(2

Do Not Thrash the Node.js Event Loop

@matteocollina | Co-Founder & CTO

Matteo Collina
CO-FOUNDER & CTO, Platformatic

%g Board member Openl]S
Foundation

Node.js Technical Steering
Committee member

8 years as a consultant focused

on Node js
Created Fastify

and Pino

Subscribe to my newsletter
at https:/nodeland.dev.

(>

https://nodeland.dev.

I 17 Billions Downloads / Year

Downloads per Day

SOM 73.7M
NN
MM”P W
A Ay \ VAN
60M MV\M i f\ Nmﬂq rf\wﬂ m ﬁ
Zé 40M
3
(a]
NEARRRERE
2OMJ L LU[’ UUJJLMLL | H n L j JJ U

Date C Q

I Node.js is event loop based

I/O Event Queue

N

User JavaScript and
C++ executes here

n R
o@d ¢

Kernel and Operating System

(>

Node.js is event loop based

JavaScript

C++

No asynchronous I/O happening

Event Loop

The Node.js process
accepts new |/O

Event Loop

The Node.js process
accepts new /O

(>

The “normal” flow of HTTP requests in Node.js

CAN YOU SPOT THE PROBLEM?

HTTP requests coming in Synchronous Processing

The Processing time of composing ‘
one requests is composed by: dle wait / available

. for other requests
2 Synchronous Processing + 1

Asynchronous wait. e

Database
querying

HTTP responses going out Synchronous Processing

(>

I Do you like math?

Response time =2SP +1AS

Example:
- 10 ms of synchronous processing time

- 10 ms of I/O wait
Total response time: 30 ms.

Total number of request serviceable in 1 second by 1 CPU:
1000 ms /(10 ms *2) = 50

(The processing time does not count)

(>

Denial of Service
Attack ahead.

n R
o@d &

>

HTTP requests coming in

HTTP responses going out

)

Synchronous Processing

(0 (© @

3 requests arrives at the same time.

What's the total response
time of the last one?

(>

I Do you like math?

Response time =2SP +1AS
3 requests arrives at the same time

Example:
- 10 ms of synchronous processing time
- 10 ms of I/O wait
Total response time of Ist request: 30 ms.
Total response time of 2nd request: 50 ms.
Total response time of 3nd request: 70 ms.

Response Time x = SPx *2 + ASx + (SPx-1 *2)

(>

I Do you like math?

In our example, total number of request serviceable in 1 second by 1 CPU:
1000 ms /(10 ms *2) = 50
(The processing time does not count)

What happens if we got more than that number?

(>

10.50

10.40

10.30

10.20

10.10

9.70

9.60

9.50

10

15

20

Response Time (sync: 20, async: 10, rps: 50)

25

30

35

40

45

50

55

60

1400

1200

1000

800

600

400

200

10

15

20

Response Time (sync: 20, async: 10, rps: 51)

25 30 35 40

45

50

55

60

70.000

60.000

50.000

40.000

30.000

20.000

10.000

10

15

20

Response Time (sync: 20, async: 10, rps: 100)

25 30 35 40

45

50

55

60

utilization
capacity left.

>100% CPU
have

(>

The actual event loop

> timers

Pending callbacks

Idle, prepare

poll

Incoming:
Connections, data, etc.

check

close callbacks

(>

Event loop delay

https://github.com/mcollina/loopbench/blob/master/loopbench.js

function now () {
return process.hrtime.bigint() / 1000000n
}

setInterval(checkEventLoopDelay, 1000).unref()
let last = now()

1 checkLoopDelay () {
toCheck = now()

st delay = Number(toCheck - last - BigInt(1000))
last = toCheck

t overLimit = result.delay > 1000
- (overLimit) {

console.log('Event Loop delay over 1s')

}

The event loop delay measures the
effects after the problem already
happened. It's good at mitigating
incidents but not at preventing them.

(>

If you didn’t check out Node.js
in the last few years,

A linearized model for the Event Loop

Source: https://nodesource.com/blog/event-loop-utilization-nodejs/

(1)

(2)

L1 L2 L3 L4
el e’ es3 e4 e5
I
el e2 es e? e4 e4 e5
el

(>

Event Loop Utilization

It's the cumulative duration of time the event loop has been both idle and active as a high resolution
milliseconds timer. We can use it to know if the there is “spare” capacity in the event loop!

{ eventLoopUtilization } = require('perf_hooks').performance;
lastELU = eventLoopUtilization();

setInterval(() => {
tmpELU = eventLoopUtilization();
someExternalCollector(eventLoopUtilization(tmpELU, lastELU));

lastELU = tmpELU;
}, 100);

y

(Y X) [];;;;;;;;;

import fastify from 'fastify'
import underPressure from '@fastify/under-pressure'’

const app = fastify()

app.register(underPressure, {
maxEventLoopDelay: 1000,
maxHeapUsedBytes: 100000000,
maxRssBytes: 100000000,
maxEventLoopUtilization: 0.98

})

app.get('/", (req, reply) => {
// synchronous + asynchronous compute
return ...

b

await app.listen({ port: 3000 })

Example using @fastify/under-pressure

HTTP requests coming in

AN

Event Loop
Utilization is at 0.98

HTTP responses going out

>

mﬂ@de

E—

H

H

Synchronous Processing

S

-8

Database

Event Loop Utilization is at 0.98, start dropping requests

return a HTTP status code 503

(>

2 ;&%‘

ol
%

, be with me

S ‘
s imann

jEapsmadsir ErEARIEY Dnnn

T = ' - ———i T :
N ,‘L;W - TS _—
e, .= | =T

I Do not block the event loop!

{ Piscina } from 'piscina’;
piscina = ne Piscina({
filehémé; «»URL{'./workéf.mjs', mport.meta.url).href
});
st result = awai pis;inafrun({ a: 4, b: 6 });

console.log(result); /

Deduplicating asynchronous calls

n R
o@d @

— Synchronous Processing

Database

>

HTTP requests coming in)

— The call to the database is deduplicated
using async-cache-dedupe

HTTP responses going out

(>

(r‘b Platformatic

The future of backend
development. Now.

Enter Platformatic

We are helping developers get rid of the undifferentiated
heavy lifting of building Node.js applications

_%__

Thanks

Try our open-source tools at platformatic.dev

@platformatic @matteocollina

