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Why this matters

ML is doing more and more sophisticated things, and becoming 
more accessible.
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Why this matters

The emergent behavior of ML systems means that the inputs 
matter more.

Itʼs not just that your outputs depend on the inputs– itʼs that the 
outputs also become a part of what you are executing

…and this can impact things in ways you donʼt expect.



What we will talk about here

● “Classic” (supervised) ML models and their data problems
● LLMs and their data problems
● How to help prevent / mitigate bad data issues
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Supervised ML and risks
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Supervised ML data risks

Your input data may be “bad” for a number of reasons. For 
example:

- Incomplete or missing
- Mis-labeled
- Biased
- Corrupted
- Later deemed unacceptable to use
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What happens if you have “bad” data?
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Bad outcome: Training is delayed
(feature 
validation fails)



Data Feature 
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Worse outcome: Training is bad, and you wasted a lot of 
compute resources

(model 
validation fails)
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Worst outcome: Badly-trained models pushed to prod  -> 
your predictions are bad, and everyone knows it
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Large language models and risks
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Fine tuning Pre-trained 
LLM
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Fine tuning: Reinforcement Learning from Human 
Feedback (RLHF)

(...and there are other ways for refining the pre-trained model)



LLMs in production
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Data risks: pre-training

text corpus storage

● Unstructured, dynamic data
● Inherent bias
● Unknown origin (human vs AI 

generated)
● Too large to multi-home
● Usage requirements (privacy, 

governance, etc)
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Data risks: pre-training

text corpus storage model training 
system

trained model 
storage

● Unstructured, dynamic data
● Inherent bias
● Unknown origin (human vs AI 

generated)
● Too large to multi-home
● Usage requirements (privacy, 

governance, etc)

● High bandwidth required to 
train

● Very high resource wastage 
if training is wrong

● Data accidentally dropped

● Bad pre-trained model 
could lead to all the 
dependent (fine-tuned) 
models being wrong



Data risks: fine-tuning

💻
human-in-the-loop 
servicedata sources

● Human labeled datasets are smaller -> criticality of high-quality data
● Tracking / consistency challenges for human labels
● Rating tasks need to work on a dynamic system, which is harder to keep stable
● High cost to validating model (ambiguous objective functions)
● Hard to monitor all these systems in sequence

lots of 
models



LLM outage impact
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LLM outage impact
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Recommendations



Trace lineage of data and models throughout the 
journey

If you discover an issue with data or a model, you need to be able to trace back 
to debug a source, or trace forward to assess impact.

This is necessary for any ML model, but it is especially important for LLMs 
because:

● Higher complexity - more likely something will go wrong along the way
● Wider impact (especially for pre-training)



Trace lineage of data and models throughout the 
journey: How

● Datasets metadata store
● Model metadata store



Trace lineage of data and models throughout the 
journey: Why this is hard

● Lots of different kinds of data (including human operations)
● Many systems need to instrument tracking
● Need to get consensus on what metadata needs to be tracked



Ensure agreement between data producers and 
consumers for data integrity requirements

Many parties are consuming data (and models as data), and have expectations and 
requirements that the producers may not be aware of.

If data is misinterpreted between steps of the model journey, it can produce inaccurate 
results.



Ensuring agreement: How
For example:

● Where data is stored (and which versions are valid)
● What availability / recovery objectives are needed
● What data and model metadata should be tracked
● What validations exist (and how to tell if they were used)
● Data usage requirements
● What input data is writeable - and what processes can run against it
● Requirements for data labeling, and how to interpret labeled data
● How to handle shared data (incl models as data)



Ensuring agreement: why this is hard
● You have lots of roles involved. (Model researcher, system engineer, prompt 

writers, data labelers, model evaluators, human ops managers).
● They have different requirements, which may not be compatible with one single 

storage system
● There might be differences between the data that went in, vs how the model 

interpreted it



Make rollouts safe and rollback easy

Detecting model quality outages before they are widely visible is always best.

Even better if you can detect data quality issues before training.

But it if something does go wrong, you want to be able to detect it and recover quickly.

(Safe rollouts and easy rollbacks are not specific to ML.)



Make rollouts safe and rollback easy: How

● Gradual rollouts with canarying
● Reliable storage for snapshots and versions
● Test rollback procedures
● Retain old model versions, and know what is needed to recover
● Have ability to quickly exclude bad data before retraining



Make rollouts safe and rollback easy:
Why this is hard

● Challenges in scale (time to load, ability to quickly swap versions for canarying)
● Backward compatibility for requests can be challenging
● Knowing when to roll back  depends on how good your lineage tracking is



Conclusion

LLM data reliability is very similar to reliability for any other service, but much more 
expensive to get wrong. We have just highlighted:

● Lineage tracking: Instrumenting monitoring end-to-end, to surface 
difficult-to-detect failures

● Agreements in data integrity: The role of human communication paths in data 
integrity

● Safe data and model rollouts/rollbacks: The importance of limiting blast radius 
and knowing how to recover



Thanks!


