Stanza

<niallm@stanza.systems> <niallm@sre.is> @niallm [long tail of stuff]

The Value of Reliability

(Can it be valued? C.f. SRECon Keynote 2021)

How do we evaluate down-time? What are the highest value parts of the stack? How do we prioritise engineering effort? How do we communicate the value effectively?

The Conventional Answer(s)

- "The Standard Model" (circa 2010-2020):
 - Assert "Reliability is the fundamental feature"
 - Assume e-commerce or otherwise financially involved website
 - Time spent has attributable \$
 - Missing a request/second, assume total \$ loss
 - Sometimes use averages or smoosh requests together to not waste too much time in calculation
 - == AuC loss
 - E.g. Amazon retail website, circa 2005

The Conventional Answer(s)

- Critiques of "The Standard Model":
 - Not every action is equal; not every request matters the same
 - Is it an upper bound or lower bound?
 - Users do come back
 - (How many of them? On what schedule? Industry-wide dearth of info here. Maybe churn stats?)
 - Weird outage-seeking behaviours
 - Websites often don't have attributable \$/t
 - Horse-sized ducks and every-ten-years auction sites
 - Not everything is an e-commerce website
 - Pipelines!
 - ML!
 - User trust; intangibles
 - Doesn't challenge mechanistic models

The Conventional Answer(s)

- "The Emerging Model" (2020+):
 - CUJ-focused
 - Not service-focused user JTBDfocused
 - (Why do backend teams own reliability?)
 - User behaviour aware
 - Estimate user "backwash" based on previous trends and CUJ weightings
 - SLO-mature
 - They're extremely important, and they have extremely important weaknesses
 - (Particularly one big loss vs lots of little ones)
 - Cost-aware as well as revenue-aware
- Primarily driven by AuC accuracy improvements

New Approaches

- Call-stack labelling
 - Akin to pprof
 - "Label" the call-stack according to revenue/cost etc
- Extending SLO reporting to encompass concentration measures
 - Analogous to round-trip min/avg/max/stddev = 10.390/16.200/25.988/6.961 ms
 - What matters is whether the failures are concentrated in some way, and if so, how

Prioritising engineering effort

- Usual approach
 - Beg for non-functional requirements eng time
 - Sigh and do it yourself
 - Blended stack-ranking of non-functional fixes, etc, based on previous impact, likelihood of reoffending ("total footprint")
 - Most of which are intellectually dodgy, but better than random. Probably.

Prioritising engineering effort

- Different approach
 - A/B testing experiments paper from Microsoft
 - Ronny Kohavi et al
 - <u>https://ai.stanford.edu/~ronnyk/ExPThinkWeek</u>
 <u>2009Public.pdf</u>
 - "Our experience at Microsoft is no different: only about 1/3 of ideas improve the metrics they were designed to improve."
 - "A team that simply launches 10 ideas without measuring their impact may have about 1/3 be good, 1/3 flat, and 1/3 negative (matching our current estimates on the ExP team)."

Prioritising engineering effort

- Different approach
 - Not saying product will *like* this argument, but:
 - if a randomly selected feature has ²/₃ chance of being neutral/negative; and
 - your fix will prevent 'significant enough' loss; then
 - fix wins
 - In fact we could obviously extend this to a "rational stack-ranking scheme"
 - Though we run into the problem of valuing reliability
 - Online experiments framework primarily benefits by allowing you to back out of bad things quickly)

Communicating the value of reliability

- Old approach
 - "Reliability is the fundamental feature"
 - ZIRP argument
 - Less cynically, difference between established and newly created
- New approach (bad)
 - When there is no prospect of serious growth, then making the future customer experience better is worth less than extracting value from existing customers
 - No econorational argument for reliability other than chasing the minimum non-abandon rate
 - (the R...'s B.....k of SLOs)
 - Twitter; cultural pressures to ignore the obviously bad things happening
- New approach (better)
 - "The backlog is dark and full of terrors"

Communicating the value of reliability

- Environmental features
 - Execs model things by numbers and relationships, and they often need/have to make consequential decisions in the time they have walking between meeting rooms
 - Numerical arguments are cleanest, but only beneath a variable complexity threshold and in business domain/terms
 - If a decision can't be made relatively cleanly on numbers, it brings in {power} relationships, and that can get complex
 - Net net: arguing for reliability, try to keep it numeric and connected to customer experience or COGS/CAC/etc
 - If you have to put it in relationship terms, try to build coalition of support
 - SRE horizontal approaches can be surprisingly helpful here

Parting thought

- Reliability is in retreat
 - Layoffs
 - Widespread belief growth is over
 - Various catastrophes across every segment of society
 - But those who remain are still behind the scenes, trying to keep it all going
 - Understanding and representing our value is an ongoing challenge
 - "Keeping things going" is being defunded
 - Users conditioned to expect/accept gradual disintegration – normalisation of deviance
 - The nature of (perceived) reliability is changing
 - "Reliability is a luxury good"
- How to help? Give us your numbers