
From exceptional maintenance
to automated routine operation
 a story of the datacenter switchover at wikimedia

Giuseppe Lavagetto
(on behalf of the whole SRE team),

 Wikimedia Foundation

Outline
● Who are you, and what is wikimedia?

● Our first datacenter switchover

● Streamlining the process

● Building the tools we needed

● Endgame: multi-dc

● How we keep the process efficient

● General lessons in SRE practice

Introduction01

Wikimedia
The Wikimedia Foundation is the
nonprofit organization supporting
wikipedia and its sister projects
(commons, wiktionary, wikisource,
wikivoyage…)

Up to 400k rps
1800 bare metal servers

< 4M Yearly cost of infrastructure

Our
infrastructure
The CDN/caching layer runs in 5 (soon 6!)
datacenters distributed across the globe,
while the application layer is replicated
across two datacenters in the United
States.

CC by SA 3.0, Victor Grigas

Our first
switchover

02

A second
datacenter

● In 2015, we set up a second datacenter

to replicate our 14-yrs old infrastructure

● Not all of our datastores work well with

replication over non-negligible RTT

and/or an insecure network

● Lots of duct tape and IPSec tunnels!

The first
switchover

● After almost 6 months of preparation,

we perform our first switchover in

March 2016

● 15 code commits across 5 repositories

● 45 minutes of read-only mode

● 10 engineers involved

● About two hours of somewhat degraded

performance

Lessons

● We need to do it again, every 6 months,

or we wonʼt be able to do it in an

emergency

● We want it to be simpler, faster, less

impacting

● Gitops is not the right paradigm to

manage state and state transitions in a

distributed system

Streamlining
the process

03

Managing state
Opting for flexibility
When youʼre retrofitting a state repository onto an existing
infrastructure, flexibility is extremely important. We thus avoided
the “batteries included” approach of Consul and chose etcd

Avoid obvious pitfalls
Forcing operators to write to the datastore directly would open us
to mistakes of all sorts in a critical system. We thus created a cli
tool (and python library) to make write operations as secure as
possible.

Loose coupling
Systems should survive the unavailability of the datastore

We need a central repository for the state of the cluster
that can be queried by every system in our distributed
infrastructure.

Principles: flexibility, no pitfalls, loose coupling

conftool

Public domain

● Store objects in a backend
following a json schema, and
associate tags with the object

● Usable as a cli tool or a
python library

● Easy to extend for
domain-specific cli tools
(dbctl, requestctl)

● has been extended to manage
application state, dns, traffic
filtering

integration

Public domain

● Modify applications to watch
the etcd API (MediaWiki s̓
EtcdConfig)

● Use confd for third-party
applications we didnʼt write

● Always protect against bad
data

● Reduced the number of code
commits needed for a
switchover to 0 (over several
iterations)

Public domain

MediaWiki
Eventual consistency is ok
We cache the configuration for 15 seconds in APCu (phps̓ global
memory store).

Fault tolerance
MediaWiki is able to keep running if the whole etcd cluster is
unavailable, unreachable or has invalid data.

Takeaway
Whenever possible, native clients to your state store should be
implemented - as it will allow you maximum flexibility.

We now established the pattern of modifying state via a cli tool and
reading it via EtcdConfig: the system was extended to support
other things like e.g. the mysql configuration.

During a switchover we need to set Mediawiki to
read-only, then change the main datacenter, then reset
read-only.

Discovery
State is stored in etcd

tags:
 datacenter: us_east_1
 record: foobar
data:
 enabled: true
 ttl: 300

DNS is the simplest globally available API
Based on the client IP address, provide the service IP for the record
pointing to the nearest available datacenter.

Beyond DNS
More complex logic can be wired in the control plane of our
service mesh, but we never truly needed it.

We need to have a global routing table for our
applications: which datacenter should I call for this
service?

A bit more in
detail

confctl select ‘record=foobar,dc=us_east_1’ \
enabled=false

Value changes
in etcd

Confd notices
the change,
validates it, and
modifies the
status file

gdnsd notices
the change,
changes its
answers

● Active/active and
active/passive services have
different logic

● “Fail fast” service for
maintenance

● Clients need to revalidate DNS
entries

● Using a service mesh ensures
consistent behaviour

Building the
tools we need

04

What are the steps to perform?

