
How to Use Prometheus's Native Histograms

SREcon EMEA, Dublin, 2023-10-12.

Björn “Beorn” Rabenstein

Björn
Rabenstein
co-founder of

nothing

Julius Volz
co-founder of
Prometheus

Brendan Burns
co-founder of

Kubernetes

SRE

Prometheus Histograms

https://www.usenix.org/conference/srecon15europe/program/presentation/rabenstein

https://www.usenix.org/conference/srecon15europe/program/presentation/rabenstein

SLO tracking

Correctly

aggregated

quantiles

“How many HTTP
responses larger than 4kiB
were served on 2019-11-03
between 02:30 and 02:45?”

“What percentage of
requests in the last hour got
a response in 100ms or
less?”

By Apdex - Apdex Web site, Fair use,
https://en.wikipedia.org/w/index.php?curid=8994240

● Need to define
buckets during
instrumentation.

● Changing them is
painful, breaks
aggregation.

● Buckets are
expensive.

● Limited resolution.
● Limited partitioning

by labels.

httpRequests = prometheus.NewCounterVec(
prometheus.CounterOpts{

Name: "http_requests_total",
Help: "HTTP requests partitioned by status code.",

},
[]string{"status"},

)

httpRequestDurations = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "http_durations_seconds",
Help: "HTTP latency distribution.",
Buckets: []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10},

})

Where did we come from?
Secret History of Prometheus Histograms

FOSDEM 2020, Brussels, Belgium.
https://fosdem.org/2020/schedule/event/histograms/

What was the plan?
Prometheus Histograms – Past, Present, and Future

PromCon 2019, Munich, Germany.
https://promcon.io/2019-munich/talks/prometheus-histograms-past-present-and-future/

Why does it work?
Better Histograms for Prometheus

KubeCon EU 2020, online, anywhere.
https://www.youtube.com/watch?v=HG7uzON-IDM

https://fosdem.org/2020/schedule/event/histograms/
https://promcon.io/2019-munich/talks/prometheus-histograms-past-present-and-future/
https://www.youtube.com/watch?v=HG7uzON-IDM

Native
Histograms

One sample
represents a full

histogram
One series

per histogram

Empty buckets
have zero cost

Affordable
partitioning by

more labels

Minimal
configuration

during
instrumentation

Exponential
bucketing schema

with dynamic
resolution

Covers complete
float64 space

Always
aggregatable

“across time and
space”

Affordable high
resolution

“10x
resolution at

half the price”

Compatible with

exponential
histograms

The fundamentals: (Ganesh Vernekar)
Native Histograms in Prometheus

PromCon 2022, Munich, Germany.
https://promcon.io/2022-munich/talks/native-histograms-in-prometheus/

PromQL changes:
PromQL for Native Histograms

PromCon 2022, Munich, Germany.
https://promcon.io/2022-munich/talks/promql-for-native-histograms/

Performance analysis:
Prometheus Native Histograms in Production
O11y Day (KubeCon) 2023, Amsterdam, Netherlands.

https://www.youtube.com/watch?v=TgINvIK9SYc
OTel compatibility: (Ruslan Kovalov & Ganesh Vernekar)
Using OpenTelemetry’s Exponential Histograms in Prometheus

O11y Day (KubeCon) 2023, Amsterdam, Netherlands.
https://www.youtube.com/watch?v=W2_TpDcess8

https://promcon.io/2022-munich/talks/native-histograms-in-prometheus/
https://promcon.io/2022-munich/talks/promql-for-native-histograms/
https://www.youtube.com/watch?v=TgINvIK9SYc
https://www.youtube.com/watch?v=W2_TpDcess8

Instrumentation

httpRequestDurations = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "http_durations_seconds",
Help: "HTTP latency distribution.",
Buckets: []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10},

})

prometheus/client_golang

httpRequestDurations = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "http_durations_seconds",
Help: "HTTP latency distribution.",
Buckets: []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10},
NativeHistogramBucketFactor: 1.1,

})

prometheus/client_golang

httpRequestDurations = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "http_durations_seconds",
Help: "HTTP latency distribution.",
NativeHistogramBucketFactor: 1.1,

})

prometheus/client_golang

httpRequestDurations = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "http_durations_seconds",
Help: "HTTP latency distribution.",
NativeHistogramBucketFactor: 1.1,
NativeHistogramMaxBucketNumber: 160,
NativeHistogramMinResetDuration: time.Hour,

})

prometheus/client_golang

httpRequestDurations = prometheus.NewHistogramVec(
prometheus.HistogramOpts{

Name: "http_durations_seconds",
Help: "HTTP latency distribution.",
NativeHistogramBucketFactor: 1.1,
NativeHistogramMaxBucketNumber: 160,
NativeHistogramMinResetDuration: time.Hour,

},
[]string{"status"},

)

prometheus/client_golang

static final Histogram httpRequestDurations = Histogram.build()
 .name("http_durations_seconds")
 .help("HTTP latency distribution.")
 .nativeOnly()
 .nativeInitialSchema(3)
 .nativeMaxNumberOfBuckets(160)
 .nativeResetDuration(1, TimeUnit.HOURS)
 .register();

prometheus/client_java

😢

prometheus/client_*

�

Open Telemetry

Prometheus
server

configuration

$ prometheus --enable-feature=native-histograms

Introduced in v2.40.

Most recent version strongly recommended.

Optional changes of the configuration file:

Scrape both classic and native

histograms as a migration strategy:

scrape_configs:

 - job_name: myapp

 scrape_classic_histograms: true

Send native histograms

via remote write:

remote_write:

 - url: http://.../api/prom/push

 send_native_histograms: true

PromQL

Instant Vector

Quantile estimation

Quantile estimation

Maximum AKA 100th percentile

Average calculation

Average calculation

Fraction calculation estimation

Fraction calculation estimation

Apdex score https://en.wikipedia.org/wiki/Apdex

https://en.wikipedia.org/wiki/Apdex

Heatmaps

Heatmaps

Downsides

● Expect bugs.

● Things might still change.

● Some PromQL evaluations are still slower.

● Exponential bucketing might be a misfit.

● Cannot pick arbitrary bucket boundaries.

Future

● Better graphical representation in UI.

● Instrumentation in more languages.

● Custom bucket layouts.

https://github.com/prometheus/prometheus/milestone/10

https://github.com/prometheus/prometheus/milestone/10

https://github.com/beorn7/talks

beorn@grafana.com

https://github.com/beorn7/talks

