Challenges on serving LLMs

Theofilos Papapanagiotou, Amazon

Thoughts and opinions are my own and do not represent that of my employer
Agenda

- Basics: Models and Parameters
- Saving formats and Model servers
- Deployment
- Model monitoring
- Scaling techniques
About me

👨‍💻 ML & Kubernetes communities
🏢 Engineer in EU Operations, Amazon
❤ Python/Go
🏠 Amsterdam
Basics: Models and parameters
\[x = [60.0, 80.0, 100.0, 125.0] \]
\[y = [170.0, 175.0, 180.0, 195.0] \]
```python
from sklearn import linear_model
regr = linear_model.LinearRegression()
regr.fit(x, y)
```
\[y = 0.377x + 145 \]

```
print(regr.coef_, regr.intercept_)

[0.37735849] 145.56603773584905
```
\[y = 0.377x + 145 \]

```
print(regr.coef_, regr.intercept_)
[0.37735849] 145.56603773584905
```
\[x = [25, 35, 60.0, 80.0, 100.0, 125.0] \]
\[y = [100, 120, 170.0, 175.0, 180.0, 195.0] \]
$y = 0.377x + 145$
```python
from sklearn import linear_model
regr = linear_model.LinearRegression()
regr.fit(x, y)
print(regr.coef_, regr.intercept_)
```

```
[0.90785755] 92.36009044657999
```

$y = 0.9x + 92$

new parameters
\[y = -0.01 x^2 + 2.5 x + 46 \]
$y = -0.01x^2 + 2.5x + 46$
$y = w \cdot x$

$\text{neural network parameters}$

$y = w \cdot x$

[array([-3.57261984e-02, 1.89047917e-02,
-8.90411427e-03, 2.21588407e-01,
1.88532590e-02, -1.15048285e-01,
2.47424537e-02, -9.41278783e-03,
1.64560095e-01, 4.6105106e-02,
4.9640934e-02, -3.63451478e-02,
4.00167897e-02, -8.76319520e-02,
6.91530696e-02, 1.41112641e-01,
-8.37367776e-03, 1.41093726e-01,
-4.67398997e-02, 9.64951964e-02,
-1.81029315e-01, 4.6469347e-02,
-1.62661230e-01, 5.54083077e-02,
-5.61493965e-03, 8.32387396e-02,
-9.44921732e-03, -1.58248688e-01,
-5.66456648e-02, 1.16658648e-03,
-9.81299505e-02, -1.08349595e-02,
-1.46522963e-01, -1.87401818e-01,
-1.02077292e-01, 3.05457870e-02,
1.53093451e-01, 8.96211493e-02,
-4.18250981e-02, -1.63806557e-01,
2.06004199e-01, 1.22082396e-01,
1.67390477e-01, -2.303685e-03,
2.13596401e-01, 1.68810703e-03,
-7.897422e-02])
Saving formats and Model servers
Model

Model architecture (Graph)

Variables (weights & biases)

How do we save it in a file?
Pickle/Joblib

- Contain the class and the parameters of the model
- Custom model requires availability of the `class` with the algorithm
- Pickle vs Joblib:
 - Same methods (save/load)
 - Same structure
 - Joblib faster with numpy arrays

```python
>>> import pickle
>>> pickle.load(open('mymodel.pkl','rb')).coefs_
[array([[-0.14196276, -0.02104562, -0.85522848, -3.51355396, -0.60434709],
       [-0.69744683, -0.9347486 , -0.26422217, -3.35199017 , 0.06640954]]),
 array([[ 0.29164405, -0.14147894],
       [ 2.39665167, -0.6152434 ],
       [-0.51650256,  0.51452834],
       [ 4.0186541 , -0.31920293],
       [ 0.32903482,  0.64394475]]),
 array([[ -4.53025854],
       [ -0.86285329]])
```
Tensorflow SavedModel

```python
>>> import tensorflow as tf
>>> model=tf.keras.models.load_model('.

>>> [i.name for i in model.weights]
['dense_4/kernel:0',
'dense_4/bias:0',
'dense_5/kernel:0',
'dense_5/bias:0'

>>> model.weights[0][0].numpy()[:2]
array([0.06990073, 0.03880108], dtype=float32)
```
PyTorch Model Archive

```bash
>>> import torch
>>> torch.load('densenet161-8d451a50.pth').keys()
```

```
odict_keys(
['features.conv0.weight',
 'features.norm0.weight',
 'features.denseblock1.denselayer1.norm.1.weight',
 'features.denseblock1.denselayer1.norm.1.bias', ...
```
TensorFlow Serving

docker run -p 8501:8501 \
-v /home/theofpa/models/mymnist:/mymnist -t \
tensorflow/serving:2.3.0 --model_base_path=/mymnist --model_name=mymnist

