
Valery Sigalov, Bloomberg

Logs Told Us It Was Kernel
It Felt Like Kernel
It Had To Be Kernel
It Wasn’t Kernel

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

2

Logs Told Us It Was Kernel

● The disk latency issues have been resolved after reducing the number of cgroups
● The latest Linux kernel includes the cgroup fixes for these and the other issues

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

3

Logs Told Us It Was Kernel

It Felt Like Kernel

Linux Kernel 3.10.0-957.35.2, Glibc 2.17 Linux Kernel 4.18.0-372.9.1, Glibc 2.28

./funccount -i 5 'c:__memcpy*'
Tracing 9 functions for "c:__memcpy*"...

FUNC COUNT
__memcpy_ssse3_back 986330
__memcpy_sse2 1866318

./funccount -i 5 'c:__memcpy*'
Tracing 21 functions for "b'c:__memcpy*'"...

FUNC COUNT
b'__memcpy_avx_unaligned_erms' 1224262
b'__memcpy_sse2_unaligned' 8025791

● __memcpy_ssse3_back is most optimal for small and large buffers
● __memcpy_avx_unaligned doesn’t perform well for small buffers (less than 10 bytes)
● GLIBC_TUNABLES glibc.cpu.hwcaps can be used to disable AVX and enable SSE
● This issue was fixed in the latest Glibc 2.28 build

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

4

Logs Told Us It Was Kernel

It Felt Like Kernel

It Had To Be Kernel

Linux Kernel 3.10.0-957.35.2 Linux Kernel 4.18.0-372.9.1

timertest -t
timertest 1.4.0

Time Call Tests:
clock_gettime(CLOCK_MONOTONIC): Diff:
0.000017363 sec Avg 17 nsec

timertest -t
timertest 1.4.0

Time Call Tests:
clock_gettime(CLOCK_MONOTONIC): Diff:
0.000047152 sec Avg 47 nsec

● The intel_pstate=disable intel_idle.max_cstate=0 processor.max_cstate=1 boot
parameters didn’t work with the new Linux kernel

● The vendor recommended boot parameters reduced clock_gettime overhead to 23 nsec

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

5

Logs Told Us It Was Kernel

It Felt Like Kernel

It Had To Be Kernel

Was it Kernel?

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Simplified version of benchmark test

void foo(void) {
}
int main(int argc, char *argv[]) {

int64_t sum = 0;
for (int64_t i = 0; i < 1000000000LL; i++) {

foo();
sum += i;

}
}

6

● Exclude all memory accesses
● Isolate from any other performance issues
● Long loop, empty function call, sum of two local variables

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Compare execution time between old and new Linux kernel

(3.10.0-957.35.2) $ time ./loop

real 0m2.06s
user 0m2.04s
sys 0m0.01s

(4.18.0-372.9.1) $ time ./loop

real 0m2.65s
user 0m2.61s
sys 0m0.01s

7

● The application performance degraded by about 30% compared to the old Linux kernel

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

The techniques used during the investigation

● Profile the additional “nop” instruction in the code

● Profile placing the local variables into the registers

● Run the Intel VTune profiler and analyze the performance

● Profile the hot code block alignment in the instruction cache

● Research the compilation flags to optimize the performance

● Research profile-guided compilation for better optimization

8

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Basic concepts of CPU architecture

9

CPU Pipeline Intel Core i7-9xx

FETCH

DECODE

I-CACHE

EXECUTE

WRITEBACK

D-CACHE

Front End

Back End

Memory Size Latency

Register 64 bit 1 cycle

L1 cache 64 KB 4 cycles

L2 cache 256 KB 11 cycles

L3 cache 8 MB 39 cycles

Main memory 4+ GB 107 cycles

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Linux Kernel 3.10.0-957.35.2,GCC 4.8.5 Linux Kernel 4.18.0-372.9.1,GCC 8.5.0

Disassemble code to check the differences

10

void foo(void)
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: 5d pop %rbp
4004f2: c3 retq

void foo(void)
400536: 55 push %rbp
400537: 48 89 e5 mov %rsp,%rbp
40053a: 90 nop
40053b: 5d pop %rbp
40053c: c3 retq

