
Proprietary + Confidential

Thanks to: Alex Lince, Dylan Curley, Todd Underwood, Herve Quiroz, Igor Karpov

Reliable Data for
Large ML Models
Mary McGlohon
marymc@google.com

Why this matters

ML is doing more and more sophisticated things, and becoming
more accessible.

code generation

drug discovery
language
summarization
and generation

💻
💊🧬✍

all non-emoji images in this talk © Google 2021-2023

💬

Why this matters

The emergent behavior of ML systems means that the inputs
matter more.

Itʼs not just that your outputs depend on the inputs– itʼs that the
outputs also become a part of what you are executing

…and this can impact things in ways you donʼt expect.

What we will talk about here

● “Classic” (supervised) ML models and their data problems
● LLMs and their data problems
● How to help prevent / mitigate bad data issues

5 Proprietary + Confidential

Supervised ML and risks

Supervised ML

Neural network
(or other linear

algebra)

Model

Content
features Click

label
 0/1

P(click) = f(Stuff)

Labeled data
(Features)

Data Feature
handling

Model
training

Inference

Supervised ML in production

(online feedback loop)

User

Supervised ML data risks

Your input data may be “bad” for a number of reasons. For
example:

- Incomplete or missing
- Mis-labeled
- Biased
- Corrupted
- Later deemed unacceptable to use

Data Feature
handling

Model
training

Inference

ML data outage impact

User

What happens if you have “bad” data?

Data Feature
handling

Model
training

Inference

ML data outage impact

User

Bad outcome: Training is delayed
(feature
validation fails)

Data Feature
handling

Model
training

Inference

ML data outage impact

User

Worse outcome: Training is bad, and you wasted a lot of
compute resources

(model
validation fails)

Data Feature
handling

Model
training

Inference

ML data outage impact

User

Worst outcome: Badly-trained models pushed to prod ->
your predictions are bad, and everyone knows it

13 Proprietary + Confidential

Large language models and risks

Language model (pre-training)

Text corpus
(Unlabeled)

Inference
(predict
next word)

Language model (pre-training)

Text corpus
(Unlabeled)

Model training
(high compute
and I/O cost)

Inference
(predict
next word)

Fine tuning Pre-trained
LLM

✨✨✨✨

High quality
data

Model training

🙋💁
Human
raters

Fine-tuned
model

Fine tuning: Reinforcement Learning from Human
Feedback (RLHF)

(...and there are other ways for refining the pre-trained model)

LLMs in production

💻
human-in-the-loop
servicedata sources

text corpus storage model training
system

trained model
storage

lots of
models

Data risks: pre-training

text corpus storage

● Unstructured, dynamic data
● Inherent bias
● Unknown origin (human vs AI

generated)
● Too large to multi-home
● Usage requirements (privacy,

governance, etc)

Data risks: pre-training

text corpus storage model training
system

● Unstructured, dynamic data
● Inherent bias
● Unknown origin (human vs AI

generated)
● Too large to multi-home
● Usage requirements (privacy,

governance, etc)

● High bandwidth required to
train

● Very high resource wastage
if training is wrong

● Data accidentally dropped

Data risks: pre-training

text corpus storage model training
system

trained model
storage

● Unstructured, dynamic data
● Inherent bias
● Unknown origin (human vs AI

generated)
● Too large to multi-home
● Usage requirements (privacy,

governance, etc)

● High bandwidth required to
train

● Very high resource wastage
if training is wrong

● Data accidentally dropped

● Bad pre-trained model
could lead to all the
dependent (fine-tuned)
models being wrong

Data risks: fine-tuning

💻
human-in-the-loop
servicedata sources

● Human labeled datasets are smaller -> criticality of high-quality data
● Tracking / consistency challenges for human labels
● Rating tasks need to work on a dynamic system, which is harder to keep stable
● High cost to validating model (ambiguous objective functions)
● Hard to monitor all these systems in sequence

lots of
models

LLM outage impact

💻
human-in-the-loop
servicedata sources

text corpus storage model training
system

trained model
storage

—---
—---
—---

—-

lots of
models

LLM outage impact

💻
human-in-the-loop
servicedata sources

text corpus storage model training
system

trained model
storage

—---
—---
—---

—-

Very expensive
wasted

compute

Bad base model

Unusable
fine-tuned

models

lots of
models

25 Proprietary + Confidential

Recommendations

Trace lineage of data and models throughout the
journey

If you discover an issue with data or a model, you need to be able to trace back
to debug a source, or trace forward to assess impact.

This is necessary for any ML model, but it is especially important for LLMs
because:

● Higher complexity - more likely something will go wrong along the way
● Wider impact (especially for pre-training)

Trace lineage of data and models throughout the
journey: How

● Datasets metadata store
● Model metadata store

Trace lineage of data and models throughout the
journey: Why this is hard

● Lots of different kinds of data (including human operations)
● Many systems need to instrument tracking
● Need to get consensus on what metadata needs to be tracked

Ensure agreement between data producers and
consumers for data integrity requirements

Many parties are consuming data (and models as data), and have expectations and
requirements that the producers may not be aware of.

If data is misinterpreted between steps of the model journey, it can produce inaccurate
results.

Ensuring agreement: How
For example:

● Where data is stored (and which versions are valid)
● What availability / recovery objectives are needed
● What data and model metadata should be tracked
● What validations exist (and how to tell if they were used)
● Data usage requirements
● What input data is writeable - and what processes can run against it
● Requirements for data labeling, and how to interpret labeled data
● How to handle shared data (incl models as data)

Ensuring agreement: why this is hard
● You have lots of roles involved. (Model researcher, system engineer, prompt

writers, data labelers, model evaluators, human ops managers).
● They have different requirements, which may not be compatible with one single

storage system
● There might be differences between the data that went in, vs how the model

interpreted it

Make rollouts safe and rollback easy

Detecting model quality outages before they are widely visible is always best.

Even better if you can detect data quality issues before training.

But it if something does go wrong, you want to be able to detect it and recover quickly.

(Safe rollouts and easy rollbacks are not specific to ML.)

Make rollouts safe and rollback easy: How

● Gradual rollouts with canarying
● Reliable storage for snapshots and versions
● Test rollback procedures
● Retain old model versions, and know what is needed to recover
● Have ability to quickly exclude bad data before retraining

Make rollouts safe and rollback easy:
Why this is hard

● Challenges in scale (time to load, ability to quickly swap versions for canarying)
● Backward compatibility for requests can be challenging
● Knowing when to roll back depends on how good your lineage tracking is

Conclusion

LLM data reliability is very similar to reliability for any other service, but much more
expensive to get wrong. We have just highlighted:

● Lineage tracking: Instrumenting monitoring end-to-end, to surface
difficult-to-detect failures

● Agreements in data integrity: The role of human communication paths in data
integrity

● Safe data and model rollouts/rollbacks: The importance of limiting blast radius
and knowing how to recover

Thanks!

