
Profiling in the
Cloud Native Era
by Matthias Loibl | @metalmatze

About me

● Senior Software Engineer at Polar Signals

● Open Source Maintainer
○ Parca

○ Thanos

○ Prometheus

○ Prometheus Operator

○ Pyrra

2

@metalmatze

https://www.parca.dev/
https://thanos.io/
https://prometheus.io/
https://prometheus-operator.dev/
https://pyrra.dev/
https://twitter.com/metalmatze
https://github.com/metalmatze/
https://www.linkedin.com/in/metalmatze/

3

4

5

Profiling

6

Profiling As old as

programming

7

What?

Profiling is a form of dynamic program analysis that measures resource
consumption, for example:

● the space (memory)

● time complexity of a program (CPU),

● usage of instructions,

● frequency and duration of function calls

8

https://en.wikipedia.org/wiki/Profiling_(computer_programming)

https://en.wikipedia.org/wiki/Profiling_(computer_programming)

Tracing
● Recording each and every

event constantly

● High costs

Sampling

● Sample for a certain

duration
○ Eg. 10 seconds

● Periodically observe

function call stack
○ Eg. 100x per second

● Low overhead*
○ <0.5% CPU

○ ~4MB memory

10 *https://cloud.google.com/blog/products/management-too
ls/in-tests-cloud-profiler-adds-negligible-overhead

Why?

Improve Performance!
🚀🚀🚀

Save Money
💸💸💸

30%
Many organizations have 20-30% of resources wasted with easily

optimized code paths.

How to profile Go programs?

pprof

pprof descends from the
Google Performance Tools
suite.

pprof profiling is built into the
Go runtime.

Open
Standards

Supports any pprof formatted

profiles allowing for wide

language adoption and

interoperability with existing

tooling.

17

pprof for other languages

18

Language/Runtime CPU Heap Allocations Blocking Mutex Contention Extra

Go goroutine, fgprof

Rust

Python

NodeJS

JVM

https://www.parca.dev/docs/ingestion

https://www.parca.dev/docs/ingestion

22

Code Folded
stack-trace

23

Folded
stack-trace

pprof

+ a bunch of metadata to resolve the location
https://www.polarsignals.com/blog/posts/2021/08/03/diy-pprof-profiles-using-go/

https://www.polarsignals.com/blog/posts/2021/08/03/diy-pprof-profiles-using-go/

24

Profile-guided optimization
GA since Go v1.21

https://go.dev/blog/go1.21

https://go.dev/blog/go1.21

Profiling is
an incredible

tool
but...

26

The problem

Momentary

We can only explain
the moment (if at all).
Not the change.

Eg. rollout a new
version, why is it
faster/slower or using
more/less resources?

Manual

We only start profiling
after detecting a
problem.

We don’t have the
profile of the time of
detection or of the
incident itself.

Homebrew workflows

“I SSH to a production
machine and take a
profile.”

Not automated, not
auditable, lots of room
for mistakes.

2727

Continuous Profiling

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/36575.pdf

Why?

Development isn’t Production

Data and Context Overtime

When is continuous profiling useful?

Saving Money

Statistically significant
insight into what code
causes the most
resources to be used,
allows engineers to
optimize those pieces
and be confident, that
resource usage will be
lower after optimizing.

Understand difference

Always collecting data
from all processes allows
comparing why
execution of code was
different in time, across
processes or even
versions of code.

Understand incidents

 Collecting data in the
past allows us to
understand incidents
even after they have
happened and without
manual capturing of
profiling data.

Example

34

OOM kill 😱

Continuous Profiling: How?

Profile over time
and store them

Sampling is cheap

Sampling profiling is
cheap, so do it always,
and store all the
observed data.

Index by time and
workload metadata

Index data

Index collected
profiles over time and
with workload
metadata, so we can
search for container’s
profiles over time.

Query profiling data

Query

With new data
collected over time,
we unlock new
workflows that were
impossible before.

3535

t40

Continuous Profiling

heap

allocs

profile

36

t0 t10 t20 t30 t50 t60 t70 t80 t90 t100

Gist!

It’s possible to
profile in
production all
the time!

37

Parca

https://parca.dev/

https://parca.dev/

Parca

40

● Open Source: github.com/parca-dev/parca

○ Neutral governance/org

○ Contributions welcome!

● Inspired by Prometheus

○ Single statically linked binary

○ Multi-dimensional label model

○ Service discovery

○ Built-in storage

Parca

Pod 1

Pod 2

Pod 3

HTTP

https://github.com/parca-dev/parca

Parca Agent
eBPF 🐝

No syscalls

Ensuring it’s safe to load

Load
eBPF

bytecode

Verify the
program is

safe

Just-In-Time
compile

Userspace Kernel

Communicating with Userspace

Hook

eBPF
program eBPF Maps

Parca Agent

Kernel

Userspace 10s

Hooks

● Pre-defined (syscalls, kernel-functions, tracepoints, network events…)
● Custom hooks

○ kprobe
○ uprobe
○ perf_event

Stack Unwinding

Result of Stack Unwinding

*https://github.com/DataDog/go-profiler-notes/blob/main/go-binary.png

https://github.com/DataDog/go-profiler-notes/blob/main/go-binary.png

Symbolizing using debug/gosym

Symbolizing using debug/gosym

Easy to
integrate

eBPF Profiler

A single profiler, using eBPF,
profiles targets across the
entire infrastructure with very
low overhead.

Additionally, it automatically
adds metadata for e.g.
Kubernetes and systemd.