● The new GCC 8.5.0 generates an additional ‘nop’ instruction

● It doesn’t emit any microcode, but must be fetched and decoded

● The additional ‘nop’ instructions contribute to large code size

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Profile ‘nop’ instruction with GCC 4.8.5

11

void foo(void) {

}

6,765,712,500 cycles
10,009,141,973 instructions
3,001,637,870 branches
31,451 branch-misses

2.275540333 sec time elapsed

void foo(void) {
__asm__("nop");

}

6,798,423,185 cycles
11,008,906,212 instructions
3,001,595,573 branches
31,056 branch-misses

2.222114193 sec time elapsed

● Number of instructions increased
● Execution time remained the same

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Local variables storage

12

int64_t sum = 0;
40054c: 48 c7 45 f8 00 00 00 movq $0x0,-0x8(%rbp)
for (int64_t i = 0; i < 1000000000LL; i++) {

400554: 48 c7 45 f0 00 00 00 movq $0x0,-0x10(%rbp)

. omitted text

400563: 48 8b 45 f0 mov -0x10(%rbp),%rax
400567: 48 01 45 f8 add %rax,-0x8(%rbp)
for (int64_t i = 0; i < 1000000000LL; i++) {

40056b: 48 83 45 f0 01 addq $0x1,-0x10(%rbp)

● Compiler puts the local variables on the stack

● The access to the memory is much slower than the access to the register

Saved
RBP

sum

i

RBP

RBP-0x8

RBP-0x10

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Profile ‘register’ keyword with GCC 8.5.0

13

register int64_t i, sum = 0;
40054f: 41 bc 00 00 00 00 mov $0x0,%r12d
for (i = 0; i < 1000000000LL; i++) {

400555: bb 00 00 00 00 mov $0x0,%rbx

. omitted text

400561: 49 01 dc add %rbx,%r12d
for (i = 0; i < 1000000000LL; i++) {

400564: 48 83 c3 01 add $0x1,%rbx

● The ‘register’ keyword suggests compiler to use register for local variable
● The access to the register is much faster than the access to the memory
● The ‘add’ instruction can work with two registers directly

Without ‘register’ keyword:
8,294,200,306 cycles
11,012,279,315 instructions
3.456486927 seconds

With ‘register’ keyword:
7,147,275,887 cycles
10,010,622,649 instructions
2.978650290 seconds

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Profile with Intel VTune

14

Linux Kernel 3.10.0-957.35.2, GCC 4.8.5

Front-End Bound: 14.4% of Pipeline Slots

Linux Kernel 4.18.0-372.9.1, GCC 8.5.0

Front-End Bound: 45.2% of Pipeline Slots

Issue: A significant portion of Pipeline Slots
is remaining empty due to issues in the
Front-End.Tips: Make sure the code
working size is not too large, the code
layout does not require too many memory
accesses per cycle to get enough
instructions for filling four pipeline slots

● The new Linux kernel showed much lower front-end pipeline utilization
● The problem is most likely the layout of the generated loop block

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Loop block layout with GCC 8.5.0

15

● CPU reads from the address aligned to the cache line size 0x400580 and 0x4005C0
● The loop code block generated by GCC 8.5.0 spans across the two instruction cache lines
● This is the main reason of the poor front-end pipeline performance

0 1 2 3 4 5 6 7 8 9 A B C D E F

80

90

A0

B0 CALL CALL

C0 CALL CALL CALL MOV MOV MOV MOV ADD ADD ADD ADD ADD ADD ADD ADD ADD

D0 MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV CMP CMP CMP CMP JLE JLE

E0

F0

4005be: call 400596 <foo>
sum+=i;

4005c3: mov -0x8(%rbp),%rax
4005c7: add %rax,-0x10(%rbp)
for(;i<10000000000LL;i++)

4005cb: add $0x1,-0x8(%rbp)
4005d0: mov
$0x2540be3ff,%rax
4005da: cmp %rax,-0x8(%rbp)
4005de: jle 4005be <main>

