame-
work; and (3) environment-level indexing by sources, agents,
and operations; and (4) visualization techniques to support
appraisal, isolation, refutation, and propagation of elements

and agent insights. We identified specific analytic integrity
directives [12, 13] and dimensions of analytic rigor [17] fa-
cilitated by our approach, ultimately improving the ability
for people to reason intuitively and efficiently about complex
human-machine analyses.

Our approach is designed to visualize and validate higher-
level inter-agent flow across data sources. For data-intensive
scientific computing and massive machine learning pipelines,
our graph propagation and TMS environment structure would
still apply, but our full visualization approach would not be
informative without filtering, e.g., to prioritize and display
only elements that most impact confidence.

One critical assumption we make in this work is that each
software agent in the human-machine team logs its prove-
nance soundly, completely, and at the right granularity. Intu-
itively, if machine agents violate this assumption, our refu-
tation and confidence models become unusable, or worse,
misleading. This presents a governance issue: agents can only
be admitted into the analytic framework if their provenance-
logging satisfies these assumptions.

Empirically validating our approach with a user study is an
important next step. This will help us characterize the effect of
these provenance-based analyses on the rigor of the analytic
process and the user’s situation awareness.

Finally, the complex provenance graphs displayed and ma-
nipulated in our approach are not necessarily explanations,
but they contain structure that can support explanations of
users’ how, why, and what-if questions. Consequently, we see
value in using the approaches presented here in conjunction
with additional reasoning for machine Q&A about complex
workflows with dynamic provenance displays.
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