curl -X POST http://localhost:8501/v1/models/mymnist:predict -d@digit.json
{
 "predictions": [
 2.16072715e-10,
 1.42498227e-08,
 8.15775447e-09,
 0.00080721511,
 2.23614914e-19,
 0.999192774,
 6.97247078e-12,
 9.37563e-09,
 3.14906665e-10,
 5.07091258e-08
]
}

https://github.com/tensorflow/serving
TorchServe

docker run -p 8080:8080 \
-v /home/theofpa/models/pytorch-densenet:/models pytorch/torchserve torchserve \
--model-store /models --models densenet161.mar

curl http://127.0.0.1:8080/predictions/densenet161 -T kitten_small.jpg
{
 "tabby": 0.5078840851783752,
 "lynx": 0.18985284864902496,
 "tiger_cat": 0.16152925789356232,
 "tiger": 0.05462226644158363,
 "Egyptian_cat": 0.04894305393099785
}
Deployment for scale
I’m 100kg

You are 1.90m

x

y

Server

w
I'm 220 pounds?
Inference

I’m 220 pounds

You are 6 feet and 3 inches

Server

\(\text{Tr} \quad \text{w}\)
Deployment
Deployment

Data flows into a node, where it is processed by a Pod containing an Envoy, Model server, and Storage initializer. The result is a prediction that is sent back to the node.
Deployment

![Deployment Diagram]

- **Data** flows into the system and interacts with the **Model server**.
- The **Tokenizer** processes the data into **Tokens**.
- **Pods** contain the **Model server** and **Storage initializer**.
- The **Storage** component stores **Model** and **Tokens**.
Deployment

Data

Prediction

Model

Storage

Pod

Envoy

Model server

Model

Storage initializer

Pod

Tokenizer

Tokenizer

Tokens

Envo.

Storage initializer

Tokens

Tokens

{ "site": 15392, "reliability": 119483, "engineering": 72742, ... }
Model monitoring
Topics on monitoring during model serving

- Service metrics
- Model server metrics
- Payload logging
- Data monitoring, validation, drift detection
- Explainers
Service metrics

- Grafana/prometheus
- Metrics
 - Latency
 - Success rate
 - # invocations
- Dimensions
 - By model
 - By model version
Service metrics

- **Jaeger**
 - Transactions across μs

- **Component latency**
 - Transformer
 - Predictor
Model serving components
Service metrics

- Kiali
 - Routing flow
- Multi-model
 - % of traffic per model
Model server metrics

- Model load latency (init/restore graph)
- Graph optimization, grappler
- Graph run time, graph runs
- Warmup latency

Prometheus histograms using buckets
Payload Logging
Data monitoring - drift detection

- Descriptive statistics
- Schema
- Data anomalies

```
feature {
  name: "fare"
  value_count {
    min: 0
    max: 700
  }
  type: INT
  presence {
    min_fraction: 1.0
    min_count: 1
  }
}
```

```
string_domain {
  name: "payment"
  value: "cash"
  value: "creditcard"
}
```

https://www.tensorflow.org/tfx/tutorials/data_validation/tfdv_basic
Data validation during serving

- **Data schema**

```
feature {
  name: "fare"
  value_count {
    min: 0
    max: 700
  }
  type: INT
  presence {
    min_fraction: 1.0
    min_count: 1
  }
}
```

```
string_domain {
  name: "payment"
  value: "cash"
  value: "creditcard"
}
```
Scaling techniques
<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>2 parameters</td>
<td>8 bytes</td>
</tr>
<tr>
<td>Polynomial</td>
<td>3 parameters</td>
<td>12 bytes</td>
</tr>
<tr>
<td>Simple NN</td>
<td>1,000,000 parameters</td>
<td>4,000,000 bytes</td>
</tr>
<tr>
<td>BERT</td>
<td>340,000,000 parameters</td>
<td>1,360,000,000 bytes</td>
</tr>
<tr>
<td>GPT-2</td>
<td>1,500,000,000 parameters</td>
<td>6,000,000,000 bytes</td>
</tr>
</tbody>
</table>
GPT-2 Deployment

- **Envoy**
- **Model server**
- **Storage initializer**
- **Pod**
- **Tokenizer**
- **Tokens**
- **Storage**
- **Model**
- **Tokens** (3GB, 6GB)

Data flows to the **Envoy** and then to the **Model server**. The **Tokenizer** processes the **Tokens**. The **Storage initializer** stores the **6GB Dataset**.
GPT-2 Deployment: model load
GPT-2 Deployment: model load

GPU node

Pod

Model server

Model

Storage initializer

Model

6GB

Storage

Model

6GB

sudo cp s3://bucket/model /mnt/model

90 seconds

cudaStreamSynchronize

25 seconds
GPT-2 Deployment: model load

GPU node

Pod

Model server

Model 6GB

Storage initializer

6GB

Model server

s3 cp s3://bucket/model /mnt/model

90 seconds

cudaStreamSynchronize

25 seconds
GPT-2 Deployment: model load hints

- Model
- Storage
- Pod
- Model server
- Storage initializer
- 6GB
- M
- 6GB
- cudaStreamSynchronize
- 25 seconds
- s3 cp s3://bucket/model /mnt/model
- 90 seconds
- Pod volume
- GPU RAM
- triton
- faster transformer
- Storage
- Model
- 6GB
- nvme
GPT-2 Deployment: model load hints

