
99.99% of Your
Traces
Are (Probably)
Trash
Paige Cruz, Chronosphere

Tracing Today

01

Picture of
sad/broken
promise/ etc

Brief
History
of
Tracing

2021

2019

2017

2015

2012

2010

 Tracing circa 2012-2019

No Standard

 Tracing circa 2012-2019

Immature

 Tracing circa 2012-2019

Steep learning curve

 Tracing circa 2019-

No Standard

 Tracing circa 2019-

No Standard Immature

 Tracing circa 2019-

Steep learning curve

The True Cost of
Tracing

● Generate spans
● Send spans

Applications Collector*
● Ingest spans
● Process spans
● Export spans

Storage

Tracing Cost Factors

● Throughput

● # Traced Apps

● Metadata

0.01%
In practice, sampling rates can be as low as

Dapper paper from Google

Sampling

02

What traces
should we
keep?

What traces
should we
toss?

What makes an
“interesting”
trace?

● Infrequent Request Types

● Anomalous Events

● Edge Case

- Error
- Tail latency

What constitutes an “interesting”
trace?

��
i MUST get the

latest drop from
Purrada

User

User

System

System

System

System

System

System

How Spans Become A Trace

Trace Waterfall

Cart
Service

/checkout

Inventory
Service

/reserve-items

Payment
Service

/auth-card

Heads or Tails?
Sampling Strategies

03

Constant Sampling

Head Based Sampling

Head Based Sampling

“Sample 1% of traces”

Configured in the SDK

OTEL_TRACES_SAMPLER=parentbased_traceidratio

OTEL_TRACES_SAMPLER_ARG="0.01"

Head Based: Probabilistic

“Sample up to 10 traces per second”
Head Based: Rate Limit

Configured in the SDK & Jaeger Collector*

OTEL_TRACES_SAMPLER=parentbased_jaeger_remote

OTEL_TRACES_SAMPLER_ARG=
endpoint=your-endpoint-here
pollingIntervalMs=5000
initialSamplingRate=0.1

“Sample 1 trace per second per endpoint”

Head Based: Adaptive

Configured in the SDK & Jaeger Collector

OTEL_TRACES_SAMPLER=parentbased_jaeger_remote

OTEL_TRACES_SAMPLER_ARG=
endpoint=http://localhost:14250
pollingIntervalMs=5000
initialSamplingRate=0.25

http://localhost:14250

Head Sampling Trade Offs

Benefits

● Efficient for high
throughput systems

● Limits data generation

● Easy to reason about

● Simple set up

Head Sampling Trade Offs

Drawbacks

● Can sacrifice “interesting”
or edge case traces

Tail Based Sampling

Tail Based Sampling

 Latency

Tail Based Sampling*

Error Numeric

Prob.

Status Code

TraceState

String

Span Count Composite Rate Limit

“Sample all traces to /checkout where latency > 2m”
Configured in the TailSamplingProcessor in OTel Collector

Tail Based: Latency

AND policy
● string_attribute service.name = cart

● string_attribute with regex for http.route =
[/checkout/.+]

● latency with threshold_ms: 120000

“Sample all traces on /checkout that have errors”
Tail Based: Error

AND policy
● string_attribute service.name = cart

● string_attribute with regex http.route =
[/checkout/.+]

● status_code {status_codes: [ERROR]}

“Sample all traces on /checkout where cart is > $1000”

Tail Based: Attributes

AND policy
● string_attribute service.name = cart

● string_attribute with regex http.route = [/checkout/.+]

● numeric_attribute
○ key: cart.total
○ min_value: 1000

Tail Sampling Trade Offs

Benefits

● Focuses on capturing
interesting traces

● Flexible configuration

Tail Sampling Trade Offs

Drawbacks

● Inherently higher cost
(computational/financial)

● Variable/unpredictable,
fluctuates with throughput,
span size, trace size

● Introduce latency to make
sampling decision

Head & Tail Combo

Example Time!

HALP!

● Yesterday’s drop sold out in
20m

● Cat-lebrity complained about
a long checkout time

● Confirmed reports of failed
payments

Timeline

Launch Long Checkout Sold Out
0 5m 10m 15m 20m

Checkout Errors

Constant Sampling - volume
/checkout
requests

600,000

traces
generated

600,000

traces
stored

600,000

Constant Sampling - “interestingness”

success 590,500

error 9,000

high
latency

1,500

Constant Sampling

Head Sampling 1% - volume
/checkout
requests

600,000

traces
generated

6,000

traces
stored

6,000

Head Sampling 1% - “interestingness”

success 5,895

error 90

high
latency

15

Head Sampling 1%

Tail Sampling - volume

/checkout
requests

600,000

traces
generated

600,000

traces
stored

16,395

Tail Sampling - “interestingness”

success 5,895

error 9,000

high
latency

1,500

Tail Sampling 1% success, 100% error + lat

Head & Tail Sampling Combo - volume

/checkout requests 600,000

traces generated 6,000

traces stored 164

Head & Tail Sampling Combo - “interestingness”

success 59

error 90

high
latency

15

Head & Tail Sampling Combo

Interestingness Comparison

6,000 traces 600,000 traces 16,405 traces 164 traces

No Sample Head @ 1%Tail Head & Tail

“Gotchas”

04

Set It & Forget It Sampling

Siloing Telemetry

Traces <> Logs
● Inject traceIDs & spanIDs into

logs

Metrics <> Traces
● Exemplars

Sampling as only Shaping Strategy

Tomorrow’s
Tracing

05

 Head vs. Tail

find me requests where
 the user was logged in
 the request took more than 2s AND
 only certain databases were used AND
 a transaction was held open for > 500ms

Uber Engineering Blog, 2017

[Tracing] made queries like

https://www.uber.com/blog/distributed-tracing/

find me requests where
 the user was logged in
 the request took more than 2s
 only certain databases were used AND
 a transaction was held open for > 500ms

Uber Engineering Blog, 2017

[Tracing] made queries like

https://www.uber.com/blog/distributed-tracing/

find me requests where
 the user was logged in
 the request took more than 2s
 only certain databases were used
 a transaction was held open for > 500ms

Uber Engineering Blog, 2017

[Tracing] made queries like

https://www.uber.com/blog/distributed-tracing/

find me requests where
 the user was logged in
 the request took more than 2s
 only certain databases were used
 a transaction was held open for > 500ms

Uber Engineering Blog, 2017

[Tracing] made queries like

https://www.uber.com/blog/distributed-tracing/

find me requests where
 the user was logged in
 the request took more than 2s
 only certain databases were used
 a transaction was held open for > 500ms

Uber Engineering Blog, 2017

[Tracing] made queries like

possible

https://www.uber.com/blog/distributed-tracing/

paigerduty
.com

 @hachyderm.io
@chronosphere.io