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Loop block layout with GCC 4.8.5

16

● CPU reads from the address aligned to the cache line size 0x400540
● The loop code block generated by GCC 4.8.5 fits into the one instruction cache line
● The loop code block that fits into the one instruction cache line reduces the number of

Decoded Stream Buffer (DSB) cache misses

0 1 2 3 4 5 6 7 8 9 A B C D E F

40

50 CALL CALL CALL CALL CALL MOV MOV MOV MOV ADD ADD ADD

60 ADD ADD ADD ADD ADD ADD MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV

70 CMP CMP CMP CMP JLE JLE

400554: callq 40052d <foo>
sum+=i;

400559: mov -0x10(%rbp),%rax
40055d: add %rax,-0x8(%rbp)

for(;i<10000000000LL;i++)
400561: addq $0x1,-0x10(%rbp)
400566: mov 0x2540be3ff,%rax
400570: cmp %rax,-0x10(%rbp)
400574: jle 400554 <main>

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Align loop block with GCC 8.5.0

17

● By adding the two ‘nop’ instructions the loop block was shifted two bytes forward to the
address aligned to the cache line size 0x4005C0 and fits one instruction cache line

● The application performance was significantly improved

0 1 2 3 4 5 6 7 8 9 A B C D E F

80

90

A0

B0 NOP NOP

C0 CALL CALL CALL CALL CALL MOV MOV MOV MOV ADD ADD ADD ADD ADD ADD ADD

D0 ADD ADD MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV CMP CMP CMP CMP

E0 JLE JLE

F0

__asm__("nop");
4005be: 90 nop
__asm__("nop");

4005bf: 90 nop
4005c0: callq 400596 <foo>
sum+=i;

4005c5: mov -0x8(%rbp),%rax
4005c9: add %rax,-0x10(%rbp)
for(;i<10000000000LL;i++)

4005cd: addq $0x1,-0x8(%rbp)
4005d2: mov $0x2540be3ff,%rax
4005dc: cmp %rax,-0x8(%rbp)
4005e0: jle 4005c0 <main>

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Use -falign-functions with GCC 8.5.0

18

● The functions are aligned by 16 bytes, which benefits the execution speed
● The code block was shifted to fit the one instruction cache line

0 1 2 3 4 5 6 7 8 9 A B C D E F

C0

D0 CALL CALL CALL CALL CALL MOV MOV MOV MOV ADD ADD ADD ADD ADD ADD

E0 ADD ADD ADD MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV CMP CMP CMP

F0 CMP JLE JLE

0000000000400540 <foo>:

0000000000400550 <main>:

4005d1: callq 400540 <foo>
sum+=i;

4005d6: mov -0x8(%rbp),%rax
4005da: add %rax,-0x10(%rbp)
for(;i<10000000000LL;i++)

4005de: addq $0x1,-0x8(%rbp)
4005e3: mov
$0x2540be3ff,%rax
4005ed: cmp %rax,-0x8(%rbp)
4005f1: jle 4005d1 <main>

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Performance report analysis

19

GCC 4.8.5 default GCC 8.5.0 default GCC 8.5.0 aligned

Elapsed Time: 18.597s

Efficient fetching and decoding.
Front-End Bound: 14.4% of Pipeline
Slots

Higher number of remote accesses
don’t affect code efficiency.
NUMA: % of Remote Accesses:
16.1%

Elapsed Time: 21.404s

Pipeline slots are mostly empty.
Front-End Bound: 50.3% of Pipeline
Slots

Lower number of remote accesses
don’t improve code efficiency.
NUMA: % of Remote Accesses: 4.0%

Elapsed Time: 18.517s

Efficient fetching and decoding.
Front-End Bound: 15.4% of Pipeline
Slots

Higher number of remote accesses
don’t affect code efficiency.
NUMA: % of Remote Accesses: 6.3%

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Compiler optimization options