GPU node

Pod

Model server

Model

Storage initializer

Pod volume

GPU RAM

32GB

faster transformer

triton

CUDAStreamSynchronize

25 seconds

s3 cp s3://bucket/model /mnt/model

90 seconds

Pod volume

nvme

gpu node

Model

Storage

6GB

6GB

6GB

Model

Storage

Model

6GB

UART
Language models

Source: https://huggingface.co/blog/large-language-models
<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters</th>
<th>Bytes</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>2 parameters</td>
<td>8 bytes</td>
<td></td>
</tr>
<tr>
<td>Polynomial</td>
<td>3 parameters</td>
<td>12 bytes</td>
<td></td>
</tr>
<tr>
<td>Simple NN</td>
<td>1,000,000 parameters</td>
<td>4,000,000 bytes</td>
<td>4MB</td>
</tr>
<tr>
<td>BERT</td>
<td>340,000,000 parameters</td>
<td>1,360,000,000 bytes</td>
<td>1.35GB</td>
</tr>
<tr>
<td>GPT-2</td>
<td>1,500,000,000 parameters</td>
<td>6,000,000,000 bytes</td>
<td>6GB</td>
</tr>
<tr>
<td>GPT-3</td>
<td>175,000,000,000 parameters</td>
<td>700,000,000,000 bytes</td>
<td>700GB</td>
</tr>
</tbody>
</table>
Floating point precision

Post-training Quantization

- Reduce model size and latency
- Degradation of accuracy

```python
model = tf.keras.models.load_model('.
model.weights[0,0].numpy()[:10]
array([-0.02062028, -0.00791041, 0.02673002, 0.06981003, -0.06624269,
       -0.01446035, 0.01503156, 0.04210582, 0.0458509 , 0.02943908],
      dtype=float32)

converter = tf.lite.TFLiteConverter.from_saved_model('.
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.float16]
tflite_quant_model = converter.convert()
model1=tf.lite.Interpreter(model_content=tflite_quant_model)

model1.get_tensor(4).transpose()[0][:10]
array([-0.02066, -0.0079, 0.0267, 0.0698, -0.0662,
       -0.0145, 0.0150, 0.0421, 0.0458, 0.0294],
      dtype=float16)
```
Post-training Quantization

- Reduce model size and latency
- Degradation of accuracy

```python
model=tf.keras.models.load_model('.
model.weights[0][0].numpy()[:10]
array([-0.02062028, -0.00791041, 0.02673002, 0.06981003, -0.06624269,
        -0.01446035, 0.01503156, 0.04210582, 0.0458509, 0.02943908],
dtype=float32)

converter = tf.lite.TFLiteConverter.from_saved_model('.
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.float16]
tflite_quant_model = converter.convert()
model1=tf.lite.Interpreter(model_content=tflite_quant_model)

model1.get_tensor(4).transpose()[0][:10]
array([-0.02061, -0.00791, 0.02673, 0.0698, -0.0662 ,
        -0.01446, 0.01503, 0.0421 , 0.04584 , 0.02943],
dtype=float16)
```
Checkpoints Sharding
Checkpoints Sharding

accelerate.Accelerator.save_model()
Checkpoints Sharding

Pod

Model server

gpu

Model

gpu

Storage initializer

gpu node

Storage

Directory

split

split

split

split

training

split
Checkpoints Sharding

Pod
 Model server
 gpu
 Model
 Storage initializer

Storage
Directory
 split
 split
 split
 split

training
Checkpoints Sharding

Pod

Model server

Storage initializer

gpu node

device mapping

Storage

Directory

split

split

split

split

split

training
Summary

● Inference hardware requirements
 ○ Cost: Requires significant computational resources with high end GPUs and large amount of memory
 ○ Latency: long response time up to tens of seconds

● Model blob/file sizes in GBs (BLOOM):
 ○ 176bln params = 360GB
 ○ 72 splits of 5GB which needs to mapped to multiple GPU devices

● Model loading time
 ○ From network (S3, minio) to instance disk
 ○ From instance disk to CPU RAM
 ○ From CPU RAM to GPU RAM

● Model deployment
 ○ Tokenizer/Predictor pattern

● Model monitoring
 ○ Service metrics
 ○ Model server metrics
 ○ Payload logging
 ○ Data monitoring, validation
 ○ Drift detection

● Model Serving Runtime:
 ○ FasterTransformer-Triton

● Other scaling techniques
 ○ Post training quantization
 ○ Checkpoints sharding