50

SRE Concerns

Security

● Fewer dependencies and statically-linked
binaries, CO:RE

● Reproducible builds
● Signed containers

○ https://www.parca.dev/docs/faq#how-can-i-verify
-the-container-image-signature-with-cosign

● Automated PRs for our dependencies
● Only uploads symbols (no executable code

ever send)

Performance

● Low-overhead (~1%)
○ 19 per second sampling (default)
○ Every 10s reads from kernel

Metadata

● Correlation through additional labels
○ Tracing via pprof labels

51

Running privileged

52

Zero Instrumentation!

53

Python

 (3.11)

54

Ruby

 (3.0.4)

Parca Agent Language Support

Compiled Languages

● C
● C++
● Rust
● Go
● and more!

Interpreted Languages

● Python
● Ruby

55

JIT (Just in Time Compiled) Languages

● C#
● Erlang
● Java
● Julia
● NodeJS

With or without frame

pointers!

Parca Agent
● Open Source:

github.com/parca-dev/parca-agent

● Enrich the metadata of the processes by
associating them with their cgroups and
corresponding metadata of the container
runtimes

● Uses eBPF
● Understands where CPU resources are being

spent
● Captures “current” stack trace X times per

second to create statistical analysis off of

56

Parca
Agent

process 1

process 2

process N

Parca
eBPF gRPC

No code changes required!

https://github.com/parca-dev/parca-agent

Visualization

61

https://docs.google.com/file/d/1gKWIwAwyPAGOs-OI-ZOe5duPCuXp0pjt/preview
https://docs.google.com/file/d/1uast_0fOQkiaW-PfM0H-HmhjVLS2_0Fr/preview
https://docs.google.com/file/d/1gKWIwAwyPAGOs-OI-ZOe5duPCuXp0pjt/preview

62

https://docs.google.com/file/d/1gKWIwAwyPAGOs-OI-ZOe5duPCuXp0pjt/preview
https://docs.google.com/file/d/1uast_0fOQkiaW-PfM0H-HmhjVLS2_0Fr/preview

63

https://docs.google.com/file/d/1gKWIwAwyPAGOs-OI-ZOe5duPCuXp0pjt/preview
https://docs.google.com/file/d/1uast_0fOQkiaW-PfM0H-HmhjVLS2_0Fr/preview
https://docs.google.com/file/d/1_dEUhlA59R1WtqBnLuRb2XRN2WtQ2NGz/preview

Demo
demo.parca.dev

https://demo.parca.dev

70

Storage

We needed
something

better

Parca’s DB is
written from
scratch

72

Parca’s Storage

● Still inspired by Prometheus
● Separate meta data storage
● Handles stack traces in the storage
● FrostDB - Embeddable column database written in Go.

○ Column Database
○ First Class Wide-Columns
○ Apache Arrow
○ Apache Parquet

73

labels.pod labels.node stacktrace timestamp value

mypod1 mynode1 main;func1;func2 t1 2

mypod1 mynode1 main;func1;func2 t4 3

mypod1 mynode1 main;func1;func3 t1 23

mypod1 mynode1 main;func1;func3 t2 10

mypod1 mynode1 main;func1;func3 t3 12

mypod1 mynode1 main;func1;func3 t5 234

FrostDB

74

FrostDB

75

labels.pod labels.node stacktrace timestamp value

6x mypod1 6x mynode1 2x main;func1;func2 t1 2

t4 3

4x main;func1;func3 t1 23

t2 10

t3 12

t5 234

FrostDB

76

labels.pod labels.node stacktrace timestamp value

6x mypod1 6x mynode1 2x main;func1;func2 t1 2

t4 3

4x main;func1;func3 t1 23

t2 10

t3 12

t5 234

FrostDB - Merging (SIMD)

77

labels.pod labels.node stacktrace timestamp value

6x mypod1 6x mynode1 2x main;func1;func2 t1-t4 5

4x main;func1;func3 t1-t5 279

Querying?

78

Time

1631263917

Query

cpu:samples{job="parca",instance="localhost:7070"}

Combine/Merge Profiles

79

Compare/Diff Profiles

80

81

Parca’s Roadmap

● Persistence on disk
● Querying parts of stack traces only
● Improve language and runtime support
● Add additional profiles (heap, alloc, i/o ...)

Most importantly:
Build a community with YOU!

We invite you to

● Join the Parca Discord
● Attend the Parca Office Hours

82

https://discord.gg/ZgUpYgpzXy

Resources

● https://www.polarsignals.com/blog/posts/2023/03/28/how-to-read-icicle-and-flame-graphs/
● https://www.polarsignals.com/blog/posts/2022/01/13/fantastic-symbols-and-where-to-find-them/
● https://www.polarsignals.com/blog/posts/2022/01/27/fantastic-symbols-and-where-to-find-them-part-2/
● https://github.com/DataDog/go-profiler-notes
● https://www.infoq.com/presentations/cotinuous-profiling-production
● https://github.com/davecheney/presentations/blob/master/seven.slide
● https://parca.dev

83

https://www.polarsignals.com/blog/posts/2023/03/28/how-to-read-icicle-and-flame-graphs/
https://www.polarsignals.com/blog/posts/2022/01/13/fantastic-symbols-and-where-to-find-them/
https://www.polarsignals.com/blog/posts/2022/01/27/fantastic-symbols-and-where-to-find-them-part-2/
https://github.com/DataDog/go-profiler-notes
https://www.infoq.com/presentations/cotinuous-profiling-production
https://github.com/davecheney/presentations/blob/master/seven.slide
https://parca.dev

Thank you for listening!

Matthias Loibl

@metalmatze