● -falign-loops align loop code block to the beginning of the instruction cache line
● -funroll-loops remove shorter loops from generated code and mitigate the

negative effect of the loop code block alignment
● -O2 optimization level includes all alignment options along with many other

optimization flags
● -Os optimization level includes all optimizations from -O2 without alignment

options
● -O3 optimization level turns on more expensive optimizations such as function

inlining and various loop optimizations
● Higher levels of optimization can restrict debugging visibility
● The performance optimization options increase the time and the memory

consumption during the compilation

20

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Profile guided optimization

● PGO is a method used by GCC to produce optimal code by using the
runtime data

● Since the data comes from the application, GCC can make more accurate
guesses

● PGO workflow:
○ Instrumented compilation
○ Profiled execution
○ Optimized compilation

21

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

PGO instrumented compilation phase

22

Source code
base

Compile and link
with PGO option -
fprofile-generate

Instrumented
binary

● Produces an executable with probes in each of the basic blocks of the program
● Each probe counts the number of times a basic block runs and records the direction

taken by the branch

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

PGO profiled execution phase

23

Output

Instrumented
binary

● Instrumented binary generates a profiling data file that contains the counts from the
program execution

Scenarios
with real

world load

Profiling
data

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

PGO optimization phase

24

Source code
base

Compile and link
with PGO option -

fprofile-use
Optimized

binary

● Information from the profiled execution of the program is fed back to GCC
● GCC uses the profiling data to produce an optimized binary

Profiling
data

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

Performance boost by using PGO

25

Test Suite Without PGO With PGO Improvement

python_startup 17.1 ms 13.7 ms 1.25x faster

json_dumps 13.9 ms 11.4 ms 1.22x faster

json_loads 30.4 us 25.3 us 1.20x faster

xml_etree_generate 129 ms 109 ms 1.18x faster

xml_etree_parse 199 ms 175 ms 1.13x faster

● The Specs: Python 3.12.0, Linux kernel 4.18.0-372.9.1, GCC 8.5.0
● Benchmarking tests: py-performance benchmark suite

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

26

Logs Told Us It Was Kernel

It Felt Like Kernel

It Had To Be Kernel

It wasn’t Kernel

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

References

● The mystery of an unstable performance
● Performance Analysis and Tuning on Modern CPUs
● Using the GNU Compiler Collection (GCC) - Optimization Options
● Intel(R) 64 and IA-32 Architectures Optimization Reference Manual
● CPU Caches and Why You Care
● Profile guided optimization benchmarking
● Code alignment issues

Thank you!

27

http://pzemtsov.github.io/2014/05/12/mystery-of-unstable-performance.html
https://faculty.cs.niu.edu/~winans/notes/patmc.pdf
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://youtu.be/WDIkqP4JbkE?feature=shared
https://pyperformance.readthedocs.io/index.html
https://easyperf.net/blog/2018/01/18/Code_alignment_issues

Logs Told Us It Was Kernel – It Wasn’t
© 2024 Bloomberg Finance L.P. All rights reserved.

 Q & A

28

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Simplified version of benchmark test
	Slide 7: Compare execution time between old and new Linux kernel
	Slide 8: The techniques used during the investigation
	Slide 9: Basic concepts of CPU architecture
	Slide 10: Disassemble code to check the differences
	Slide 11: Profile ‘nop’ instruction with GCC 4.8.5
	Slide 12: Local variables storage
	Slide 13: Profile ‘register’ keyword with GCC 8.5.0
	Slide 14: Profile with Intel VTune
	Slide 15: Loop block layout with GCC 8.5.0
	Slide 16: Loop block layout with GCC 4.8.5
	Slide 17: Align loop block with GCC 8.5.0
	Slide 18: Use -falign-functions with GCC 8.5.0
	Slide 19: Performance report analysis
	Slide 20: Compiler optimization options
	Slide 21: Profile guided optimization
	Slide 22: PGO instrumented compilation phase
	Slide 23: PGO profiled execution phase
	Slide 24: PGO optimization phase
	Slide 25: Performance boost by using PGO
	Slide 26
	Slide 27: References
	Slide 28