● Warm up the new dc
● Kill all long running

jobs, stop processing
● Set the application to

read only

● Switch replication of all
datastores

● Set the application to
read-write

● Edge caches read from
the new DC

● Start periodic jobs

There’s a ghost tale we all tell
young SREs, it starts like this:

“This used to be a
small bash script”

(for some definition of
small)

Introducing
spicerack, our
execution engine
for complex
maintenance tasks
(pip install spicerack)

spicerack

● Written in python, powered by the

cumin distributed execution tool

● Define and run “cookbooks”, automated

complex recipes operating on physical

servers, datastores, remote APIs

● Each cookbook can have multiple stages

● Ability to query servers/services

catalogs

● Builtin dry-run functionality

● Rollbacks

A simple cookbook
from spicerack.cookbook import CookbookBase, CookbookRunnerBase
from spicerack import dns

class WipePdnsCache(CookbookBase):
 """Wipes the dns recursor caches for a dns record."""
 def argument_parser(self):
 parser = super().argument_parser()

 parser.add_argument("record", help="dns record to clean cache for")
 parser.add_argument("--expected", help="expected record after purging")

 def get_runner(self, args):
 return WipePdnsRunner(args, self.spicerack)

A simple cookbook

class WipePdnsRunner(CookbookBase):
 """Runs the cache wipe"""
 def __init__(self, args, spicerack):
 self.hosts = spicerack.remote().query("A:pdns_resolvers")
 self.record = args.record
 self.expected_ip = args.expected

 @retry(tries=5, backoff_mode="constant")
 def run(self, args):
 self.hosts.run_sync(f"rec_control wipe-cache {self.record}")
 dns.check_record(self.record, self.expected_ip, resolvers=self.hosts)

switchover
● sudo cookbook sre.switchdc.mediawiki dc-from dc-to

● 9 stages, 16 sub-cookbooks

● We keep track of execution time and log every action taken by the

cookbook

● “Live test” one week before our planned switchovers

● < 2 minutes of read-only time

endgame

no Avengers references in the next slides, sorry.
My slides need to be CC-licensed.

05

Applications should serve
traffic from all datacenters

At worst, direct write traffic to the primary datacenter

benefits
● Caches are hot at all times everywhere

● No hardware or configuration rot

● Forces SREs and devs in a multi-dc

mindset

● Increased peak capacity*

● When a user makes an edit, we send

them to the primary DC

● A/A vs A/P discovery records

● “Stick to primary” cookie for

consistency

● MariaDB (and most SQL databases) have

a primary/replica model.

● Caches need to be consistent

● Distributed systems and logical

consistency

● primary/replica << distributed <<

local-only

Datastores

Keeping the
process

efficient

06

We switch primary datacenter
twice per year

We decided to do it in the weeks of the equinoxes so that the
community expects it

Capacity test

For one week after the switchover, we run all traffic through the
new primary datacenter. This also allows disruptive maintenance.

Public domain

No haunted graveyards

The procedure needs to be clear, give good feedback to a first
time user, and to be operated in an emergency situation.

We ensure this by having the newest member of the team
perform the first switchover after they join

<joe> k: now ofc I want a quote for my presentation :P
<k> a quote?
<k> "
<k> ^ that good?
<joe> ...
<c> You're complaining when you got double what you asked

… I love my team

General
lessons in SRE
practice

07

“dripping
water
hollows
out stone”

Titus Lucretius Carus

Tuxyso / CC BY-SA 3.0

We kept improving bit by bit,
small spike of work by small
spike of work. Several SRE and
dev teams involved - you need to
get them onboard!

● Configuration changes behaviour of an

application.

● State describes the dynamic behaviour

of your distributed system

● Gitops is great for configuration, pretty

terrible in managing state

● You need a fast reacting system to

manage the state of your system

Config
vs

state

tooling

Andrew Farrington / CC BY-SA 2.0

A tool shouldnʼt just reduce toil,
but also anxiety:

● Remove any obvious (and
non-obvious, eventually)
pitfalls

● UX >> feature completeness
● A tool needs clear feedback.

Also, be creative!

Listening to
the
switchover

http://listen.hatnote.com

Listening to
the
switchover

https://docs.google.com/file/d/18NasPjt6cFS44mnBFIWXlFXg8-7vQjtm/preview

Questions?

https://wikimediafoundation.org/about/jobs/

