
OIDC and CICD: Why Your CI Pipeline
Is Your Greatest Security Threat

 Ted Hahn,
thahn@tcbtech.com

 Mark Hahn,
mhahn@qualys.com

tcbtech.com/oidc-cicd

github/tcbtechnologies/oidc-cicd

gitlab.com/tcbtech/oidc-talk/

mailto:thahn@tcbtech.com
mailto:mhahn@qualys.com
https://tcbtech.com/oidc-cicd
https://github.com/tcbtechnologies/oidc-cicd
https://gitlab.com/tcbtech/oidc-talk/

Configuring your CI correctly is vital
History of credentials

Why using long lived tokens is insecure

Examples of what can go wrong

How to use OIDC

Create the roles in your infra (AWS, Kube Clusters)

Setup pipelines to use OIDC

Section off privileges into roles attached to branches

Examples using OIDC:

Create OIDC Providers permissions in AWS (also GCP and Azure, if there is time)

Configure GitHub (And CircleCI, Gitlab)

Run a pipeline and see identity (and changing by pipeline stage)

History of Credentials

Manually entered for builds that ran by hand

Automated builds

Access tokens

SAML / SAML-Like

OAuth2

OIDC

Straw Poll: How many of your
credentials look like this?

Long lived credentials like this are
obviously insecure

No rotation

Coarse grained access

Poor attribution

What can go wrong

Secrets can leak easily!

echo $CLOUD_SECRET | base64

Vendors can leak secrets - CircleCI had a leak in 2023
"We recommended that all customers rotate their secrets,
including OAuth tokens, Project API Tokens, SSH keys, and more"

Vendors can get hacked via CICD - CloudFlare Thanksgiving Day
2023 Incident

CD - Confused Deputy

Developer Branches are untrusted code

Your CI configuration lives in the repo itself now

There are no guarantees here

How to use OIDC

Three Simple Steps:

Create Roles in your Cloud

Setup pipelines to use OIDC

Section off privileges into roles attached to branches

Create the roles in your infra (AWS,
Kube Clusters)

Create roles that provide the access you need
Setup the policies/permissions that to the least privileges necessary

For Example

 Statement = [
 {
 Action = "sts:AssumeRoleWithWebIdentity"
 Effect = "Allow"
 # Or Gitlab, or CircleCI, or...
 Sid = "Github"
 Principal = {
 Federated = aws_iam_openid_connect_provider.github.arn
 }
 Condition = {
 "StringEquals" : {
 "token.actions.githubusercontent.com:aud" : "sts.amazonaws.com",
 },

• • •

Setup pipelines to use OIDC

Create the OIDC token in your pipeline
Using the pipeline syntax for your provider
(they just create them)

 - name: Configure AWS credentials from Test account
 uses: aws-actions/configure-aws-credentials@v4
 with:
 role-to-assume: arn:aws:iam::783153433147:role/github-actions
 aws-region: us-east-1

OIDC Token Example

{
 "aud": "sts.amazonaws.com"
 "sub": "project_path:tcbtech/oidc-talk:ref_type:branch:ref:mark",
 "iss": "https://gitlab.com",
 "iat": 1705018870,
 "nbf": 1705018865,
 "exp": 1705022470,

 "namespace_id": "8163212",
 "namespace_path": "tcbtech",
 "project_id": "53428581",
 "project_path": "tcbtech/oidc-talk",
 . . .

Section off privileges into roles
attached to branches

Setup the roles or service accounts
Attach them to the proper policies and permissions
Attach them to branches

Section off privileges into roles
attached to branches : Example
 . . .
 "StringLike" : {
 "gitlab.com:sub" : "project_path:${var.gitlab_org}/${var.gitlab_repo}:*"
 }
 . . .

Separate the protected branch from
the user branches
arn:aws:iam::905418421134:role/github-actions-master

Trust Relationship:
 . . .
 "StringLike" : {
 "gitlab.com:sub" : "project_path:${var.gitlab_org}/${var.gitlab_repo}:master"
 }
 . . .

Policy:
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ecr: . . .
 "ecr:UploadLayerPart",
 "ecr:CompleteLayerUpload",
 "ecr:PutImage"
],
 "Effect": "Allow",
 "Resource": "*"

 }
]
}

arn:aws:iam::905418421134:role/github-actions

Trust Relationship:
 . . .
 "StringLike" : {
 "gitlab.com:sub" : "project_path:${var.gitlab_org}/${var.gitlab_repo}:*"
 }
 . . .

Policy:
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ecr: . . .
 "ecr:UploadLayerPart",
 "ecr:CompleteLayerUpload",
 "ecr:PutImage"
],
 "Effect": "Allow",
 "Resource": "*stage*"

 }
]
}

Separate S3 permissions for the
protected branch
arn:aws:iam::905418421134:role/github-actions-master

Trust Relationship:
 . . .
 "StringLike" : {
 "gitlab.com:sub" : "project_path:${var.gitlab_org}/${var.gitlab_repo}:master"
 }
 . . .

Policy:
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3: . . .
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:PutObject",
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::yourorg_prod_web",
 "arn:aws:s3:::yourorg_prod_web/*"]
 }
]
}

arn:aws:iam::905418421134:role/github-actions

Trust Relationship:
 . . .
 "StringLike" : {
 "gitlab.com:sub" : "project_path:${var.gitlab_org}/${var.gitlab_repo}:*"
 }
 . . .

Policy:
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3: . . .
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:PutObject",
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::yourorg_stage_web",
 "arn:aws:s3:::yourorg_stage_web/*"]
 }
]
}

Demo

Show of hands, how many people use Gitlab vs Github?

GitHub action jobs for AWS and GCP

git commit --allow-empty -m "Demo."
git push -f origin head:force-ci

GitLab action jobs for AWS and GCP

git push -f gitlab head:force-ci

https://gitlab.com/tcbtech/oidc-talk/-/pipelines
https://github.com/tcbtechnologies/oidc-cicd/actions

Takeaways

Prevent Developers from abusing CI's access by tying roles to
protected branches

Understand that Unit Tests in CI run as CI - And Developers run as
that CI, too

Splitting roles by pipeline makes it simple - Simple is good

References

GitHub

https://docs.github.com/en/actions/deployment/security-hardening-your-
deployments/configuring-openid-connect-in-amazon-web-services

https://docs.github.com/en/actions/deployment/security-hardening-your-
deployments/configuring-openid-connect-in-google-cloud-platform

GitLab

https://docs.gitlab.com/ee/ci/cloud_services/aws/index.html

https://docs.gitlab.com/ee/ci/cloud_services/google_cloud/

https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-amazon-web-services
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-amazon-web-services
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-google-cloud-platform
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-google-cloud-platform
https://docs.gitlab.com/ee/ci/cloud_services/aws/index.html
https://docs.gitlab.com/ee/ci/cloud_services/google_cloud/

tcbtech.com/oidc-cicd

https://github.com/tcbtechnologies/oi
cicd

https://gitlab.com/tcbtech/oidc-
talk/

Thank you!

tcbtech.com/oidc-cicd

https://tcbtech.com/oidc-cicd
https://tcbtech.com/oidc-cicd

