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                  Tracing circa 2012-2019 

No Standard



                  Tracing circa 2012-2019 

Immature



                  Tracing circa 2012-2019 

Steep learning curve



                  Tracing circa 2019- 

No Standard



                  Tracing circa 2019- 

No Standard Immature



                  Tracing circa 2019- 

Steep learning curve



The True Cost of 
Tracing 



● Generate spans
● Send spans

Applications Collector*
● Ingest spans
● Process spans
● Export spans

Storage



Tracing Cost Factors

● Throughput 

● # Traced Apps 

● Metadata



0.01%
In practice, sampling rates can be as low as

Dapper paper from Google



Sampling
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What traces 
should we 
keep? 

What traces 
should we 
toss? 

What makes an 
“interesting” 
trace? 



● Infrequent Request Types 

● Anomalous Events

● Edge Case

- Error
- Tail latency

What constitutes an “interesting” 
trace? 



��
i MUST get the 

latest drop from 
Purrada



User 



User 



System 



System 



System 



System 



System 



System 



How Spans Become A Trace













Trace Waterfall 

Cart 
Service

/checkout

Inventory 
Service

/reserve-items

Payment 
Service

/auth-card



Heads or Tails? 
Sampling Strategies
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Constant Sampling



Head Based Sampling



Head Based Sampling



“Sample 1% of traces”

Configured in the SDK

OTEL_TRACES_SAMPLER=parentbased_traceidratio

OTEL_TRACES_SAMPLER_ARG="0.01"

Head Based: Probabilistic



“Sample up to 10 traces per second”
Head Based: Rate Limit

Configured in the SDK & Jaeger Collector* 

OTEL_TRACES_SAMPLER=parentbased_jaeger_remote

OTEL_TRACES_SAMPLER_ARG=
endpoint=your-endpoint-here
pollingIntervalMs=5000
initialSamplingRate=0.1



“Sample 1 trace per second per endpoint”

Head Based: Adaptive

Configured in the SDK & Jaeger Collector 

OTEL_TRACES_SAMPLER=parentbased_jaeger_remote

OTEL_TRACES_SAMPLER_ARG=
endpoint=http://localhost:14250
pollingIntervalMs=5000
initialSamplingRate=0.25

http://localhost:14250


Head Sampling Trade Offs

Benefits

● Efficient for high 
throughput systems

● Limits data generation

● Easy to reason about

● Simple set up 



Head Sampling Trade Offs

Drawbacks

● Can sacrifice “interesting” 
or edge case traces



Tail Based Sampling



Tail Based Sampling



     Latency

Tail Based Sampling*

Error Numeric

Prob.

Status Code 

TraceState

String 

Span Count Composite Rate Limit



“Sample all traces to /checkout where latency > 2m”
Configured in the TailSamplingProcessor in OTel Collector

         

Tail Based: Latency

AND policy 
● string_attribute service.name = cart

● string_attribute with regex for http.route = 
[/checkout/.+]

● latency with threshold_ms: 120000 



“Sample all traces on /checkout that have errors”
Tail Based: Error

AND policy 
● string_attribute service.name = cart

● string_attribute with regex http.route = 
[/checkout/.+]

● status_code {status_codes: [ERROR]}



“Sample all traces on /checkout where cart is > $1000”

Tail Based: Attributes

AND policy 
● string_attribute service.name = cart

● string_attribute with regex http.route = [/checkout/.+]

● numeric_attribute 
○ key: cart.total 
○ min_value: 1000



Tail Sampling Trade Offs

Benefits

● Focuses on capturing 
interesting traces

● Flexible configuration



Tail Sampling Trade Offs

Drawbacks

● Inherently higher cost 
(computational/financial)

● Variable/unpredictable, 
fluctuates with throughput, 
span size, trace size

● Introduce latency to make 
sampling decision



Head & Tail Combo



Example Time!



HALP!

● Yesterday’s drop sold out in 
20m

● Cat-lebrity complained about 
a  long checkout time 

● Confirmed reports of failed 
payments



Timeline

Launch Long Checkout Sold Out
0 5m 10m 15m 20m

Checkout Errors



Constant Sampling - volume
/checkout 
requests

600,000

traces 
generated  

600,000

traces 
stored

600,000



Constant Sampling - “interestingness”

success 590,500

error 9,000

high 
latency

1,500



Constant Sampling



Head Sampling 1% - volume
/checkout 
requests

600,000

traces 
generated  

6,000

traces 
stored

6,000



Head Sampling 1% - “interestingness”

success 5,895

error 90

high 
latency

15



Head Sampling 1% 



Tail Sampling - volume

/checkout 
requests

600,000

traces 
generated  

600,000

traces 
stored

16,395



Tail Sampling - “interestingness”

success 5,895

error 9,000

high 
latency

1,500



Tail Sampling 1% success, 100% error + lat 



Head & Tail Sampling Combo - volume

/checkout requests 600,000

traces generated  6,000

traces stored 164



Head & Tail Sampling Combo - “interestingness”

success 59

error 90

high 
latency

15



Head & Tail Sampling Combo 



Interestingness Comparison

6,000 traces 600,000 traces 16,405 traces 164 traces 

No Sample Head @ 1%Tail Head & Tail 



“Gotchas”

04



Set It & Forget It Sampling



Siloing Telemetry

Traces <> Logs
● Inject traceIDs & spanIDs into 

logs

Metrics <> Traces
● Exemplars



Sampling as only Shaping Strategy



Tomorrow’s 
Tracing
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              Head             vs.                      Tail 



find me requests where 
     the user was logged in 
          the request took more than 2s AND 
              only certain databases were used AND 
                   a transaction was held open for > 500ms 

Uber Engineering Blog, 2017

[Tracing] made queries like 

https://www.uber.com/blog/distributed-tracing/


find me requests where 
     the user was logged in 
          the request took more than 2s 
              only certain databases were used AND 
                   a transaction was held open for > 500ms 

Uber Engineering Blog, 2017

[Tracing] made queries like 

https://www.uber.com/blog/distributed-tracing/


find me requests where 
     the user was logged in 
          the request took more than 2s 
              only certain databases were used 
                   a transaction was held open for > 500ms 

Uber Engineering Blog, 2017

[Tracing] made queries like 

https://www.uber.com/blog/distributed-tracing/


find me requests where 
     the user was logged in 
          the request took more than 2s 
              only certain databases were used 
                   a transaction was held open for > 500ms 

Uber Engineering Blog, 2017

[Tracing] made queries like 

https://www.uber.com/blog/distributed-tracing/


find me requests where 
     the user was logged in 
          the request took more than 2s 
              only certain databases were used 
                   a transaction was held open for > 500ms 

Uber Engineering Blog, 2017

[Tracing] made queries like 

possible

https://www.uber.com/blog/distributed-tracing/
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